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ABSTRACT. Trajectory analysis is a study field that is experiencing a renewed interest mainly due
to the increase and availability of datasets, generated by users either in the real world by the
means of sensors such as GPS, or in virtual environments thanks to the digital footprint they
leave when visiting a commercial website for example. In this paper we present the process of
converting raw trajectories into network-constrained ones and we review similarity measures
for trajectories as well as how they can be used to represent trajectories as graphs. We also
describe some approaches to cluster graph of trajectories. Then we assess the trajectories
similarity measures and the algorithms for graph clustering. In particular we show that some
similarity measures are inadequate for clustering graph of trajectories since they are not dis-
criminative enough.
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1. Introduction

Trajectory analysis is a study field that is experiencing a renewed interest mainly
due to the increase and availability of mobility datasets generated by sensors such as
GPS. The access to that large amount of data allows researchers and data scientists to
extract relevant knowledge like user behavior, road traffic and occupation or frequent
mobility patterns that can be monetized by companies through value-added applica-
tions as intelligent transportation systems. Moreover, this knowledge is necessary to
meet populations needs concerning smart and sustainable cities concept and to deal
with the fast demographic evolution and the rapid economic development in some
regions.

However, trajectories are not limited to human mobility measured with GPS. Other
kinds of trajectories describing for example animal displacements in nature or pages
to pages moves of website users are also studied. Independently from the way they are
conducted, researches dealing with knowledge extraction through trajectory analysis
are usually related to definition and comparison of distance or similarity measures,
trajectories representation and clustering of trajectories. They also generally concern
trajectories that occur in free space while network-constrained trajectories which are
quite common has only been considered by a small handful of studies. Accordingly,
we choose to focus on trajectories that are constrained by an underlining network (road
network, hyperlinks, etc.) in our literature review.

For instance, in (Wang et al., 2013) authors compare several distance measures.
They transform taxi trajectories from the city of Beijing, by adding noise, re-sampling
(addition, deletion of points) or deforming (points shifting) them. Then they assess
the performances of the different distance measures by computing distance between
transformed trajectories and their originals. They thus succeed in determining by
experimentation the advantages and disadvantages of the studied distance measures.

In (Besse et al., 2016), authors rather define a new distance measure between ve-
hicle trajectories called Symmetrized Segment-Path Distance (SSPD). It has the ad-
vantage of being symmetrical and takes account of the geometrical characteristics of
the trajectories. The authors compare their new distance to those commonly used in
the literature using hierarchical clustering and clustering by affinity propagation and
get good results.

(Hwang et al., 2005) propose a method to retrieve similar trajectories from road
network space. It consists in a first step to use Points Of Interest (POIs) like roads
intersections or places to identify spatially similar trajectories. In the second step
they use a temporal distance also based on POIs to refine the trajectory similarity
evaluation. Then they apply a clustering using a shifted Hilbert curve to assess their
method and get coherent results.

Unlike the previous works, (Guo et al., 2010) define a graph-based representation
of trajectories where nodes are trajectories points and where edges link only points that
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share the same trajectory. They apply a spatially constrained graph partition method
on the obtained graph to cluster trajectories by regions.

In the same way, (Khalil El Mahrsi et al., 2015) propose a new representation
of trajectories in graph form. The nodes of this graph correspond to the trajectories
and are connected by edges whose weights indicate the similarity between trajecto-
ries. The authors also define a new similarity measure between trajectories similar
to the TF-IDF (Term Frequency - Inverse Document Frequency) originally used for
documents. They then apply a community detection method based on modularity to
cluster the trajectories. These new approaches in trajectory representation and clus-
tering has aroused our interest and we propose to enrich it by comparing different
similarity measures and various methods of community detection for the clustering of
trajectories represented as graph.

This paper present a review of some similarity measures and assess performances
of two community detection algorithms used in the context of trajectories clustering.
In Section 2 we present some preprocessing steps wich must be performed when con-
fronted with GPS based trajectories that have to be fitted on a network. Then we
present several measures of similarity between trajectories in Section 3 which are not
dedicated to network-constrained trajectory but can be somehow adapted. In Section 4
we discuss the clustering of trajectories represented as graph. Finally, we present some
experimental results using trajectories in the city of Porto in 5.

2. Trajectories preprocessing

When studying trajectories in real environments it is often necessary to associate
raw mobility data from GPS to positions on a map. For instance, when studying car
movements in a city, we expect that the recorded positions belong to road segments
as displacements are mainly carried out on road networks and we therefore want to
ensure that the trajectories do not go through buildings. The matching of GPS data to
positions on a map is called map matching and several approaches have been proposed
to deal with this problem. They are categorized in four groups as stated in (Quddus et
al., 2007):

– Geometric approaches: map matching is done point-to-point, point-to-curve
or curve-to-curve. In point-to-point approaches, each recorded point is matched to
the closest point on a road segment (Bernstein, Kornhauser, 1998) while for point-to-
curve approaches each GPS point is associated to the closest road segment (White et
al., 2000) and for curve-to-curve approaches entire pieces of the recorded trajectory
are matched to road segments on the map (Phuyal, 2002).

– Topological approaches: the similarity between the trajectories and the road
network is assessed using the geometry of road segments as well as their topological
properties (connectivity, adjacency, containment or contiguity) (Chen et al., 2003;
Greenfeld, 2002; Yu, 2006; Quddus et al., 2003).
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– Probabilistic approaches: an error zone is derived from the error variance as-
sociated with the GPS, around each recorded point. If only one road segment intersect
the error zone then the point is matched to it, otherwise additional criteria as heading,
connectivity and closeness are used to select the best road segment (Ochieng et al.,
2003; Zhao, 1997).

– Advanced approaches: other concepts such as Kalman filters (Kim et al.,
2000), particle filters (Gustafsson et al., 2002), Dempster-Shafer belief theory (El Na-
jjar, Bonnifait, 2005), fuzzy logic (Fu et al., 2004; Quddus et al., 2006) and hidden
Markov model (Newson, Krumm, 2009) have also been proposed.

According to (Newson, Krumm, 2009), the hidden Markov model approach cor-
rectly identifies up to 99.89% of road segments when the sampling time is less than
30 seconds. Since these performances are better than the ones of other approaches
presented in (Quddus et al., 2007), we selected the hidden Markov model for the
map-matching of our trajectories. We will now describe it with more details.

2.1. Hidden Markov Model

A Hidden Markov Model (HMM) is a probabilistic model that generates sequences
from transitions between the states of a Markov chain (Aggarwal, 2015). The term
"hidden" comes from the fact that the states of the chain are not visible to the user but
correspond to observations that are visible.

In a Hidden Markov Model used for map-matching, the Markov chain states (nodes)
are grouped into layers individually associated with a point on the trajectory to be
processed and represent the road segments closest to that point. Each node of a layer
has an emission probability quantifying the likelihood that the point associated with
the layer belongs to the road segment represented by this node. This probability de-
pends on the measurement error of the GPS used and follows a zero mean Gaussian
law (Newson, Krumm, 2009) defined as :

p(zt|ri) =
1

σz
√
2π
e−0.5(

||zt−xt,i||greatcircle
σz

)2 (1)

where zt is the recorded GPS point; ri is a road segment close enough to zt; xt,i
is the point associated to zt on ri; ||zt − xt,i||greatcircle is the great circle distance
between zt and xt,i.

A transition probability is also defined between each pair of nodes coming from
two consecutive layers. It indicates the probability of moving from one node to an-
other and therefore from one road segment to another, taking into account the distance
between them and the topology of the road network. The transition probability follows
an exponential distribution described by (Newson, Krumm, 2009)

p(dt) =
1

β
e
−dt
β (2)
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where dt is the difference between the great circle distance and the road network
distance of two consecutive points of a trajectory, β is an adjustment parameter de-
pending on dt

Once the model is constructed, it is represented as a network of nodes affected
by the emission and transition probabilities on which the Viterbi algorithm is applied
to find the best path on the road network corresponding to the inaccurate trajectory
recorded on the GPS. Figure 1 illustrates a Hidden Markov Model in which the best
path is selected (Goh et al., 2012).

Figure 1. A Hidden Markov Model illustration.

3. Trajectories similarity measures

Since we seek to partition a graph of trajectories into clusters, it is necessary to
evaluate the similarity between trajectories. However, the literature most often pro-
poses distance measures between trajectories, which is not adapted to our study. To
compensate this lack, we simply convert the distance measures into measurements of
similarity using :

similarity =
1

1 + distance
(3)

we add 1 to the distance at the denominator, to obtain a normalized similarity
between 0 and 1.

The distance measures between trajectories that we have exploited are the Sym-
metrized Segment-Path Distance (SSPD), Dynamic Time Warping (DTW), Edit Dis-
tance with Real Penalty (ERP) and Edit Distance on Real Sequence (EDR). They are
among the most widely used in the literature and each has its own unique character-
istics. However, none of them is a panacea to the problem of proximity (geographic
and / or structural) measurement between trajectories. These distances can be subdi-
vided into two groups: warping distances (DTW, ERP and EDR) that make it possible
to compare trajectories of different lengths and take into account the time shifting
between trajectories, and shape-based distances (SSPD) that compare the trajectories
based on their geometrical characteristics (Besse et al., 2016).
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3.1. Dynamic Time Warping (DTW) distance

DTW helps to find the similar patterns between two trajectories of different lengths
taking into account the time dimension if necessary. For two trajectories A and B,
DTW is computed according to the equation (Yoon et al., 2012):

DTW (A,B) =



0, if n = 0 and m = 0
∞, if n = 0 or m = 0

d(Head(A), Head(B)) +min


DTW (A,Rest(B))

DTW (Rest(A), B)

DTW (Rest(A), Rest(B))
(4)

where d(A,B) can be any of the distance functions defined on points and Head(X)
(resp. Rest(X)) is the first element of X (resp. all but the first element of X). The
notations Head(X) and Rest(X) will keep the same meaning in rest of the paper as
well as n and m which are the respective lengths of trajectories A and B.

This equation results in a dynamic programming algorithm that evaluates all possi-
ble combinations of points between the two trajectories and retains the one where the
distance is minimal. It is parameter-free but greedy in calculation time and resources
and is also sensitive to noise (Wang et al., 2013).

3.2. Edit Distance with Real Penalty (ERP) / on Real Sequence (EDR)

ERP and EDR are edit distances that can compare trajectories of different sizes
with time shifting. An edit distance, also known as the Levenshtein distance between
two chains, defines the minimal cost necessary to transform one of the sequences into
the other by using a series of transformation operations (Aggarwal, 2015). According
to (Zheng, Zhou, 2011) EDR and ERP are defined as :

EDR(A,B) =


n if m = 0
m if n = 0
min{EDR(Rest(R), Rest(S) + subcost, otherwise
EDR(Rest(R), S) + 1, EDR(R,Rest(S)) + 1}

(5)
where

subcost =

{
0, if d(Head(A),Head(B)) ≤ ε
1, otherwise

(6)
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ERP (A,B) =



∑n
l |si − g|, if m = 0∑m
l |ri − g|, if n = 0

min


ERP (Rest(A), Rest(B)) + d(Head(A), Head(B)),

ERP (Rest(A), B) + d(Head(A), g), otherwise
ERP (A,Rest(B)) + d(Head(B), g)

(7)

ERP is based on the L1 norm or Manhattan distance and is a metric while EDR is
not. ERP assigns a real penalty to the matched points whereas EDR assigns them a dis-
crete penalty (0 or 1). EDR depends on a matching point parameter which makes it ro-
bust to noise while ERP uses a constant called gap to process unpaired points (Zheng,
Zhou, 2011). ERP and EDR apply to standardized trajectories (Wang et al., 2013).

3.3. Symmetrized Segment-Path Distance (SSPD)

SSPD is a shape-based distance that use point-to-segment distance. It measures
the average of the minimum distances between each point of a trajectory and all seg-
ments of a second one and vice versa. It is parameter-free, can compare trajectories of
different size and is time insensitive. The definition of SSPD distance is (Besse et al.,
2016):

SSPD(A,B) =
SPD(A,B) + SPD(A,B)

2
(8)

where

SPD(A,B) =
1

nA

nA∑
i=1

Dpt(p
A
i , B) (9)

and

Dpt(p
A
i , B) = minj∈[0,...,n2−1]Dps(pAi ,sBj ) (10)

Dps(p
A
i , s

B
j ) is the distance from the point pAi to the segment sBj .

3.4. Longest Common SubSequence similarity

Besides these distances, we also used the LCSS similarity which is equal to the
ratio between the length of the longest common subsequence of two trajectories and
the length of the shortest of them. This common subsequence consists of points con-
sidered to be matched when the distance between them is less than a predetermined
proximity threshold. LCSS is a measure which is robust to noise but does not consider
the entire length of the trajectories and is dependent on a parameter. It is calculated as
(Zheng, Zhou, 2011):
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LCSS(A,B) =


0, if n = 0 or m = 0
1 + LCSS(Rest(A), Rest(B)), i f d(Head(A), Head(B)) ≤ ε,
and |n - m| < δ

max(LCSS(Rest(A), B), LCSS(A, Rest(B))), otherwise
(11)

Where ε is a matching threshold between two points and δ is a parameter used to
control how far in time we can go in order to match a given point from one trajectory
to a point from another trajectory.

SimLCSS(A,B) =
LCSS(A,B)

min(n,m)
(12)

4. Trajectories clustering

Using the similarities between the trajectories data, we construct a graph whose
nodes are the trajectories themselves and edges bear weights indicating the similar-
ity between two trajectories. This representation of trajectories is inspired by (Khalil
El Mahrsi et al., 2015). Once the trajectory graph is obtained, the next step consists in
detecting the groups of similar trajectories. It is a well-known problem in graph the-
ory: the detection of communities. The communities in the graphs are considered as
groups in which the nodes are densely connected to each other and weakly connected
to the nodes of other groups. However, detecting communities and large-scale graphs
is a very difficult task classified as Np-hard (Fortunato, 2010). The methods available
in the literature for detecting communities are (Fortunato, 2010):

– Traditional methods such as graph partitioning, hierarchical clustering, partition
clustering

– Methods based on statistical inference
– Divisive methods
– Spectral methods
– Modularity-based methods
– Method using dynamic algorithms (spin models, random walk)

These methods serve as basis for the design of community detection algorithms,
which best performers (Fortunato, 2010) are the Louvain algorithm (Blondel et al.,
2008) that makes a direct optimization of the modularity and the InfoMap algorithm (Rosvall
et al., 2009) based on map equation and using information theory and random walks.
We thus select these two algorithms for the detection of community in our graph of
trajectories.
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5. Experimentations

5.1. Dataset

The data set used is Taxi Service Trajectory (Moreira-Matias et al., 2013). It
contains more than 1000000 trajectories performed by 442 taxis and recorded from
01/07/2013 to 30/06/2014 in the city of Porto (Portugal). Each trajectory is composed
of a set of coordinates recorded every 15 seconds from a GPS. For the purposes of
our study we will only process 1000 trajectories extracted from this dataset and whose
durations are between 5 and 30 minutes. We apply this filter in order to retain only
trajectories of intermediate size which are better suited for preprocessing and to prune
outliers.

5.2. Trajectories preprocessing

The raw GPS coordinates formatted in JSON (javascript Object Notation) are pro-
vided as input to the map matching method using HMM, as described in Section 2,
which outputs a trajectory matched to the road network and formatted in GeoJSON
format. The trajectories obtained after this first treatment sometimes have loops, that
do not exist in the original data, which we eliminate automatically with a script de-
veloped for this purpose. We then prune the trajectories points that are not points
of interest to reduce trajectories size while retaining their geometric and topological
characteristics. All the trajectories resulting from the preprocessing step are recorded
in an indexed database.

5.3. Hardware and software used

Our experiments are conducted on an HP Zbook computer, containing an Intel
i7-6700HQ octocore processor clocked at 8 * 2.60Ghz with 16Gb of Ram and run-
ning under Ubuntu 16.04 LTS. The map used in our study corresponds to the map
of the administrative region of the city of Porto in Portugal and was downloaded
at https://www.openstreetmap.org. We transform it into a routable graph of points
of interest whose nodes are most often intersections thanks to the open-source tool
Osm2Po. The barefoot open source library (https://github.com/bmwcarit/barefoot)
written in Java and implementing the hidden Markov model has been used to asso-
ciate the points of our trajectories with the road segments of the city of Porto. It
proposes an "online" map matching, that is, as the data is recorded and an "offline"
map maptching only possible when all the positions have been recorded. In our case
we use the "offline" option. We also use the open-source library "trajectory_distance"
written in python (https://github.com/bguillouet/traj-dist) to evaluate the distances and
similarity described above. The pre-processed trajectories are saved and indexed using
the PostgreSQL database management system with its POSTGIS extension.
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5.4. Evaluation of the clustering

Obtaining ground truth communities for empirical trajectories is challenging. Since
this is a very first comparison of different similarity measures and graph clustering al-
gorithms, we rely on very simple techniques to evaluate the different techniques. Our
main indicator of the goodness of a similarity is how well it is to cluster the trajec-
tories. More precisely, community detection algorithm are designed to find clusters
of highly connected nodes (or nodes connected with links of high weight) which are
connected to each other by few links (or with links of low weight).

Therefore, once the graph of similarity between trajectories is built, we partition
it and measure the average intra and inter-cluster weight and also compare it to the
average weight on the whole network. If the network can be partitioned well, we
should observe that the intra-cluster average weight should be significantly higher
than the average weight and the inter-cluster weight.

As indicated in Table 1 and 2 we can observe that EDR and in a lesser extent
LCSS are not discriminative enough: intra-cluster, inter-cluster and global average
weights are very similar. This is confirmed by the observation of the distribution of
the weights (not displayed here by lack of space) which shows for EDR that weights
are homogeneously distributed. On the contrary, SSPD and even more DTW and ERP
generate similarities much more discriminative: most of them are close to 0 while only
few are significant. This is reflected in the ratio of intra/inter cluster average weight
that is very high.

The difference between both algorithms is not very significant. In terms of quality,
no algorithm gives better results on all datasets.

Table 1. Quality of the partitioning for Louvain and the 5 similarity index: number of
clusters obtained, number of links of the weighted graph, global average weight,

average weight of intra-cluster links, average weight of inter-cluster links.

Sim. Nb of clusters Links Average similarity Intra-cluster similarity inter-cluster similarity
LCSS 8 96586 0.184 0.217 0.123
DTW 19 499500 5.72e-05 0.812 2.68e-05
EDR 5 499500 0.675 0.687 0.672
ERP 17 499500 4.24e-05 0.438 1.39e-07
SSPD 16 499500 4.79e-04 0.401 3.33e-04

Table 2. Quality of the partitioning for Infomap and the 5 similarity index: number of
clusters obtained, number of links of the weighted graph, global average weight,

average weight of intra-cluster links, average weight of inter-cluster links.

Sim. Nb of clusters Links Average similarity Intra-cluster similarity inter-cluster similarity
LCSS 14 96586 0.184 0.319 0.121
DTW 26 499500 5.72e-05 0.629 2.26e-05
EDR 1 499500 0.675 0.675 Nan
ERP 12 499500 4.24e-05 6.9e-03 1.82e-08
SSPD 23 499500 4.79e-04 0.64 4.53e-04
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6. Conclusion

In this paper we presented a first comparative study of different similarity measure
and graph-based clustering algorithms for network-constrained trajectories. While
some trajectories are already mapped to a network, most of them require some pre-
processing. It is for instance the case for GPS based trajectories that must be first
mapped to a road network from which a set of interest points are extracted to form the
nodes of the network. We aslo presented several state-of-the-art distance or similarity
measures that can be used to compare trajectories as well as community detection al-
gorithms. Finally, we presented some comparative results of clustering of trajectories
based on these similarities and we have shown that some of them are inadequate for
clustering, at least from a network point of view.

Many extensions still possible for this work. First, a deeper analysis of the re-
sults has to be performed so as to give precise conclusions on the usefulness of the
similarity measures in this context. Next, a more proper validation of the results of
the clustering should be done. For instance we might be able to label the different
communities that might correspond to commuting trips, travels from the city to the
airport, etc. Another solution might be to use an application case, for instance trajec-
tory prediction, to check whether the clusters are meaningful or not. Finally, the last
short term perspective is to take time constraints into account in particular to evaluate
the similarity of trajectories.
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