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NORM CONVERGENCE OF THE RESOLVENT FOR WILD PERTURBATIONS

We present here recent progress in the convergence of the resolvent of Laplace operators under wild perturbations. In particular, we show convergence in norm in a generalised sense. We focus here on the excision of many small balls in a complete Riemannian manifold with bounded geometry.

Introduction

Rauch-Taylor's contribution on wild perturbations. What kind of convergence can we expect for the Laplace operator under wild perturbations such as removing many small holes or adding many thin handles? Such questions received already quite a lot of answers, following the seminal work of Rauch and Taylor [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF]. We present here results from [START_REF] Anné | Wildly perturbed manifolds: norm resolvent and spectral convergence[END_REF] and focus on convergence of the resolvents in operator norm. As the underlying spaces vary with the convergence parameter, we apply an abstract convergence result of the second author [P12] expressed in terms of quadratic forms acting in different Hilbert spaces, see Section 2.

The expression "wild perturbation" goes back to [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF]. Let us first recall the original result of Rauch and Taylor concerning the excision of small obstacles and convergence of the corresponding Dirichlet Laplacians. A typical result of their paper is as follows:

Let Ω ⊂ R m be an open and bounded set having some mild regularity, namely H 1 0 (Ω) = {u ∈ H 1 (R m ), supp u ⊂ Ω}. Let K be a compact subset of Ω. We assume that Ω n → Ω \ K as n → ∞ metrically, i.e., every compact subset of Ω \ K is eventually in Ω n , and every compact subset outside Ω \ K is eventually outside Ω n .

Let ∆ Ω and ∆ Ωn be the (non-negative) Laplacians on Ω and Ω n with Dirichlet boundary condition, respectively. Moreover, let J n f = 1 Ω∩Ωn f be the restriction of f ∈ L 2 (Ω) onto Ω ∩ Ω n extended by 0 on Ω n \ Ω. Then J * n u = 1 Ω∩Ωn u extended by 0 on Ω \ Ω n .

1.1. Theorem ([RT75, Thm. 2.3]). If K has capacity zero then for any real-valued continuous and bounded function Φ and any f ∈ L 2 (Ω) we have

J * n Φ(∆ Ωn )J n f → Φ(∆ Ω )f in L 2 (R m ) as n → ∞.
For a characterisation of a set to have capacity zero, we refer e.g. to [RT75, Lem. 2.1]. An example of a set of capacity zero is a finite set of points or more generally a subset of co-dimension 2.

We can think of this result as a (generalised) strong resolvent convergence (choose Φ(λ) = (1 + λ) -1 , recall our convention ∆ ≥ 0). Strong resolvent convergence implies the convergence of the discrete spectrum, as the limit spectrum cannot suddenly expand; but it can shrink suddenly in the limit (see the discussion after Thm. VIII.24 in [START_REF] Reed | Methods of modern mathematical physics I: Functional analysis[END_REF]). This is probably the main disadvantage of strong resolvent convergence compared to Date: February 4, 2019. Notes from the conference "Analysis and Geometry on Graphs and Manifolds", Potsdam, July, 31 -August, 4 2017.

norm resolvent convergence from a spectral viewpoint. Note that the sudden shrinkage leads to so-called spectral pollution, i.e., spectral values in the approximation, which do not converge to a spectral value in the limit problem. The opposite effect is called spectral exactness, and holds for norm resolvent convergence in general (see [START_REF] Bögli | Convergence of sequences of linear operators and their spectra[END_REF] and references therein for details).

Wild perturbations and norm resolvent convergence. One of our main question in this article is as follows:

Question. Can we show stronger convergence results for wild perturbations such as norm resolvent convergence and results which work also (without much modifications) for unbounded domains or manifolds?

As wild perturbation we focus here on the excision of many small balls as obstacle from a (not necessarily compact) Riemannian manifold of bounded geometry and the Dirichlet Laplacian on the manifold without the obstacles. Further results are shrinking Neumann obstacles (see [START_REF] Anné | Wildly perturbed manifolds: norm resolvent and spectral convergence[END_REF]). Note that our perturbation result also works quite well when neither the perturbed space X ε nor the limit space X 0 is subset of the other. This is e.g. the case when adding many thin handles to a manifold; we treat this question in a forthcoming publication. Domain perturbations and convergence results. Domain perturbation and (spectral) convergence results have a long history. We are not trying to give an exhaustive list of references here, but just highlight a few points:

Weidmann [W84] proved the continuous dependency of eigenvalues and eigenfunctions of elliptic differential operators and he also developed a general (strong resolvent) convergence theory for sequences of operators acting in different Hilbert spaces (which can be embedded in a larger common Hilbert space).

The asymptotic behaviour of Neumann eigenvalues was studied for a single hole for bounded domains or compact manifolds in [START_REF] Ozawa | Point interaction potential approximation for (-∆ + U ) -1 and eigenvalues of the Laplacian on wildly perturbed domain[END_REF][START_REF] Hempel | On the lowest eigenvalue of the Laplacian with Neumann boundary condition at a small obstacle[END_REF][START_REF] Lanza De Cristoforis | Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach[END_REF] and the Dirichlet eigenvalues in [START_REF] Chavel | Spectra of domains in compact manifolds[END_REF][START_REF] Courtois | Spectrum of manifolds with holes[END_REF] where we find precise estimates; it applies also to the ε-neighbourhood of compact subset, see also [START_REF]Spectra of manifolds less a small domain[END_REF] for the calculation of the first correction term.

Daners [START_REF] Daners | Dirichlet problems on varying domains[END_REF] considers the norm convergence of resolvents of Dirichlet Laplacians for perturbations of Euclidean bounded domains (or at least those with compact resolvent), the norm convergence follows from the strong one under the assumption of compactness of the limit resolvent, see also [START_REF]Domain perturbation for linear and semi-linear boundary value problems[END_REF] for a survey and the references therein. Our approach is more general as we do not assume a priori that the perturbed and unperturbed domains are embedded in a common space as in [START_REF] Daners | Dirichlet problems on varying domains[END_REF][START_REF]Domain perturbation for linear and semi-linear boundary value problems[END_REF]. Moreover, we obtain explicit error estimates in terms of δ ε . For an older survey about strong resolvent convergence and perturbations of Euclidean domains, we refer to [START_REF] Henrot | Continuity with respect to the domain for the Laplacian: a survey[END_REF].

Finally, the work of Rauch and Taylor [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF] inspired with their crushed ice problem the study of homogenisation. There is a critical density of balls removed under which the Dirichlet Laplacian converges to the original Laplacian with a shift in energy. Below that critical parameter, the limit is the original Laplacian itself, above, there are regions that "become solid" in the sense that the limit Laplacian fulfils Dirichlet conditions there. The homogenisation problem is usually also treated showing strong resolvent convergence, see [START_REF] Balzano | On the asymptotic behavior of Dirichlet problems in a Riemannian manifold less small random holes[END_REF][START_REF] Balzano | Random relaxed Dirichlet problems[END_REF] using Γ-convergence, see [START_REF] Maso | An introduction to Γ-convergence[END_REF]. More recent works can be found in [START_REF] Khrabustovskyi | On the spectrum of Riemannian manifolds with attached thin handles[END_REF] or [START_REF] Khrabustovskyi | Homogenization of the spectral problem on the Riemannian manifold consisting of two domains connected by many tubes[END_REF] and references therein. For a similar approach as in this paper using the above mentioned generalised norm resolvent convergence in the homogenisation case, we refer to [START_REF] Khrabustovskyi | Operator estimates for the crushed ice problem[END_REF] and the references cited therein. For an approach using the already shown strong resolvent convergence to upgrade to norm resolvent convergence (similarly as in [START_REF] Daners | Dirichlet problems on varying domains[END_REF][START_REF]Domain perturbation for linear and semi-linear boundary value problems[END_REF], but even for general unbounded domains) we refer to [START_REF] Dondl | Norm-resolvent convergence in perforated domains[END_REF].

The notion of Γ-or Mosco convergence is another way of defining a convergence of quadratic forms acting in different Hilbert spaces, see e.g. [KS03, Sec. 2]: note that this convergence is more or less equivalent with some sort of generalisation of strong resolvent convergence, hence our results are stronger.

A generalised norm resolvent convergence

To achieve this goal we apply a rather general result of the second author [P06] (see also the monograph [P12]):

For each ε ≥ 0, let H ε be a separable Hilbert space together with a closed quadratic form q ε and domain H 1 ε . We denote by ∆ ε ≥ 0 the corresponding self-adjoint operator. We define the generalised Sobolev spaces H k ε as D(∆ k/2 ) together with the norms u k = (∆ ε + 1) k/2 f , and choose the completion of H ε with respect to the norm

• k if k < 0. Then all spaces (H k ε , • k ) are complete. Note that u 2 1 = u 2
Hε + q ε (u). We suppose there are transplantation or identification operators at the level of the Hilbert spaces and also at the level of the quadratic forms (we suppress here and in the following the dependency of ε in the notation):

J : H 0 , → H ε J 1 : H 1 0 → H 1 ε J : H ε → H 0 J 1 : H 1 ε → H 1 0 .
We assume that these operators are bounded and need some compatibility, also called δ ε -quasi-unitary equivalence of q ε and q 0 , if δ ε > 0 and if

| J u, f -u, Jf | ≤ δ ε f 1 u 1 , (1a) 
f -J Jf ≤ δ ε f 1 and u -JJ u ≤ δ ε u 1 , (1b) 
(J 1 -J)f ≤ δ ε f 1 and (J 1 -J )u ≤ δ ε u 1 , (1c) 
|q ε (J 1 f, u) -q 0 (f, J 1 u)| ≤ δ ε f 2 u 1 (1d)
for all f and u in the respective spaces. We have adopted the definition of quasi-unitary equivalence already to the situation here where the quadratic forms are estimated with respect to the form norm • 1 on the perturbed space H 1 ε and the graph norm • 2 on the unperturbed space H 2 0 = dom ∆ 0 . We have the following notion of generalised norm resolvent convergence: 2.1. Theorem ([P12, Prp. 4.4.15]). If the quadratic forms q ε and q 0 are δ ε -quasi-unitary equivalent, then the resolvents R ε := (∆ ε + 1) -1 of the operators ∆ ε associated with

q ε satisfy R ε J -JR 0 ≤ 4δ ε .
Moreover, if δ ε → 0, then we also have the convergence of (suitable) functions of the operators in norm, of the spectrum, and of the eigenfunctions also in energy norm.

Removing many small balls: the fading case

Let (X, g) be a complete connected Riemannian manifold of dimension m with natural energy form defined by q

(f ) = X |df | 2 d vol g for f ∈ C ∞ 0 (X)
. This form is closable (because the manifold is complete) and defines a non-negative self-adjoint operator ∆ = ∆ (X,g) (see e.g. [RS80, Thm. VIII.15] for details), given in local coordinates (y 1 , . . . , y m ) by

∆(f ) = - 1≤i,j≤m 1 ρ ∂ x i (ρg ij ∂ x j f ),
where (g ij ) is the inverse matrix of the metric tensor (g ij ), and where the Riemannian measure d vol g is locally given by ρ dy 1 ⊗ • • • ⊗ dy m with g ij = g(∂ y i , ∂ y i ).

As an example of application of the above generalised norm resolvent convergence, let us look at the problem of removing many small balls: Assume that (X, g) is a complete Riemannian manifold of dimension m ≥ 2. Consider the following perturbation:

For any ε > 0, let (x j ) j∈Jε be a family of points in X such that d(x j , x k ) ≥ 2η ε for some η ε ε (typically, we will choose (η ε = ε α for some 0 < α < 1). Note that we do not assume any relation between points x j for j ∈ J ε for different values of ε.

We set

X ε = X \ B ε with B ε = j∈Jε B(x j , ε). (2) 
In this situation, let

H 0 = L 2 (X, g), H ε = L 2 (X ε , g) H 1 0 = H 1 (X, g), H 1 ε = H 1 0 (X ε , g) with the transplantation operators J : H 0 → H ε J 1 : H 1 → H 1 ε , Jf = f Xε , J 1 f = χ ε f J : H ε → H 0 J 1 : H 1 ε → H 1 0 J u = u, J 1 u = u,
where u is the extension of u : X ε → C onto X by 0, and where χ ε is a cut-off function on X given by χ ε (x) = χ(d(x, x j )) if d(x, x j ) ∈ [0, ε + ), χ ε (x) = 0 if d(x, x j ) ∈ [0, ε] and χε(x) = 1 otherwise. Here, ε ε + η ε and χ ε is given by χ ε (r) = 0 if r ∈ [0, ε] and

χ ε (r) =        1/r m-2 -1/ε m-2 1/(ε + ) (m-2) -1/ε m-2 , for m ≥ 3 log(r/ε) log(ε + /ε) , for m = 2.
for r ∈ (ε, ε + ). Note that χ ε and χ ε are both Lipschitz continuous, hence

χ ε f is in H 1 0 (X ε ) if f ∈ H 1 (X).
In particular, J 1 is well-defined. The most difficult part to check in the assumptions of the above Theorem 2.1 is a control of the assumption (1d) on the forms (with k = 2). For this (and also the other assumptions (1a)-(1c)) we need the additional assumption of bounded geometry on the manifold: 3.1. Definition. The manifold (X, g) has bounded geometry if there exist i 0 > 0 and k 0 such that the injectivity radius and the Ricci curvature of X satisfy ∀x ∈ X : Inj(x) ≥ i 0 , Ric(x) ≥ k 0 g. We assume throughout this article that (X, g) has bounded geometry. We know, for instance by the book of Hebey [START_REF] Hebey | Nonlinear analysis on manifolds: Sobolev spaces and inequalities[END_REF], that these hypotheses assure the existence of a uniform harmonic radius r 0 , i.e., a radius independent of the point such that inside the ball of this radius there exist harmonic coordinates. These coordinate assure a uniform control of the metric with respect to the Euclidean one: there exists K > 0 such that for all x 0 ∈ X there are harmonic coordinates (y 1 , . . . , y m ) in B(x 0 , r 0 ) such that ∀x ∈ B(x 0 , r 0 ) :

K -1 δ ij ≤ g x (∂ y i , ∂ y j ) ≤ Kδ ij (3) 
(see e.g. [Heb99, Thm. 1.2]). These coordinates assure also that C ∞ 0 (X) is dense in H2 (X, g) = H 2 0 . As a consequence the Laplacian defined on C ∞ 0 (X) is essentially selfadjoint (see e.g. [Heb99, Prop. 3.3]1 .

Let us now describe the first result in this context. By "fading" we mean that there are not enough balls close to each other, so that one has no effect, i.e., the limit operator is the original Laplacian on X: 3.2. Theorem (many small balls fading). Let X be a complete Riemannian manifold with bounded geometry and X ε as in (2). Moreover, let the centres of balls be separated by 2η ε with

η ε = ε α , 0 < α < m-2 m if m ≥ 3 and | log ε| -α , 0 < α < 1 2 if m = 2.
Then the Laplacian with Dirichlet boundary conditions on X ε converges in generalised norm resolvent sense to the Laplacian on X.

Remark. The critical power ε (m-2)/m is related to the capacity of the obstacle (the balls of radius ε) being at distance of order ε (m-2)/2 away from other balls: This case needs more assumptions about the spacing of the points x j ; details about generalised norm resolvent convergence in this situation and capacity can be found in [START_REF] Khrabustovskyi | Operator estimates for the crushed ice problem[END_REF]. In particular, the capacity determines about the limit behaviour of the crushed ice problem.

Proof. Let us sketch the proof of (1d) for k = 2: For all f ∈ H 2 0 and u ∈ H 1 ε we have

q 0 (f, J 1 u) -q ε (J 1 f, u) = df -d(χ ε f ), du L 2 (T * B ε + ,g) ≤ (1 -χ ε )df , du L 2 (T * B ε + ,g) + f dχ ε , du L 2 (T * B ε + ,g) ≤ df L 2 (T * B ε + ,g) + f dχ ε L 2 (T * B ε + ,g) du L 2 (T * B ε + ,g)
To control df 2 L 2 (T * B ε + ,g) which is a sum of integrals on balls, we use the assumption of bounded geometry and (3). Hence, it suffices to control the estimate on Euclidean balls, namely

∀φ ∈ H 1 (B ηε , eucl) : φ L 2 (B ε + ,eucl) ≤ τ m ε + η ε φ H 1 (Bη ε ,eucl) (4) 
where τ m (r) = O(r) for m ≥ 3 and τ 2 (r) = O(r| log r| 1/2 ). This control, pulled back onto the balls of the manifold can be applied as well to φ = |df |. Now, for the second term, we conclude from the Hölder inequality that

f dχ ε 2 L 2 (T * B ε + (x),g) ≤ f 2 L 2p (B ε + (x),g) dχ ε 2 L 2q (T * B ε + (x),g)
for any p ∈ (1, ∞) with 1/p + 1/q = 1 and any j ∈ J ε . In order to control f L 2p (B ε + (x),g) we use a Sobolev embedding H 2 (B 2 (0)) → L 2p (B 1 (0)) for p small enough, rescaling gives a bad estimate in terms of on ε, but this can be compensated by a rather good estimate of dχ ε L 2q (T * B ε + (x),g) if p is not too small. We assert that, for each dimension m, there exists good p m , q m which do the job, and consequently there exists δ ε = o(1) such that

f dχ ε L 2 (T * B + ε ,g) ≤ δ ε f H 2 0 .
The details can be found in [START_REF] Anné | Wildly perturbed manifolds: norm resolvent and spectral convergence[END_REF]. Note that J = J * , and that the remaining (nontrivial) assumptions of (1b)-(1c) also follow by (4) and the bounded geometry assumption.

Removing many small balls: the solidifying case

We obtain also results for the solidifying situation (named after [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF]): here, the density of the removed balls is so high that it solidifies in the limit to an obstacle Ω 0 . Again, (X, g) is a complete Riemannian manifold of dimension m ≥ 2 and X ε = X \ B ε with B ε = j∈Jε B(x j , ε) for a set of points (x j ) j∈Jε . We suppose now that there exists an open subset Ω 0 of X with regular boundary (see Definition 4.2) and that B ε ⊂ Ω 0 . Moreover, we assume that there exists N ∈ N, η ε ε and α ε > 0 such that

Ω αε = {x ∈ X; d(x, Ω 0 ) < α ε } ⊂ B ηε (5a) ∀x ∈ X ∀ε > 0 : {j ∈ J ε ; x ∈ B(x j , η ε )} ≤ N, ( 5b 
)
where M is the cardinality of the set M . The first assertion assures that the family (x j ) j∈Jε is dense enough: at the scale η ε it covers all Ω 0 and a bit more; it also implies that α ε /η ε is small or at least bounded. The second assertion assures that this cover is not too redundant. In particular, it follows from

B ε ⊂ Ω 0 ⊂ B ηε that X ε --→ ε→0 X \ Ω 0 = X 0 .
We also need control of the first eigenvalue λ ε of the Laplacian on B R m (0, η ε )\B R m (0, ε) with Neumann boundary condition at r = η ε and Dirichlet boundary condition at r = ε.

It is calculated in [RT75] that λ ε ≥ Cε (m-2) /η m ε (respectively λ ε ≥ C/(η 2 ε | log ε|) for m = 2)
, where C depends only on the dimension m; and this estimate carries over to balls on the manifold (by our assumption of bounded geometry). 4.1. Theorem (many small balls solidifying). In the situation just described, assume that lim ε→0 α ε λ ε = +∞, then the Laplacian ∆ ε with Dirichlet boundary conditions on X ε = X \ B ε converges in generalised norm resolvent sense to the Laplacian ∆ 0 with Dirichlet boundary conditions on X \ Ω 0 .

We check again the conditions of quasi-unitary equivalence in (1a)-(1d). We define here J : H 0 := L 2 (X 0 , g) -→ H ε := L 2 (X ε , g), f → f ,

J 1 : H 1 0 := H 1 0 (X 0 , g) -→ H 1 ε := H 1 0 (X ε , g), f → f , J : H ε := L 2 (X ε , g) -→ H 0 = L 2 (X 0 , g), u → u |Xε , J 1 : H 1 ε := H 1 0 (X ε , g) -→ H 1 0 = H 1 0 (X 0 , g), u → χ ε u,
where f is the extension of f by 0 onto X ε , as X 0 ⊂ X ε and χ ε is now a cut-off function depending on the distance to Ω0 . In particular, we need some control of the boundary of Ω 0 : 4.2. Definition. We say that the open set Ω ⊂ X has a regular boundary Y = Ω \ Ω if Y is a smooth sub-manifold of X which admits a uniform tubular neighbourhood, i.e., we assume that Y admits a global normal unitary vector field N (so that Y is orientable) and that there exists r 0 > 0 such that exp ν : Y × [0, r 0 ) → X, (y, t) → exp y (t N (y)) ( 6) is a diffeomorphism.

4.3. Remark. This regularity assumption (together with the bounded geometry) implies that the principal curvatures of the hypersurface Y are bounded by a constant depending on 1/r 0 and k 0 , see [START_REF] Heintze | A general comparison theorem with applications to volume estimates for submanifolds[END_REF]Cor. 3.3.2]. But it is stronger: we need also that Y does not admit arbitrarily close points which are far away with respect to the inner distance.

The identification H

(X, g) = H 2 0 needs the Bochner-Weitzenböck formula.