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We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott in-
sulator Sr2IrO4 upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic
structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of
pockets centered around (π/2, π/2), while a pseudogap opens near (π, 0). Its physical origin is shown to be re-
lated to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime
characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels.
These results, obtained within the cellular dynamical mean-field theory framework, are discussed in comparison
to recent photoemission experiments and an overall good agreement is found.

I. INTRODUCTION

Understanding the physical mechanism responsible for the
pseudogap in cuprate superconductors, and its interplay with
superconductivity, is still a central and very debated ques-
tion in the field of strongly-correlated materials. In this re-
spect, the Sr2IrO4 iridate is a very interesting playground as
it closely resembles these materials. It is indeed isostructural
to La2CuO4,1 and its low-energy electronic structure is well
described by a single half-filled band because of strong spin-
orbit (SO) coupling as shown by electronic structure calcu-
lations in the Local Density Approximation (LDA).2,3 Angu-
lar Resolved PhotoEmission Spectroscopy (ARPES), optical
spectroscopy, and resonant inelastic X-ray scattering experi-
ments2,4–7 as well as scanning tunneling microscopy8 demon-
strate that the ground-state of this material is a Mott insula-
tor. This conclusion is also supported by electronic struc-
ture calculations taking into account electronic correlations.3,9

The similarity between the low-energy electronic structure of
Sr2IrO4 and that of cuprates has led to the quest for supercon-
ductivity upon doping in this material.10–13

The electronic configuration of the Ir4+ ions is {Xe}f145d5

and Sr2IrO4 crystallizes in the K2NiF4 tetragonal structure, as
La2CuO4 or Sr2RhO4.1 The IrO6 octahedra are rotated about
the c-axis by ∼ 11 deg., generating a doubled unit cell.14 The
5d5 electronic configuration would naively lead to a metallic
state in a band theory approach. Sr2RhO4, having an identi-
cal atomic arrangement with nearly the same lattice constants
and bond angles, is indeed found to be a Fermi liquid metal.15

Sr2IrO4 however has a very strong SO coupling, a property
which was shown to modify the electronic structure near the
Fermi level in 5d systems.3,9,16–18 This compound then effec-
tively reduces to a half-filled jeff = 1/2 single band near the
Fermi surface, a configuration which makes it prone to the
opening of a Mott gap as a result of repulsive interactions.

As the non-interacting Fermi surface of this material is
electron-like, the hole-doped regime of high-Tc cuprates is to
be compared with the electron-doped one of Sr2IrO4. Sev-
eral experimental groups performed ARPES measurements

FIG. 1. Spectral intensity at the Fermi surface illustrating the evo-
lution of the electronic structure upon increasing doping level, as
described in the text. At low doping, the Fermi surface only consists
in pockets near (π/2, π/2) and a pseudogap is found near the antin-
odes. Results obtained within CDMFT and a periodized self-energy
for U = 2 eV at T = 58 K (see text).

on Sr2IrO4 to investigate the doped compound further.5–7,19

Spectral intensity at the Fermi surface exhibits a strong mo-
mentum differentiation leading to the appearance of pockets
in the ‘nodal’ region located around (π/2, π/2),5,19 while the
ARPES spectra in the ‘antinodal’ region around (π, 0) are
suggestive of a pseudogap.5 Note that the ‘nodal/antinodal’
terminology is inherited from the cuprate context and does
not refer to the nodes of a superconducting gap - up to now
no unambiguous evidence of superconductivity has been es-
tablished.

In this article, we construct a theoretical model of the low-
energy electronic structure of doped Sr2IrO4, treating elec-
tronic correlation effects in the framework of cellular dynami-
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cal mean-field theory (CDMFT).24,25 The Fermi surface spec-
tral intensity maps displayed in Fig. 1 summarize key aspects
of our results. Four successive doping regimes are found: The
Mott insulating state (not displayed in Fig. 1) evolves into a
metal with strong nodal-antinodal differentiation at low dop-
ing level. In this regime, the Fermi surface consists in pock-
ets around (π/2, π/2) (a-b), while the antinodal region dis-
plays a pseudogap, as shown below. Increasing doping fur-
ther, spectral intensity appears near the antinodes with still a
pronounced differentiation (c). A full Fermi surface, close to
the uniform non-interacting one, is recovered at higher doping
(d).

A previous theoretical study20 addressed the issue of nodal-
antinodal differentiation in this material, but the opening of
the antinodal pseudogap and the associated spectral signatures
could not be discussed due to the limitations of the slave-
boson method used in that work.

This article is organized as follows. In Sec. II, we briefly
summarize the tight-binding (TB) model of the electronic
structure established in previous works and derive an effec-
tive model for the jeff = 1/2 states. In Sec. III, we intro-
duce correlations in this model and explain how to deal with
these within the CDMFT scheme. We discuss results of such
CDMFT calculations in Sec. IV and particularly the emer-
gence of the four doping regimes sketched above. In order
to restore translational symmetry which is broken in CDMFT,
we introduce a periodization scheme for the self-energy in
Sec. V. This allows for a calculation of the spectral intensi-
ties, which are found to be in good agreement with the exist-
ing ARPES measurements. We also discuss the spectral sig-
natures of the antinodal pseudogap. In Sec. VI, we compute
and discuss the the quasiparticle band structure. Sec. VII is
devoted to a discussion and concluding remarks.

II. TIGHT-BINDING MODEL

In this section, we describe the electronic band structure of
Sr2IrO4, derive an effective model for the jeff = 1/2 states,
and emphasize that the low-energy states can be described by
a single band tight-binding model defined on a periodic lattice
with a single atom per unit cell.

Our starting point is the tight-binding (TB) model intro-
duced in Refs. 21 and 22 describing t2g bands in the presence
of a spin-orbit coupling. Because of the rotation of the IrO6

octahedra around the c-axis, the Sr2IrO4 unit cell is composed
of two inequivalent sites A and B. The tight-binding Hamil-
tonian is then written as

H0 =
∑

k∈RBZ

ψ†kH0(k)ψk, (1)

where the momentum sum is over the
√

2×
√

2 reduced Bril-
louin zone and the components of ψk are the electron annihi-
lation operators for all 12 orbitals in the unit cell {ckτασ|τ =
A,B;α = dxy, dyz, dzx;σ =↑, ↓}. It is convenient to or-
der the basis according to (cAdxy↑, cAdyz↓, cAdzx↓, [A ↔ B])
followed by their time-reversed partners ([↑↔↓]). There is

no coupling between these two blocks as the system is time-
reversal invariant and we can thus only consider the first half
of the basis, taking into account that all bands are two-fold de-
generate. The remaining 6× 6 tight-binding matrix H0 writes

H0(k) =

(
O(k) P (k)
P †(k) O(k)

)
, (2)

where P describes the hopping part of the Hamiltonian

P (k) = e−i
kx+ky

2

−4t1(k) 0 0
0 −2t2(k) 0
0 0 −2t3(k)

 , (3)

with t1(k) = t0 cos kx2 cos
ky
2 , t2(k) = t0 cos

kx+ky
2 and

t3(k) = t0 cos
kx−ky

2 . Here k = (kx, ky) is expressed in
terms of the reciprocal vectors forming the reduced Brillouin
zone. O describes the on-site part of the Hamiltonian. It in-
cludes the spin-orbit coupling λLi · Si and reads

O(k) =

∆t + e1(t1(k)/t0)2 λ/2 −iλ/2
λ/2 0 −iλ/2
iλ/2 iλ/2 0

 , (4)

where ∆t is an on-site energy difference of the dxy orbital
relative to dyz and dzx, and λ is the spin-orbit coupling pa-
rameter. The additional term e1(t1/t0)2 accounts for the hy-
bridization between dxy and dx2−y2 .21 In the following we
consider ∆t = 0.15 eV, t0 = 0.35 eV, e1 = −1.5 eV and
λ = 0.57 eV. It has been shown that these values yield a band
structure in good agreement with LDA+SO calculations.5,21

We plot in Fig. 2 (upper panel) the six bands resulting from
the diagonalization of H0(k) along the (0, 0)− (π/2, π/2)−
(π, 0)−(0, 0) path of the full Brillouin zone. When the eigen-
values are projected on the jeff = 1/2 states∣∣∣∣jeff =

1

2
,±1

2

〉
= ∓ 1√

3
[|dxy,±〉 ± (|dyz〉,∓)± i|dzx,∓〉)] ,

(5)
it can be seen that the low-energy bands essentially have
jeff = 1/2 character, as highlighted in Refs 2, 5, 21, and 22.
It is therefore natural to look for an effective reduced 2 × 2
Hamiltonian describing these states.

To do so, we rewrite H0 in the basis (| 12 , 1
2 〉A, | 12 , 1

2 〉B ,
| 32 , 1

2 〉A, | 32 , 1
2 〉B , | 32 , −3

2 〉A, | 32 , −3
2 〉B):

H0(k) =

(
H1/2(k) M(k)
M†(k) H3/2(k)

)
, (6)

where the exact expressions of H1/2, M and H3/2 are given
in Appendix A. An effective Hamiltonian is then obtained by
projecting H0 onto the jeff = 1/2 subspace:

Heff
1/2(k) = H1/2(k)+M(k)

[
E × 14×4 −H3/2(k)

]−1
M†(k),

(7)
where 14×4 is the 4×4 unit matrix andE an energy scale that
is adjusted in order to best match the original band structure.

While it is difficult to have a compact expression for this
reduced Hamiltonian, one can easily diagonalizeHeff

1/2 numer-
ically for every k point of interest. This is shown (red lines)
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FIG. 2. Upper panel: Projection of the tight-binding model
for the t2g bands (Eq. (2)) on the jeff = 1/2 states. The value of
the projection ranges from 0 (black) to 1 (yellow). Lower panel:
Comparison between the full t2g model (black lines) and the ef-
fective jeff = 1/2 model from Eq. (7) (red lines) with E = 0.
On both panels, bands are plotted in reciprocal space, along the
(0, 0)− (π/2, π/2)− (π, 0)− (0, 0) path of the full Brillouin zone.
∆t = 0.15 eV, t0 = 0.35 eV, e1 = −1.5 eV and λ = 0.57 eV.

in Fig. 2 (lower panel) together with the complete t2g band
structure (black lines). The effective model appears to be in
excellent agreement with the two low-energy bands exhibiting
a jeff = 1/2 character.

As mentioned earlier, the Sr2IrO4 crystal has a two-atom
unit cell and we expressed the tight-binding models above in
the reduced Brillouin zone in order to make contact with ex-
periments. Let us however emphasize that all sites are actu-
ally equivalent from a purely electronic point of view in these
models. An inspection of the band structure in the reduced
Brillouin zone indeed reveals that it results from the folding
of half as many bands defined over the full Brillouin zone.
This can be seen e.g. from the degeneracy of the bands along
the (π/2, π/2) - (π, 0) path of the full Brillouin zone. As a re-
sult, the effective model in Eq. (7) can be written as a simple
tight-binding model on a square lattice

Heff
1/2 =

∑
ij

tijc
†
i cj , (8)

where the hopping amplitudes tij are shown as a function of
the distance |i − j| in Fig. 3 (upper panel). We see that one
obtains a good approximation of the band structure by only
keeping the nearest and next-nearest neighbor hopping terms
(for an almost perfect agreement it is necessary to keep 8 hop-
ping parameters). This yields the simple energy dispersion

ε(k) = ε0 + 2t(cos kx + cos ky) + 4t′ cos kx cos ky, (9)
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FIG. 3. Upper panel: Real-space hopping amplitudes of effective
jeff = 1/2 Hamiltonian the effective with respect to the distance
(the inter-site distance is normalized to 1). Lower panel: Compar-
ison between the effective jeff = 1/2 bands (red) with E = 0 and
the folded dispersion obtained by keeping only the nearest and next-
nearest neighbor hopping terms (t = −0.219eV, t′ = −0.082eV
respectively). Bands are plotted in reciprocal space, along the
(0, 0)− (π/2, π/2)− (π, 0)− (0, 0) path of the full Brillouin zone.
∆t = 0.15 eV, t0 = 0.35 eV, e1 = −1.5 eV and λ = 0.57 eV.

where ε0 = −0.174 eV, t = −0.219 eV, t′ = −0.082 eV and
k = (kx, ky) is now expressed in the basis of the full Brillouin
zone. The folding of this band in the reduced Brillouin zone
is shown together with the effective jeff = 1/2 band structure
previously derived in Fig. 3 (lower panel). Let us mention that
a similar tight-binding model was derived in Ref. 23 with the
difference that the dx2−y2 admixture was not included in their
work.

In the following we use the effective Hamiltonian Heff
1/2 to

describe the low-energy excitations of the system.

III. INTRODUCING CORRELATIONS

We model the effect of electronic correlations in Sr2IrO4

with a Hubbard Hamiltonian that introduces an energy cost
for having two electrons on the same Ir atom

H = Heff
1/2 + U

∑
i,τ

niτ↑niτ↓, (10)

where niτσ is the occupation number on the jz = σ orbital of
the Ir atom τ = A,B in the unit cell i. In the following we use
U = 2 eV5,21 and temperature T = 1/β = 1/200 eV' 58 K.
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This model is studied using cellular dynamical mean-field
theory24,25: The original lattice Hamiltonian (10) is mapped
on a two-site auxiliary cluster model embedded in a self-
consistent medium. The self-energy of the cluster model Στ,τ ′

is used to construct an approximation of the lattice self-energy
where only intra unit cell components are non-vanishing, i.e.
Σlatt
iτ,iτ ′ = Στ,τ ′ . Note that the orbitals at sites A and B

are electronically equivalent and therefore ΣAA = ΣBB and
ΣAB = ΣBA. We then have the following expression for the
lattice Green’s function

Ĝlatt(iωn,k) =
{

(iωn+µ)1−Heff
1/2(k)−Σ̂(iωn)

}−1

, (11)

where k is defined in the reduced Brillouin zone and both
Ĝlatt and Σ̂ are 2×2 matrices associated with the two Ir atoms
in the unit cell. The CDMFT self-consistency imposes that the
cluster Green’s function Ĝ be the same as the unit cell Green’s
function of the lattice:

Ĝ(iωn) =
∑

k∈RBZ

{
(iωn + µ)1−Heff

1/2(k)− Σ̂(iωn)
}−1

.

(12)
We use a continuous-time quantum Monte Carlo (CT-
HYB)26–29 impurity solver to find the solution of the two-site
cluster model and the self-consistent equation (12) is solved
iteratively.25 More details are given in Appendix C. Codes
necessary for the numerical calculations were developed us-
ing the TRIQS30 library.

IV. THE FOUR DOPING REGIMES

We first investigate the cluster quantities Ĝ and Σ̂ obtained
by solving the CDMFT equations. These quantities can be
expressed in the basis {| 12 , 1

2 〉A, | 12 , 1
2 〉B} of the jeff = 1/2

orbitals on sites A and B. However, because A and B are
electronically equivalent, it is convenient to work in the basis
{|+〉, |−〉} of even and odd combinations of the jeff = 1/2
orbitals, defined by∣∣∣± 〉 =

1√
2

(∣∣∣∣12 , 1

2

〉
A

±
∣∣∣∣12 , 1

2

〉
B

)
. (13)

In this basis, both Ĝ and Σ̂ are diagonal (see Appendix C)

Ĝ =

(
G+ 0
0 G−

)
Σ̂ =

(
Σ+ 0
0 Σ−

)
. (14)

As we will discuss later, G± and Σ± have a direct physical
interpretation. The physics close to the node (π/2, π/2) is in-
deed essentially controlled by G− and Σ− while the physics
at the antinode (π, 0) is controlled byG+ and Σ+. The reason
for this, anticipating on Sec. VI and Fig. 10, is that the nodal
Fermi-surface pocket at (π/2, π/2) is associated with the up-
per band (which has an antibonding/odd character) while the
nodal states are associated with the lower bonding band with
even character. The analysis of these quantities will reveal the
existence of four distinct regimes upon doping: a Mott insu-
lator phase, a pseudogap regime, a differentiation region and
finally a uniform Fermi liquid state.
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FIG. 4. Density of states as a function of the chemical potential µ.
The cluster density is plotted in blue while the periodized one is
plotted in orange. Dotted lines separate the four doping regimes:
below µ = 1.16eV is the Mott insulating phase (MI), between
µ = 1.16eV and µ = 1.32eV is the pseudogap regime (PG), be-
tween µ = 1.32eV and µ = 1.45eV is the differentiation region
(Diff), and above µ = 1.45eV is the uniform metal (UM). Results
obtained with a 2-site CDMFT calculation for U = 2 eV, T = 58 K.
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(orange). Dotted lines separate the four doping regimes (see Fig. 4).
Results obtained with a 2-site CDMFT calculation for U = 2 eV,
T = 58 K.

The electronic density n is shown as a function of the chem-
ical potential µ in Fig. 4 (blue curve). It displays a clear
plateau at n = 1 for µ between 0.56eV and 1.16eV, confirm-
ing that the system is a Mott insulator at half-filling.2,3,9 The
width of the plateau ' 0.6eV is consistent with the recent ex-
periment of Ref. 6.

In Fig. 5 and 6 are displayed the spectral intensities
A±(ω = 0) at the Fermi level as well as the zero-frequency
self-energies Σ±(ω = 0) as a function of the chemical poten-
tial µ. These quantities are obtained by extrapolating to zero
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and of the imaginary part (lower panel) of the self-energy Σ(iωn)
as a function of the chemical potential µ. The even (odd) contribu-
tion is plotted in blue (orange). Dotted lines separate the four doping
regimes (see Fig. 4). Results obtained with a 2-site CDMFT calcula-
tion for U = 2 eV, T = 58 K.

Matsubara frequencies results obtained by Monte Carlo:

A±(0) = − 1

π
lim

iωn→0
ImG±(iωn), (15)

Σ±(0) = lim
iωn→0

Σ±(iωn). (16)

For completeness, we have included plots of the Matsub-
ara frequency Green’s functions and self-energies for several
chemical potentials in Appendix B.

These results allow to identify four distinct doping regimes.
For chemical potentials smaller than µ = 1.16eV, the system
is in a Mott insulating regime and both the even (+) and odd
(−) components of the spectral intensity at the Fermi level
are zero, A±(0) = 0 (also both Matsubara Green’s functions
G±(iωn) have clear insulating character, see Appendix B).
This is compatible with the location of the Mott plateau in
Fig. 4. Correlation effects are especially visible in the very
different values of the real parts of the self-energies while both
imaginary parts vanish. As a result, the effective low-energy
band structure is split by the real parts of the self-energy in
Eq. (12) and no excitations exist at ω = 0. More precisely, the
quasiparticle equation

det
{

(ω + µ)1−Heff
1/2(k)− Σ̂(ω)

}
= 0 (17)

has no solutions at ω = 0 for all values of k.
When µ lies between 1.16eV and 1.32eV, we enter a pseu-

dogap regime. The even component of the Green’s function,
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FIG. 7. Statistical weights of states dominating the Monte Carlo
sampling on the dimer cluster of the CDMFT approach, as a func-
tion of the chemical potential µ. The dominant state is found to be
the 2-electron inter-site singlet (blue). As doping level is increased,
the three-electrons odd parity state catches up, denoted here as 3−
(orange) - as well as the fully occupied state (green), while the 2-
electron triplet state (red) has a smaller weight. Other contributions
are negligible.

that provides a coarse-grained picture of the physics close
to the antinode k = (π, 0), maintains its insulating charac-
ter (A+(0) = 0) while the odd component, describing the
nodal region close to k = (π/2, π/2), becomes metallic
(A−(0) 6= 0). This describes a metal that only has coherent
quasiparticles close to the node. Antinodal particles are sup-
pressed by lifetime effects, as can be seen from the more neg-
ative imaginary part of the even self-energy ImΣ+(0) reach-
ing -0.1eV in Fig. 6 while ImΣ−(0) remains very small. We
show below that the spectral function exhibits a pseudogap at
k = (π, 0) in this region. This regime is very reminiscent of
the pseudogap region of cuprate superconductors.

As the electron doping is further increased, for 1.32 ≤
µ ≤ 1.45eV, spectral weight starts appearing in A+(0), an
indication that quasiparticles start forming at the antinode as
well. However, there are still visible differences between the
even and odd components of the self-energies (see also Ap-
pendix B). The regime is therefore characterized by a visible
k-space differentiation where lifetime effects are stronger at
the antinode than at the node (ImΣ+(0) < ImΣ−(0)) but do
not completely destroy quasiparticles.

Eventually, for µ above 1.45eV, a uniform metallic regime
settles where both self-energies are identical and k-space dif-
ferentiation has disappeared. This regime would be well de-
scribed by a single-site DMFT calculation.

It should be emphasized that boundaries delimiting these
different regimes correspond to crossovers and hence are de-
fined here in a qualitative manner.

The physical mechanism responsible for the formation of
the pseudogap and the strong nodal-antinodal dichotomy ob-
served at low doping can be revealed by studying the many-
body states associated with the 2-site cluster. Calculating
these states’ histogram, we identify those that contribute most
to the stochastic sampling within the CT-HYB quantum im-
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purity solver. This is shown in Fig. 7, from which it is clear
that the system is dominated by the intra-dimer singlet state at
low doping levels. This is a strong indication that physics in
this regime is governed by the formation of short-range anti-
ferromagnetic correlations between neighboring sites.

V. FERMI SURFACE AND PSEUDOGAP

We now turn to the study of the fermiology of the sys-
tem. Within CDMFT, the lattice Green’s function given by
Eq. (11) breaks translational symmetry,24 hence making a di-
rect comparison to momentum-resolved ARPES experiments
difficult. The reason for the symmetry breaking is the lat-
tice self-energy in CDMFT only having components inside a
unit cell but not between different unit cells. A natural way
to restore the translational symmetry is to periodize the self-
energy by propagating the intersite contribution ΣAB over all
links on the lattice. However an artifact of this periodization
scheme is that it prevents the formation of a Mott insulator
and gives a wrong description of the low-doping physics (see
Appendix D for more details). We therefore design a different
periodization that yields much more physical results and pre-
serves the existence of the Mott insulator. In this scheme, the
lattice self-energy is given by

Σ̃latt(iωn,k) =

(
ΣAA ΣAB × e−i

k1+k2
2

ΣAB × ei
k1+k2

2 ΣAA

)
,

(18)
where k = (k1, k2) is expressed in the reduced Brillouin
zone. With this self-energy, we then define a periodized lattice
Green’s function G̃latt according to

G̃latt(iωn,k) =
{
iωn + µ−Heff

1/2(k)− Σ̃latt(iωn,k)
}−1

.

(19)
This Green’s function preserves all the symmetries of the lat-
tice and will be the basis of our analysis below.

As a consistency check we first compute in Fig. 4 the elec-
tronic density n as a function of µ obtained from G̃ (orange
curve). Comparing it to the cluster density (blue curve) dis-
cussed in Sec. IV, we see that plateaus at n = 1 match well,
confirming the existence of a Mott insulator within our peri-
odization scheme. However, the periodized density generally
has a slightly lower values compared to the cluster density for
a given chemical potential. In the following, we discuss our
results for specific values of µ and thus indicate two corre-
sponding values of the electron doping: the cluster and the
periodized one (resp. δcluster and δper).

We plot in Fig. 1 the spectral intensity at the Fermi surface
for four values of the chemical potential. At small doping
levels, for µ ≤ 1.30eV , nodal pockets with coherent quasi-
particles develop while the antinodal intensity is completely
suppressed. For these values of µ, we are in the pseudogap
regime discussed above. A closer inspection of the spectral
function at k = (π, 0) for µ = 1.30eV indeed confirms the
presence of a clear pseudogap: Fig. 8 shows the leading edge
of the spectrum being shifted away from zero energy. As dis-

FIG. 8. Left panel: Spectral intensity TrA(ω,kAN) (Energy Distri-
bution Curve - EDC) at the antinode kAN = (π, 0) for µ = 1.3 eV.
Right panel: Spectral intensity at the Fermi surface with a periodized
self-energy for the same µ. U = 2 eV, T = 58 K.

FIG. 9. Left panel: Spectral intensity at the Fermi surface TrA(ω =
0,k) (Momentum Distribution Curve - MDC) for µ = 1.36 eV taken
along the nodal (blue) and the antinodal (green) directions. Corre-
sponding cuts are shown with the same color code on the right panel.
Right panel: Spectral intensity at the Fermi surface with a periodized
self-energy for the same µ. U = 2 eV, T = 58 K.

cussed above, we attribute its formation to short-range anti-
ferromagnetic correlations (manifested here as the dominance
of inter-site singlet dimer formation in our cluster, as revealed
by the histogram of states).

As the electron doping is increased, the (π/2, π/2) pock-
ets grow and spectral intensity starts to appear around (π, 0),
see panel (c) of Fig. 1, leading to an extension of the Fermi
surface over the Brillouin zone. Quasiparticles are however
far more incoherent and broader at the antinode, as can be
seen from momentum cuts across the node or the antinode
(Fig. 9). While sharp coherent quasiparticles are found at the
node, those at the antinode display a lower spectral intensity
that is broadened over a greater region of k-space. This cor-
responds to the momentum-differentiation regime introduced
above.

At larger doping, the self-energy becomes finally uniform
and the resulting Fermi surface displays coherent quasiparti-
cles both at the node and the antinode, as shown in the panel
(d) of Fig. 1.
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FIG. 10. Band dispersion of the insulating (a-c), µ = 0.8eV, and doped (b - d), µ = 1.36eV, Sr2IrO4. Periodized self-energies are analytically
continued from Padé approximants. Upper panels: Comparison between the non-interacting bands obtained from the TB + SO Hamiltonian
Heff

1/2 (dashed lines) and the quasiparticle bands. Lower panels: Spectral intensities, generalizing Fig. 1 away from the Fermi surface. All
panels follow the (π, π) - (π/2, π/2) - (0, 0) - (π, 0) - (2π, 0) path in the full Brillouin zone. U = 2 eV, T = 58 K.

VI. ELECTRONIC BAND STRUCTURE

We now turn to an analysis of the dispersion of quasipar-
ticle bands in Sr2IrO4. This requires to analytically continue
our imaginary-frequency data to the real axis. We use Padé
approximants31 to find Σ̃latt(ω,k) from the knowledge of
the periodized lattice self-energy Σ̃latt(iωn,k). The result-
ing band structure is shown in Fig. 10 where we compare the
insulating state at µ = 0.8eV (left panels) and the electron
doped state at µ = 1.36eV, δper = 7%, δcluster = 10% (right
panels). On the upper panels, we show the non-interacting
bands obtained by diagonalizing the TB + SO Hamiltonian
Heff

1/2 (dashed lines) and the quasiparticle bands obtained from
the solutions of

det
{

(ω + µ)1−Heff
1/2(k)− Σ̃latt(ω,k)

}
= 0. (20)

Bands are plotted along the (π, π) - (π/2, π/2) - (0, 0) - (π, 0)
- (2π, 0) path of the full Brillouin zone. Lower panels display
the corresponding total spectral intensity TrÂ(ω,k).

In the insulating region, the Mott gap is clearly visible. The
band structure indicates that correlation effects have split the
original non-interacting bands. This is compatible with the
observation that, at µ = 0.8eV, the cluster self-energies take

very different values ReΣ+(0) 6= ReΣ−(0). Lifetime effects
are also not very strong and the bands are fairly coherent, con-
sistent with the fact that ImΣ±(0) ' 0. The top of the lower
band is located at ' −0.4 eV at the node and at ' −0.2 eV
at the antinode. There is a direct gap to the unoccupied states
of the order of 0.8 eV at k = (π/2, π/2), while the smallest
overall gap is indirect and of order 0.6 eV. Note that the latter
value is consistent with the width of the Mott plateau in Fig. 4.

As we move to the doped region, the Mott gap first closes
at the nodal point k = (π/2, π/2) and the quasiparticle bands
merge. The crossing of the upper band at two points close to
(π/2, π/2) is a signature of the pocket seen in the previous
spectral intensities. Around these points, a clear renormaliza-
tion of the Fermi velocities by a factor 1/4 is visible as com-
pared to the non-interacting bands. For µ = 1.36eV there is
still a gap between the bands at k = (π, 0) but the lower band
just reaches the Fermi level yielding some antinodal spectral
weight. It is interesting to note that the correlation effects
are much stronger on the lower band than on the upper band.
Quasiparticles are then better defined at (π/2, π/2) (they cor-
respond to a crossing of the upper band) than at (π, 0) where
they are associated with the lower band. This is explained
by the fact that the physics of the lower band is mainly con-
trolled by the cluster Σ+, while the upper band is controlled
by Σ−. As a result, the larger negative imaginary part of Σ+
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FIG. 11. Spectral intensity of the doped compound (µ = 1.36eV)
along the degenerate path (0, 0) - (π/2, π/2) - (π, 0) - (0, 0) in the
full Brillouin zone. Periodized self-energies are analytically contin-
ued from Padé approximants. U = 2 eV, T = 58 K.

(see Fig. 6) induces stronger lifetime effects at the antinode,
while the smaller imaginary part of Σ− maintains coherent
quasiparticles at the node.

We finally display in Fig. 11 a spectral intensity map along
the (π/2, π, 2)-(π, 0) Brillouin zone path, which corresponds
to the path along which the non-interacting bands are degener-
ate. ARPES data along this path have not appeared in print to
our knowledge, and our results could be useful in the context
of future analysis of ARPES experiments.

VII. DISCUSSION AND CONCLUSIONS

Finally, we discuss the comparison of our results with
ARPES and other experiments on doped Sr2IrO4.

Overall, there is excellent qualitative agreement. Compar-
ing panels (a) and (b) of Fig. 10, a clear ‘collapse’ of the Mott
gap is found upon doping the insulator (i.e the two bands be-
come much closer to each other). This effect was reported in
ARPES experiments:5,6 It is clearly apparent for example in
Fig.2 (g-h) of Ref. 5 in which the top of the band at (π/2, π/2)
moves from about −0.4 eV to about −0.1 eV (band crossing)
upon doping. In fact, the location of the top of the band at
the ‘node’ (−0.4 eV) and ‘antinode’ ( −0.2 eV) are in good
quantitative agreement with the values reported in Ref. 5. The
rather round and spread behavior of the band at the node quite
agrees with the experiments even if the nodal part does not
appear to be as narrow as it is observed.

The ‘nodal-antinodal’ differentiation and formation of a
pseudogap near the ‘antinode’ is also consistent with the ex-
perimental observations.5,19 Here, we have shown that the

physical origin of the pseudogap is indeed the same than in
cuprate superconductors, namely short-range spin correlations
(see e.g. Refs. 32 and 33 for recent theoretical studies).

The value of the interaction parameter U = 2 eV for which
we chose to perform our calculations should also be discussed
in the context of experimental measurements, especially of
experimental determinations of the Mott gap. With this value,
we find a Mott gap which is indirect and of order ∼ 0.6 eV
- corresponding to the transition between the top of the lower
Hubbard band at (π, 0) and the bottom of the upper Hubbard
band at (π/2, π/2) in Fig. 10(a), and also to the width of the
Mott plateau in Fig. 4. The value of the optical gap would be
slightly larger. In Ref. 6, Sr2IrO4 was studied under both hole
(Rh) and electron (La) doping, allowing for a determination
of a Mott gap of order 0.7 eV, in rather good agreement with
the present work. Optical spectroscopy measurements (see
e.g Fig.4 in Ref. 2) do reveal a sharp increase of absorption
in that frequency range, but a rather slow onset of the optical
conductivity is observed with spectral weight below this scale,
possibly suggesting a significantly smaller value of the actual
gap (although a precise determination is difficult). This sug-
gests that the value of U used in the present work may be a bit
too large. Accordingly, we note that the Fermi surface renor-
malizations obtained above appear to be somewhat larger than
the values reported in Ref. 5.

An ab-initio determination of the screened U appropriate
for the low-energy model used here, as well as a more sys-
tematic study of this model as a function of U would be desir-
able in future work. In connection with the latter, a study of
the possible superconducting instability as a function of U can
be performed within cluster extensions of DMFT (CDMFT or
DCA) for the present model and would shed light on the elu-
sive superconductivity of doped Sr2IrO4.
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Appendix A: Expression of H0 in the j basis

Labeling l(k) = e−i
kx+ky

2 , we have
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H1/2(k) =


1
3

[
∆t + e1

(
t1(k)
t0

)2
]

+ λ − 8
3 l(k)t1(k)

− 8
3 l
†(k)t1(k) 1

3

[
∆t + e1

(
t1(k)
t0

)2
]

+ λ

 , (A1)

and

M†(k) =


−
√

2
3

[
∆t + e1

(
t1(k)
t0

)2
]

2
√

2
3 l(k)t1(k)

2
√

2
3 l†(k)t1(k) −

√
2

3

[
∆t + e1

(
t1(k)
t0

)2
]

0 2√
6
l(k)(t2(k)− t3(k))

2√
6
l†(k)(t2(k)− t3(k)) 0

 , (A2)

and

H3/2(k) =



2
3

[
∆t + e1

(
t1(k)
t0

)2
]
− λ

2 − 10
3 l(k)t1(k) 0 l(k)√

3
(t2(k)− t3(k))

− 10
3 l
†(k)t1(k) 2

3

[
∆t + e1

(
t1(k)
t0

)2
]
− λ

2
l†(k)√

3
(t2(k)− t3(k)) 0

0 l(k)√
3

(t2(k)− t3(k)) −λ2 −2l(k)t1(k)
l†(k)√

3
(t2(k)− t3(k)) 0 −2l†(k)t1(k) −λ2


. (A3)

Appendix B: Green’s functions and self-energy in the four
doping regimes

In Fig. 12, we show the Matsubara frequency Green’s func-
tions and self-energies in the four doping regimes discussed
in the main text. These regimes are here associated with four
different values of the chemical potential corresponding to the
four rows of the figure.

For µ = 1eV the system is a Mott insulator, as can be seen
from the insulating character of the two components of the
Green’s function G±. Let us note that the real parts of the
self-energies are very different, which is responsible for the
opening of the Mott gap (see main text). Increasing the dop-
ing, we enter a pseudogap phase. At µ = 1.2eV, the even
component of the Green’s function has an insulating behav-
ior while the odd one is metallic. At µ = 1.34eV, the system
is in a differentiate regime. Both components of the Green’s
function are now metallic but the self-energies are still quite
differentiated. Going to even larger dopings we finally reach
the uniform Fermi liquid state. Hence at µ = 1.5eV, we see
that G+ and G− are both metallic and that the self-energies
tend to be identical.

Appendix C: Solving CDMFT equations

In order to solve the CDMFT equations, it is convenient to
work in the ± basis introduced in Eq. (13). In this basis, the
lattice Green’s function is

Ĝlatt
± (iωn,k) =

{
(iωn + µ)1−Heff

± (k)− Σ̂±(iωn)
}−1

,

(C1)

where Heff
± (k) is the effective jeff = 1/2 Hamiltonian ex-

pressed in the ± basis and the cluster self-energy is diagonal
because A and B sites are electronically equivalent

Σ̂±(iωn) =

(
Σ+(iωn) 0

0 Σ−(iωn)

)
. (C2)

Note that for a given k point, Ĝlatt
± (iωn,k) is not diagonal.

One can however show that, for a generic 2×2 diagonal matrix
M, ∑

k∈RBZ

[
Heff
± (k) +M

]−1
(C3)

is a diagonal matrix too. As a result, the CDMFT self-
consistency Eq. (12) becomes diagonal and reads

Ĝ±(iωn) =
∑

k∈RBZ

{
(iωn + µ)1−Heff

± (k)− Σ̂±(iωn)
}−1

,

(C4)
where both cluster quantities Ĝ± and Σ̂± are diagonal. This
equation is solved iteratively in the following way: At the it-
eration step n, the quantum impurity model is described by a
non-interacting Green’s function G(n)

0,± and a local interaction
Hamiltonian that has the following expression in the ± basis

Hint =
U

2

∑
s=±

(ns↑ns↓ + ns↑ns̄↓+

c†s↑c
†
s↓cs̄↓cs̄↑ + c†s↑c

†
s̄↓cs↓cs̄↑

)
.

(C5)

This cluster model is solved using the CT-HYB quantum im-
purity solver. This solver directly works in the ± basis.
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FIG. 12. Evolution in the even - odd basis of a) the imaginary part of the Green’s function G±(iωn), b) the real part of the self-energy
Σ±(iωn), c) the imaginary part of Σ±(iωn) as a function of the Matsubara frequency ωn. On all plots, the even (odd) contribution is plotted
in blue (orange). All quantities are depicted for different values of the chemical potential: the upper panel corresponds to µ = 1eV and an
electron doping δ = 0%, below µ = 1.2eV, δ = 1%, then µ = 1.34eV, δ = 9% and finally µ = 1.5eV, δ = 1.6%. Results were obtained for
U = 2 eV, T = 54K.

It yields both the cluster Green’s functions G(n)
± and self-

energies Σ
(n)
± . The self-consistency condition is used to con-

struct a local diagonal lattice Green’s function

Ĝ
(n)
loc,±(iωn) =

∑
k∈RBZ

{
(iωn+µ)1−Heff

± (k)−Σ̂
(n)
± (iωn)

}−1

.

(C6)
This allows to get a new expression for the non-interacting
cluster Green’s function, via a modified Dyson equation:[

G
(n+1)
0,±

]−1

=
[
G

(n)
loc,±

]−1

+ Σ
(n)
± . (C7)

This procedure is iterated until convergence.

Appendix D: Absence of a Mott insulator with the standard
periodization scheme

The usual periodization of the self-energy writes

Σ̃latt(iωn,k) =

(
ΣAA ΣAB × f(k)

ΣAB × f∗(k) ΣAA

)
, (D1)

where

f(k) =
1

4

(
1 + e−ikx + e−iky + e−i(kx+ky)

)
(D2a)

= cos
kx
2

cos
ky
2
e−i

kx+ky
2 . (D2b)

k = (k1, k2) is expressed in the reduced Brillouin zone. We
see from Fig. 2 that the degeneracy of the (π/2, π/2) - (π, 0)
path in the full Brillouin zone has to be lifted in order to create
a Mott insulating gap. However f(k) = 0 along this path and
the self-energy has the following expression

Σ̃latt(iωn,k) = ΣAA × 12×2. (D3)

Hence the self-energy only renormalizes the chemical poten-
tial in the quasiparticle equation (Eq. (20)) at ω = 0, forbid-
ding any lifting of the degeneracy between the quasiparticle
bands and therefore any gap in the band structure.
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