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ABSTRACT
The non-linear interactions between large-scale mo-

mentum regions and small-scale structures induced by the
presence of the roughness have been studied in boundary
layers consisting of staggered cube arrays with plan area
packing density of 6.25%, 25% or 44.4%. The measure-
ments, consisting of hot-wire anemometry, were conducted
at two Reynolds numbers in each of the canopy configu-
rations. The canopy configuration is shown to have a sig-
nificant influence on all parameters of the predictive model
close to the roughness elements which is a result of the char-
acteristics of the small-scale structures induced by the pres-
ence of the cubes. Several tests of the predictive model have
been undertaken, demonstrating the good capability of the
model to reproduce accurately spectra and statistics up to
the 4th order. The model must be however calibrated for
each type of canopy flow regime.

INTRODUCTION
The rough-wall turbulent boundary layer contains co-

herent structures such as large-scale regions of high or low
momentum that are present above the canopy within the in-
ertial layer and shear layers that form within the roughness
sublayer and contain small-scale structures induced by the
presence of the roughness. Within the smooth-wall a non-
linear mechanism of amplitude modulation has been shown
to exist between the large-scale structures in the inertial
layer and the small-scales close to the wall (Mathis, 2011,
2009). The amplitude modulation was shown to increase
with increasing Reynolds number (Re) as large-scale struc-
tures become more turbulent (Mathis, 2009). Amplitude
modulation has also been confirmed to exist in the rough-
wall and although the modulation was shown to differ quan-
titatively from the smooth-wall the nature of the mecha-
nism remained the same (Squire, 2016). Recently, the most
energetic large-scale momentum regions in an urban-type
boundary layer were shown to interact non-linearly with
the small-scale structures induced by the presence of the
roughness (Blackman & Perret, 2016). The study of am-
plitude modulation in the smooth-wall boundary layer has
led to the development of a predictive model for the near-

wall fluctuations using a large-scale boundary layer sig-
nal (Mathis, 2011). The application of this predictive model
has been expanded to a rough-wall consisting of sand-
roughness (Squire, 2016) and has recently been improved
using Spectral Linear Stochastic Estimation (SLSE) (Baars,
2016). However, this predictive model has yet to be applied
to an urban-type rough-wall boundary layer. The effect of
the roughness configuration used to generate a rough-wall
boundary layer has been studied extensively including its
influence on the non-linear interactions (Blackman et al.,
2018). It was found using skewness decomposition and
spatio-temporal correlations that the configuration of the
roughness had a non-negligible influence of the non-linear
interactions. Recently, Perret (2019) studied the influence
of canopy flow regime and Reynolds number on the charac-
teristics of the scale-decomposed velocity fluctuations us-
ing staggered cube arrays with plan area packing densities
of 6.25%, 25% and 44.4%. Although the Reynolds number
was shown to have a negligible effect on the characteristics
of the large-scale fluctuations the skimming flow regime
was shown to result in near-canopy large-scales that con-
tributed more to the variance suggesting that a stronger cor-
relation exists between the inertial layer and the roughness
sublayer as the canopy flow becomes less important. Here,
rough-wall boundary layers consisting of cube roughness
with various plan area packing densities are used to investi-
gate (i) the influence of the canopy geometry on the interac-
tion between the outer large-scales and the small-scales near
the canopy, (ii) the influence of the canopy configuration
and Reynolds number on the parameters of the predictive
model, and (iii) the applicability of the predictive model, in
its current form, to urban-type boundary layer.

EXPERIMENTAL SETUP
The experiments were conducted in the atmospheric

boundary layer wind tunnel of the LHEEA (Nantes), which
has a working section dimensions of 2 m (width) × 2 m
(height) × 24 m (length). Five 800 mm vertical tapered
spires and a 200 mm high solid fence were used to initi-
ate the boundary layer. These turbulence generators were
then followed by the roughness elements which consisted
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Figure 1. Investigated canopy configurations with, (left) λp = 6.25%, (centre) λp = 25% and (right) λp = 44% where the red
cross (×) is the location of the hot-wire measurement location.

of staggered cubes with height of 50 mm. For further de-
tails related to the wind tunnel facility and set-up the reader
is referred to Blackman & Perret (2016). Three different
canopy configurations with plan area packing densities (the
ratio between the area of the surface occupied by the rough-
ness elements and the total surface area) of 6.25%, 25%
or 44.4% were studied (Fig. 1) corresponding to the three
flow regimes, isolated wake, wake interaction and skim-
ming flows, respectively (Grimmond & Oke, 1999). Finally,
the experiments were performed at two freestream veloci-
ties Ue of 5.7 and 8.8 m/s, resulting in a total of 6 flow con-
figurations. Characteristics of each flow regimes are give in
Table 1.

Table 1. Characteristics of the boundary layers. The
coloured symbols chart will be used in all the following fig-
ures.

λp(%) Ue (m/s) δ/h Reτ h+

◦ 6.25 5.65 22.4 29700 1330

• 6.25 8.80 21.5 45500 2110

4 25 5.77 22.7 32400 1430

N 25 8.93 22.1 49900 2260

� 44.4 5.62 23.2 27300 1170

� 44.4 8.74 22.1 40700 1840

The flow measurements were conducted using two syn-
chronised hot-wire probes in order to investigate the rela-
tionships between the lower part of the boundary layer and
the logarithmic region (Fig. 2). The first was a fixed hot-
wire probe at a the wall-normal location z/h = 5 (i.e. within
the inertial layer), while the second probe was moved to
13 different heights between z/h = 1.25 and z/h = 4. The
hot-wire measurements were conducted at a frequency of
10 kHz for a period of 24 000 δ/Ue and calibration was
performed at the beginning of measurement set by placing
the probes in the freestream flow. Further details about this
dataset, extended analysis of velocity profiles, statistics and
spectral content can be found in Perret (2019), and Basley
et al. (2019).

THE PREDICTIVE MODEL
The predictive model developed by Mathis (2011) has

the ability to predict the fluctuating streamwise velocity
in the inner region from an outer region input. Recently,

Figure 2. HWA measurement set-up.

an alternative approach to this model has been proposed
by Baars (2016) who rewrite the model as

u+p (z, t) = u∗(z, t)(1+Γ(z)u+L (z, t− τa)+u+L (z, t) (1)

Here, u+p is the predicted statistically representative stream-
wise fluctuating velocity signal obtained at the inner loca-
tion z and u+L is the fluctuating large-scale streamwise ve-
locity signal and the only input into the model. u∗ is the
universal time series that corresponds to the universal sig-
nal that would exist if there were no large-scale influence.
Here, the superscript + denotes a normalization of the ve-
locity fluctuation using uτ . The universal signal, u∗, and
coefficient Γ are determined using a calibration method in-
volving two-point measurements of the streamwise velocity
fluctuations. The model consists of two parts with the first
part describing the amplitude modulation by the large-scale
outer layer structures and the second part which models the
superposition of these large-scale structures. To obtain the
large-scale component in the inner region, u+L (z, t), Baars
(2016) propose a refined procedure using Spectral Linear
Stochastic Estimation (SLSE) based on the coherence that
exist between the outer and inner signals (i.e. the large-scale
effect felt near the wall). The same method is applied here
and the reader is referred to Baars (2016) and Perret (2019)
for further details about this filter procedure. Once u+L has
been determined the model is calibrated in order to deter-
mine the universal signal u∗ and the location-dependent co-
efficient Γ. A time shift, τa, has been introduced to this
new model in the large-scale component that appears only
in the modulation term to account for the phase-shift that
exist between the local (inner) large-scale component and
the large-scale envelope of the amplitude modulated small-
scales (Guala et al., 2011; Baars et al., 2015). It is estimated
as the time shift of the maximum of the cross-correlation be-
tween the outer layer signal, u+o , and the large-scale signal



produced from the SLSE method, u+L . The model calibra-
tion is conducted using the synchronised two-point hot-wire
measurements described in previous section at each of the
13 wall-normal locations. To derive the model’s parameters
u∗ and Γ, the small-scale signal of the inner layer is obtained
using:

u+S (z, t) = u+(z, t)−u+L (z, t) (2)

This signal represents the fluctuations that are uncorrelated
with the outer layer large-scale structures. As described,
the universal signal is the signal that exists in the absence
of any influence of the large-scales and u+S does not include
any superposition effect, but does include amplitude modu-
lation effects. Therefore, to find u∗ equation 3 is used where
Γ is solved by iterative search such that u∗ does not involve
any amplitude modulation. Here, the absence of amplitude
modulation is defined using the skewness as it has been pre-
viously shown by Blackman & Perret (2016) that the non-
linear term uLu2

S is directly related to amplitude modulation.
Therefore u∗ constitutes no amplitude modulation when

uL(z, t− τa)u∗2 =

uL(z, t− τa)

(
u+S (z, t)

1+Γ(z)u+L (z, t− τa)

)2

= 0 (3)

For every wall-normal measurement position, equa-
tion 3 is solved iteratively to obtain Γ(z) where u∗ is mini-
mally modulated by u+L (z, t− τa) and u∗ is then computed
using this coefficient.

Scale decomposition
In the case of atmospheric surface layer developing

over large roughness elements, the cubical obstacles induce
energetic structures with typical frequencies smaller than
that of the near-smooth wall turbulence. The range of the
structures is close to those attributed to the large-scale struc-
tures developing in the outer region, which explained why
the outer and inner peaks are rarely separated. It should be
emphasised that the absence of a clear separation between
inner and outer peaks does not mean that large-scale influ-
ence does not exist, but rather that a significant overlapping
exist between the different coherent structures interacting
with each others (Perret, 2019). This is the reason why the
scale separation methods based on a SLSE approach has
been favoured (Baars, 2016) against the classical Fourier
approach used in Mathis (2009). Using the method, we are
now able to extract the large- (u+L ) and small-scale (u+S ) sig-
nals from the raw near-wall velocity signal (u+NW ) at each of
the moving HWA probe wall-normal locations, and in each
of the six cases using a transfer function. A comparison of
their statistics up to the fourth order is given in figure 3,
only for the flow configuration λp = 25% at Reτ =32 400.
Results are similar for all other cases not shown here. It can
be observed that the small-scales capture the majority of the
energy in the inner-layer while the large-scales contribution
becomes important only in the outer layer. The skewness
appeared to be exclusively driven by the small-scales, while
the contribution of the large-scale is close to zero. The kur-
tosis of the raw signal is shown to be a result of both u+L
and u+S . A direct insight of the amplitude modulation ef-
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Figure 3. Comparison of u∗, u+L , u+S and u+NW statistics,
(top) variance, (middle) skewness and (bottom) kurtosis, for
configuration with λp = 25% at Reτ =32 400.

fect can be obtained by comparing the u+S and u∗ signals,
as the universal signal is a typical small-scale signal with-
out any large-scale influence. Therefore, the only difference
between both signals is that u+S is modulated whereas u∗ is
not. It can be observed that the only difference between
both signals lies in the skewness profile (Fig. 3, middle).
In the absence of amplitude modulation the magnitude of
skewness of u∗ is significantly lower throughout the bound-
ary layer, which is consistent with the close relationship
between amplitude modulation and skewness highlighted
by Mathis et al. (2011). They further showed that the non-
linear term u+L u+2

S of the decomposed skewness provides
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Figure 4. Wall-normal evolution of the non-linear term
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S of the decomposed skewness profile.

a good estimation of the degree of modulation, which is
shown in figure 4 for all of the six configurations. It is clear
that the skimming flow (λp = 44.4%) is significantly mod-
ified at both Reynolds numbers compared to the isolated
wake and wake interference flows. This result can be ex-
plained by the fact that this flow configuration has a finest
roughness sublayer and the small-scale component is less
energetic, compared to the large-scale component, that the
two other flow regimes (Perret, 2019).

Effect of the canopy geometry on model’s pa-
rameters

The wall-normal evolution of the coefficient Γ and
statistics of the universal signal u∗ are given in figure 5
for each of the six cases. There is a strong dependence of
the Γ coefficient with the canopy geometry, which is more
pronounced for λp = 44.4%, whereas the Reynolds num-
ber has little effects (at least in the narrow range of Reτ

studied here). As discussed above, the characteristics of the
shear layer in the skimming flow regime change the charac-
teristics of the small-scale structures and their interactions
with the large-scale structures in the outer layer above. It
is therefore not surprising to find changes in the model’s
coefficient. The roughness configurations λp = 6.25% and
λp = 25% have a similar Γ coefficient except close to the
roughness elements. This dependence on the roughness
configuration close to the cubes is a result of changes to the
dynamics of the shear layers that develop at the top of the
roughness elements in the different flow regimes. Within
the skimming flow regime the shear layer does not pene-
trate the roughness elements resulting in a thin shear layer,
whereas the spacing between roughness elements in the iso-
lated wake and wake-interference regimes result in a shear
layer that penetrates the canopy layer increasing the vertical
transfer of momentum in this region (Basley et al., 2019).
The shear layer in a wake-interference flow regime also
experiences a strong flapping phenomenon that promotes
the transfer of momentum between the canopy layer (small
scales) and outer layer (large scales).

The influence of the roughness configuration can also
be seen in the profiles of variance and skewness in the inner-
layer close to the roughness, whereas this influence be-
comes negligible in the profile of kurtosis. The changes in
variance and skewness are a result of changes to the small-
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Figure 5. Model’s parameters: wall-normal evolution of
the coefficient Γ and statistics of the universal signal u∗.



scale structures produced by the roughness. Small-scales in
the wake-interference flow regime have larger magnitudes
of skewness and smaller magnitudes of turbulence intensity
compared to the skimming flow regime.

These results show that the model coefficient and uni-
versal signal are significantly influenced by the canopy flow
regime. However, Basley et al. (2019) have shown that
away from the roughness elements the large-scale structures
are found to be similar in each configuration. Therefore, the
so-called universal signal is not universal for all rough-wall
boundary layers and the predictive model must be calibrated
for each of the roughness flow regimes.

Prediction and validation
The model and its parameters Γ and u∗ obtained above

enable the prediction of a statistically representative sig-
nal, u+p , that hypothetically can be reconstructed at any
Reynolds number, where the only required input is the
large-scale reference signal, u+L . Here, a series of tests are
performed in order to assess the capability of the present
model, which works well in smooth-wall boundary layer, to
be applied in an urban-type boundary layer. Three tests have
been chosen, in which canopy configuration and Reynolds
numbers are mixed, as seen in Table 2, in order to answer
the following questions:

(i) does the model is able to take into account the
Reynolds number effect (i.e. performing prediction at an
higher Reynolds number that the calibration)?

(ii) in what extent the calibration is dependent on the
plan area packing density at which the calibration is per-
formed?

(iii) in what extent both Reynolds number and packing
density can be combined?
It should be emphasised that for the last question the answer
is partially known, and only the packing density of the input
large-scale component is varying. Indeed, the differences in
the characteristics of the universal signal and the predictive
model coefficients prevent the application of a calibrated
model at one λp to a prediction at another λp. The model
must be calibrated using measurements from a canopy with
the same configuration as the targeted one.

Table 2. Characteristics of the input (calibration param-
eters and large-scale signal) and output of the predictive
model used for testing and validating the prediction capa-
bilities of the model.

Test Calib. LS Pred.

No. 1 λp (%) 25 25 25

Reτ 32 400 49 900 49 900

No. 2 λp (%) 25 6.25 or 44.4 25

Reτ 32 400 32 400 32 400

No. 3 λp (%) 44.4 25 44.4

Reτ 32 400 49 900 49 900

As shown by the error associated with each test in fig-
ure 6, there is excellent agreement between the predicted
signals and the near-canopy signal for statistics up to the
4th order. The variance is reconstructed with less than 0.3%
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Figure 6. Error of u+p statistics variance, skewness and
kurtosis where u+p is determined using model coefficients
calibrated at a certain λp and u+L at a different λp both at
Reτ = 32 400.

of error, whereas skewness and kurtosis errors are below
3%. The reconstructed spectra (Fig. 7), shown in figure at
the wall-normal location z/h = 1.25, also depict an excel-
lent agreement with original (except a slight shift observed
on the wavelength for test 1 that may be attributed to the
application of Taylor’s hypothesis).

In the smooth wall special attention has been paid
to conserving the phase between the universal signal and
large-scale signal used to run the predictive model (Mathis,
2011). In these cases the large-scale reference signal used to
run the predictive model was adjusted to retain the Fourier
phase information of the large-scale signal used to build
the universal signal. The phase information of the origi-
nal large-scale signal is extracted using a Fourier transform
and applied to the new large-scale reference signal. This
process essentially re-synchronises the new large-scale ref-
erence with the universal signal, u∗. For further details re-
fer to Mathis et al. (2011). Here, this process was applied
before performing the predictions detailed above. To deter-
mine influence of the phase shift on a prediction a test is per-
formed using the large-scale reference signal used to build
the predictive model. This signal is shifted out of phase with
the universal signal and a prediction of the statistics made at
each time-shift (Fig 8). As the phase shift increases the esti-
mation of the variance, skewness and kurtosis worsen until
they reach a plateau. The effect of the phase shift increases
with increasing order of the statistic with the kurtosis show-
ing the largest discrepancy. This suggests that conserving
the phase information of the large-scale signal used to cali-
brate the model is important to the prediction.

CONCLUSION
The predictive model originally introduced by Mathis

(2011) for the smooth-wall boundary layer is investigated
in the context of urban-type boundary layer. Three rough-
ness arrays consisting of cubical roughness elements with
plan area packing densities of 6.25%, 25% and 44.4%, cor-
responding to the three flow regimes (respectively isolated
wake, wake interaction and skimming flows, Grimmond &
Oke (1999)) were studied at two freestream velocities and
used to determine the influence of both the canopy geom-
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Figure 7. Spectra comparison between the reconstructed signal u+p and the original near-wall signal u+NW at z/h = 1.25, for
(left) Test 1, (centre) Test 2 and (right) Test 3.
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Figure 8. a) Variance, b) skewness and c) kurtosis of u+p
and u+NW for configuration with λp = 25% at Reτ = 32 400
using phase shifted large-scale reference signal at z/h = 2.1
((z−d)/δ = 0.066).

etry and Reynolds number on the interaction between the
most energetic scales from the outer layer and those in the
roughness sublayer. Through analysis of the model’s pa-
rameters Γ and u∗ it is observed that the canopy geometry
has a significant influence on scale-interactions as well on
the model’s parameters. In particular, the skimming flow
regime shows higher discrepancy compared to the two other
flow regimes. In this case, the dense packing area does
not allows the flow to penetrate within the canopy, whereas
in the isolated wake and wake interaction regimes the flow
penetrates the canopy and a strong shear layer is generated
at the top of the cubes. This imply that the model needs to
be calibrated for each family of packing density (isolated
wake, wake interaction and skimming flows). Through this
work it has been demonstrated that the non-linear interac-
tions within urban-type rough-wall boundary layers can be
modelled using the predictive model as proposed by Mathis
(2011). Although the Reynolds number was shown to have
a negligible influence on the model parameters data should
be obtained from higher Reynolds number rough-wall flows
to expand the range studied.
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