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We present an approach to the normal state of cuprate superconductors which is based on a
minimal cluster extension of dynamical mean-field theory. Our approach is based on an effective
two-impurity model embedded in a self-consistent bath. The two degrees of freedom of this ef-
fective model can be associated to the nodal and antinodal regions of momentum space. We find
a metal-insulator transition which is selective in momentum space: At low doping quasiparticles
are destroyed in the antinodal region, while they remain protected in the nodal region, leading to
the formation of apparent Fermi arcs. We compare our results to tunneling and angular-resolved
photoemission experiments on cuprates. At very low energy, a simple description of this transition
can be given using rotationally invariant slave bosons.

PACS numbers: 71.27.+a,71.30.+h,74.72.-h

I. INTRODUCTION AND MOTIVATIONS

The doping of a Mott insulator is a fundamental prob-
lem of condensed matter physics, which has attracted
considerable attention in view of its relevance to the
physics of cuprate superconductors.1 In the simplest
Brinkman-Rice2 description, the doped metallic state is
a Fermi liquid in which quasiparticles are formed with a
heavy mass m∗/m ∼ 1/δ and a reduced weight Z ∼ δ
(δ is the doping level). This physical picture can indeed
be rationalized using the modern theoretical framework
of dynamical mean-field theory (DMFT).3,4,5 DMFT, in
its single-site version, is applicable when spatial correla-
tions are weak, which is favored by high dimensionality
and strong competing (e.g. orbital) fluctuations.
In cuprates however, which are two-dimensional ma-

terials with low orbital degeneracy, it was pointed out
long ago by Anderson in a seminal paper1 that the anti-
ferromagnetic superexchange (J) plays a key role, lead-
ing to strong short-range correlations associated with sin-
glet formation (valence bonds) between nearest-neighbor
lattice sites. Slave boson mean-field theories6,7,8,9,10 as
well as projected variational wave-functions,11,12 provide
simple theoretical frameworks to incorporate this effect,
modifying the Brinkman-Rice picture at small doping
δ . J/t and leading in particular to a finite effective
mass of quasiparticles m∗/m ∼ 1/(J/t + δ). This is in-
deed consistent with observations in cuprates, in which
only a moderate enhancement of the effective mass is ob-
served.
However, both single-site DMFT and simple varia-

tional or slave-boson mean-field theories share a common
feature, namely that the characteristic energy (or tem-
perature) scale below which coherent quasiparticles are
formed is uniform along the Fermi surface, and of order δt
at small doping levels. This is clearly inconsistent with
experimental observations in underdoped cuprates. In-

deed, these materials are characterized by a strong differ-
entiation of quasiparticle properties in momentum space,
a phenomenon which is key to their unusual normal-state
properties. In underdoped cuprates, coherent quasipar-
ticle excitations are suppressed in the antinodal regions,
around momenta (0, π) and (π, 0) of the Brillouin zone
(BZ), and a pseudogap appears below a characteristic
temperature scale (which decreases as the doping level is
increased). Instead, reasonably coherent quasiparticles
are preserved in the nodal regions around (π/2, π/2).
The signature of this phenomenon in angular-resolved
photoemission spectroscopy (ARPES) is the formation
of Fermi ‘arcs’ in the underdoped regime, defined as the
regions of momentum space where the spectral function
is intense at low excitation energy (see e.g. Ref. 13 for
a review). Suppression of quasiparticle coherence in the
antinodal regions is also apparent from other spectro-
scopies, such as electronic Raman scattering14,15,16 (with
the B1g and B2g channels associated with antinodes and
nodes, respectively) or quasiparticle interference patterns
obtained by scanning tunneling microscopy.17

Momentum-space differentiation and the
nodal/antinodal dichotomy is therefore an outstanding
challenge for theories of strongly-correlated electrons.
Various lines of attack to this problem have been taken.
At intermediate and strong coupling, and apart from
the extremely low-doping region, correlation lengths
are expected to be short (as also supported by exper-
imental observations). Hence, it is appropriate in this
regime to take into account short-range correlations
within cluster extensions of the DMFT framework.
Such investigations have been quite successful (for
reviews, see e.g. Refs. 4,18,19). Most studies have
considered clusters of at least four sites (a plaque-
tte)20,21,22,23,24,25,26,27,28,29,30,31,32 and numerical efforts
have been devoted to increasing the cluster size in order
to improve momentum-resolution and to advance toward
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an understanding of the two-dimensional case.33

In this article, we follow a different route, looking for a
description based on the minimal cluster able to success-
fully describe momentum-space differentiation together
with Mott physics.34 We find that a two-site cluster is
sufficient to achieve this goal on a qualitative level, and
to a large extent on a quantitative level, when com-
pared to larger cluster calculations. Our approach is
based on a division of the BZ into two patches, one con-
taining in particular the (π/2, π/2) momentum and the
other one in particular the (π, 0) and (0, π) momenta.
A mapping onto a two-impurity Anderson model with
self-consistent hybridization functions is made, following
a generalization of the dynamical cluster-approximation
construction (very similar results are actually obtained
within a cellular-DMFT self-consistency condition). The
self-energies associated with the ‘nodal’ and ‘antinodal’
patches are shown to correspond to the bonding (even)
and antibonding (odd) orbitals of the self-consistent
impurity model, respectively. This allows us to con-
struct a ‘valence-bond dynamical mean-field theory’ (VB-
DMFT)34 of nodal/antinodal differentiation, in which
this phenomenon is associated with the distinct prop-
erties of the orbitals associated with different regions of
momentum space.

One of our central results is that, below a critical
value of the doping level δc ≃ 16%, the ‘nodal’ (bond-
ing) orbital remains metallic while the ‘antinodal’ (anti-
bonding) orbital displays a pseudogap. Correspondingly,
the scattering rate associated with the nodal orbital is
suppressed in the pseudogap state, while the antinodal
orbital scattering rate increases as the doping level is
reduced. Hence, nodal/antinodal differentiation corre-
sponds in this minimal description to an orbital differ-
entiation, a momentum-space analogue35 of the orbital-
selective Mott transition which has been extensively dis-
cussed recently in the different context of transition-
metal oxides with several active orbitals.36 The sup-
pressed coherence of antinodal quasiparticles clearly orig-
inates, in our description, from Mott physics affecting
antinodal regions in a dramatic manner while nodal re-
gions remain comparatively protected.

A definite advantage and important motivation for
building a minimal description based on the smallest pos-
sible cluster is to advance our qualitative understanding.
Since the theory is based on a two-site Anderson model,
results can be interpreted in terms of valence-bond sin-
glet formation and linked to the well-documented com-
petition between singlet-formation and individual Kondo
screening.37,38 The two-impurity Kondo (or Anderson)
model is the simplest model which captures this compe-
tition. However our findings show that, in contrast to
the two-impurity model with a fixed hybridization to the
conduction-electron bath, the additional self-consistency
of the bath which is central to dynamical mean-field con-
structions brings in novel aspects. Indeed, the critical
point encountered at a finite doping δc is found only in
the lattice model involving self-consistent baths, while it

is replaced by a crossover in the non self-consistent two-
impurity Anderson model.
This article is organized as follows. In Sec. II A,

we specify the two-dimensional Hubbard model un-
der consideration and describe the BZ patching and
VB-DMFT mapping onto a self-consistent two-orbital
model. Then, we briefly review the two main tech-
niques that we have used for the solution of this
problem: the strong-coupling continuous-time quantum
Monte Carlo algorithm39,40 (Sec. II B) and the (semi-
analytical) rotationally-invariant slave-boson approxima-
tion41 (Sec. II C). Sec. III is devoted to a detailed presen-
tation of the orbital-selective transition and of its physi-
cal relevance to nodal/antinodal differentiation. In par-
ticular, the frequency dependence of the self-energies and
spectral functions on the real axis are presented and in-
terpreted. In Sec. IV, these results are contrasted to
the physics of a two-impurity problem with non self-
consistent baths, in connection with the Kondo to RKKY
(singlet) crossover observed there. Finally, in Sec. VA,
the issue of momentum-space reconstruction is consid-
ered, and the connection to the formation of ‘Fermi arcs’
is discussed. For the sake of clarity and completeness,
some technical aspects of our work are discussed more in
detail in appendices.

II. THEORETICAL FRAMEWORK

A. Model and valence-bond dynamical mean-field
theory

We study the Hubbard model on a square lattice, with
hopping between nearest-neighbor t and next-nearest-
neighbor sites t′. The corresponding Hamiltonian is given
by

H =
∑

k,σ=↑,↓
εkc

†
σkcσk + U

∑

i

ni↓ni↑ (1)

εk =− 2t
(

cos(kx) + cos(ky)
)

− 4t′ cos(kx) cos(ky). (2)

In the following, we use U/t = 10 and t′/t = −0.3,
which are values commonly used for modeling hole-doped
cuprates in a single-band framework. All energies (and
temperatures) are expressed in units of D = 4t = 1,
and the doping is denoted by δ. We restrict ourselves to
paramagnetic normal phases.
In this paper, we focus on a two-site dynamical clus-

ter approximation (DCA).18 For completeness, we recall
the DCA construction in Appendix A. The principle of
the DCA approximation is to cut the Brillouin zone into
patches and approximate the self-energy as a piecewise
constant function on the patches. The many-body prob-
lem can then be solved using an effective self-consistent
multiple quantum impurity model. A priori, there is
some arbitrariness in the choice of patches in DCA. In
this paper, we exploit this freedom in order to separate
the nodal and the antinodal region into two patches, so
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that the properties of each region will be described by
one orbital of the effective impurity model. More pre-
cisely, we choose the minimal set of two patches of equal
area P+ and P− represented in Fig. 1: P+ is a central
square centered at momentum (0, 0) and containing the
nodal region; the complementary region P− extends to
the edge of the BZ and contains in particular the antin-
odal region and the (π, π) momentum. On Fig. 2, we also
present the partial density of state of both patches.

(0,π) (π,π)

(π,0)(0,0)

P
+

P
-

FIG. 1: (Color online) The Brillouin zone is divided into two
patches P+ (inside the inner blue square) and P− (between
the two squares). The dotted line is the free (U = 0) Fermi
surface at δ = 0.1 for t′/t = −0.3. P+ (resp. P−) encloses the
nodal (resp. antinodal) region.
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FIG. 2: (Color online) Partial density of states of the two
patches P+ (solid blue curve with circles) and P− (solid
red curve with squares), and total density of states (dashed
curve); t′/t = −0.3.

It is important to check that the main qualitative re-
sults of our approach are independent of the precise shape
of the patches. We will discuss this point in Sec. III E,
and show that indeed our results are qualitatively similar
for a family of patches in which the P+ patch encloses a
variable part of the bare Fermi surface around the nodal

point. Moreover, we have also considered another clus-
ter method, cellular-DMFT (CDMFT),4,18 and obtained
qualitatively similar results. Because two-site CDMFT
breaks the lattice square symmetry, we focus here on a
generalized DCA approach.

Following the DCA construction (see also Ap-
pendix A), we associate a momentum-independent self-
energy Σ±(ω) to each patch of the Brillouin zone. This
self-energy is then identified with the Fourier transform
of the cluster self-energy of a two-site cluster of Ander-
son impurities embedded in a self-consistent bath. This
two-site Anderson impurity model is given by

Seff = −
∫∫ β

0

dτdτ ′
∑

a,b=1,2

σ=↑,↓

c†aσ(τ)G
−1
0,ab(τ, τ

′)cbσ(τ
′)

+

∫ β

0

dτU
∑

a=1,2

na↓na↑(τ) (3)

G−1
0ab(iωn) = (iωn + µ)δab − t̄(1 − δab)−∆ab(iωn), (4)

where a, b = 1, 2 is the site index, U is the on-site inter-
action, ∆ is the hybridization function with a local com-
ponent ∆11(ω) = ∆22(ω) and an inter-site one ∆12(ω).
We choose a convention in which the hybridization ∆
vanishes at infinite frequencies and therefore denote the
constant term separately (t̄). Since we restrict ourselves
to paramagnetic solutions, we dropped the spin depen-
dence of G0, ∆ and t̄. The self-consistency condition de-
termines both ∆ and t̄ and is written in the Fourier space
of the cluster, which in this case reduces to the even and

odd orbital combinations c†±σ = (c†1σ ± c†2σ)/
√
2:

ΣK(iωn) =G0K(iωn)
−1 −GK(iωn)

−1 (5)

GK(iωn) =
∑

k∈PK

1

iωn + µ− εk − ΣK(iωn)
. (6)

In this expression, momentum summations are normal-
ized to unity within each patch, and the index K = ±
refers both to the inner/outer patch index and to the
even/odd orbital combinations of the two-impurity prob-
lem. t̄ is determined by the 1/ω2 expansion of the previ-
ous equations, leading to

t̄ =
∑

k∈P+

εk = −
∑

k∈P−

εk. (7)

The impurity model has the same local interaction as the
original lattice model: This is a consequence of the fact
that both patches have equal surface (see Appendix A).

As usual in the DMFT problems, the quantum impu-
rity model (3) can be rewritten in a Hamiltonian form,
i.e. as the Hamiltonian for a dimer coupled to a self-
consistent bath

H = Hdimer +Hbath, (8)
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where Hdimer can be written in the 1, 2 basis as

Hdimer ≡
∑

a,b=1,2

σ=↑,↓

c†aσ
(

t̄(1−δab)+ε0δab
)

cbσ+
∑

a=1,2

Una↓na↑,

(9)
where ε0 ≡ −µ. Alternatively, Hdimer can be written in
the even/odd basis where the hybridization is diagonal

Hdimer =
∑

s=±
σ=↑,↓

c†sσ (st̄+ ε0) csσ+

U

2

∑

s=±
s̄=−s

(

ns↑ns↓+ns↑ns̄↓+c†s↑c
†
s↓cs̄↓cs̄↑+c†s↑c

†
s̄↓cs↓cs̄↑

)

.

Note that, since we will be solving the quantum impurity
model using continuous-time quantum Monte Carlo and
rotationally-invariant slave-boson methods, which work
within the action formalism, we will not need the explicit
form of the bath term Hbath.

B. Continuous-time Monte Carlo

A numerically exact solution of the self-consistent
two-impurity problem is obtained using continuous-time
quantum Monte Carlo (CTQMC)39,40 which sums the
perturbation theory in ∆ab(iωn) on the Matsubara axis.
The partition function of the impurity model

Z =

∫

Dc†Dc exp
(

−Seff

)

is expanded in powers of the hybridization ∆, leading to

Z =
∑

n≥0

1

n!

∫ n
∏

i=1

dτidτ
′
i

∑

ai=±
σi=↑,↓

det
1≤i,j≤n

[

∆ai,aj
(τi−τ ′j)

]

×

Tr

(

T e−βHdimer

n
∏

i=1

c†aiσi
(τi)caiσi

(τ ′i)

)

, (10)

where T is time ordering and Hdimer is given by (9).

The partition function is then sampled with the
Metropolis algorithm, where a configuration of size n is
given by the n indices ai, σi and times τi, τ

′
i of the c†, c

operators. The Monte Carlo probability of a configura-
tion is given by the absolute value of the product of the
trace and the determinant term. The Green’s function is
then accumulated using the formula obtained by differ-
entiating Z with respect to ∆.39,40

Another quantity of interest is the relative weight of
multiplets of the dimer problem, which we will discuss in
detail in Sec. IV. It can be measured, following Ref. 40,
by their relative contribution to the trace: if Γ is a mul-
tiplet of Hdimer, we define the CTQMC statistical weight

of Γ as

pQMC
Γ ≡

〈
∣

∣

〈

Γ
∣

∣T e−βHdimerCn(ai, σi, τi, τ
′
i)
∣

∣Γ
〉∣

∣

∑

Γ

∣

∣

〈

Γ
∣

∣T e−βHdimerCn(ai, σi, τi, τ
′
i)
∣

∣Γ
〉∣

∣

〉

QMC

(11)

Cn(ai, σi, τi, τ
′
i) ≡

n
∏

i=1

c†aiσi
(τi)caiσi

(τ ′i), (12)

where 〈A〉QMC denotes the Monte Carlo averaging over

the configurations (labeled by n and {ai, σi, τi, τ
′
i}).

In this simple two-impurity model in the paramagnetic
phase, the symmetry between the two sites allows to fac-
torize the determinants:39,40 ∆ is indeed diagonal in the
± basis. We also note that the Monte Carlo sign is one
in this problem. Due to the efficiency of this algorithm,
we can routinely do a few millions Monte Carlo sweeps
and obtain high-quality data in imaginary time. We then
perform the continuation to the real axis using a simple
Padé method42 (see also Sec. III B and Appendix B).

C. Rotationally-invariant slave bosons

Slave-boson (SB) methods (see e.g. Ref. 41,43,44,45)
provide a simplified description of the low-energy excita-
tions in strongly-correlated electron systems. The gen-
eral idea is to enlarge the original Hilbert space to a
set of states which involve both (‘slave’) bosonic and
(‘quasiparticle’) fermionic variables. The bosonic vari-
ables are introduced in such a way that the interaction
term becomes a simple quadratic form in terms of the
slave bosons. The physical Hilbert space is recovered
by imposing a (quadratic) constraint relating the slave
bosons to the fermions. Mean-field (approximate) so-
lutions can be obtained by looking for saddle points at
which the bosons are condensed and at which the con-
straint is only satisfied on average. At such a saddle
point, the fermionic variables can be interpreted as the
low-energy quasiparticles of the original problem. A very
simple form of the self-energy is obtained, containing only
a constant term and a term linear in frequency. This
should be interpreted as a simplified low-energy descrip-
tion of the system (i.e. as the first two terms in a low-
frequency expansion of the self-energy).
Because of the simplicity of this physical interpreta-

tion, slave-boson methods are a very complementary tool
to fully numerical algorithms such as the one reviewed in
the previous section. For this reason, we have also con-
sidered a SB mean-field solution of the VB-DMFT equa-
tions, which should be viewed as a simplified description
of the low-energy physics. The full numerical solution
(obtained with CTQMC) has of course a rich frequency
dependence but, as we shall see, the SB approximation
compares very well to the numerical results at low energy.
To be specific, we use a slave-boson mean-field as

an approximate ‘impurity solver’ of the effective two-
impurity problem coupled to self-consistent baths, within
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TABLE I: Eigenstates of the dimer. The quantum numbers for charge, spin, and parity are given. The last column shows the
slave bosons for the description of the eigenstates in the RISB formalism. States 10 and 11 have all their quantum numbers
equal and form a 2× 2 block. The ground state is number 10 which is the antiferromagnetic singlet of even parity and has an
energy E10 = 2ε0 +

1
2
(U −

√
16 t̄2 + U2) ≃ 2ε0 − 4t̄2/U . Here ℓ± = U ±

√
16t̄2 + U2/4t̄ and N± = 2 + 2ℓ2±.

No. Label (cf. Fig. 15) Eigenstate n↑ n↓ Parity S Boson
1 E |0, 0〉 0 0 + 0 φ1,1

2 1+ (Sz = +1/2) 1√
2
(|0, ↑〉+ | ↑, 0〉) 1 0 + 1/2 φ2,2

3 1√
2
(|0, ↑〉 − | ↑, 0〉) 1 0 - 1/2 φ3,3

4 1+ (Sz = −1/2) 1√
2
(|0, ↓〉+ | ↓, 0〉) 0 1 + 1/2 φ4,4

5 1√
2
(|0, ↓〉 − | ↓, 0〉) 0 1 - 1/2 φ5,5

6 T (Sz = +1) | ↑, ↑〉 2 0 - 1 φ6,6

7 T (Sz = −1) | ↓, ↓〉 0 2 - 1 φ7,7

8 T (Sz = 0) 1√
2
(| ↑, ↓〉 + | ↑, ↓〉) 1 1 - 1 φ8,8

9 1√
2
(|0, ↑↓〉 − | ↑↓, 0〉) 1 1 - 0 φ9,9

10 S 1√
N−

(−| ↑, ↓〉+ ℓ−| ↑↓, 0〉 + ℓ−|0, ↑↓〉 + | ↓, ↑〉) 1 1 + 0 φ10,10; φ10,11

11 1√
N+

(−| ↑, ↓〉+ ℓ+| ↑↓, 0〉+ ℓ+|0, ↑↓〉+ | ↓, ↑〉) 1 1 + 0 φ11,10; φ11,11

12 1√
2
(| ↑↓, ↑〉 + | ↑, ↑↓〉) 2 1 + 1/2 φ12,12

13 1√
2
(| ↑↓, ↑〉 − | ↑, ↑↓〉) 2 1 - 1/2 φ13,13

14 1√
2
(| ↑↓, ↓〉 + | ↓, ↑↓〉) 1 2 + 1/2 φ14,14

15 1√
2
(| ↑↓, ↓〉 − | ↓, ↑↓〉) 1 2 - 1/2 φ15,15

16 | ↑↓, ↑↓〉 2 2 + 0 φ16,16

the self-consistency iterative loop of VB-DMFT. We
use the recently introduced ‘rotationally-invariant’ slave-
boson formalism41 (RISB), which generalizes the origi-
nal construction of Kotliar and Ruckenstein45 to multi-
orbital systems in a way which respects all symmetries
of the Hamiltonian (see also Refs. 46,47). To define
the slave-boson variables, we consider the (‘molecular’)
eigenstates |Γ〉 of the Hamiltonian (9) describing the iso-
lated 2-site cluster in the absence of the baths. For defi-
niteness, these 16 states and their quantum numbers are
listed in Table I. In the original formulation of Kotliar
and Ruckenstein,45 a slave boson φΓ is introduced for
each molecular eigenstate. However, this breaks rota-
tional invariance in spin and orbital space, and results
into difficulties when saddle-point solutions are consid-
ered. For example, nonequivalent saddle-point solutions
would be found depending on whether the Hamiltonian
is expressed in the (1, 2)-basis (corresponding to sites) or
in the (+,−) basis corresponding to the even and odd
orbital. To avoid this problem, the RISB41 formalism in-
troduces amatrix of slave-boson amplitudes, {φΓΓ′}. The
first index (Γ) is associated with each molecular eigen-
state in the physical Hilbert space of the dimer. The
second index (Γ′) corresponds to a state of the quasipar-
ticle fermionic variables (with the same fermionic content
as the corresponding physical state). Symmetry consid-
erations allow for a drastic reduction of the number of
bosons to be considered in practice: Only the φΓΓ′ such
that both states have identical quantum numbers take
non-zero values at the saddle point. For the problem at
hand, this leaves 18 boson amplitudes in total, all scalars
except for a 2 × 2 block in the two-particle sector with
total spin S = 0 and even parity (Table I). Other bosons

turn out to be zero at the mean-field level.
To exclude the nonphysical states we impose the fol-

lowing set of constraints

∑

ΓΓ′

φ†
ΓΓ′φΓΓ′ = 1 (13)

∑

ΓΓ′
1
Γ′
2

φ†
ΓΓ′

1

φΓΓ′
2
〈Γ′

2|f †
αfβ|Γ′

1〉 = f †
αfβ , ∀α, β,(14)

where f †
α creates a quasiparticle in orbital α. For the

dimer, we have α = {±, σ} where ± designates the
even/odd orbital, σ =↑, ↓ is the spin index and f±σ =
1√
2
(f1σ ± f2σ). The molecular eigenstates of the physical

Hilbert space of the dimer have the following representa-
tion,41 which satisfy the constraints (13)

|Γ〉 ≡ 1√
DΓ

∑′

Γ′

φ†
ΓΓ′ |vac〉|Γ′〉, (15)

whereDΓ is a normalization factor and the primed sum is
over states |Γ′〉 which have the same quantum numbers as
|Γ〉. The physical electron operators can be expressed at
saddle point as a linear combination of the quasiparticle
operators f as

d†α → d†α = R∗
αβf

†
β, (16)

where Rαβ is given by

Rαβ =
∑

Γ1Γ2Γ′
1
Γ′
2

∑

γ

Mγβ 〈Γ1|dα|Γ2〉〈Γ′
1|fγ |Γ′

2〉φ†
Γ1Γ′

1

φΓ2Γ′
2
.

(17)
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In this expression, Mγβ is a matrix of normalization fac-
tors which insure that the exact non-interacting solu-
tion is recovered in the saddle-point approximation when
U = 0. Its explicit expression in terms of the slave-boson
amplitudes can be found in Ref. 41.
Writing the dimer Hamiltonian as

Hdimer =
∑

Γ

EΓ

∑

Γ′

φ†
ΓΓ′φΓΓ′ , (18)

we obtain the partition function as a functional integral
over coherent Bose and Fermi fields. The constraints
of Eq. (13) are enforced including time-independent La-
grange multipliers λ0 and Λαβ . The fermionic fields
can be integrated out and the resulting bosonic action
is treated in the saddle-point approximation. The free
energy is finally obtained as

Ω = − 1

β

∑

iωn

Tr ln[−G
−1
f (iωn)]− λ0 + (19)

+
∑

Γ1Γ2Γ′
1
Γ′
2

ϕ∗
Γ1Γ′

2
{δΓ′

1
Γ′
2
δΓ1Γ2

(λ0 + EΓ1
)−

− δΓ1Γ2

∑

αβ

〈Γ′
1|f †

αΛαβfβ|Γ′
2〉}ϕΓ2Γ′

1
.

In this expression, ϕΓΓ′ ≡ 〈φΓΓ′ 〉 are saddle-point (c-
numbers) expectation values of the boson fields and Gf

is the quasiparticle (auxiliary fermion) Green’s function
of the impurity model, given by

G
−1
f (iωn) = iωn1−Λ−R

†
(

∆+(iωn) 0
0 ∆−(iωn)

)

R,

(20)
with ∆± the hybridization function of the even (resp.
odd) orbital. The saddle-point approximation is obtained
by extremalizing Ω over the boson amplitudes ϕΓΓ′ and
the Lagrange multipliers λ0,Λαβ .
Within this approximation, the self-energy for the

physical electron operators consists simply in a constant
term and a term linear in frequency, which are orbital-
dependent and read41

Σd(iωn) = iωn (1−[RR
†]−1)+[R†]−1

ΛR
−1−ε01, (21)

so that the matrix of quasiparticle weights reads

Z = RR
† =

(

Z+ 0
0 Z−

)

. (22)

Of course, as mentioned above, this form of the self-
energy should be understood as a low-energy approxima-
tion retaining only the constant terms (which renormal-
ize the level position associated with the even- and odd-
orbitals) and the quasiparticle weights. Lifetime effects,
as well as higher order terms in frequency are neglected
within the SB mean-field approximation. Accordingly,
the physical electron Green’s function

Gd = RGf R
†, (23)

retains only the quasiparticle contribution to the spectral
functions (note in particular that these spectral functions
do not satisfy the normalization sum rule, and instead
have spectral weights Z± corresponding to the quasipar-
ticle contributions).
From the expression of the intra-dimer energy at the

mean-field level

〈Hdimer〉 =
∑

Γ

EΓ

∑

Γ′

|ϕΓΓ′ |2, (24)

we see that the quantity

pSBΓ ≡
∑

Γ′

|ϕΓΓ′ |2 (25)

can be interpreted as the statistical weight associated
with the contribution to the low-energy physics of the
multiplet state Γ. Because of the constraint (13) on the
slave bosons, these weights are normalized according to
∑

Γ p
SB
Γ = 1. As discussed later in this article, they can

be directly compared to the statistical weights computed
within the CTQMC algorithm.

III. ORBITAL-SELECTIVE MOTT
TRANSITION IN MOMENTUM SPACE

A. The different regimes of doping and the
transition

0 0,1 0,2 0,3 0,4 0,5
δ

-0,5

0

0,5

1

1,5

R
e 

Σ(
0)

µ−ReΣ−(0)

ReΣ−(0)

ReΣ+(0)

FIG. 3: (Color online) Real part of the even and odd self-
energies at ω = 0, extrapolated from CTQMC results for
β = 200, U = 2.5. The solid lines are the slave-boson (RISB)
solution, while the symbols are the CTQMC results. The
dotted line is the lower band edge of the P− patch represented
in Fig. 2.

In this section, we describe the behavior of the system
in the different regimes of doping. First, we focus on a
low-energy analysis which yields a very simple descrip-
tion of the orbital-selective transition. To this end, we
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first analyze the behavior of the real part of the even-
and odd-orbital self-energies, extrapolated to zero fre-
quency. This is shown in Fig. 3 using both CTQMC
and RISB. Even though the full frequency dependence of
the self-energy obtained by CTQMC is highly non-trivial
(see subsequent sections), its zero-frequency limit is in
remarkable agreement with the RISB solution, as is clear
from Fig. 3.

At large doping δ & 20%, Σ′
+(0) and Σ′

−(0) are very
close to each other: Both orbitals behave in a similar way.
In this large doping regime, the system is a good metal
with well-defined quasiparticles everywhere on the Fermi
surface. A single-site DMFT description is quite accurate
in this regime, since there is little orbital differentiation
and hence little momentum dependence.

As the doping level is further reduced (δ . 20%), the
two orbitals start to behave differently, signaling the on-
set of momentum differentiation in the lattice model.
The odd-orbital self-energy Σ′

−(0) increases rapidly as
the doping level is reduced, while Σ′

+(0) remains much
smaller and even decreases slightly with doping. At the
critical doping level δ ≃ 16%, the effective chemical po-
tential of the odd orbital µ − Σ′

−(0) reaches the lower
edge ǫmin = −0.38 of the non-interacting partial den-
sity of states corresponding to the outer patch (Fig. 2),
as signaled by the dashed horizontal line in Fig. 3. Re-
taining only the real part of the self-energy, this implies
that the pole equation corresponding to the outer patch
ω + µ − εk − Σ′

−(ω) = 0 no longer has solutions for
ω = 0, signaling the disappearance of low-energy quasi-
particle excitations from the outer patch. Hence, for
δ . 16%, we have a strongly momentum-differentiated
metal, with quasiparticles present only within the central
patch. Only when the doping eventually reaches δ = 0
do these quasiparticles in turn disappear, corresponding
to a Mott insulator. Note that in the above analysis we
neglected the contribution from the imaginary part of
the self-energy Σ′′

−(0). Indeed, our data indicates that
Σ′′

−(0) vanishes as the temperature goes to zero, so that
the transition does exist in this limit. At finite tempera-
tures, the imaginary part of the self-energy gives a small
contribution to the spectral density at the chemical po-
tential, but still a rapid change of behavior is expected
around the transition.

Further insights into this transition can be obtained
by analyzing the average occupancies in each orbital n+

and n− obtained by CTQMC and within the RISB cal-
culation, see Fig. 4. At large doping, the occupancies
obtained by both methods behave similarly and increase
with decreasing doping. As the doping gets closer to
the critical value δ ≃ 16%, the RISB solution displays a
strong deviation where nRISB

+ increases rapidly and nRISB
−

vanishes. Recalling that the slave-boson approximation
only accounts for the low-energy physics associated with
quasiparticles, this indicates that the odd orbital be-
comes empty at low energy in the low-doping phase, and
that there are no low-energy excitations left in the outer
patch, as discussed above. A change of behavior in n±

0 0.1 0.2 0.3 0.4 0.5 0.6
δ

0

0.2

0.4

0.6

0.8

1

n

n
+
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n
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n
-

CTQMC

n
-

RISB

FIG. 4: (Color online) Averages occupancies of the even and
odd orbitals, obtained with RISB method (dashed lines) and
CTQMC (solid lines with circles). β = 200, U = 2.5.

at the transition is also present in the CTQMC solution,
but it should be kept in mind that these quantities then
include contributions from the higher-energy features of

the spectral function, and hence nCTQMC
− is not expected

to vanish in the low-doping phase because the odd orbital
does have spectral weight at sufficiently negative energies
in that phase as well.

0 0.1 0.2 0.3 0.4 0.5 0.6
δ

0
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0.4
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0.8

1
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Z
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Z
-

RISB

Z
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FIG. 5: (Color online) Quasiparticle residues of the even and
odd orbitals obtained with RISB method (dashed lines) and
CTQMC (solid lines with circles). β = 200, U = 2.5.

In our VB-DMFT approach, the strong differentiation
in momentum space at low doping manifests itself as an
orbital-selective transition: As one approaches the Mott
insulator, the odd orbital localizes at a finite doping level,
while the even one only does so at δ = 0 when reaching
the Mott insulator. This is actually a crude description of
the formation of Fermi arcs. Indeed, for δ < 16%, quasi-
particles are only present in the inner patch, close to the
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nodal region. Instead, in the antinodal region, the Fermi
surface is destroyed and the spectral function vanishes at
the chemical potential. A more precise description of the
actual formation of the Fermi arcs requires to specify a
procedure for reconstructing the momentum dependence
of the self-energy from this two-orbital description: This
is the topic of Sec. V.
A marked difference of behavior between the two or-

bitals at low doping is also found for the quasiparticle
residues (see Fig. 5) defined by

Z± =
(

1− dΣ′
±(ω)

dω

∣

∣

∣

ω→0

)−1

. (26)

The CTQMC data and RISB approximation for Z± dif-
fer in absolute value but they both display similar trends.
Again, at high doping Z+ and Z−are close to each other.
As the doping is reduced, Z− decreases (with roughly a
linear dependence on doping) while Z+ remains essen-
tially constant. Below the critical doping, Z− cannot be
interpreted as the spectral weight of a quasiparticle (the
odd orbital is localized), but it does indicates that the
correlations continue to affect the odd-orbital self-energy.
Hence, correlations preferentially act on the antinodal
electrons. In contrast, correlations appear to have lit-
tle influence on Z+ below δc, indicating that the nodal
quasiparticles appear to be “protected” by the opening
of the (pseudo-) gap in the antinodal regions.

1 1,5 2 2,5 3 3,5 4
U

-0,5

0

0,5

1

1,5

2

R
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Σ(
0)

Re Σ−(0)

Re Σ+(0)

µ−Re Σ−(0)

FIG. 6: (Color online) Real parts of the self-energies at ω = 0,
extrapolated from CTQMC results at β = 200, as a function
of U at a fixed doping δ = 8%. The dotted line is the lower
band edge of the P− patch represented in Fig. 2.

The value of the critical doping δc at which the transi-
tion appears depends on the value of the interaction U .
The larger U , the larger δc. To illustrate the effect of U ,
we plot, in Fig. 6, the real parts of the self-energies ex-
trapolated to zero frequency for different values of U at
a fixed doping δ = 8%. The difference between the even
and the odd orbital increases with U . Above U ≃ 1.5,
the renormalized chemical potential falls below the lower
edge of the partial DOS for the outer patch and the odd

spectral function is vanishing at the chemical potential.
However, when U < 1.5, the odd orbital is metallic again,
showing clearly that the Coulomb interaction is at the
origin of the differentiation in momentum space.

B. Spectral functions and the pseudogap at low
doping
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ω
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δ = 0.20
δ = 0.16
δ = 0.12
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δ = 0.04
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0

1

2

3

δ 

FIG. 7: (Color online) Spectral function A−(ω) for the odd
orbital, obtained with Padé approximants (see Appendix B),
for various dopings at β = 200. A shift of 0.3 has been added
between the curves for clarity. Inset: Zoom of the same curves
at low frequencies (no shift added).

In the previous section, we have shown that strong
orbital differentiation sets in at low-doping levels δ .
16%. In a simplified low-energy description, the effective
chemical potential for the odd orbital is pushed below
the lower band edge. This corresponds to the vanishing
of the low-energy spectral weight of the odd orbital, and
signals the disappearance of low-energy quasiparticles in
the antinodal regions. In this section, we go beyond this
simple low-energy analysis and study the full frequency
dependence of the spectral functions of both the even and
odd orbitals. One of the main outcomes of this study, as
we shall see, is that the odd orbital does not have zero
spectral weight in a finite frequency range around ω = 0,
but rather develops a pseudogap.
The computation of real-frequency spectral functions

is made possible by the very high quality of the CTQMC
results on the Matsubara axis, allowing for reliable an-
alytical continuations to the real axis at low and inter-
mediate energy, using simple Padé approximants42 (see
Appendix B). This is a definite advantage of our simpli-
fied two-orbital approach, in which the statistical noise
of Monte Carlo data can be reduced down to very small
values at a reasonable computational cost. In Fig. 7, we
plot the spectral function A−(ω) of the odd orbital at a
fixed interaction U = 2.5. At high energies, the spectra
display the expected lower and upper Hubbard bands,
and from now we focus on the lower energy range. In
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this range, the spectra display a central peak. At high
doping, this peak is centered at the Fermi level ω = 0.
As the doping level is reduced, this peak shifts toward
positive energies. At the critical doping δc ≃ 16%, the
chemical potential is at the lower edge of the peak, in
agreement with the low-energy analysis discussed above.
Correspondingly, the spectral weight at ω = 0 is

strongly suppressed as the doping is reduced from δc ≃
16%. A pseudogap is formed at low energy, as clear from
the inset of Fig. 7, which deepens as the doping level
is reduced. There is no coherent spectral weight at the
chemical potential. The finite spectral weight at ω = 0 is
due to thermal excitations. In contrast, the finite spec-
tral weight at small but non-zero frequency survives as
temperature is reduced, corresponding to a pseudogap
rather than a true gap in A−(ω).

0 0.1 0.2
δ

0

0.02

0.04

0.06

0.08

∆

Gap to positive excitations ∆

FIG. 8: (Color online) Gap to positive coherent excitations in
the odd orbital, obtained from Eq. (28).

The prominent peak at low energies in A−(ω) is asso-
ciated with the first coherent excitations at positive ener-
gies. By neglecting the effect of the imaginary part of the
self-energy, it is possible to precisely identify the position
of this peak as the scale ∆ where the first positive-energy
poles appear in the expression of the odd-orbital Green’s
function

G−(ω) =
∑

k∈P−

1

ω + µ− εk − Σ′
−(ω)

. (27)

Hence, ∆ is the solution of

∆ + µ− ǫmin − Σ′
−(∆) = 0, (28)

where ǫmin is the lower-band edge of the outer-patch par-
tial DOS. The solution of this equation is shown in Fig. 8.
The gap ∆ opens below δc and provides a characteris-
tic energy scale for the position of the peak, see inset
in Fig. 7. Note that this energy scale is much smaller
than the deviation of the renormalized chemical potential
µ−Σ′

−(0) from the lower outer-patch band edge because
of the non-trivial frequency behavior of the self-energy.

Furthermore, the magnitude of ∆ as obtained from Fig. 8
is in the range of tens of meV ’s consistent with the typical
magnitude of the pseudogap in cuprates.
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FIG. 9: (Color online) Spectral function A+(ω) for the even
orbital, obtained with Padé approximants (see Appendix B),
for various dopings at β = 200. A shift of 0.2 has been added
between each curves for clarity. Inset: Zoom of the same
curves at low frequencies (no shift added).

In Fig. 9, we display the spectral function A+(ω) of the
even orbital for different doping levels. The dependence
of A+(ω) on doping is rather weak. The main feature
of the non-interacting density of states corresponding to
the central patch (Fig. 2) is recovered on these spectra,
namely a broad peak centered at negative energy with
a tail leaking above the Fermi level. The absence of a
visible lower Hubbard band, as well as the relatively small
spectral weight of the upper Hubbard band (at the same
position ω ≃ 2 as in A−(ω)), indicate that correlations
have a much weaker effect on the even orbital (central
patch, nodal regions) than on the odd (antinodal) one, as
already anticipated in the previous section. The spectral
function A+(ω) is quite asymmetric, with more hole-like
excitations than particle-like excitations (in line with the
fact that the central patch corresponds mainly to filled
states). At low doping, a small dip appears close to the
chemical potential. The position of this dip is close to
that of the prominent peak in the odd-orbital spectral
function.

C. Comparison with tunneling experiments

A direct comparison can be made between our VB-
DMFT cluster calculations and tunneling experiments in
the normal state of cuprate superconductors. Indeed,
tunneling directly probes the momentum-integrated
spectral density, and hence the comparison is free of the
possible ambiguities associated with momentum-space
reconstruction which influence the comparison of clus-
ter calculations to momentum-resolved spectroscopies (as
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FIG. 10: (Color online) Total spectral function Atot(ω) for
various temperature at δ = 0.08. A shift of 0.3 has been
added between each curves for clarity.

discussed in more detail in Sec. V). The tunneling con-
ductance dI/dV as a function of the voltage V is given
by48

dI

dV
∝
∫ +∞

−∞
dω [−f ′(ω − eV )]Atot(ω). (29)

In this expression, tunneling between a normal metal
(with a featureless density of states) and the correlated
sample is considered, f ′ designates the derivative of the
Fermi function, e > 0 is the absolute value of the electron
charge and Atot(ω) is the local (momentum-integrated)
spectral function. The energy dependence of tunneling
matrix elements has been neglected, and the correlated
sample is considered to be homogeneous.
In Fig. 10, we display Atot(ω) = A+(ω) + A−(ω) for

different temperatures T = 1/β at a fixed doping δ = 8%.
In this local spectral function, we recognize the features
discussed above, namely the broad band at negative en-
ergy originating from A+(ω), and the sharp peak at a
small positive energy found in A−(ω), separated by the
pseudogap at low energy.
In Fig. 11, we display the voltage dependence of the

tunneling conductance obtained using the spectral func-
tion Atot(ω) calculated within VB-DMFT. The results
are displayed at a fixed, low-doping level δ = 8% in the
pseudogap regime, for different temperatures. For com-
parison, we also display the experimental data of Renner
et al.48,49 for underdoped Bi2212. When comparing the
two set of curves, attention should be paid to the fact
that our calculation applies at this stage only to the nor-
mal state T > Tc. Our calculation compares quite fa-
vorably to the experimental data, in several respects. At
low temperature, both the theoretical and experimental
conductance displays i) a dip at low voltage correspond-
ing to the pseudogap ii) a peak at a small positive volt-
age (corresponding to empty hole-like states) and iii) an
overall particle-hole asymmetry dI/dV < 0 at negative

voltage as well as at positive voltage above the peak, as
indeed expected in a doped Mott insulator. Furthermore,
we observe that the temperature dependence reveals the
gradual buildup of the positive-voltage coherence peak as
temperature is lowered, as well as the gradual opening of
the pseudogap at low voltage. One aspect of our theo-
retical results which departs from the experiments is the
detailed shape of the conductance at negative voltage: In
experiments a more pronounced dip is visible, while our
results rather display a gradual, linear-like decrease.
Our results have direct implications for the interpre-

tation of tunneling experiments, and also suggest some
further experiments to test these predictions. First, the
coherence peak at small positive voltage must be asso-
ciated, according to our theory, mainly with low-energy
empty states in the antinodal regions. Second, the po-
sition of this peak is predicted to have a definite doping
dependence, tracking ∆ in Fig. 8 and hence moving to
higher energy as the doping level is reduced from ‘opti-
mal’ doping.

D. Frequency-dependence of the self-energy and
the inelastic scattering rates

Here, we discuss the frequency dependence of the imag-
inary part of the self-energies Σ

′′

±(ω) ≡ ImΣ±(ω + i0+)
and its physical implications for the inelastic scattering
rates of the nodal and antinodal quasiparticles in the dif-
ferent regimes of doping. These quantities are displayed
on Figs. 12, 13. Let us recall that these quantities are
directly related to the quasiparticle lifetimes, which is
given by the inverse of Z±Σ

′′

±(ω).
Again, we observe that at large doping, these quan-

tities have rather similar behavior. An approximately
quadratic frequency dependence is found at low energy,
corresponding to a Fermi liquid behavior of both orbitals,
and the self-energies display high-energy peaks corre-
sponding to the structures in the spectral functions de-
scribed above. Overall, the self-energies at large doping
are quite similar to those found in the single-site DMFT
description of a correlated Fermi liquid.
The situation becomes radically different as the doping

level is reduced. The first observation is that the over-
all scale for Σ

′′

+(ω) and for Σ
′′

−(ω) then becomes very
different. Clearly, away from the very low-energy re-
gion, Σ

′′

−(ω) becomes much larger than Σ
′′

+(ω), indicating
again a stronger effect of correlations on the antinodal re-
gions (odd orbital) than on the nodal ones (even orbital),
and a much larger degree of coherence of the nodal quasi-
particles.
Focusing on the even orbital (nodes) at low frequency,

we observe that Σ
′′

+(ω = 0) displays a marked decrease as
the doping level is reduced from the characteristic doping
δc ≃ 16% at which orbital differentiation sets in and the
pseudogap opens. Physically, this means that the open-
ing of the pseudogap leads to a protection of the nodal
quasiparticles by increasing their inelastic lifetime at low
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FIG. 11: (Color online) Left panel: STM curve for various temperature at δ = 0.08, in arbitrary units. A shift has been added
between each curves for clarity. Right panel: DOS measured by STM experiments on Bi2212 with Tc = 83K. Figure reprinted
with permission from Ref. 48 (Fig. 22b). Copyright 2007 by the American Physical Society.
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FIG. 12: (Color online) Left panel: Imaginary part of the self-energy Σ+(ω) for the even orbital. A shift of 0.1 has been added
between the curves for clarity. Right panel: Zoom over the low-frequency region (no shift added).

energy. Indeed, Σ
′′

+(ω) displays a quite remarkable shape
at low doping, with a rather large interval of frequency
around ω = 0 in which it is very small and flat, indicating
almost free nodal quasiparticles at low doping.

This is in marked contrast to the behavior of the odd
(antinodal) orbital. In this case, our real-frequency data
lack the precision required to assess precisely the doping
dependence of the very low-frequency rate Σ

′′

−(ω = 0).
However, as soon as one focuses on a small but finite fre-
quency (which indeed is relevant to the lifetime of antin-
odal quasiparticles at the edge of the pseudogap), it is ap-

parent from Fig. 13 that Σ
′′

−(ω) rapidly increases as the
doping is reduced from δc. This corresponds to increas-
ingly incoherent antinodal quasiparticles at low doping
level.

Making contact with experiments, these observations

appear to be in good qualitative agreement with the fact
that the in-plane resistivity of cuprate superconductors
is reduced when the pseudogap opens and that nodal
quasiparticles survive at low doping while the antinodal
ones loose their coherence.

E. Other patches

So far we have presented results for a particular patch-
ing scheme of the BZ. The motivation behind this choice
is based on the known phenomenology of the cuprates:
The central patch is shaped in such a way as to contain
the nodal point while the outer patch is modeled to con-
tain the incoherent antinodal region. Phenomenological
patch models using related patches have been used to
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FIG. 13: (Color online) Left panel: Imaginary part of the self-energy Σ−(ω) for the odd orbital. A shift of 0.2 has been added
between the curves for clarity. Right panel: Zoom over the low-frequency region (no shift added).

parametrize the transport properties of the cuprate su-
perconductors.50 As we saw, reducing the doping induces
a transition in which the outer patch becomes insulat-
ing. Here we address the stability of this picture with
respect to the deformation of the patches. We consider
patches that do not break the lattice point symmetry and
have equal volume not to incur into problems with the
definition of the cluster Hamiltonian (for details on the
formalism see Appendix A).

The main difference between the patching schemes that
we consider (see Fig. 14d) is the relative weight given to
the nodal and antinodal regions. Compared to the ref-
erence patching used in the rest of the paper (patching
B, also in Fig. 1), in patching A the central patch in-
cludes the node and also large part of the antinode. At
the opposite, in patching C the outer patch has a larger
contribution of the node.

In Fig. 14a-c we present results for the three patch-
ing schemes of Fig. 14d. The results for the self-energy
and the occupations are qualitatively very similar for the
different patching schemes. Most importantly, the dis-
tinctive feature of a selective insulating transition as the
doping is decreased remains in all the cases. An analysis
of µ−ReΣ−(0) allows us to calculate the critical doping
as indicated by the arrows in Fig. 14c.

We notice how, by increasing the portion of the nodal
region contained in the outer patch, the critical doping
shifts systematically to lower values. This trend is con-
sistent with a picture in which the quasiparticles are re-
stricted to a fraction (an arc) of the Fermi surface located
near the node. By decreasing the doping the quasiparti-
cles disappear at the sides of the arc inducing the selec-
tive transition in the outer orbital. Despite the similarity
of the trend with the experimental behavior in cuprates,
the sensitivity of the method is not sufficient to obtain a
quantitative prediction for the size of the arc as a func-
tion of doping.

We also investigated the real-space cluster method
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FIG. 14: Doping dependence of (a) the real part of Σ±(0), (b)
the even and odd orbital occupations, and (c) µ−Σ−(0). The
arrows in (c) indicate the critical doping where the odd band
becomes insulating. Results for different patching schemes as
shown in (d) using the RISB method.

CDMFT (cellular-DMFT).4,18 In this method, the notion
of patches in the Brillouin zone cannot be introduced be-
cause the starting point is a real-space cluster that breaks
translational symmetry. Nevertheless the qualitative pic-
ture emerging from CDMFT is very similar to the one
found in DCA. In particular, we find also in CDMFT a
critical doping below which the system is in a selective
Mott-insulating state.
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IV. PHYSICS OF THE EFFECTIVE
TWO-IMPURITY MODEL AND THE ROLE OF

THE SELF-CONSISTENCY

In this section, we relate and contrast the orbital-
selective transition described above to the physics of
the crossover between a Kondo-dominated and a singlet-
dominated regime in the two-impurity Anderson model.

A. Singlet dominance at low doping
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FIG. 15: (Color online) Statistical weights of the various
dimer cluster eigenstates (labeled as in Table I). S is the
intra-dimer singlet, 1+ the (spin-degenerate) state with one
electron in the even orbital, E the empty state and T the
intra-dimer triplet. β = 200.

A way to obtain a more transparent physical picture of
the phases encountered as a function of doping is to study
the contribution of the different cluster eigenstates to the
density matrix. We plot in Fig. 15 the statistical contri-
bution of several cluster eigenstates |Γ〉 (see Sec. II B)

from CTQMC (pQMC
Γ defined in Eq. 11) and the RISB

method (pSBΓ defined in Eq. 25).

The agreement between CTQMC and RISB is very
good, and even quantitative for the two states with high-
est weights. At large doping, the empty state and the two
spin-degenerate states with one electron in the even or-
bital dominate, as expected. As doping decreases, these
states lose weight and the intra-dimer singlet prevails, re-
flecting the strong tendency to valence-bond formation.
Therefore, the orbital (momentum) differentiation at low
doping is governed by intra-dimer singlet formation. This
situation is strongly reminiscent of the behavior of the
two-impurity Anderson model (2IAM).51,52 In the follow-
ing subsection we will compare the results for the 2IAM
and VB-DMFT to find the extent of this similarity.

B. Role of the self-consistency: from a
RKKY/Kondo crossover to a transition

The 2IAM has been thoroughly studied by many au-
thors using a variety of methods.51,53,54,55,56 Here we will
focus on a simplified version of the 2IAM where the im-
purities are coupled directly through a hopping term t̄.
In standard notation the Hamiltonian is given by

H2IAM = U(n1↑n1↓ + n2↑n2↓) + ε0
∑

σα

nασ

− t̄
∑

σ

(d†1σd2σ +H.c.)− V
∑

kσ

(d†1σck1σ +H.c.)

− V
∑

kσ

(d†2σck2σ +H.c.) +
∑

kασ

εkc
†
kασckασ,

where U is the local repulsion and ε0 the level energy.
Note that each impurity is coupled to an independent
electronic bath and that there are no crossed baths that
would couple to both impurities. We choose the baths to
have a semi-elliptic density of states of half-bandwidth
D = 1 and the hybridization V = 0.5D. This model
corresponds to the impurity model that is solved in VB-
DMFT, with the important difference that the baths are
kept fixed and ∆12 = 0.
For t̄ = 0 the problem reduces to that of two inde-

pendent single-impurity Anderson models. The RISB
method (as other slave-boson approaches) provides a de-
scription of the quasiparticles in the Kondo resonance.
The impurity spectral density has a single peak at the
Fermi level whose width is of the order of the Kondo
energy TK . The real part of the self-energy in the
electron-hole symmetric situation (ε0 = −U/2), is sim-
ply ReΣ±(0) = U/2 while Z decreases monotonously
with increasing U and exponentially for large U (see
Fig. 16). When t̄ is turned on, an antiferromagnetic cou-
pling I = 4t̄2/U is generated between the impurities. If
I . TK (see Fig. 16 for U . 4 ) both impurities are in
the Kondo regime as in the t̄ = 0 case and the behavior
of ReΣ±(0) and Z reproduces that of uncoupled impuri-
ties. In the opposite limit (large U in Fig. 16) there is
a large inter-impurity correlation which is signaled by a
differentiation between ReΣ+(0) and ReΣ−(0) (i.e. the
emergence of a ReΣ12(0) term).
The behavior of the bosonic amplitudes with increas-

ing interaction U clearly shows the two regimes and the
crossover region (see Fig. 16d). In the Kondo regime both
the singlet and triplet multiplets have large amplitudes,
while in the so-called RKKY (Ruderman-Kittel-Kasuya-
Yosida) regime the singlet dominates the physics and
its associated bosonic amplitude is close to one. Since
the level occupation is related to the bosonic amplitudes
through the constraints of Eq. (13), their behavior fol-
lows.
In the RKKY regime, the even orbital (where the

ground state singlet lives) fills up while the odd orbital
empties (see Fig. 16) as in earlier studies of SU(N)
two-impurity models in the large-N limit.54 The RISB
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FIG. 16: Kondo to RKKY crossover as a function of the
coulomb repulsion U at the impurities at half-filling. (a)
Quasiparticle weights. (b) Even and odd orbital occupations.
(c) Real part of the self-energy. (d) Boson amplitudes for the
intra-dimer singlet (S), the intra-dimer triplet (T), and the
spin degenerate doublets with one electron and even symme-
try (1+) and three electrons with odd symmetry (3-).

method brings a significant advantage over previous
methods since it generates at the mean-field level the
RKKY interaction which in previous treatments had to
be introduced in an ad-hoc fashion or by treating fluctu-
ations in higher orders in 1/N .57

The crossover can also be observed by changing the
impurity occupation, i.e. by shifting the local energy ε0.
If Fig. 17, we present different physical quantities as a
function of the impurity doping level δ∗ = 1−∑α,σ nασ.
At zero doping the system is electron-hole symmetric and
for the value of U = 7D in the figure it is in the RKKY
regime. This is clearly observed in the boson amplitudes,
the level occupations and the real part of the self-energy
at zero frequency. Increasing the doping increases the
charge fluctuations in the impurity and this enhances the
Kondo correlations. At a doping level δ∗ ∼ 0.1 there is a
crossover to the Kondo regime where the inter-impurity
correlation is small. For large values of δ∗ the impurities
enter an empty orbital regime an the effect of correlations
is small.
The behavior observed as a function of doping for the

different quantities of the impurity model closely resem-
bles that of VB-DMFT. Note however that the 2IAM
presents a crossover between the Kondo and RKKY
regimes while in VB-DMFT there is an orbital-selective
Mott transition. The origin of the transition can be
traced back to the only difference between VB-DMFT
and the 2IAM, namely the presence in VB-DMFT of self-
consistently determined baths. Indeed the odd-orbital
Green’s function for the 2IAM is

G−(ω) =
1

ω + µ−∆hybr
− (ω)− Σ−(ω)

, (30)

where ∆hybr
− (ω) = 2(V/D)2

∫

dε
√
D2−ε2

ω−ε
. The coarse-

grained odd-patch Green’s function in VB-DMFT is in-
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FIG. 17: Kondo to RKKY crossover for the two impurity
Anderson model as described by RISB as a function of the
impurity level doping δ∗ = 1 − n. Parameters are U = 7D
and t̄ = 0.25D. (a) Quasiparticle weights. (b) Even and odd
orbital occupations. (c) Real part of the self-energy. B (d)
Boson amplitudes for the intra-dimer singlet (S), the intra-
dimer triplet (T), and the spin degenerate doublet with one
electron and even symmetry (1+).

stead

G−(ω) =
∑

k∈P−

1

ω + µ− εk − Σ−(ω)
. (31)

While in the 2IAM the rigid structure of the baths pre-
vents the complete removal of spectral weight from the
chemical potential, in VB-DMFT the baths can adjust to
allow for such an effect. When performing the VB-DMFT
self-consistency loop, ReΣ−(0) acts as a shift of the chem-
ical potential for the odd band. Entering the RKKY
regime ReΣ−(0) grows and can become large enough to
push the chemical potential off the band and make it in-
sulating. In turn, an insulating odd band enhances the
intra-singlet correlations of the dimer making the solu-
tion self-consistent.

C. Hybridization functions: properties of the
underlying two-impurity model

To confirm the role of the VB-DMFT hybridization
function in determining the transition we analyze its be-
havior at different dopings. In Figs. 18 and 19 we display
∆±(ω) which appear in the self-consistent two-impurity
Anderson model solved in VB-DMFT. The hybridiza-
tion function for the even orbital ∆+(ω) shows a smooth
structure with a broad peak about the chemical potential
and little variation as a function of doping.
The hybridization of the odd-orbital ∆−(ω) (see

Fig. 19) has almost exactly the same behavior as A−(ω)
up to a rescaling. At low doping, ∆−(ω) also displays
a pseudogap. Therefore, the self-consistency of the VB-
DMFT equations leads to a very non-trivial two-impurity
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FIG. 18: (Color online) ∆+(ω) for the even orbital obtained
with Padé approximants (see Appendix B), for various dop-
ings at β = 200. A shift has been added between the curves
for clarity.
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FIG. 19: (Color online) ∆−(ω) for the odd orbital obtained
with Padé approximants (see Appendix B), for various dop-
ings at β = 200. A shift has been added between each curves
for clarity

Anderson model in the low-doping regime: The even-
orbital hybridization function is rather smooth but the
odd orbital ∆−(ω) is pseudogapped.
It is interesting to note that around the critical dop-

ing, the low-energy part of ∆+(ω) becomes particle-hole
symmetric, even though this is not the case for A+(ω).
This property is most clearly seen in the real part of
∆+(iωn) on the Matsubara axis (see Fig. 27) that nearly
vanishes for δ between 12% and 16%. This suggests a
possible relation between the orbital-selective transition
found in VB-DMFT and the critical point of the two-
impurity Kondo model.37,55 The latter is known to exist
only at particle-hole symmetry, but the self-consistency
can in principle restore dynamically the symmetry and
bring the system close to the critical point.38 These is-
sues deserve further investigation and are left for future
work.

V. MOMENTUM-SPACE INTERPOLATION
AND FERMI ARCS

A. Momentum-space reconstruction and
comparison with larger clusters

In this section, we address the problem of the recon-
struction of momentum-space information starting from
our valence-bond description. In doing so we will also
address the reliability of our calculations by comparing
our results with those obtained with larger clusters. This
will provide a benchmark of our approach.
An important issue in theories that use clusters to de-

scribe lattice systems is how to infer quantities for the full
lattice, starting from the information available from the
finite-cluster calculation. In principle, this problem can
be approached by a finite-size scaling study in order to
extrapolate quantities in the thermodynamic limit. How-
ever, for cluster-DMFT theories this requires a huge com-
putational effort, and the size of the clusters accessible
to calculations is relatively small.
In order to obtain momentum-dependent quantities, it

is necessary to employ some form of reconstruction based
on the available cluster quantities. Indeed, DCA meth-
ods give direct access to lattice quantities (e.g. the self-
energy) only for a few special points in the Brillouin zone:
the cluster momenta. In our simple description based on
a single bond, they are k = (0, 0) and k = (π, π). At
these momenta, the lattice quantities can be unambigu-
ously extracted from their cluster counterparts. For ex-
ample, in our case: Σlatt(0, 0) = Σ11 + Σ12 = Σ+ and
Σlatt(π, π) = Σ11 − Σ12 = Σ−. From the knowledge at
these points, one would like to reconstruct any point in
the Brillouin zone, using some interpolation procedure
in order to avoid unphysical discontinuities of e.g. the
self-energy in momentum space. Note that a similar pro-
cedure (reperiodization) must be used in the real-space
cluster methods like CDMFT,4 in order to restore the
broken translation invariance. Clearly, there is some de-
gree of arbitrariness associated with this procedure. The
most important ingredient is the choice of the quantity to
interpolate. Since cluster quantities describe accurately
the short-range physics, it is expected that observables
which are more local (short-range) in real-space (hence
less k-dependent) are better suited for interpolation.
A standard method (Σ -interpolation) in DCA calcu-

lation consists in interpolating the self-energy Σ (see e.g.
Ref. 58). In this paper, we choose a simple interpolation,
in which the lattice self-energy is given by

Σ
(Σ)
latt(k, ω) = Σ+(ω)α+(k) + Σ−(ω)α−(k), (32)

with α±(k) = 1
2{1 ± 1

2 [cos(kx) + cos(ky)]}. By rewrit-
ing this in terms of the on-site (Σ11(ω)) and inter-site
(Σ12(ω)) components of the cluster self-energy

Σ
(Σ)
latt(k, ω) = Σ11(ω)+

1

2
Σ12(ω)[cos(kx)+cos(ky)]. (33)
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This can be viewed as a truncation of the Fourier ex-
pansion of the lattice self-energy to the first two Fourier
components. Note that, the nearest-neighbor component
of the lattice self-energy is obtained, according to this
formula, as Σnn = Σ12/4, which is analogous to the repe-
riodization procedure of CDMFT (see e.g. Ref. 4).
Another method (M -interpolation) has been recently

introduced in Ref. 59,60 in the CDMFT method. It
consists in interpolating the cumulant, defined as M ≡
(ω + µ− Σ)−1. The lattice cumulant is obtained as

Mlatt(k, ω) = α+(k)
1

ω + µ− Σ+(ω)
+α−(k)

1

ω + µ− Σ−(ω)
.

(34)
From Mlatt(k, ω) it is then possible to extract a lattice
self-energy by

Σ
(M)
latt (k, ω) = ω + µ−Mlatt(k, ω)

−1. (35)

The cumulant is the dual quantity of the self-energy in an
expansion around the atomic limit. It is a natural mea-
sure of how much the hybridization to the self-consistent
environment changes the impurity Green’s function as
compared to an isolated dimer.
The Σ-interpolation is based on the assumption that

the self-energy is sufficiently short-range or small enough
for all frequencies. It corresponds to an expansion around
the free-electron limit, hence it is expected to work bet-
ter at weak coupling. On the other hand, the M -
interpolation is expected to be better close to the atomic
limit, and more generally at strong coupling, for exam-
ple close to a Mott insulating state where the cumulant
is more local than the self-energy.59 Other methods, like
the periodization of the Green’s function25 have also been
discussed, in the CDMFT context. In this section, we fo-
cus on a quantitative comparison of the Σ-interpolation
and the M -interpolation, using a plaquette (4 sites) cal-
culation as a benchmark.
Let us emphasize again that for our two-site cluster the

momenta k = (0, 0) and k = (π, π) are special. At these
two points lattice quantities are independent of the inter-
polation method used (since at those momenta, one of the
α’s vanishes), while at all other momenta the quantities
reconstructed with the two methods differ. On the other
hand, in a four-site cluster (plaquette) approach, there
are two additional momenta where the description is un-
biased by the interpolation procedure, namely k = (0, π)
and k = (π, 0), which are equivalent if rotational symme-
try is not broken. Hence performing a plaquette calcula-
tion gives us the opportunity to compare directly cluster
self-energies obtained with the dimer and the plaquette
at momenta k = (0, 0) and k = (π, π), and furthermore
provides a test for the interpolation method by compar-
ing self-energies at k = (0, π).
We compare in Fig. 20 the results of VB-DMFT and

plaquette calculations for momenta k = (0, 0) and k =
(π, π) for δ = 8% (upper panel) and δ = 16% (lower
panel), in Matsubara frequencies. The agreement be-
tween the two cluster calculations is good. The descrip-
tions of the Hubbard model given by VB-DMFT and

plaquette cluster calculations are consistent with one
another for these momenta. In order to decide which
momentum-interpolation procedure is better within VB-
DMFT, we also compare in Fig. 21 (at δ = 8% in the
upper panel and δ = 16% in the lower panel) the self-
energy obtained from the Σ- and M - interpolations, at
momentum k = (0, π), to the self-energy obtained from
a direct plaquette calculation (for which (0, π) is a clus-
ter momentum). Comparing the two data sets, we see
that the M -interpolation is clearly superior to the Σ -
interpolation in reconstructing the self-energy at (0, π).
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FIG. 20: (Color online) Real and imaginary part of dimer
(solid lines) and plaquette (symbols) self-energies at k = (0, 0)
(black solid line and red diamond) and k = (π, π) (orange
solid line and blue diamond) for β = 200 and δ = 0.08 (upper
panel) and δ = 0.16 (lower panel).

Applying the M -interpolation to the VB-DMFT re-
sults we can qualitatively, and to a large extent quan-
titatively, reproduce the larger cluster (plaquette) re-
sults, hence providing a justification to the use of the
M -interpolation. It is important to stress that the pla-
quette cluster-momentum k = (0, π) is not present as an
individual orbital in the two-site description: It is entirely
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structed Σ(0,π) using M -interpolation (red solid line) and Σ-
interpolation (blue dashed line) in the dimer and the cluster
self-energy of the plaquette calculation at k = (0, π) (black
diamonds), for δ = 0.08 (upper panel) and δ = 0.16 (lower
panel) . β = 200.

reconstructed by interpolation, and as such is the most
direct test of the reconstructed momentum dependence.

B. Fermi arcs and momentum differentiation

We can now study momentum differentiation using the
M -interpolation. As we shall see, VB-DMFT indeed pro-
vides a simple description of momentum differentiation
as observed in ARPES experiments. This is illustrated
by the intensity maps of the spectral function A(k, 0)
displayed in Fig. 22. At very high doping δ & 25% (not
shown), cluster corrections to DMFT are negligible and
the spectral intensity is uniform along the Fermi surface.
In contrast, as the doping level is reduced, momentum
differentiation sets in around the characteristic doping
at which the localization of the outer orbital takes place.
The intensity maps then display apparent “Fermi arcs”
at finite temperature with higher spectral intensity in the
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FIG. 22: (Color online) Intensity maps of the spectral func-
tion A(k, 0) for different doping levels obtained with M -
interpolation.

nodal direction in comparison to antinodes, in qualitative
agreement with experiments (see e.g. Refs. 13,61) and
earlier CDMFT calculations with larger clusters.23,24,29

The mechanism behind the suppression of spectral weight
at the antinodes at low doping is clearly associated, in
our results, to Mott localization and the importance of
singlet correlations. In technical terms, this is associated
with the large real part in Σ− = Σ(π, π) (cf. Fig. 3),
which induces a pseudogap in the antinodal orbital, and
with the large imaginary part of the self-energy in the
(π, 0) and (π, π) regions, which also contribute to the
suppression of spectral weight in the antinodal region.
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FIG. 23: (Color online) Left panel: Normalized intensity
A(φ, 0)/A(0, 0) along the Fermi surface vs the angle to the
diagonal of the Brillouin zone in degrees (φ = 0 is the node,
φ = ±45 the antinode). The nodal intensity A(0, 0) is 0.045
for δ=6%, 1.66 for δ=10% and 4.61 for δ=14%. β = 200.
Right panel: Angular dependence of the spectral weight along
the Fermi Surface in Ca2−xNaxCuO2Cl2 at x = 0.05 (black
diamonds), x = 0.10 (red squares), and x = 0.12 (blue cir-
cles) along with data from La2−xSrxCuO4 for x = 0.05 and
x = 0.10 (open symbols). Figure reprinted from Ref. 61
(Fig. 3b). Copyright 2005 by Science.

In order to compare this momentum-space differen-
tiation to experiments in a more quantitative manner,
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we plot in Fig. 23 the contrast of the spectral intensity
along the Fermi surface for different doping levels. This
plot compares very favorably to the experimental data
of Ref. 61, which are also reproduced for convenience.
In particular, we observe that the differentiation has a
non-monotonous behavior, reaching a maximum around
δ ≈ 10%, and then decreasing for lower dopings.
VB-DMFT is able to capture momentum differentia-

tion reliably for doping levels between 10% and 20%. For
very low doping (δ . 8%) the M -interpolated self-energy
develops singularities on lines in momentum space, lead-
ing to lines of zeroes of the Green’s function and to the
breakup of the Fermi surface.59,62,63,64,65 It would be very
instructive to relate this with recent quantum oscillation
experiments.66 However, in this regime, a better momen-
tum resolution (larger clusters) is necessary to obtain re-
liable results.

VI. CONCLUSION

In this paper, we presented in detail the valence-bond
DMFT approach to correlated electrons34 and used it to
treat the two-dimensional Hubbard model with nearest-
neighbor and next-nearest neighbor hopping. The ap-
proach reduces to single-site DMFT when intersite corre-
lations are unimportant. This is the case at large doping
levels. Near the Mott transition, at lower doping levels,
these correlations dominate the physics and lead to the
phenomenon of momentum-space differentiation.
This phenomenon corresponds to the destruction of co-

herent quasiparticle excitations in the antinodal regions
of the Brillouin zone. In those regions, a pseudogap opens
and quasiparticles become increasingly incoherent as the
doping level is reduced. In contrast, in nodal regions,
quasiparticles are protected and their lifetime actually
increases as the pseudogap opens. The physics of the
low-doping regime is dominated by strong singlet corre-
lations between nearest-neighbor sites.
VB-DMFT is a minimal cluster description of a low-

dimensional strongly-correlated system in terms of two
effective degrees of freedom, associated to each of the
important regions in momentum space (nodal and antin-
odal). These two degrees of freedom are treated as
the two orbitals of an effective dimer impurity model.
Momentum-space differentiation emerges as an orbital-
selective Mott transition in which a pseudogap opens
in the spectrum of the antinodal degree of freedom,
while the nodal one remains a coherent Fermi liquid.
The simplicity of the approach allows for a highly ac-
curate numerical solution of the VB-DMFT equations.
It also allows for the use of a semi-analytical technique,
the rotationally-invariant slave-bosons method, as an ap-
proximate impurity solver.
Comparisons of the results of VB-DMFT and plaquette

calculations put the cluster extensions of DMFT on much
firmer footing. It has been known for a while that in the
high-temperature and high-enough doping regime, single-

site DMFT is very accurate and cluster corrections are
quantitatively small. On the other hand, the validity of
cluster extensions of DMFT in the underdoped regime,
where momentum-space differentiation is strong, is not as
universally accepted. Consistency of the results between
2-site calculations and calculations with larger clusters
provides support to the validity of cluster approaches.
The qualitative picture that emerges from VB-DMFT

is in excellent qualitative agreement with photoemission
results in the normal state of the copper-oxide based
high-temperature superconductors. The selective de-
struction of quasiparticles at the antinodes is associated
with the ‘Fermi arcs’ observed in ARPES. Comparison of
the evolution of the tunneling density of states with tem-
perature against experimental data is also encouraging.
Many more detailed comparisons of VB-DMFT against
various other spectroscopies should be carried out in fu-
ture work in order to determine the strengths and the
limitations of the method and in order to further advance
our understanding and our ability to capture with simple
models some of the physical properties of cuprates.
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APPENDIX A: DCA WITH BRILLOUIN-ZONE
PATCHES OF ARBITRARY SHAPES

In this appendix, we review for completeness the basic
formalism of DCA,18,67,68 and discuss in particular its
extension to Brillouin-zone patches with equal volume
and arbitrary shape.
DCA can be seen as an approximation to the

Luttinger-Ward (LW) functional of a lattice theory. In
the LW functional the conservation of momentum at the
vertex of diagrams is accounted for by the function

∆(k1,k2,k3,k4) = Nδk1+k2,k3+k4
. (A1)

In single-site DMFT momentum conservation at the in-
ternal vertices of the diagrams is ignored and ∆ ≡ 1.
DCA attempts at partially restoring momentum conser-
vation by partitioning the Brillouin zone into Np patches
PK centered around a subgroup of Np momenta K and
approximating the momentum conservation with

∆(k1,k2,k3,k4) ∼ NpδK1+K2,K3+K4
, (A2)
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where Ki is the representative vector of the patch con-
taining ki. This corresponds to taking into account mo-
mentum conservation among the patches and discarding
momentum conservation inside the single patch.
The DCA LW functional contains the same diagrams

as the original lattice functional with all the internal
Green’s functions replaced by the coarse-grained Green’s
functions

G(K) =
1

NK

∑

k∈PK

Glatt(k), (A3)

where NK is the number of momenta contained in the
patch PK (the volume of the patch). To see this we
can consider the simplest graph contributing to the LW
functional. The contribution of this graph to the lattice
functional is given by

Φlatt =
1

N4

∑

k1k2k3k4

Glatt(k1)Glatt(k2)Glatt(k3)Glatt(k4)

U2N2δk1+k2,k3+k4
. (A4)

Replacing the original momentum conservation with the
DCA approximation we obtain

ΦDCA =
1

N4

∑

Ki

∑

k̃i

Glatt(K1 + k̃1)Glatt(K2 + k̃2)

×Glatt(K3 + k̃3)Glatt(K4 + k̃4)

U2N2
p δK1+K2,K3+K4

=
∑

Ki

NK1
NK2

NK3
NK4

N4





1

NK1

∑

k̃1

Glatt(K1 + k̃1)



 ×

× . . .×





1

NK4

∑

k̃4

Glatt(K4 + k̃4)





U2N2
p δK1+K2,K3+K4

=
∑

Ki

NK1
NK2

NK3
NK4

N4
G(K1) . . . G(K4)

N2
pU

2δK1+K2,K3+K4
. (A5)

It is then clear that if the number of k- points (the BZ
volume) is the same for every patch, the prefactor can be
simplified, yielding

ΦDCA =
1

N4
p

∑

Ki

G(K1) . . . G(K4)

N2
pU

2δK1+K2,K3+K4
. (A6)

This functional corresponds to the functional of a prob-
lem with Np momenta and hence can be obtained by the
solution of a cluster impurity problem. The crucial ob-
servation is that, as long as the volume is the same for

all the patches, the DCA functional is the functional of
a cluster problem which, once expressed in real space
coordinates, retains purely local interactions, precisely
identical to those of the original Hubbard model. This
ensures that this procedure does not generate additional
interactions in the cluster.
However, the shape of the patches is not constrained in

this procedure. A possible route to exploit this freedom is
to notice that DCA can also be interpreted as an approx-
imation to the lattice self-energy (see Sec. II A). Indeed
DCA corresponds to approximating the self-energy by a
constant value in each patch

Σ(Ki + k̃, ω) ∼ Σ(Ki, ω) ∀Ki + k̃ ∈ PKi
. (A7)

Hence using physical intuition patches can be shaped in
such a way to enclose regions with definite properties,
such as nodal and antinodal regions for example.

APPENDIX B: ANALYTICAL CONTINUATIONS
USING PADÉ APPROXIMANTS

In order to perform the analytical continuations shown
earlier in this paper, we have used N -point Padé approx-
imants42

CN (z) = AN (z)/BN (z), (B1)

where AN and BN are polynomials of order (N − 1)/2
and (N − 1)/2 if N is odd and (N − 2)/2 and N/2 if N
is even. The Padé approximant CN can alternatively be
written as a continued fraction

CN (z) =
a1
1+

a2(z − z1)

1+
. . .

aN (z − zN−1)

1
. (B2)

The polynomials AN and BN are then given by a recur-
sion formula

An+1(z) = An(z) + (z − zn)an+1An−1(z) (B3)

Bn+1(z) = Bn(z) + (z − zn)an+1Bn−1(z), (B4)

with

A0 = 0, A1 = a1, B0 = B1 = 1. (B5)

In order to construct the complex function CN (z), we
impose that it is equal to the function f to be continued
on the real axis at the first N Matsubara frequencies

CN (iωn) = f(iωn) ∀ n = 1, . . . , N. (B6)

This constraint can be achieved by determining the co-
efficients an with the recursion

an = gn,n, g1,n = f(iωn), n = 1, . . . , N (B7)

gp,q =
gp−1,p−1 − gp−1,q

(iωq − iωp−1)gp−1,q
. (B8)

In this paper, the Monte Carlo data on the Matsubara
axis has been averaged over 5 × 108 measures. A Padé
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approximant was computed for Σ± imposing that they
match over the first 200 Matsubara frequencies for a tem-
perature 1/β = 1/200. The self-energies Σ±(ω) obtained
on the real-frequency axis using this procedure were then
used to compute the spectral functions through

A±(ω) = − 1

π
Im

∑

k∈P±

1

ω + µ− εk − Σ±(ω)
. (B9)
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FIG. 24: (Color online) Even self-energy on the real frequency
axis as obtained using Padé approximants (solid line) and by
maximum entropy (dashed line). δ = 8% and β = 200.

In order to test the quality of the analytical contin-
uations, we constructed a Padé approximant for several
independent runs checking that they lead to qualitatively
similar results. Indeed, spurious poles sometimes appear
on the real-frequency axis producing unphysical results.
We also compared the Padé approximant with the out-
come of a stochastic maximum entropy method.69,70 A
typical outcome is shown in Fig. 24. Even if both method
lead to results that are slightly different at a quantitative
level, they display the same main qualitative features.
Therefore all our physical conclusions stated earlier do
not depend on the analytical continuation method.

APPENDIX C: RAW CTQMC DATA

For completeness, we display the raw CTQMC data on
the Matsubara axis for the Green’s functionsG±, the self-
energies Σ± and the hybridization functions ∆±. The
analytical continuations using Padé approximants (see
Appendix B) have been performed on this data.
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