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The Luttinger-Ward functional Φ[G], which expresses the thermodynamic grand potential in
terms of the interacting single-particle Green’s function G, is found to be ill-defined for fermionic
models with the Hubbard on-site interaction. In particular, we show that the self-energy Σ[G] ∝
δΦ[G]/δG is not a single-valued functional of G: in addition to the physical solution for Σ[G], there
exists at least one qualitatively distinct unphysical branch. This result is demonstrated for several
models: the Hubbard atom, the Anderson impurity model, and the full two-dimensional Hubbard
model. Despite this pathology, the skeleton Feynman diagrammatic series for Σ in terms of G
is found to converge at least for moderately low temperatures. However, at strong interactions,
its convergence is to the unphysical branch. This reveals a new scenario of breaking down of
diagrammatic expansions. In contrast, the bare series in terms of the non-interacting Green’s
function G0 converges to the correct physical branch of Σ in all cases currently accessible by
diagrammatic Monte Carlo. Besides their conceptual importance, these observations have important
implications for techniques based on the explicit summation of diagrammatic series.

PACS numbers: 71.10.-w, 71.10.Fd, 02.70.Ss

The formalism of the Luttinger-Ward functional
(LWF) [1] is a crucial constituent of the modern quan-
tum many-body physics framework. Following Baym and
Kadanoff [2], the free-energy is introduced as a functional
of the full single-particle Green’s function (GF) G, which
describes properties of single-particle excitations in a sys-
tem of interacting particles [3]:

Ω[G] = tr ln G− tr [(G−10 −G−1)G] + Φ[G] (1)

In this expression, G0 is the bare GF in the absence of
interactions, and Φ[G] is the LWF, which is the focus of
the present paper. Defined only by the interaction term
Hint, the LWF is universal: the form of Φ[G] does not
depend explicitly on the quadratic part of the Hamilto-
nian (bare G0) and is shared by all systems with the
same structure of interactions between the particles. In
this formalism, the self-energy is also a functional of G:

Σ[G] =
1

T

δΦ[G]

δG
, (2)

while the stationary point of Ω, given by δΩ/δG = 0,
yields the Dyson equation G−1 − G0

−1 + Σ[G] = 0,
viewed here as a non-linear functional equation for G at
equilibrium.

The use of functionals Ω[G], Φ[G], Σ[G] has proven
indispensable in a range of contexts from formal deriva-
tions to all orders in perturbation theory, such as that
of Luttinger’s theorem [4], to devising approximations
that are automatically consistent with sum-rules and
conservation laws [2]. Notable examples are the self-
consistent Hartree-Fock approximation, or the dynamical
mean-field theory (DMFT) [5]. A number of extensions
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FIG. 1. Formal definition of Φ[G] and Σ[G] as skeleton di-
agrammatic expansions. The bold lines represent the full in-
teracting GF G and the dashed lines the interaction vertex.

of DMFT have been recently proposed, formally based
on the LWF, such as cluster (for reviews, see e.g. [6–
8]) and diagrammatic [9] extensions, the DMFT+GW
method [10, 11], the dynamical vertex approximation
(DΓA) [12], DCA+ [13], etc.

There are two ways to justify the formalism and pro-
pose a formal construction of the LWF Φ[G], whose
closed-form expression is unattainable in general. One
is based on the diagrammatic perturbation expansion [1,
14], as illustrated in Fig. 1 for the Hubbard interaction
Hint = U

∑
i ni↑ni↓. Here Φ[G] is constructed explicitly

as the sum of all ‘skeleton’ (also called ‘bold-line’) dia-
grams in terms of G, i.e. the diagrams that cannot be
disconnected by cutting two propagator lines or, equiva-
lently, that contain no self-energy insertions.

The second approach, which is formally non-
perturbative, is to view Φ as a Legendre-transform of the
free-energy with respect to the single-particle GF [15–18]
The idea is to constrain the GF to take a preassigned
value G by appropriately choosing the bare propagator
G0, thus viewed as a Lagrange multiplier. For the Leg-
endre transform—and hence for Φ[G]—to be properly
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defined, the map G0 → G must therefore be invertible:
there must be a unique bare propagator G0[G] such that
the interacting GF takes the value G for the specified
Hamiltonian Hint.

In this Letter, we show that the LWF for the Hubbard
on-site interaction is ill-defined. In particular, Σ[G] is
found to be a non-single-valued functional of G with at
least one qualitatively distinct unphysical branch, mak-
ing the map G0 → G not invertible. This is a non-
perturbative statement, which does not rely on the dia-
grammatic definition of the LWF, and which is based on
evidences from several models with the Hubbard interac-
tion. Although this finding does not necessarily under-
mine formal considerations based on the LWF, provided
they are explicitly constrained to the physical branch, it
has dramatic consequences for diagrammatic expansions.

The existence of two branches of Σ[G] inevitably raises
the question of what happens to the skeleton series for Σ
in terms of G, Fig. 1. A natural scenario would be diver-
gence in the spirit of Dyson’s collapse argument [19]. In-
deed, it is believed that skeleton expansions are doomed
to diverge at least at strong interactions or whenever the
state of the system is not conformal to a Fermi liquid,
like, e.g., a Mott insulator [20]. Here we demonstrate—by
explicit summation using the diagrammatic Monte Carlo
(DiagMC) technique [21, 22]—that the skeleton series for
Σ does converge even when G is that of a Mott insulator
(at least at moderately low temperatures), the conver-
gence with diagram order getting progressively faster at
large U . However, at sufficiently strong interactions and
close to half filling, the convergence is to the unphysical
branch, while in the weakly-correlated regime the skele-
ton series converges to the physical solution. [23]

Consistently with the universality of the LWF, this
qualitative conclusion applies to all models with the Hub-
bard interaction we considered, including the Hubbard
atom and the single-site Anderson impurity model (for
which the unphysical branch is independently found by
non-perturbative means), as well as the two-dimensional
Hubbard model [24].

Convergence of the skeleton diagrammatic series to an
unphysical branch rather than its divergence in difficult
regimes is a critical result for a wealth of analytic and
numeric approaches, especially in light or the substantial
recent interest in methods based on explicit summation
of skeleton diagrams [9, 25–27]. It reveals a generic sce-
nario of breaking down of skeleton expansions, in which
there is no a priori indication of the series becoming un-
trustworthy. We demonstrate, however, that, at least for
the models considered here and in (unordered) regimes
currently accessible by DiagMC, the bare series in terms
of G0 [28] always converges to the physical solution. This
suggests that summations of bare diagrammatic series are
intrinsically more reliable than those of skeleton expan-
sions.

Purely mathematically, even if a skeleton series con-

verges, its convergence to the correct answer is not guar-
anteed. This is because it does not converge absolutely
[29] at any coupling owing to the factorial number of
terms in each order. For such a (conditionally conver-
gent) series, the Riemann series theorem states that re-
ordering its terms can make it converge to any given
number (or diverge). The skeleton series is, in fact, as a
result of reordering of the corresponding bare series (see,
e.g. [14]). From this perspective, it is natural that the
bare and the skeleton expansions converge to different an-
swers, while the bare one is more robust being in essence
the standard Taylor expansion in U . To our knowledge,
our findings are the first observation of this possibility
realized.

We start by addressing the existence of the functional
Σ[G] [30]. Whenever a non-perturbative solution G[G0]
is available for all possible G0, as e.g. for single-site
models, the inverse relation G0[G] and hence Σ[G] =
G0[G]−1 − G−1 can be computed in practice using an
iteration scheme. We thus attempt to compute Σ[G] for
the simplest model with the Hubbard interaction, the
Hubbard atom, Hat = Un↑n↓, and for G equal to the

exact solution G(exact) ≡ G(exact)(z) =
[
1/(z + U/2) +

1/(z − U/2)
]
/2 (with z = iωn on the Matsubara axis).

In this case, the physical self-energy and the bare GF are

given by: Σ(exact)(z) = U2/4z and G
(exact)
0 (z) = 1/z. To

this end we employ the following protocol: Starting from

a guess G
(n)
0 , we find a certain G(n)[G

(n)
0 ] for the single-

site problem using an interaction-expansion continuous-
time quantum Monte Carlo solver [31] implemented with
the TRIQS [32] toolbox. The next approximation for G0

is obtained with two schemes, A and B, given by

[G−10 ](n+1) = [G−10 ](n) ±
(
G(exact) −1 − [G−1](n)

)
.(3)

In scheme A, the + sign is used for all Matsubara fre-
quencies, while in scheme B, − is used for the lowest Mat-
subara frequency and + for all the other ones. At con-
vergence, both schemes coincide with Dyson’s equation
for the exact solution G(exact): G−10 = G(exact) −1 + Σ;
they are iterated until G matches G(exact) with arbitrary
accuracy.

Strikingly, we observe that the schemes A and
B converge to two different solutions, the ex-

pected G
(exact)
0 [G(exact)] and a drastically different

G
(unphysical)
0 [G(exact)]. One can explicitly verify that

both solutions satisfy the correct map G0 → G. This
establishes, in a non-perturbative manner, that this map
is not invertible, and that the functional Σ[G] has at
least two branches. We emphasize that we have tried
other inverting methods, but all of them reproduced the
results of either scheme A or B, suggesting that there are
likely only two branches.

The result is illustrated in Fig. 2a [throughout the pa-
per we use the units of the Hubbard model with the hop-
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a b

FIG. 2. (Color online) (a) Hubbard atom: Double occu-
pancy vs. interaction at T = 0.5, for the physical and
unphysical branches (see text). (b) Anderson impurity:

|D(exact) − D(found)|, quantifying the difference between the
exact solution and that found by scheme A (see text), in the
U -δ plane at T = 0.5. Black points (crosses) are converged
calculations, while at the red points (circles) the scheme A
could not converge.

Im!

!n

unphysical	
exact	
bold,order 2	

bold,order 4	
bold,order 6	
bold,order 8	

U =1 U = 2 U = 4

FIG. 3. (Color online) Hubbard atom: Two solutions for

Σ[G(exact)] and convergence of the corresponding skeleton
(bold) expansion, Fig. 1, at half filling, T = 0.5 and various
U .

ping t = 1], showing the double occupancy D = 〈n↑n↓〉 =
trΣG(exact)/U for both solutions. The unphysical nature
of the second solution is clearly seen in the corresponding
D, which grows with U . The two branches cross at a sin-
gle value of the interaction U∗. We observe that by using
scheme A, we follow the physical branch for U < U∗ and
the unphysical branch for U > U∗. Scheme B appears
to have the opposite behavior, but it was impossible to
converge the results close to U∗. Moreover, our results
suggest that the unphysical branch could exist down to
small U — possibly even U = 0 — but the solution be-
comes increasingly singular at U → 0 and we could not
converge our results for U . 2.

The Matsubara-frequency dependence of Σ for both
solutions is compared in Fig. 3. The perturbative
high-frequency tails match. However, at U > U∗,
|Σ(unphysical)| becomes small at low frequencies instead
of diverging as the exact solution does [33]. At U < U∗
Σ(unphysical) is clearly pathological, in view, e.g., of the
non-monotonicity at low iωn.

It is worth noting that other pathologies and limita-

tions of the LWF have been reported, e.g. in Refs. [34–
36]. In the latter, it was found that δΣ[G]/δG diverges
at certain discrete points in the parameter space. The
immediate connection of this observation to our results
is unclear and left for future work.

We now turn to the question of what happens to the
skeleton diagrammatic series for Σ[G(exact)] in this case.
DiagMC [21, 22] allows us to address it by a direct un-
biased summation of the series to sufficiently high or-
der. Partial sums of the series in terms of G(exact) for
the Hubbard atom are plotted in Fig. 3 up to order 8
(the highest accessible with our computing resources).
Despite the pathology of Σ[G], the series appears con-
vergent for all the values of U we considered at least at
moderately low temperatures. We identify three typical
qualitative regimes: (i) for U < U∗ the skeleton series
clearly converges to the correct solution; (ii) for U ∼ U∗
the convergence becomes slow and it is unclear which so-
lution the series converges to since the two solutions are
close in this regime, and (iii) for U > U∗ the skeleton
series exhibits fast convergence to the unphysical solu-
tion, the higher the value of U the faster the convergence.
Remarkably, for reasons so far unclear, this convergence
behavior follows that of the iterative scheme A, Eq (3).

On the other hand, the bare series in terms of G
(exact)
0

always yields Σ(exact) for the Hubbard atom already at
the second order—all the other diagrams exactly cancel
in this case—which is a well-known analytic result. As an
independent check of consistency of the map G0 → G,
we have verified by DiagMC that the bare series in terms

of G
(unphysical)
0 converges to Σ(unphysical).

Due to the universal nature of the LWF, these surpris-
ing results are not a unique feature of the Hubbard atom.
We examined the single-impurity Anderson model with a
conduction band described by a flat density of states on
the interval [−1, 1] and an energy-independent hybridiza-
tion V = 1 for different values of the interaction U and
the doping δ. We first find the numerically exact G(exact)

for a given set of parameters using the impurity solver.
This GF is then used in the iterative scheme A. Fig. 2b
reports the difference |D(exact) −D(found)| which quanti-
fies the remoteness of the found solution from the exact
solution in terms of the double occupancy. The manifold
in the space of parameters where |D(exact) − D(found)|
disappears corresponds to the intersection of the two
branches, dividing the parameter space into two quali-
tatively distinct regions: at larger values of U around
δ = 0 scheme A converges to the unphysical solution
(with a critical doping increasing with U), while it con-
verges to the correct solution at small U and large δ. We
note that near the boundary between the regimes the con-
vergence of scheme A becomes extremely slow. We have
also performed DiagMC calculations for several points
on Fig. 2b, showing that the skeleton series in terms of
G(exact) always converges to the same solution as the it-
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bold,order 2	
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FIG. 4. (Color online) 2D Hubbard model: Convergence of
the skeleton (bold) and bare series for the momentum depen-
dence of Σ at the lowest Matsubara frequency at half filling,
T = 0.5. The solid (dashed) lines are ReΣ (ImΣ), the widths
express the corresponding error bars.

erative scheme A, except close to the boundary, where
the diagram convergence also becomes slow, adding to
the remarkable conspiracy. Hence, Fig. 2b can be viewed
as the convergence diagram for the skeleton series. The
qualitative shape of the diagram is expected to be shared
by all the models with the Hubbard interaction in view
of the universality of the LWF.

Our DiagMC simulations of the bare series for the self-

energy in terms of G
(exact)
0 show that, whenever we can

access sufficiently high orders to reach convergence, the
bare series converges to the exact solution Σ(exact) in
both regions of the diagram.

We complete our study with the most interesting case
of the Hubbard model on the square lattice, for which the
self-energy acquires non-trivial momentum dependence.
At half-filling, reliable benchmarks are available from un-
biased diagrammatic determinant Monte Carlo (DDMC)
calculations [37]. We use the full GF G(exact) obtained
by DDMC as an input for the DiagMC summation of the
skeleton series for Σ. In parallel, we employ DiagMC to
sum the corresponding bare series. The results are com-
pared in Fig. 4, showing the momentum dependence of
Σ at the lowest Matsubara frequency ω0 = πT at fixed
T = 0.5 and various interaction strengths. The qualita-
tive behavior is identical to that observed in the single-
site models. We see that the bare series reproduces the
DDMC benchmark for Σ(k, ω0) within the error bars for

all the interaction strengths considered (admittedly, con-
vergence as a function of diagram order becomes slower
at larger U). On the contrary, the skeleton series reli-
ably converges to the correct solution only at U = 2,
while at U = 8 it displays fast convergence to an al-
most momentum-independent function, drastically differ-
ent from the exact solution. At the intermediate U = 4
the convergence of the skeleton series becomes slow, very
similarly to the case in the second panel of Fig. 3, sug-
gesting that the value of U is close to the crossing point
U∗ between the two branches. Unlike the single-site case,
we have no means of accessing the unphysical branch of
Σ[G] other than by summing the skeleton series explic-
itly.

Interestingly, the map G0 → G is known [17] to be
invertible if G0 is constrained to the form [G−10 ]ij =
iωn +µ− tij (with i, j the lattice sites). Consistently, our

G
(unphysical)
0 contains an additional frequency-dependent

hybridization ∆, [G
(unphysical)−1
0 ]ij = iωn + µ − tij −

∆ij(iωn). It is unclear, however, how this can be used
to render the skeleton series convergent to Σ(exact) since
Σ[G] has no explicit dependence on G0. In practical di-
agrammatic calculations [14], when G(exact) is unknown,
G is found by (iteratively) solving the Dyson equation

G−1 = G−10 − Σ[G] with true G0 ≡ G
(exact)
0 . Clearly,

in the regimes where the series for Σ[G(exact)] converges
to the unphysical branch, Σ[G(exact)] 6= Σ(exact), the cal-
culation cannot yield the correct answer G(exact). Pro-
vided there are no obvious pathologies in the unphysical
Σ, which is the case in the examples considered here,
identifying that the obtained G is wrong may be prac-
tically impossible in some computation schemes without
an a priori benchmark.

To summarize, we have demonstrated that the LWF for
the Hubbard interaction has at least two branches, pos-
sibly everywhere in parameter space. The branches cross
along a manifold, dividing the space of parameters into
the “weakly-correlated” region, where the skeleton series
converges to the physical solution, and the “strongly-
correlated” region, where the skeleton series converges
to the unphysical branch (as qualitatively described by
Fig. 2b) [38]. We emphasize that the strongly-correlated
region does not need to be the insulating regime of the
system—the skeleton series for the Anderson model can
converge to the unphysical branch even in the correlated
metallic state. The boundary between these regions is
characterized by an increasingly slow convergence (pos-
sibly divergence) of the skeleton series. In contrast, we
have found that the bare series in terms of the non-
interacting GF G0 is insensitive to this boundary and
converges to the physical branch in both regions, al-
though stronger interactions require increasingly high or-
ders to claim the converged result. At large interactions,
it eventually becomes impossible to reliably extrapolate
to the infinite-order limit, and new developments are
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needed to be able to reach higher expansion orders.
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ature Physics 32, 424 (2006).

[9] L. Pollet, N. V. Prokof’ev, and B. V. Svistunov, Phys.
Rev. B 83, 161103 (2011).

[10] S. Biermann, F. Aryasetiawan, and A. Georges, Phys.
Rev. Lett. 90, 086402 (2003).

[11] G. Kotliar and S. Y. Savrasov, in New Theoretical Ap-
proaches to Strongly Correlated Systems, edited by A. M.
Tsvelik (Kluwer Academic Publishers, 2001) pp. 259–301,
arXiv:cond-mat/0208241.

[12] G. Rohringer, A. Toschi, A. Katanin, and K. Held, Phys.
Rev. Lett. 107, 256402 (2011).

[13] P. Staar, T. Maier, and T. C. Schulthess, Phys. Rev. B
88, 115101 (2013).

[14] A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics
(Dover Publications Inc., 1975).

[15] R. Chitra and G. Kotliar, Phys. Rev. B 63, 115110
(2001).

[16] A. Georges, in Lectures on the physics of highly cor-
related electron systems VIII, edited by A. Avella
and F. Mancini (American Institute of Physics, 2004)
arXiv:cond-mat/0403123.

[17] M. Potthoff, Eur. Phys. J. B 32, 429 (2003).

[18] M. Potthoff, Condensed Matter Physics 9, 557 (2006).
[19] F. J. Dyson, Phys. Rev. 85, 631 (1952).
[20] W. Hofstetter and S. Kehrein, Phys. Rev. B 59, R12732

(1999).
[21] K. Van Houcke, E. Kozik, N. Prokof’ev, and B. Svis-

tunov, in Computer Simulation Studies in Condensed
Matter Physics XXI, edited by D. Landau, S. Lewis, and
H. Schuttler (Springer Verlag, Heidelberg, Berlin, 2008).

[22] E. Kozik, K. V. Houcke, E. Gull, L. Pollet, N. Prokof’ev,

B. Svistunov, and M. Troyer, EPL (Europhysics Letters)
90, 10004 (2010).

[23] In fact, we first discovered that the skeleton expansion
converges to an unphysical result and then traced this
back to the existence of two branches in the LWF.

[24] J. Hubbard, Proc. Roy. Soc. London Series A 276, 238
(1963).

[25] N. Prokof’ev and B. Svistunov, Phys. Rev. B 77, 020408
(2008).

[26] K. Van Houcke, F. Werner, E. Kozik, N. Prokof/’ev,
B. Svistunov, M. J. H. Ku, A. T. Sommer, L. W. Cheuk,
A. Schirotzek, and M. W. Zwierlein, Nat Phys 8, 366
(2012).

[27] S. A. Kulagin, N. Prokof’ev, O. A. Starykh, B. Svistunov,
and C. N. Varney, Phys. Rev. Lett. 110, 070601 (2013).

[28] Throughout the paper we include the mean-field Hartree
contribution ΣH ↑,↓ = Un↑,↓, where n↑,↓ is the parti-
cle density per spin component, into G0 by appropri-
ately shifting the chemical potential as explained, e.g., in
Ref. [21].

[29] Here“absolutely” implies that an absolute value is taken
of each diagram.

[30] That this is different from assessing the number of so-
lutions of G for a given G0, such as in GW, where an
explicit approximate form of Σ[G] is used.

[31] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,
M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349
(2011).

[32] M. Ferrero and O. Parcollet, TRIQS: a Tool-
box for Research on Interacting Quantum Systems,
http://ipht.cea.fr/triqs.

[33] Since both solutions correspond to the same G(exact), the
actual state of the system in both cases is of course a
gapped insulator.

[34] A. Georges and G. Kotliar, Phys. Rev. Lett. 84, 3500
(2000).

[35] K. B. Dave, P. W. Phillips, and C. L. Kane, Phys. Rev.
Lett. 110, 090403 (2013).
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