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The capture and separation of traces and concentrated CO 2 from important commodities such as CH 4 , H 2 , O 2 and N 2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO 2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO 2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO 2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO 2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO 2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable 2 material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO 2 capture in a wide range of CO 2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO 2 using physical adsorption.

This platform shows colossal tuning potential for more efficient separation agents.

Introduction

Meeting energy demands while addressing climate change may lead to cleaner and affordable oil/gas supplies for future generations. CO 2 has been found to be the main anthropogenic contributor to the greenhouse gas effect, responsible for 60% of the atmospheric temperature increase, commonly referred to as "global warming". [START_REF] Monastersky | A burden beyond bearing[END_REF][START_REF] Yamasaki | An overview of CO 2 mitigation options for global warming -emphasizing CO 2 sequestration options[END_REF] Among the various sources of CO 2 , approximately 30% is generated by fossil fuel power plants and 25% from transportation sector, making them one of the major contributors to global warming. [START_REF] Aaron | Separation of CO 2 from flue gas: A review[END_REF] Despite their impact on the environment, fossil fuels are expected to remain the leading source of energy for the coming years for both power generation and transportation.

Data recorded at the Mauna Loa Observatory in Hawaii revealed that an exponential increase in CO 2 emissions occurred in the last decades (Figure 1). For the first time in human history, the CO 2 concentration reached 400 parts per million (ppm) in 2013, an unseen concentration since the atmospheric concentration has been monitored. 4 It is widely recognized that development and implementation of novel and affordable technological solutions to reduce greenhouse gas (GHG) emissions, particularly CO 2 , is a vital step toward fossil fuel-based sustainable energy. [START_REF] Sayari | Flue gas treatment via CO 2 adsorption[END_REF] One such solution is the use of physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs). In this paper, we review the key parameters that are required for the best CO 2 capture performance using physical adsorbents. We also demonstrate that MOFs could be a promising physical adsorbents for CO 2 with huge potential to replace existing benchmark materials for CO 2 capture at low concentration and moderate temperatures. 

Discussion

Gas separation using adsorption has gained considerable attention as a viable technology for the CO 2 removal of from different gas streams. [START_REF] Sayari | Flue gas treatment via CO 2 adsorption[END_REF] This attention was motivated by the ability of solid adsorbents to reduce the required energy for activation/regeneration as compared to liquid amine scrubbing. [START_REF] Sjostrom | Evaluation of solid sorbents as a retrofit technology for CO 2 capture[END_REF] The design of adsorbents for CO 2 capture must take into account the following parameters:

(i) High CO 2 adsorption capacity: Knowledge about the shape/steepness of equilibrium adsorption isotherms is essential for the evaluation of potential adsorbents. Suitable materials should exhibit high CO 2 uptake particularly at low pressure. From the steepness of the adsorption isotherm at low pressure, it is possible to establish a preliminary, highly qualitative assessment of the CO 2 affinity for a given adsorbent in comparison with benchmark CO 2 adsorbents. [START_REF] Sayari | Flue gas treatment via CO 2 adsorption[END_REF][START_REF] Belmabkhout | Adsorption of CO 2 -containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: Application for CO 2 separation[END_REF][START_REF] Belmabkhout | Adsorption of CO 2 -containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: Application for gas purification[END_REF] Porosity and energetics are the key factors influencing the CO 2 adsorption capacity.

(ii) Fast adsorption kinetics: Adsorption kinetics affects the working adsorption capacity in dynamic processes such as adsorption in a fixed bed column. A suitable CO 2 adsorbent will have a high rate of adsorption for CO 2 but not necessarily for the less absorbable gases (such as CH 4 , H 2 , N 2 , etc.), resulting in a working adsorption capacity close to equilibrium capacity over a wide range of operating conditions. [START_REF] Krungleviciute | Kinetics and equilibrium of gas adsorption on RPM1-Co and Cu-btc metal-organic frameworks: Potential for gas separation applications[END_REF] (iii) High CO 2 selectivity: The selectivity of the adsorbent for CO 2 has a direct impact on the degree of purity of the product during operation in the adsorption column. This in turns affects the economics of the process. CO 2 selectivity is a product of a complex interplay between the porosity (pore size), kinetics and the charge density of the adsorbent. [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF] The charge density is directly related to CO 2 interactions with the adsorbent framework. [START_REF] Grajciar | Controlling the adsorption enthalpy of CO 2 in zeolites by framework topology and composition[END_REF][START_REF] Zukal | Experimental and theoretical determination of adsorption heats of CO 2 over alkali metal exchanged ferrierites with different Si/Al ratio[END_REF] (iv) Mild conditions for regeneration: The ability to regenerate the adsorbents is a key parameter in the selection of materials for CO 2 separation. Optimal interactions should be neither too weak nor too strong. Too weak bonding results in low CO 2 adsorption capacity at low pressure, but easy regeneration. Conversely, strong bonding induces high adsorption capacity but desorption will be difficult and costly. [START_REF] Sjostrom | Evaluation of solid sorbents as a retrofit technology for CO 2 capture[END_REF] We focus our analysis and discussion on examples of materials (mainly physical adsorbents) that show the best compromise in terms of the intensity of CO 2 energetics [START_REF] Belmabkhout | Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO 2 capture from flue gas[END_REF] as well as the uniformity of interactions. [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF] (v) High stability: The adsorbents lifetime, which determines the frequency of their replacement, has a direct impact on the economics of any commercial-scale operation. The stability of the material is a key property that should be considered from the early stage of synthesis and evaluation. This vital parameter is generally overlooked during small-scale synthesis. Only a few works have considered the recyclability and degradation in terms of the stability of CO 2 adsorbents. [START_REF] Sjostrom | Evaluation of solid sorbents as a retrofit technology for CO 2 capture[END_REF][START_REF] Belmabkhout | Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO 2 capture from flue gas[END_REF][START_REF] Sayari | Stabilization of amine-containing CO 2 adsorbents: Dramatic effect of water vapor[END_REF][START_REF] Sayari | 'na, CO 2 deactivation of supported amines: Does the nature of amine matter?[END_REF][START_REF] Bollini | Oxidative degradation of aminosilica adsorbents relevant to postcombustion CO 2 capture[END_REF] (vi) Tolerance to impurities: The degree of tolerance and the affinity of the adsorbent to impurities such as moisture and acid gases may significantly affect their use. When materials are affected by such impurities, additional purification steps are required.

(vi) Cost: As far as novel adsorbents are concerned, information on the cost and other economic considerations is rather scarce in the open literature, particularly with regard to MOFs. Cost-related factors will therefore not be discussed in this work, even though the cost of a MOF will undoubtedly decrease when industrial-scale synthetic methods are developed.

The debate among scientists and engineers regarding the aptness of zeolites, activated carbon and MOFs for CO 2 capture, has favoured the first two because of their availability on the large scale, their low cost and their demonstrated stability. The synthesis of MOFs at industrial scale is in its infancy and mainly carried out at the large pilot scale, while activated carbons and zeolites have been synthesized on the industrial large scale for decades. [START_REF] Bae | Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture[END_REF] The development of zeolites from discovery to commercialization took three to four decades. [START_REF] Flanigen | Chapter 2 zeolites and molecular sieves: An historical perspective[END_REF] It is then to be expected that large scale implementation of MOFs will take at least the same time frame. The huge choice of inorganic clusters and organic linkers for MOFs fabrication suggest that they can be easily tuned unlike activated carbon and zeolites, although it is often very difficult to predict the structures of MOFs [START_REF] Guillerm | A supermolecular building approach for the design and construction of metalorganic frameworks[END_REF][START_REF] Guillerm | Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks[END_REF] and the effects of their functionalization before synthesis. Overall, work on the rational design, development and synthesis of MOFs that target particular applications remains scarce. [START_REF] Guillerm | Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks[END_REF][START_REF] Eddaoudi | Zeolite-like metalorganic frameworks (ZMOFs): Design, synthesis, and properties[END_REF][START_REF] Liu | Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage[END_REF][START_REF] Luebke | The unique rht-MOF platform, ideal for pinpointing the functionalization and CO 2 adsorption relationship[END_REF][START_REF] Sumida | Carbon dioxide capture in metal-organic frameworks[END_REF] To evaluate the performance of various adsorbents, we selected a series of materials from each family to compare their adsorption properties in terms of porosity, gravimetric/volumetric uptake (at low CO 2 concentrations up to 50 % and a total pressure of 1 bar, in balance with N 2 and CH 4 and H 2 ), energetics, selectivity, stability and tolerance to water vapor. We also describe the physical separation mechanisms involved in the most promising CO 2 adsorbents.

Several types of MOFs have been proposed for CO 2 capture, including (i) MOFs with open metal sites, 25-37 (ii) MOFs without open metals sites, [START_REF] Nugent | Enhancement of CO 2 selectivity in a pillared pcu MOM platform through pillar substitution[END_REF][START_REF] Bae | Enhancement of CO 2 /CH 4 selectivity in metal-organic frameworks containing lithium cations[END_REF][START_REF] Ramsahye | Probing the adsorption sites for CO 2 in metal organic frameworks materials MIL-53 (Al, Cr) and MIL-47 (V) by density functional theory[END_REF][START_REF] Burd | Highly selective carbon dioxide uptake by Cu(bpy-n) 2 (SiF 6 ) (bpy-1=4,4 '-bipyridine; bpy-2=1,2-bis(4-pyridyl)ethene)[END_REF][START_REF] Mohamed | Highly selective CO 2 uptake in uninodal 6-connected "mmo" nets based upon Mo 4 2-(m = Cr, Mo) pillars[END_REF][START_REF] S.-I. Noro | Highly selective CO 2 adsorption accompanied with low-energy regeneration in a two-dimensional Cu(II) porous coordination polymer with inorganic fluorinated PF 6 anions[END_REF][START_REF] Llewellyn | Evaluation of MIL-47(V) for CO 2 -related applications[END_REF][START_REF] Wiersum | An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: Application to metalorganic frameworks[END_REF][START_REF] Yang | CH 4 storage and CO 2 capture in highly porous zirconium oxide based metal-organic frameworks[END_REF][START_REF] Wiersum | An evaluation of UiO-66 for gas-based applications[END_REF][START_REF] Pirngruber | A method for screening the potential of MOFs as CO 2 adsorbents in pressure swing adsorption processes[END_REF][START_REF] Yang | Selective CO 2 uptake and inverse CO 2 /C 2 H 2 selectivity in a dynamic bifunctional metal-organic framework[END_REF][START_REF] Tan | High capacity gas storage by a 4,8-connected metal-organic polyhedral framework[END_REF][START_REF] Phan | Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[END_REF][START_REF] Furukawa | Ultrahigh porosity in metal-organic frameworks[END_REF][START_REF] Bo | Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[END_REF][START_REF] Millward | Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[END_REF][START_REF] Banerjee | High-throughput synthesis of zeolitic imidazolate frameworks and application to CO 2 capture[END_REF] (iii) MOFs with narrow pore size via interpenetration [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF][START_REF] Rowsell | Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks[END_REF][START_REF] Kesanli | Highly interpenetrated metal-organic frameworks for hydrogen storage[END_REF] or shortening the size of the ligands, [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF][START_REF] Burd | Highly selective carbon dioxide uptake by Cu(bpy-n) 2 (SiF 6 ) (bpy-1=4,4 '-bipyridine; bpy-2=1,2-bis(4-pyridyl)ethene)[END_REF] and (iv) MOFs decorated with specific functional groups, including (NH 2 , OH, etc.). [START_REF] Luebke | The unique rht-MOF platform, ideal for pinpointing the functionalization and CO 2 adsorption relationship[END_REF][START_REF] Phan | Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[END_REF][START_REF] Devic | Effect of the organic functionalization of flexible MOFs on the adsorption of CO 2[END_REF][START_REF] Zheng | Enhanced CO 2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups[END_REF][START_REF] Cui | Multipoint interactions enhanced CO 2 uptake: A zeolite-like zinc-tetrazole framework with 24-nuclear zinc cages[END_REF][START_REF] Vaesen | A robust aminofunctionalized titanium (IV) based MOF for an improved separation of acid gases[END_REF][START_REF] Stavitski | Complexity behind CO 2 capture on NH 2 -MIL-53(Al)[END_REF][START_REF] Benoit | MIL-91(Ti), a small pore metal-organic framework which fulfils several criteria: An upscaled green synthesis, excellent water stability, high CO 2 selectivity and fast CO 2 transport[END_REF][START_REF] Yang | A water stable metal-organic framework with optimal features for CO 2 capture[END_REF] Functionalization of these types of MOFs may be carried out by post-synthetic modification (PSM) on the open metal sites, [START_REF] Wiersum | An evaluation of UiO-66 for gas-based applications[END_REF][START_REF] Demessence | Strong CO 2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine[END_REF][START_REF] Mcdonald | Enhanced carbon dioxide capture upon incorporation of N,N '-dimethylethylenediamine in the metal-organic framework Cubttri[END_REF][START_REF] Mcdonald | Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg 2 (dobpdc)[END_REF][START_REF] Anbia | Enhancement of CO 2 adsorption on nanoporous chromium terephthalate (MIL-101) by amine modification[END_REF][START_REF] Yan | Remarkable 2 /CH 4 selectivity and CO 2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents[END_REF] by post-synthetic metal exchange, [START_REF] Lau | A route to drastic increase of CO 2 uptake in Zr metal organic framework UiO-66[END_REF] or direct use of functionalized ligands. [START_REF] Luebke | The unique rht-MOF platform, ideal for pinpointing the functionalization and CO 2 adsorption relationship[END_REF][START_REF] Phan | Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[END_REF][START_REF] Devic | Effect of the organic functionalization of flexible MOFs on the adsorption of CO 2[END_REF][START_REF] Zheng | Enhanced CO 2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups[END_REF][START_REF] Cui | Multipoint interactions enhanced CO 2 uptake: A zeolite-like zinc-tetrazole framework with 24-nuclear zinc cages[END_REF] The amines (or sulfonates) PSM of porous organic polymers (POPs, COFs, etc.), another subfamily of porous material, has also been proposed. [START_REF] Lu | Sulfonate-grafted porous polymer networks for preferential CO 2 adsorption at low pressure[END_REF][START_REF] Lu | Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas[END_REF][START_REF] Lu | Carbon dioxide capture from air using amine-grafted porous polymer networks[END_REF][START_REF] Guillerm | Porous organic polymers with anchored aldehydes: A new platform for post-synthetic amine functionalization en route for enhanced CO 2 adsorption properties[END_REF] From these types of materials, we discuss selected ones that offer the best compromise between selectivity, uptake, kinetics and the energy input for desorption in CO 2 capture.

For a more comprehensive account on CO 2 adsorbents, we direct the reader to excellent reviews by Sumida et al. 2012, [START_REF] Sumida | Carbon dioxide capture in metal-organic frameworks[END_REF] Choi et al. 2009 [START_REF] Choi | Adsorbent materials for carbon dioxide capture from large anthropogenic point sources[END_REF] and Sayari et al. 2011. [START_REF] Sayari | Flue gas treatment via CO 2 adsorption[END_REF] Reviews covering MOFs as gas separation and gas storage media are also highly recommended. [START_REF] D'alessandro | Carbon dioxide capture: Prospects for new materials[END_REF][START_REF] Férey | Why hybrid porous solids capture greenhouse gases?[END_REF][START_REF] Liu | Recent advances in carbon dioxide capture with metal-organic frameworks[END_REF][START_REF] Li | Metal-organic frameworks for separations[END_REF][START_REF] Li | Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks[END_REF][START_REF] Lin | Hydrogen, methane and carbon dioxide adsorption in metal-organic framework materials[END_REF][START_REF] He | Methane storage in metal-organic frameworks[END_REF][START_REF] Barea | Toxic gas removal -metal-organic frameworks for the capture and degradation of toxic gases and vapours[END_REF][START_REF] Zhang | Perspective of microporous metal-organic frameworks for CO 2 capture and separation[END_REF] Porosity: surface area, pore volume, pore size distribution and shape

The porosity of adsorbents (also called solid separation agents) is one of the key features associated with the selective adsorption/diffusion of gases into the pores, [START_REF] Sumida | Carbon dioxide capture in metal-organic frameworks[END_REF] which in turn drives the separation of fluids. Without optimal permanent porosity, the solid adsorbent containing functional groups will be unproductive in adsorption technology. Since the discovery of zeolites, activated carbons and MOFs, a general tendency in the development of new separation agents for CO 2 removal was to design and synthesize porous materials with high surface areas in which the correlation between the porosity parameters (surface area, pore volume and pore size) was obviously recognized but rarely discussed.

Zeolites and MOFs may contain ordered channels, cages, or a combination of both, while activated carbons possess heterogeneous slit-shaped pores.

High surface area materials often exhibit large pore volumes and relatively large pore sizes in the range of micropores (Figure 2a). Conversely, low surface area materials exhibit insignificant pore volumes and relatively reduced pore sizes (Figure 2b). The general tendency is that the enhancement of surface area and pore volume is achieved by increasing the pore size. Nevertheless, such correlations are applicable only to strictly homogeneous solid adsorbents particularly in case of MOFs containing uniform pore sizes. This behavior is verified for optimally activated [START_REF] Farha | Rational design, synthesis, purification, and activation of metal-organic framework materials[END_REF] MOFs containing uniform channels but difficult to obtain for few examples of MOFs with exceptionally high cavity sizes and various window sizes, such as MIL-100 [START_REF] Férey | A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[END_REF] and MIL-101. [START_REF] Férey | A chromium terephthalate-based solid with unusually large pore volumes and surface area[END_REF] COF-1 [START_REF] Côté | Porous, crystalline, covalent organic frameworks[END_REF] and other staggered layered structures are also examples of the invalidity of this tendency.

Many reports in the literature described different approaches for tuning the porosity of different materials. [START_REF] Sumida | Carbon dioxide capture in metal-organic frameworks[END_REF][START_REF] Zukal | Functionalization of delaminated zeolite itq-6 for the adsorption of carbon dioxide[END_REF] In this regard, MOFs exhibited better possibility in terms of pore size tunability as compared to zeolites and activated carbons, [START_REF] Sayari | Flue gas treatment via CO 2 adsorption[END_REF] although contrary to what happened with zeolites eight decades ago, there has been no strong incentive so far for scientists and industrialists to put these unique and tunable materials into applications using rational synthesis and design. The tunability of MOFs can be illustrated in the case when pores are deliberately functionalized for the purpose of increasing the affinity of one particular gas vs. another one or when the pore size is narrowed to exclude one molecule vs. another. [START_REF] Ruthven | Principles of adsorption and adsorption processes[END_REF] As an example a large number of publications in the last decades related to the use of zeolites, activated carbon and MOFs for gas separation and CO 2 capture in particular, implemented the strategy of tuning the specific surface area as the main approach to enhanced CO 2 separation. For this purpose, the design and synthesis of new MOFs has been conducted based on isoreticular strategy using extended (larger) rather than shorter ligands. In this regard, CO 2 uptake at atmospheric pressure and above was the main reference parameter to evaluate CO 2 adsorbents. This single parameter strategy was shown to be not effective in achieving highly effective CO 2 microporous adsorbents at very low pressure. [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF] Microporous CO 2 adsorbents combining both high surface areas and large pore volumes with relatively large uniform micropore sizes (0.8-2 nm) exhibited high CO 2 uptake at medium and high pressures, [START_REF] Sumida | Carbon dioxide capture in metal-organic frameworks[END_REF] in addition to suitable (fast) kinetics [START_REF] Krungleviciute | Kinetics and equilibrium of gas adsorption on RPM1-Co and Cu-btc metal-organic frameworks: Potential for gas separation applications[END_REF] but very low selectivity toward CO 2 . Conversely, microporous adsorbents with small pore sizes (0.35-0.8 nm) had low surface areas, small pore volumes and comparatively very low CO 2 uptake at high pressure, but slightly higher CO 2 uptake and selectivity at very low pressure. [START_REF] Liu | Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage[END_REF] Thus the relative enhancement of CO 2 separation performance (uptake, selectivity) at low pressure (0.05-0.15 bar) upon the reduction of pore size was clearly established and showed that the pore opening was large enough to allow optimal gas diffusion and implementation of suitable charge density. Further reduction in pore size close to 0.33 nm may lead to further enhancement of CO 2 selectivity via a purely molecular sieving mechanism driven mainly by gas diffusion. [START_REF] Ruthven | Principles of adsorption and adsorption processes[END_REF][START_REF] Yang | Gas separation by adsorption processes[END_REF] It is to note that such selectivity is generally very difficult to achieve.

With regard to adsorption equilibrium-based materials, the effect of pore shape (cylindrical channels or spherical cages) on the pore size uniformity of the and further on the CO 2 separation performance has not been reported. The presence of cages in the adsorbent structure, particularly in zeolites and MOFs, contributes in the local increase of the pore size, leading on one hand to broadening the pore size distribution and on the other hand to decreasing the CO 2 uptake and selectivity at low pressure.

The case of activated carbon is more difficult to predict and model as it does not contain homogeneous pore network. In all these cases, it is logical to assume that adsorbents with uniform channelled pores (of appropriate size) and high charge density will be more suitable for CO 2 separation. However, it is very hard to isolate the effect of pore size from CO 2 -adsorbent interactions.

Thus, it is more appropriate to discuss the effect of uniformity in terms of energy distribution, which is more universal, rather than in terms of pore size distribution.

CO 2 interaction energy, intensity and distribution.

The CO 2 adsorbent interaction energy (Qst of CO 2 adsorption or heat of adsorption) and its distribution over the pores is an intrinsic property that dictates the affinity of the pore surface to CO 2 , which in turn plays a major role in determining the adsorption selectivity and the necessary energy required to release CO 2 during the regeneration step. With regard to the CO 2 interaction intensity, an optimal Qst for CO 2 capture should be in the range of 30-60 kJ/mol which is indicative of fully reversible physisorption of CO 2 as well as moderately strong CO 2 -sorbent interactions. In fact, this will allow mild regeneration conditions, which is a key property in the selection of materials for CO 2 separation. Obviously, this requirement is strongly dependant on the CO 2 concentration. The lower the CO 2 concentration in gas stream, the higher CO 2 interactions (or Qst) is needed for effective CO 2 removal.

Figure 3. a) limits of reversible-non reversible CO 2 interactions, b) examples of Qst of CO 2 adsorption vs loading for different adsorbents with (i) strong homogeneous interactions (black and blue), (ii) intermediate homogeneous interactions (grey) and weak homogeneous interactions (orange) and (iii) strong heterogeneous interactions (purple and green).

Depending on the structural and chemical properties of the adsorbent, cycling may be achieved via temperature, pressure (or vacuum), concentration swing adsorption or a combination thereof. In a practice, incorporation of functional groups within pores (of different sizes) can be used to modify adsorbent-adsorbate interactions (e.g., van der Waals, electrostatic, hydrogen bonding or acid-base interactions (Figure 3a)) and affect CO 2 uptake and selectivity. Optimal interactions should be neither too weak nor too strong. Too weak bonding results in low CO 2 adsorption capacity at low pressure, but easy regeneration. Conversely, strong bonding induces high adsorption capacity but desorption is difficult and costly (Figure 3a). The relationship between the most important intrinsic properties for CO 2 capture at different concentration is shown in Figure 4. In fact, the general tendency is that application with lower CO 2 concentration will require much higher selectivity toward CO 2 which will induce much higher interactions with the adsorbent framework. Besides, application having increased CO 2 concentrations will require much uniform energy distribution of effective adsorption sites to sustain high selectivity. In this regard, our group and others developed various strategies to enhance and homogenize the CO 2 adsorption energetics in MOF structures. [START_REF] Xue | Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO 2 adsorption energetics and uptake[END_REF][START_REF] D'alessandro | Carbon dioxide capture: Prospects for new materials[END_REF][START_REF] Férey | Why hybrid porous solids capture greenhouse gases?[END_REF][START_REF] Liu | Recent advances in carbon dioxide capture with metal-organic frameworks[END_REF][START_REF] Li | Metal-organic frameworks for separations[END_REF][START_REF] Li | Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks[END_REF][START_REF] Lin | Hydrogen, methane and carbon dioxide adsorption in metal-organic framework materials[END_REF] The examples of strategies mentioned here reflect material synthesis strategies that generate desired CO 2 capture properties. One example of MOFs developed for the CO 2 capture purpose was based on modification of the rht-MOF platform developed initially by Eddaoudi and co-workers in 2008 [START_REF] Nouar | Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metalorganic frameworks[END_REF] based on the singular (3,24)-connected net (rht-MOF-1). This platform was successfully used to prepare a deliberately functionalized rht-MOF-7 (Figure 5) exhibiting high affinity to CO 2 at lower loading as a result of a unique combination of amine and triazine moieties decorating the available high surface area, windows and pores. As compared to the parent sample, rht-MOF-1, rht-MOF-7 exhibited steeper CO 2 isotherms at very low partial pressure and relatively higher isosteric heat of adsorption but only at low loading (first CO 2 molecules adsorbed). This finding suggested that the addition of triazine and amine functional groups enhanced the interaction of rht-MOF-7 with CO 2 (green dots in Figure 3b); in addition, the Qst was low enough to allow complete reversible desorption using the vacuum swing regeneration mode. In another example, a series of fcu-MOFs (Figure 6) based on rare-earth metals and linear fluorinated/non-fluorinated, homo-/hetero-functional ligands was targeted and synthesized. This particular fcu-MOF platform was selected due to its unique structural characteristics combined with the ability to dictate and regulate its chemical properties (e.g., tuning of the electron-rich rare-earth metal ions and high localized charge density, a property arising from the proximal positioning of polarizing tetrazolate moieties and fluorine atoms that decorate the exposed inner surfaces of the confined conical cavities). [START_REF] Xue | Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO 2 adsorption energetics and uptake[END_REF] Other MOF based on rare-earth (Y-pek-MOF-1) having open metals sites but no tetrazolate and fluoro groups shows poor CO 2 capture ability at low pressure but exhibits one of the highest to date CO 2 volumetric uptakes of 25 bar. [START_REF] Alezi | Quest for highly connected metal-organic framework platforms: Rare-earth polynuclear clusters versatility meets net topology needs[END_REF] This unique combination of properties for fcu-MOF was found to have an unprecedented effect on increasing the CO 2 adsorption energetics to a high value of 58 kJ/mol (purple dots in Figure 3b), and the adsorption was fully reversible. As in the case of rht-MOF-7, the number of adsorption sites associated with the high Qst (58 and 47 kJ/mol for Tb-fcu-MOF (FTZB) and rht-MOF-7, respectively) was very limited and these sites were quickly saturated, leading to a decrease in Qst as the CO 2 uptake increased. It is important to mention that similar Q st behavior was reported for MIL-100(Cr) [START_REF] Llewellyn | High uptakes of CO 2 and CH 4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[END_REF] at the low coverage of 62 kJ/mol and other zeolites. [START_REF] Grajciar | Controlling the adsorption enthalpy of CO 2 in zeolites by framework topology and composition[END_REF][START_REF] Zukal | Experimental and theoretical determination of adsorption heats of CO 2 over alkali metal exchanged ferrierites with different Si/Al ratio[END_REF] In light of the high affinity of rht-MOF-7 and Tb-fcu-MOF for CO 2 , it was reported that these materials may be used for highly selective CO 2 capture, but only for the removal of low CO 2 concentrations. Although these MOFs have very interesting properties, they may not be able to remove relatively high CO 2 concentrations, such as in the case of post-combustion capture (5-15% CO 2 ). The strength of the interactions is not the only important factor that has to be considered, but their uniformity over the entire material framework is also of prime importance to ensure high CO 2 affinity (affecting in turn the CO 2 selectivity) over a wide range of CO 2 concentrations (Figure 3b and4) .

This requires a homogenous distribution of these strong adsorption sites to allow CO 2 adsorption with identical interaction strengths. In line with this, a new class of MOFs with periodically arrayed hexafluorosilicate (SiF 6 ) pillars [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF][START_REF] Shekhah | Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture[END_REF] (Figure 7) characterized by one-dimensional channels with different sizes and exhibiting uniform and strong energy distribution with increased CO 2 uptake (grey, blue, and black dots, Figure 3b) were recently reported. Other noticeable results were obtained using different pillars such as MF 6 ,(M=Ti, Sn) [START_REF] Nugent | Enhancement of CO 2 selectivity in a pillared pcu MOM platform through pillar substitution[END_REF] or MO 4 2-(M=Cr, W, Mo) [START_REF] Mohamed | Highly selective CO 2 uptake in uninodal 6-connected "mmo" nets based upon Mo 4 2-(m = Cr, Mo) pillars[END_REF][START_REF] Mohamed | Pillar substitution modulates CO 2 affinity in "mmo" topology networks[END_REF] for the construction of MOFs.

These SiF 6 based MOFs, particularly the isostructural analogues constructed using (the shorter) pyrazine ligand (Figure 7), showed unprecedented selectivity for CO 2 . Uniform CO 2 interaction (energy) distribution is one of the essential requirements to ensure (in addition to narrow pore size) that high selectivity is maintained over a wide range of CO 2 adsorption loading. [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF][START_REF] Shekhah | Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture[END_REF] This key aspect has not been tackled and discussed in the literature so far, which explains the scarcity of materials that are able to fulfill the technical requirements for CO 2 capture. [START_REF] Merel | Experimental investigation on CO 2 postcombustion capture by indirect thermal swing adsorption using 13X and 5A zeolites[END_REF] It is important to mention that the higher is the CO 2 concentration in the stream, the steadier should be the adsorption energy (heat of adsorption). The synergetic relationship between the porosity (pore size) and the CO 2 adsorption interactions will be different from one application to another depending on the less absorbable (the more selective) molecule (N 2 , CH 4 , O 2 , etc.) and will be discussed in the next section. 

CO 2 selectivity, uptake and kinetics

The CO 2 adsorption capacity and kinetics collectively dictate the efficiency of the CO 2 capture process (amount of treated gas per time period), whereas the phase purity of the separated commodities from CO 2 or the purity of the captured CO 2 is primarily correlated with the CO 2 adsorption selectivity over other gases. The last is the most influential parameter in adsorption-based separation processes.

To the best of our knowledge, there have been a sizeable amount of published reports on the economic feasibility of CO 2 capture, 97-100 however few of them established a direct relationship between the cost of CO 2 capture and the the intrinsic properties of the adsorbents. Nevertheless, a recent study projected that the ideal solid sorbent for cost-effective post-combustion capture and separation of CO 2 from flue gas using PSA should exhibit CO 2 selectivity above 500, combined with a working capacity in the range of 2 to 4 mmol/g for a CO 2 /N 2 10/90 mixture (Figure 8). 101 Given this baseline, various adsorbents can be evaluated for their suitability to replace costly liquid amine scrubbing or cryogenic distillation.

In adsorption science, two main separation mechanisms are largely documented:

(i) the equilibrium-based mechanism, where the selectivity of a given adsorbent toward CO 2 versus other probe molecules (relatively larger and smaller than CO 2 ) is dictated mainly by the strength (regardless of the uniformity) of CO 2 interactions driving the separation process of CO 2 from less absorbable commodities such as CH 4 , N 2 , O 2 and H 2 . Examples of adsorbents that use the equilibrium-based mechanism are activated carbon Maxsorb, 102 zeolite Y, [START_REF] Pirngruber | The role of the extra-framework cations in the adsorption of CO 2 on faujasite Y[END_REF] Mg-MOF-74 [START_REF] Caskey | Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[END_REF] (Figure 8), rht-MOF-7 [START_REF] Luebke | The unique rht-MOF platform, ideal for pinpointing the functionalization and CO 2 adsorption relationship[END_REF] and fcu-MOFs [START_REF] Xue | Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO 2 adsorption energetics and uptake[END_REF] discussed earlier, as well as almost all MOFs reported for CO 2 capture. [START_REF] Sumida | Carbon dioxide capture in metal-organic frameworks[END_REF] These materials exhibit generally large average pore size (0.4 nm and higher). In case of MOFs adsorbents, it is evident from all reported approaches aiming to enhance the affinity for CO 2 that there is no single adsorption site approach that offers desired performances in terms of CO 2 uptake and selectivity. For example, in MOFs with open metal sites but without high charge densities and/or suitable pore sizes, such as HKUST-1, 107 tbo-MOF-2, 108 and rht-MOF-1, [START_REF] Nouar | Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metalorganic frameworks[END_REF] the single site effect is not strong enough to promote the affinity (selectivity) to the required performances regardless the CO 2 concentration. Nevertheless, combining at least the effect of two adsorption sites leads to obvious enhancement in CO 2 separation properties as in the example of Mg-MOF-74/CPO-27

(open-metal sites and hydroxyl group, Figure 9) at low pressure and the above-cited examples (rht-MOF-7 and fcu-MOFs) at very low pressure. Table 1 presents the CO 2 uptakes of various CO 2 adsorbents at 0.1 bar pressure as a function of porosity, energetics and selectivity. The synergetic effect and correlations involving porosity-charge density and CO 2 uptake are discussed in more detail in the next section.

In real-life applications, the volumetric CO 2 uptake is the parameter to consider rather than the gravimetric CO 2 uptake. Therefore another important parameter to take into account is the density of the separation agent. Figure 10 shows the relationship between the densities of different CO 2 adsorbents as a function of pore size. Noticeably, the material density increases with the diminution of the pore size. Figure 11 shows the volumetric uptake of CO 2 at low pressure for the most promising materials. As shown in the figure, the SiF 6 compounds with narrow pore sizes and high charge densities were found to display very high volumetric uptake at very low pressures (up to 10% CO 2 ) compared with Maxsorb, 8, 102 zeolite 13X, [START_REF] Belmabkhout | Adsorption of CO 2 -containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: Application for gas purification[END_REF] Mg-MOF-74 [START_REF] Caskey | Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[END_REF] and UTSA-20 [START_REF] Xiang | Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions[END_REF] . The SiF 6 -based compounds exhibit higher CO 2 adsorption selectivity than the previously mentioned materials.

Interestingly, these materials have highly uniform pore size and energy distributions as shown in Figure 3b and elsewhere. [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF][START_REF] Shekhah | Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture[END_REF] The mechanism that leads to these outstanding results is discussed in the next section.

Zeolites, activated carbon and MOFs generally exhibit very fast CO 2 adsorption kinetics. This parameter may be exploited for kinetic-selective separation using materials with narrow pore sizes. In fact, a pore smaller than 4 Å will have the potential to sieve CO 2 (rapidly diffusing molecules) from other commodities, such as CH 4 and N 2 (slowly diffusing gases) using kinetics as the main driving force, as discussed earlier. Implementing this methodology is challenging, but should be possible to achieve for MOFs. Coordination chemistry may lead to the design, discovery and development of new MOFs with finely tuned porosities and chemical compositions targeting kinetic CO 2 separation.

Coordination chemistry may offer a great tool to develop adsorption kinetics-based materials. 

Synergetic effects in MOFs with optimal pore size and charge density

Recently, a combined mechanism involving optimal thermodynamics (energetics) and kinetics for CO 2 capture at intermediate, low [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF] and trace CO 2 concentrations 94 was reported. This unique combination of high charge density and optimal pore size allowed the boundaries of CO 2 energetics to be pushed (with uniform distribution due to the high, homogeneous charge density) to the upper limit of physical reversible adsorption (45-52 kJ/mol) combined with highly favourable kinetics to CO 2 , owing to the small pore size in both SIFSIX-3-Zn (3.84 Å) and SIFSIX-3-Cu (3.5 Å) compounds.

The synergetic effect led to a combined fast and strong CO 2 adsorption in the pores and exclusion of both larger (O 2 , N 2 , CH 4 ) and smaller (H 2 ) probe molecules, resulting in an extremely high selectivity toward CO 2 , comparable to reactive amine bearing materials. 5

Figure 11. Volumetric uptake at low pressure of the most promising adsorbents

From a structural and chemical point of view, this finding showed clearly that for this particular case, the SiF 6 -M-pyrazine compounds exhibit moderate surface area and pore volume and comprise (i) only channels (no cages) with strictly uniform narrow pore size, (ii) combined high density and uniform positioning of SiF 6 , favourable to CO 2 attraction. These structural and chemical features afforded the construction of physical adsorbents with high selectivity toward CO 2 and suitable CO 2 uptake and energetics. A material with such attributes in addition to suitable kinetics, permitting a short cycling time (easy regeneration), could lower the CO 2 capture cost to as little as 20 USD/ton of CO 2 as shown in Figure 8. Because of the key structural and energetic uniformity requirements, we anticipate that MOFs exhibiting channels rather than cages will be more suitable for use in the combined equilibrium/kinetics gas separation in general and in CO 2 capture in particular. For the particular case of SiF 6 -based MOFs, upon the increase of the channel size from 3.84 to 5.15 Å in SiF 6 -Cu-bipyridine, constructed using a bipyridine linker, the charge density decreased leading to a drastic decrease in CO 2 selectivity. [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF] Nevertheless, decreasing the channel size from 3.84 to 3.5 Å, by substitution of zinc for copper, pushed the boundaries of the reversible interaction to the upper limits of Qst of 53 KJ/mol.

Accordingly, the CO 2 uptake was dramatically increased, particularly at trace concentrations and low CO 2 partial pressure. [START_REF] Shekhah | Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture[END_REF] This finding was reported to be the first ever high CO 2 uptake (1.24 mmol/g) at trace CO 2 concentration (400 pm) on a plain (without post-functionalization) MOF, driven only by physical adsorption. Interestingly, the gravimetric uptake of SIFSIX-3-Cu (pyrazine) at 400 ppm and 298 K (1.24 mmol/g) was 10 and 15.5 times higher than the corresponding uptakes for the zinc analogue SIFSIX-3-Zn (0.13 mmol/g) and Mg-MOF-74 (0.08 mmol/g), respectively, and even higher than the uptake of most of amine-supported mesoporous silica materials (with the optimal compromise of amine loading and kinetics) [START_REF] Mcdonald | Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg 2 (dobpdc)[END_REF][START_REF] Choi | Application of amine-tethered solid sorbents for direct CO 2 capture from the ambient air[END_REF] at 298 K (for example TRI-PE-MCM-41(1 mmol/g)). [START_REF] Belmabkhout | Adsorption of CO 2 -containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: Application for gas purification[END_REF] The synergetic effect was also observed in Mg-MOF-74 (Figure 9), which is interestingly a MOF comprising mainly channels with uniform size (10 Å) but with a slightly non-uniform energy distribution. [START_REF] Mason | Evaluating metalorganic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption[END_REF][START_REF] Caskey | Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[END_REF]117 In fact, the combination of open magnesium sites together with the hydroxyl groups (in 10 Å channel size) led to significantly high CO 2 uptake but not as high CO 2 selectivity as in the case of SIFSIX. The relatively lower CO 2 selectivity for Mg-MOF-74 compared to SiF 6 -based

MOFs can be logically explained by the relatively high channel size (10 Å vs. 4.9 Å and 3.84 Å for SiF 6 -Cu-bipyridine and SIFSIX-3-Zn) and the declining Qst as a function of CO 2 loading.

In an attempt to understand the relationships between the key properties of the materials (CO 2 uptake, energetics selectivity and structural properties) desirable for CO 2 capture on one hand and the degree of synergy between the intrinsic properties of the materials on the other hand, we propose to introduce a new parameter representing the intrinsic property of the materials called the CO 2 synergy indicator (SI), where

SI = ݅ݐݏܳ * ݅ܦ ݀݅ ܺ31ݐݏܳ * ܺ31݅ܦ ݀13ܺ
This parameter is based on equilibrium data of known reference CO 2 adsorbent, such as zeolite 13X.

The SI for 13X is therefore equal to 1, where Qst i : is the isosteric heat of adsorption at very low loading for material 'i' that takes into account the interactions of CO 2 with the framework. This value should not be higher than 60 kJ/mol (the upper limit of physical adsorption that is of interest to us)

and is assumed to be uniform over the CO 2 adsorption loading as in the case of the SIFSIX compounds. In cases when the Qst is not steady as a function of CO 2 uptake, the Qst value should be the average value at different loadings.

D i : is the density of the evacuated framework. This parameter is combined with Qst to reflect the materials charge density. The density used here is the one calculated theoretically for MOFs and the one reported in the open literature for zeolites and activated carbons.

di: The pore diameter, which captures the effect of porosity (Figure 2) as the pore size has established correlations with the surface area and pore volume. In cases of materials containing cages, the pore size is considered to be the diameter of the biggest cage.

The larger is the SI indicator, the higher the impact of synergetic effect will be, which has direct effect on the CO 2 affinity and selectivity. This parameter considers only the equilibrium intrinsic properties of adsorption in relation to CO 2 and not the other less absorbable gases (O 2 , N 2 , CH 4 , H 2 ). As seen in Table 2, this parameter has a clear correlation with the selectivity towards CO 2 and reflects the occurrence of the synergetic effect, which has a direct impact on increasing the affinity toward CO 2 . This parameter is broad in definition and does not take into consideration the CO 2 diffusivities and the less absorbable molecules such as O 2 , N 2 , CH 4 and H 2 in the particular case of CO 2 capture.

We suggest that the combination of the correct structural and chemical composition parameters is a major requirement in the design of MOFs for CO 2 capture. This finding should drive the work on materials chemistry for general gas separation applications and CO 2 capture in particular in the next years.

Effect of water vapor on these parameters at low CO 2 partial pressure

The tolerance of CO 2 adsorbents to water vapor is one of the requirements for optimal operation of CO 2 capture processes using adsorption technologies. [118][119][START_REF] Decoste | The effect of water adsorption on the structure of the carboxylate containing metalorganic frameworks Cu-btc, Mg-MOF-74, and UiO-66[END_REF] It implies that CO 2 separation should not be affected by the presence of moisture. Depending on the class of adsorption sites, the effect of moisture on the adsorption properties can be different. Based on the information available so far in the literature, the effect of moisture on hydrophilic materials, such as zeolites [START_REF] Sayari | Flue gas treatment via CO 2 adsorption[END_REF] (for example, Faujasites X and Y, zeolite A, etc.) and MOFs with open metal sites, [START_REF] Sumida | Carbon dioxide capture in metal-organic frameworks[END_REF] will be some time a limiting factor. In this case, the preliminary removal of moisture from the stream is necessary to ensure the efficient use of the material properties. In contrast and in another particular case, it was reported that the CO 2 uptake by MIL-100(Fe) (with open metal sites) was improved in the presence of 40% relative humidity. [START_REF] Soubeyrand-Lenoir | How water fosters a remarkable 5-fold increase in low-pressure CO 2 uptake within mesoporous MIL-100(Fe)[END_REF] Conversely, the effect of moisture on hydrophobic materials such as activated carbons [START_REF] Sayari | Flue gas treatment via CO 2 adsorption[END_REF] and MOFs without open metal sites 10 will be minimal or insignificant. Another case where the presence of moisture induced enhanced CO 2 adsorption properties were amine bearing materials, 5 such as mesoporous silica [START_REF] Krungleviciute | Kinetics and equilibrium of gas adsorption on RPM1-Co and Cu-btc metal-organic frameworks: Potential for gas separation applications[END_REF][START_REF] Sayari | Stabilization of amine-containing CO 2 adsorbents: Dramatic effect of water vapor[END_REF] and MOFs. [START_REF] Sumida | Carbon dioxide capture in metal-organic frameworks[END_REF] The observed enhancement in these systems was due to the occurrence of chemical adsorption via the formation of bicarbonate. [START_REF] Sayari | Flue gas treatment via CO 2 adsorption[END_REF] However, the contribution of this enhancement to the real process efficiency is not evident because of the slow adsorption rate during bicarbonate formation. Finally, it is important to mention that in the case of SiF 6 -based MOFs, [START_REF] Nugent | Porous materials with optimal adsorption thermodynamics and kinetics for CO 2 separation[END_REF] both the hydrophobicity and the high and uniform interaction with CO 2 are the main driving forces for their high tolerance to moisture when SiF 6 -pyrazine-based MOFs are exposed CO 2 .

In spite the large amount of studies on MOFs stability toward water vapor and its effect on CO 2 adsorption properties, it is still not recognised that these promising MOF materials, such as SIFSIX, for CO 2 capture to be recyclable under hundreds of cycles. The main reason it that certain SIF 6 assembled with pyrazine ligand could undergo phase transition from 3D to 2D structures upon extensive exposure to water (without presence of CO 2 ). [START_REF] Shekhah | A facile solvent-free synthesis route for the assembly of a highly CO 2 selective and H 2 S tolerant nisifsix metal-organic framework[END_REF] Nevertheless if a gas pre-drying step is implemented, these materials are still very powerful for traces and low CO 2 concentration removal.

Further work will be necessary to overcome this phase change.

Thermal stability and effect of other impurities (NO x , SO x , H 2 S, etc.)

The preservation of a material's structural, chemical and adsorption properties upon cyclic testing is a key requirement for any separation agent to reach wide acceptance on the commercial scale. Because of the physical adsorption nature of CO 2 separation agents, materials for which desorption occurs at the same temperature (or under very mild conditions) are needed. Thermal stability is therefore not a concern.

The stability of CO 2 separation agents in the presence of impurities such as SO 2 or H 2 S is desirable feature. Because of the complex safety issues associated with testing materials for toxic or corrosive gas adsorption, there is no extensive work on this subject and generally the topic remains largely unexplored. Zeolites, 122 activated carbons [START_REF] Boudou | Adsorption of H 2 s or SO 2 on an activated carbon cloth modified by ammonia treatment[END_REF] and few MOFs (Cr III , V IV , Al III and Ti IV based) [START_REF] Vaesen | A robust aminofunctionalized titanium (IV) based MOF for an improved separation of acid gases[END_REF]124,125 were shown to be stable in the presence of SO 2 , H 2 S and water vapor. However, some Zn II -and Fe III -

based MOFs with open metals sites were shown to form zinc 125 or iron 124 sulphide when exposed to

H 2 S.
Because of the scarcity of toxic gases adsorption data, developing CO 2 adsorbents in the presence of H 2 S and SO 2 remains challenging and unexplored. Further work is necessary to understand the nature of MOFs that capture CO 2 in the presence of these gases.

Conclusions

The ultimate objective of this work is to discuss realistic points, based on existing CO 2 adsorbents from the open literature, that drive the development of materials suitable for CO 2 capture mainly at very low concentration. The aim of this review was not to refer to abundant work in materials chemistry concerning the CO 2 separation but rather to analyse the most promising CO 2 adsorbents and particularly to understand the key parameters contributing to their performance. We also aimed to present a broad picture on the progress of the development of CO 2 separation agents.

The above discussion showed that although large porosity (high surface area and pore volume) is a key factor in gas storage, it is not necessarily important for applications related to the CO 2 removal at low CO 2 partial pressure. The optimal strength of CO 2 interactions is a key parameter for designing materials for CO 2 capture. Not only the strength of these interactions is important, but also its steadiness over a wide range of CO 2 adsorption uptake, to ensure highly selective operations over a wide range of CO 2 concentrations. Because of the relatively high degree of structure and pore tunability vs other class of materials, MOFs have a tremendous advantages and potential. With this regard, we discussed in this review the importance of the proper synergy between (a) the thermodynamics (energetics) with strict requirements (related to the charge density of the materials), (b) the correct structural properties (pore size) and (c) the highly favourable kinetics for CO 2 to achieve the desired adsorption attributes capable of CO 2 capture efficiency. This new combined approach was shown to be possible to achieve experimentally and effective using MOFs namely, SiF 6 -pyrazine compounds which are considered as a model materials for low CO 2 concentration capture uniquely driven by physical adsorption. However, further work is necessary to find pathways to prevent the phase transition of this class of MOF materials upon extensive exposure to gas streams containing water vapor.

Figure 1 .

 1 Figure 1. Monitoring of CO 2 emission at Mauna Loa in Hawaii showing that the CO 2 concentration surpassed 400 ppm in May 09 2013. 4
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Figure 2 .

 2 Figure 2. Correlation between pore size and (a) surface area, (b) pore volume for different materials.

Figure 4 .

 4 Figure 4. The relationship between the CO 2 isotherm shapes, CO 2 adsorption selectivity and CO 2 adsorption energetics intensity and distribution for CO 2 capture applications at different CO 2 concentrations.

  [START_REF] Luebke | The unique rht-MOF platform, ideal for pinpointing the functionalization and CO 2 adsorption relationship[END_REF] 

Figure 5 .

 5 Figure 5. rht-MOF-1 and rht-MOF-7 differ in the composition of the trigonal building block. The trigonal building block of rht-MOF-1(top), is a copper trimer connecting three 5tetrazoleisophthalate ligands, whereas the trigonal building block in rht-MOF-7 (bottom) is a single hexacarboxylate ligand composed of three isophthalate moieties linked to a central triazine core through amine linkages.

Figure 6 .

 6 Figure 6. A ball-and-stick representation of a fcu-MOF-1 compound, constructed from the assembly of 12 connected carboxylate/tetrazolate-based molecular building blocks (MBBs) linked together via a linear and hetero-functional 2-fluoro-4-(tetrazol-5-yl)benzoate (FTZB) organic linker, to give a 3periodic fcu-MOF with two types of polyhedral cages, i.e., tetrahedral (blue sphere) and octahedral (green sphere).

Figure 7 .

 7 Figure 7. Pore size tuning in the channel structures of SIFSIX-2-Cu-i, SIFSIX-3-Zn and SIFSIX-3-Cu. (Up), SIFSIX-2-Cu-i; pores size 5.15 Å, BET apparent surface area (N 2 adsorption) 735 m 2 /g. (Down), SIFSIX-3-Zn; pores size 3.84 Å, apparent BET surface area (determined from CO 2 adsorption isotherm) 250 m 2 /g; SIFSIX-3-Cu; pores size 3.5 Å, apparent BET surface area (determined from CO 2 adsorption isotherm) 300 m 2 /g.
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 8809 Figure 8. Relationship between the CO 2 capture cost, CO 2 selectivity, and working CO 2 capacity for solid sorbents. 101

Figure 10 .

 10 Figure 10. Correlation between the adsorbents pore size of and their corresponding crystal density.

  

Table 1 .

 1 Specific surface area, pore volume and pore size of selected best solid-state materials for CO 2 adsorption at low pressure and room temperature, CO 2 Qst and CO 2 uptake at 0.1 bar pressure and CO 2 selectivity of the most promising/studied materials.

	CO 2 adsorbents	BET Surface area/ m 2 /g	Pore volume cm 3 /g	Pore size / Å	Qst / kJ/mol	Gravimetric CO 2 uptake mmol/g at 0.1 bar	CO 2 composition selectivity at 1 bar/ (CO 2 /N 2 )	Reference
	13X	570	0.17	10	44-54	2.41	≈ ≈ ≈ ≈500/ (10/90)	10
	Maxsorb Activated carbon	2250	1.15	10	16.2	> 0.2	> 10/ (10/90)	102, 110
	Mg-MOF-74	1640	0.57	10.8	47-52	5.00	182/ (15/85)	109, 111
	rht-MOF-7	1900	0.76	6.4*	45/25	0.3	25/ (10/90)	23
	rht-amide	3160	1.27	7.0*	26.3	0.63	22/ (50/50)	59
	In-sod-ZMOF	475	0.18	4.1	30	0.36	NA	112, 113
	sod-ZIF-8	1630	0.64	3.4	18	0.2	NA	55, 114
	fcu-UIO-66	1020	0.45	6.5	35/26.5	NA	NA	46, 47
	Tb-fcu-MOF-1	1220	0.51	5-6*	58.1/25.0	0.4	15/ (10/90)	31
	UTSA-16	628	0.31	9.5x4.3	34.6	1.37	314/ (15/85)	109, 115
	SiFSIX-2-Cu-i-	734	0.26	5.15	31.90	1.73	72 b /(10/90)	10
	SiFSIX-3-Zn	250 a	NA	3.84	45.00	2.39	1700 c / (10/90)	10
	SiFSIX-3-Cu	300 a	NA	3.5	54	2.4	< 2000 b / (10/90)	

94

*Size of window; a determined from CO 2 adsorption; b determined from breakthrough measurements; c determined from gravimetric-densimetric gas analysis; NA: not available.

Table 2 .

 2 Correlation between the synergy indicator as a function of selectivity for different CO 2

	adsorbents			
	CO 2 adsorbent	Average Qst kJ/mol	CO 2 /N 2 selectivity	SI
	13X	35	500	1
	Mg-MOF-74	35	182	0.72
	SiFSIX-2-Cu-i	35	140	2.06
	SiFSIX-3-Zn	45	1700	4.65
	SiFSIX-3-Cu	52	< 2000	6.2
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Low concentration CO 2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?
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Highlights

• A deep analysis on low concentration CO 2 removal using physical adsorbent is proposed.

• In-depth understanding of what is crucial criteria for materials to be used in CO 2 capture.

• MOFs have an valuable assets vs. benchmark materials such as zeolites • High porosity is not necessarily important for traces and low CO 2 concertation capture.

• The uniformity of energetic adsorption sites is not critical parameter for traces CO 2 capture