Colette Anné 
email: colette.anne@univ-nantes.fr
  
Olaf Post 
email: olaf.post@uni-trier.de
  
  
  
  
Wildly perturbed manifolds: norm resolvent and spectral convergence

Keywords: June post-wild-perturbations-revised.tex. 2010 Mathematics Subject Classification. Primary 58J50; Secondary 35P15, 53C23, 58J32

The publication of the important work of Rauch and Taylor [RT75] started a hole branch of research on wild perturbations of the Laplace-Beltrami operator. Here, we extend certain results and show norm convergence of the resolvent. We consider a (not necessarily compact) manifold with many small balls removed, the number of balls can increase as the radius is shrinking, the number of balls can also be infinite. If the distance of the balls shrinks less fast than the radius, then we show that the Neumann Laplacian converges to the unperturbed Laplacian, i.e., the obstacles vanish. In the Dirichlet case, we consider two cases here: if the balls are too sparse, the limit operator is again the unperturbed one, while if the balls concentrate at a certain region (they become "solid" there), the limit operator is the Dirichlet Laplacian on the complement of the solid region. Norm resolvent convergence in the limit case of homogenisation is treated elsewhere, see [KP18] and references therein. Our work is based on a norm convergence result for operators acting in varying Hilbert spaces described in the book [P12] by the second author.

Introduction

In this article, we present norm convergence of the resolvents of Laplacians on manifolds with wild perturbations. Wild perturbations refers here to increase the complexity of topology. In particular, we show convergence of the Laplace-Beltrami operator on manifolds with an increasing number of small holes.

Main results

Since the perturbation changes the space on which the operators act, we need to define a generalised norm resolvent convergence for operators on varying spaces (see Definition 1.1). This powerful tool and many consequences (like convergence of eigenvalues, eigenfunctions, functions of the operators such as spectral projections, heat operators etc.) is explained in detail in a book by the second author [P12]. Let us stress here that we do not need a compactness assumption on the space or the resolvents as in many of the previous works (see Section 1.2). Moreover, the abstract convergence result shows its full strengths especially when the perturbed space is not a subset of the unperturbed one or vice versa: an example is given by adding many small handles to a manifold; we treat this problem in a subsequent publication [AP].

We give sufficient conditions on the obstacles in Theorems 4.3 and 5.2 to have (generalised norm resolvent) convergence to the unperturbed situation (obstacles without an effect) where we remove a family of obstacles and consider on the remaining manifold either the Neumann or Dirichlet Laplacian. In the Dirichlet case, there is a regime when the obstacles can become "solid" (Theorem 6.4). These abstract results use as assumption e.g. non-concentrating of energy-bounded functions on the obstacles and extension properties in the Neumann case.

We make these abstract results concrete in Theorems 4.7, 5.6 and 6.16, where we assume that the obstacles consists of many small balls having a certain minimal distance, and filling up the "solid" region for Theorem 6.16, a terminology introduced in [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF] to describe the situation under the name "crushed ice problem" where small obstacles such as holes maintained at zero temperature increase in number while their size converge to 0 in such a way that they freeze at the limit. A typical assumption here is that small balls in the manifold look everywhere roughly the same; this is assured if the harmonic radius is uniformly positive; and the latter follows if the manifold has bounded geometry, see Definition 3.2 and Proposition 3.5.

Let us first explain the main idea behind the abstract convergence tool: In all our results, we deal with an ε-dependent space X ε and suitable Laplace operators ∆ ε acting on X ε for each ε ≥ 0. We define a generalised norm resolvent convergence for ∆ ε to a limit Laplacian ∆ 0 . To do so, we need so-called identification or transplantation operators J = J ε : L 2 (X 0 ) -→ L 2 (X ε ), which are asymptotically unitary (cf. (1.1a)) and intertwine the resolvents (cf. (1.1b)) in the following sense: 1.1. Definition. We say that ∆ ε converges in general norm resolvent sense to ∆ 0 if there exist bounded operators J = J ε and m ≥ 0 such that (id H 0 -J * J)R 0 ≤ δ ε , (id Hε -JJ * )R ε ≤ δ ε , (1.1a)

(JR 0 -R ε J)R m/2 0 ≤ δ ε , (1.1b) 
where R 0 := (∆ 0 + 1) -1 and R ε := (∆ ε + 1) -1 for ε > 0 and where δ ε → 0 as ε → 0. The name is justified as follows: if H ε = H 0 , then generalised norm resolvent convergence (with m = 0) is just the classical norm resolvent convergence if one chooses J = id H 0 . In Section 2, we interpret δ ε as a sort of "distance" between ∆ 0 and ∆ ε , or more, precisely, between their corresponding quadratic forms d 0 and d ε , and call such forms δ ε -quasi-unitarily equivalent. If this distance converges to 0, then ∆ ε converges to ∆ 0 in generalised norm resolvent convergence, see Section 2.

Once we have this generalised norm resolvent convergence, similar conclusions as for the classical norm resolvent convergence are valid. In particular, we have norm convergence (using also J and J * ) of the corresponding functional calculus, i.e., of ϕ(∆ ε ) towards ϕ(∆ 0 ) for suitable functions ϕ such as ϕ = 1 [a,b] with a, b / ∈ σ(∆ 0 ) (spectral projections) or ϕ(λ) = e -tλ (heat operator), see Theorem 2.4. Moreover, we conclude the following spectral convergence: 1.2. Theorem ([P12, Thms. 4.3.3-4.3.5], [KP18, Thm. 2.7]). Assume that ∆ ε converges to ∆ 0 in generalised norm resolvent sense then

σ • (∆ ε ) → σ • (∆ 0 )
uniformly (i.e., in Hausdorff distance) on any compact interval [0, Λ]. Here, σ • (∆ ε ) stands for the entire spectrum or the essential spectrum of ∆ ε for ε ≥ 0.

If λ 0 ∈ σ disc (∆ 0 ) is an eigenvalue of multiplicity µ > 0, then there exist µ eigenvalues (not necessarily all distinct) λ ε,j , j = 1 . . . µ, such that λ ε,j → λ 0 as ε → 0. In particular, if µ = 1 and if ψ 0 ∈ H 0 is the corresponding normalised eigenvector, then there exists a family of normalised eigenvectors ψ ε of ∆ ε such that Jψ 0 -ψ ε → 0 and J * ψ ε -ψ 0 → 0 (1.2a)

as ε → 0.

If ∆ ε has purely discrete spectrum (λ k (ε)) k∈N written in increasing order and repeated according to multipicity for each ε ≥ 0, then we have

λ k (ε) -λ k (0) ≤ 4C ε Ä λ k (ε) + 1 äÄ λ k (0) + 1 ä δ ε (1.2b)
with lim ε→0 C ε = 1.

Let us also stress that we have a convergence of a (suitably sandwiched) difference of the resolvents R 0 and R ε as operators

L 2 (X) → H 1 , (1.3)
where H 1 is a first order Sobolev space, i.e., H 1 (X ε ) or a closed subspace, see Proposition 2.5 and Remark 2.6 for details. Moreover, one can also show convergence of eigenvectors in energy norm, see (2.7).

Previous works

The results of Rauch and Taylor in [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF] inspired a lot of works (cited by 84 papers in MathSciNet in June 2019), and served as a starting point of our analysis here. In particular, we borrowed the names "wild perturbations", "fading", "solidification" and "crushed ice" from their article, the latter three appearing already in the earlier lectures of Jeffrey Rauch [R75]. It is impossible to give a comprehensive review of all literature on domain perturbations after Rauch and Taylor's paper (and even before): we will only emphasise on the following aspects here:

Asymptotic behaviour of eigenvalues. A classical topic is how eigenvalues change under small singular domain perturbations: asymptotic expansions on Dirichlet eigenvalues on bounded domains with small obstacles taken out is given e.g. in [CF78, Oza81, MNP84, CF88, Flu95, Cou95, BC06]; the difference of the unperturbed and perturbed Dirichlet eigenvalues is of order as the capacity of the obstacle set; e.g., for balls of radius ε the capacity is of order 1/|log ε| and ε m-2 in dimension m = 2 and m ≥ 3, hence the difference of the unperturbed and perturbed k-th eigenvalue is of order

ε if m = 3 ([Oza81]
). Using the eigenvalue estimate (1.2b), we obtain for a single ball removed in dimension m = 3 as error estimate δ ε = O(ε (1/6-0) ) (see Corollary 5.7 with α = 0), i.e., for a single obstacle, our analysis is far from being optimal. Similarly, the asymptotic behaviour of Neumann eigenvalues has been studied for a single hole for bounded domains or compact manifolds e.g. in [START_REF]Spectra of domains with small spherical Neumann boundary[END_REF][START_REF] Maz Ya | Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings[END_REF]Hem06,LdC12]; again the asymptotic expansion for a single ball as obstacle gives a better estimate on the difference of the unperturbed and perturbed eigenvalues, see Example 4.8.

It seems that our method always gives only the square root of the optimal estimate (or even worse); a similar phenomen appears for manifolds converging to metric graphs (see e.g. [PS19a, Rem. 3.9]). Nevertheless, our analysis shows its full power when considering non-compact domains and manifolds and when one is interested in the entire spectrum; as well as convergence of operator functions of the Laplacians such as the heat operators (see for instance [START_REF]Quasi-unitary equivalence and generalised norm resolvent convergence[END_REF]Ex. 1.11]). Also, we believe that our approach gives rather abstract conditions from which it follows that an obstacle "fades" in the limit, i.e., from which (generalised) norm resolvent convergence of the Neumann resp. Dirichlet Laplacian on the manifold without obstacles towards the original ("free") Laplacian follows.

Domain perturbations and convergence results. Weidmann [W84] proved (some) strong resolvent convergence of elliptic differential operators under perturbation of the domain. Moreover, he also developed a general (strong resolvent) convergence theory for sequences of operators acting in different Hilbert spaces (which can be embedded in a larger common Hilbert space).

Daners [Dan03] considers the norm convergence of resolvents of Dirichlet Laplacians for perturbations of Euclidean bounded domains (or at least those with compact resolvent), the norm convergence follows from the strong one under the assumption of compactness of the limit resolvent, see also [Dan08] for a survey and the references therein. Our approach is more general as we do not assume a priori that the perturbed and unperturbed domains are embedded in a common space as in [Dan03,Dan08]. Moreover, we obtain explicit error estimates in terms of δ ε . For an older survey about strong resolvent convergence and perturbations of Euclidean domains, we refer to [Hen94].

Homogenisation theory. Finally, Rauch and Taylor [R75, RT75] inspired with their crushed ice problem also the study of homogenisation problems (see also [START_REF] Marchenko | Boundary-value problems with fine-grained boundary[END_REF][START_REF] Cioranescu | Un terme étrange venu d'ailleurs, Nonlinear partial differential equations and their applications[END_REF] for some other pioneering works on this topic). If the density of small balls is removed from the domain is too low, then the limit of the corresponding Dirichlet Laplacian is "fading", i.e., converging to the original Laplacian. If it is too high, then in the limit "solidification" takes place, i.e., the limit Laplacian only survives on some subsets, the other became "solid". The critical parameter here is the capacity: In [BN98] Balzano and Notarantonio consider a compact Riemannian manifold with an increasing finite number of small balls removed. They show that if the balls are placed randomly and if their capacity converges, then the Dirichlet Laplacian on the manifold less the holes converges in strong resolvent sense to a Laplacian plus a potential given by the random distribution of ball centres. The proof is based on earlier works of Balzano [START_REF] Balzano | Random relaxed Dirichlet problems[END_REF] using Γ-convergence, see [DM93]. More recent works can be found in [START_REF] Khrabustovskyi | Homogenization of the spectral problem on the Riemannian manifold consisting of two domains connected by many tubes[END_REF] and references therein.

For a similar approach using the above mentioned generalised norm resolvent convergence in the homogenisation case, we refer to [START_REF] Khrabustovskyi | Operator estimates for the crushed ice problem[END_REF] and the references cited therein. For an approach using the already shown strong resolvent convergence to upgrade to norm resolvent convergence (similarly as in [Dan03,Dan08], but even for general unbounded domains) we refer to [DCR18]. The very recent work [START_REF] Suslina | Spectral Approach to Homogenization of Elliptic Operators in a Perforated Space[END_REF] also treats norm resolvent convergence as operators L 2 (X) → H 1 (X ε ) on periodic spaces. We are also able to show estimates like (1.3), see Proposition 2.5 and Remark 2.6.

In [BCD16] the authors show also norm resolvent convergencge of type L 2 (X) → H 1 (X ε ) in a homogenisation problem: this time they place small balls along a curve in an infinite horizontal strip as obstacles. They have a fading case and also a case of homogenisation: Here, the little holes become a delta interaction supported on the curve in the limit. The proof of norm resolvent convergence is established directly along the problem (see also the formulation of the problem in [KP18, Sec. 2]). It is straightforward to see that if we place small balls of radius ε along a curve such that they are η εseparated, then the fading results of Theorems 4.7 and 5.6 remain true (provided the conditions on ε and η ε are true). We strongly believe that it is also possible to apply our concept of quasi-unitary equivalence to the homogenisation problem of [BCD16] using basic estimates from [BCD16] and ideas of [START_REF] Khrabustovskyi | Operator estimates for the crushed ice problem[END_REF].

Structure of the article

In Section 2 we briefly describe the main tool of norm convergence of operators on varying Hilbert spaces. In Section 3 we briefly introduce Laplacians and Sobolev spaces on manifolds, the harmonic radius and manifolds of bounded geometry. Moreover, we introduce the concept of non-concentration in Definition 3.7 and Proposition 3.8.

In Section 4 we present the situation for obstacles with Neumann boundary condition, the main result is Theorem 4.3 for abstract fading obstacles, and Theorem 4.7 deals with the situation where each obstacle is a disjoint union of many small balls of radius ε. Similarly, Section 5 contains results for fading Dirichlet obstacles and many balls in Theorems 5.2 and 5.6. Finally, Section 6 is about Dirichlet obstacles that become "solid", again an abstract version and one for many balls removed in Theorems 6.4 and 6.16. We conclude with an appendix, where we collect some estimates on manifolds.

Main tool: norm convergence of operators on varying Hilbert spaces

The second author of the present article proposed in [P06] and in more detail in the monograph [P12] a general framework which assures a generalised norm resolvent convergence for operators ∆ ε converging to ∆ 0 as ε → 0. Here, each operator ∆ ε acts in a Hilbert space H ε for ε ≥ 0; and the Hilbert spaces are allowed to depend on ε. In typical applications, the Hilbert spaces H ε are of the form L 2 (X ε ) for some metric measure space X ε which is considered as a perturbation of a "limit" metric measure space X 0 ; and typically, there is a topological transition between ε > 0 and ε = 0.

In order to define the convergence, we define a sort of "distance" δ ε between ∆ := ∆ ε and ∆ := ∆ 0 , in the sense that if δ ε → 0 then ∆ ε converges to ∆ 0 in the above-mentioned generalised norm resolvent sense.

Let H and H be two separable Hilbert spaces. We say that (d, H 1 ) is an energy form in H if d is a closed, non-negative and densely defined quadratic form in H with domain H 1 , i.e., if d(f ) := d(f, f ) ≥ 0 for some sesquilinear form d : H 1 × H 1 -→ C, denoted by the same symbol, with H 1 =: dom d endowed with the norm defined by 

f 2 1 := f 2 H 1 := f 2 H + d(f ), ( 2 
f H k := f k := (∆ + 1) k/2 f .
(2.2) We denote by σ(∆) the spectrum of the energy operator and by R(z) = (∆ -z) -1 its resolvent at z ∈ C \ σ(∆)) and for short R = R(-1) = (∆ + 1) -1 , we use similar notations for ∆.

Then H k = dom ∆ k/2 if k ≥ 0
We now need pairs of so-called identification or transplantation operators acting on the Hilbert spaces and later also pairs of identification operators acting on the form domains. Note that our definition is slightly more general than the one in [START_REF]Spectral analysis on graph-like spaces[END_REF]Sec. 4.4]. The new point here is that we allow the (somehow "smoothing") resolvent power of order k/2 on the right hand side in (2.3d') also for k > 0. 2.1. Definition. Let δ ≥ 0, and let J : H -→ H and J : H -→ H be linear bounded operators. 1 Moreover, let δ ≥ 0, and let J 1 : H 1 -→ H 1 and J 1 : H 1 -→ H 1 be linear bounded operator on the energy form domains.

(i) We say that J is δ-quasi-unitary with δ-quasi-adjoint J if

Jf ≤ (1 + δ) f , Jf , u -f, J u ≤ δ f u (f ∈ H , u ∈ H ), (2.3a) f -J Jf ≤ δ f 1 , u -J Ju ≤ δ u 1 (f ∈ H 1 , u ∈ H 1 ).
(2.3b) (ii) We say that J 1 and J 1 are δ-compatible with the identification operators J and J if

J 1 f -Jf ≤ δ f 1 , J 1 u -J u ≤ δ u 1 (f ∈ H 1 , u ∈ H 1 ). (2.3c) (iii)
We say that the energy forms d and d are δ-close (of order k ≥ 1) if

d(J 1 f, u) -d(f, J 1 u) ≤ δ f k u 1 (f ∈ H k , u ∈ H 1 ).
(2.3d) (iv) We say that d and d are δ-quasi unitarily equivalent (of order k ≥ 1), if (2.3a)-(2.3d) are fulfilled, i.e.,

• if there exists identification operators J and J such that J is δ-quasi-unitary with δ-adjoint J (i.e., (2.3a)-(2.3b) hold); • if there exists identification operators J 1 and J 1 which are δ-compatible with J and J (i.e., (2.3c) holds); • and if d and d are δ-close (of order k) (i.e., (2.3d) holds). We comment on the asymmetry in (2.3d) with respect to the norms f k and u 1 in Remark 2.7 at the end of this section.

In operator norm notation, δ-quasi-unitary equivalence means

J ≤ 1 + δ, J * -J ≤ δ (2.3a') (id H -J J)R 1/2 ≤ δ, (id H -JJ ) R 1/2 ≤ δ, (2.3b') (J 1 -J)R 1/2 ≤ δ, (J 1 -J ) R 1/2 ≤ δ, (2.3c') R 1/2 ( ∆J 1 -(J 1 ) * ∆)R k/2 ≤ δ, (2.3d')
where R := (∆ + 1) -1 resp. R := ( ∆ + 1) -1 denotes the resolvent of ∆ resp. ∆ in -1. Moreover, (J 1 ) * : H -1 -→ H -1 where (•) * denotes here the dual map with respect to the dual pairing H 1 × H -1 induced by the inner product on H and similarly on H . Moreover, ∆ is interpreted as ∆ : H 1 -→ H -1 , and similarly for ∆.

To give a flavour of the ideas, we give a short proof of the following result:

2.2. Proposition. Let d and d be δ-quasi-unitarily equivalent (of order k ≥ 1), then we have

Ä JR -RJ ä R m/2 ≤ 7δ for m = max{k -2, 0}.
(2.4)

In particular, if the energy forms d ε and d 0 are δ ε -quasi-unitarily equivalent of order k ≥ 1 then the corresponding operators ∆ ε converge in generalised norm resolvent sense to ∆ 0 of order m (cf. Definition 1.1) and the conclusions of Theorem 1.2 hold.

Note that we can ignore the factors R m/2 in (2.4) and (2.6a) if k ∈ {1, 2}.

Proof. We have the expansion

(JR -RJ)R m/2 = (J -J 1 )R m/2+1 + Ä J 1 R -R(J 1 ) * ä R m/2 + R 1/2 Ä R 1/2 ((J 1 ) * -(J ) * ) ä R m/2 + R Ä (J ) * -J ä R m/2 ,
where the second term can be further expanded into

Ä J 1 R -R(J 1 ) * ä R m/2 = R Ä ( ∆ + 1)J 1 -(J 1 ) * (∆ + 1) ä R m/2+1 = R( ∆J 1 -(J 1 ) * ∆)R m/2+1 + R Ä (J 1 -J) + (J -(J ) * ) + ((J ) * -(J 1 ) * ) ä R m/2+1 . (2.5)
Taking the operator norm, and using A * = A for the dual of an operator, we obtain from the last two equations (as m ≥ 0 and m + 2 ≥ k)

(JR -RJ)R m/2 ≤ 2 (J -J 1 )R 1/2 + R 1/2 ( ∆J 1 -(J 1 ) * ∆)R k/2 + 2 (J 1 -J ) R 1/2 + 2 J -J * ≤ 7δ.
2.3. Remark. The last proposition explains the notation in two extreme cases: (i) "0-quasi-unitary equivalence" is "unitary equivalence": If δ = 0 then J is 0quasi-unitary if and only if J is unitary with J * = J . Moreover, d and d are 0-quasi-unitarily equivalent (of order k ≥ 1) if and only if ∆ and ∆ are unitarily equivalent (in the sense that JR = RJ, see (2.4)). In this sense, δ-quasi unitary equivalence is a quantitative generalisation of unitary equivalence. (ii) "δ ε -quasi-unitary equivalence" (with δ ε → 0) is a generalisation of "norm resolvent convergence": ∞) be open and unbounded, and let ϕ : [0, ∞) -→ R be analytic on U such that lim λ→∞ ϕ(λ) exists, then there exists a constant C ϕ depending only on ϕ and U such that

If H = H and H 1 = H 1 (i.
(Jϕ(∆) -ϕ( ∆)J)R m/2 ≤ C ϕ δ (2.6a)
for all d and d being δ-quasi-unitary equivalent energy forms (of order k ≥ 1) with σ(∆) ⊂ U or σ( ∆) ⊂ U . Moreover, if k ∈ {1, 2} then we can replace (2.6a) by

ϕ( ∆) -Jϕ(∆)J ≤ 5C ϕ δ + C ϕ δ, where C ϕ := sup λ∈U (λ + 1) 1/2 |ϕ(λ)|. (2.6b) In particular, if ϕ = 1 [a,b] with a, b / ∈ σ(∆) then (2.6a)-(2.6b
) are norm estimates of spectral projections. Moreover, if ϕ t (λ) = e -tλ for t > 0, then we have norm estimates of the heat operators. One can also prove similar operator norm estimates on J ϕ( ∆)Jϕ(∆). If ϕ is only continuous on U , then one has to replace C ϕ δ by δ ϕ with δ ϕ → 0 as δ → 0.

As a conclusion, spectral convergence as in Theorem 1.2 follows. Note that we also have convergence of eigenfunctions in energy norm, namely we can replace (1.2a) by

J 1 ψ 0 -ψ ε 1 ≤ C 1 δ ε → 0 (2.7)
as ε → 0 using a similar argument as in [PS18, Prp. 2.6].

A slight modification of the proof of Proposition 2.2 gives us a norm estimate of a suitably sandwiched resolvent difference as operator H → H 1 ; for simplicity we assume k ∈ {1, 2} here: 2.5. Proposition. Let d and d be δ-quasi-unitarily equivalent (of order k ∈ {1, 2}), then we have

J 1 R -RJ H → H 1 = ( H + 1) 1/2 Ä J 1 R -RJ ä ≤ 6δ. (2.8)
Proof. The proof is similar to the one of Proposition 2.2 (with m = 0). Here, we have the expansion

(J 1 R -RJ) = Ä J 1 R -R(J 1 ) * ä + R 1/2 Ä R 1/2 ((J 1 ) * -(J ) * ) ä + R Ä (J ) * -J ä .
The first term can again be expanded as in (2.5); note that we can factor out R 1/2 from the left, and all remaining terms can be estimated by (2.3a')-(2.3d'). As we have one term less than in the proof of Proposition 2.2, we end up with 6δ.

2.6. Remark. In our applications, the space H is an L 2 -space of an unperturbed set X such as L 2 (X) and H is a perturbed space L 2 (X ε ) where X ε = X \ B ε for some obstacle set B ε shrinking in a suitable manner. Moreover, the operators are Neumann or Dirichlet Laplacians (see the next section for details). The above convergence (2.8) then means convergence of the resolvents as operators L 2 (X) → H 1 if H 1 denotes the first order Sobolev space associated with the form domain of the perturbed Laplacian ∆ ε , typically H 1 (X ε ) or a closed subspace. We can also formulate similar results as in Theorem 2.4 as conclusions of (2.8). 2.7. Remark. The asymmetry of (2.3d) with respect to the norms f k and u 1 in Remark 2.7 has the following reason: As explained in the previous remark, H = L 2 (X ε ) will be a parameter dependent space, hence u 1 is just the energy norm with respect to a Laplacian. Dealing here with higher order norms u k (k ≥ 2) would force us to control the estimate in terms of the graph norm of the corresponding Laplacians. We normally use the corresponding Sobolev norm of order k, but then we need an elliptic estimate of the form u H k (Xε) ≤ C (∆ Xε + 1) k/2 u L 2 (Xε) on the parameter-depending manifolds X ε . Moreover, we would then need that C is independent of ε. Instead, we use such arguments only on the parameter-independent manifold H = L 2 (X) with its parameter-independent Laplacian.

The asymmetry seems to be a key ingredient in order to use the concept of quasiunitary equivalence for perturbed domains; see also Remark 4.4 why the energy norm is not enough.

Laplacians on manifolds

Energy form, Laplacian and Sobolev spaces associated with a Riemannian manifold

Let (X, g) be a complete2 Riemannian manifold of dimension n ≥ 2, for the moment without boundary. Denote by dg the Riemannian measure induced by the metric g on X (we often omit the measure if it is clear from the context). Then L 2 (X) = L 2 (X, g) is the usual L 2 -space with norm given by

u 2 L 2 (X,g) := X |u| 2 dg.
The energy form associated with (X, g) is defined by

d (X,g) (u) := X |du| 2 g dg
for u in the first Sobolev space H 1 (X) = H 1 (X, g), which can be defined as the completion of smooth functions with compact support, under the so-called energy norm given by

u 2 H 1 (X,g) := X Ä |u| 2 + |du| 2 g ä dg.
Here, du is a section into the cotangent bundle T * M and g the corresponding metric on it. Note that by definition, d (X,g) is a closed form with dom d (X,g) = H 1 (X, g). The Laplacian ∆ (X,g) associated with (X, g) is the energy operator associated with the energy form d (X,g) . The Laplacian is a self-adjoint non-negative operator and hence introduces a scale of Hilbert spaces

H k := H k (∆ (X,g) ) := dom((∆ (X,g) + 1) k/2 ) with norm u H k (∆ (X,g) ) := (∆ (X,g) + 1) k/2 u L 2 (X,g) ,
this definition extends to negative exponents k as already explained in the text after (2.2).

We also call H k (∆ (X,g) ) the k-th Laplacian-Sobolev space. Obviously, we have

H 1 (X, g) = H 1 (∆ (X,g) ) with identical norms.
If X is a manifold with (smooth) boundary, then we define the Neumann energy form d N (X,g) as above with domain dom d N (X,g) = H 1 (X, g), where the latter is the closure of all functions, smooth up to the boundary and with compact support, with respect to the energy norm. The corresponding operator ∆ N (X,g) is called the Neumann Laplacian on (X, g).

Similarly, we define the Dirichlet energy form d D (X,g) as above with domain dom d D (X,g) = H1 (X, g), where the latter is the closure of all functions with compact support away from the boundary with respect to the energy norm. The corresponding operator ∆ D (X,g) is called the Dirichlet Laplacian on (X, g).

We denote by L 2 (T * X ⊗k , g) the L 2 -space of k-tensors with the pointwise norm on the tensors induced by g, i.e., of sections into

T * X ⊗k = T * X ⊗ • • • ⊗ T * X with norm given by u 2 L 2 (T * X ⊗k ,g) := X |u| 2 g dg,
where |•| 2 g is the canonical extension of g onto the corresponding tensor bundle. Here and in the sequel, we are often sloppy and just write u 2 L 2 (X,g) for the corresponding norm (assuming that the fibre norm |•| g is clear from the context).

Denote by ∇ the extension of the Levi-Civita connection on the tensor bundle T * X ⊗k . For k = 0, we have ∇u = du. Moreover, we set

∇ 2 u := ∇∇u, which is in T * X ⊗ T * X if u is a function. We have for instance ∇ 2 V 1 ,V 2 := ∇ V 1 ∇ V 2 -∇ ∇ V 1 V 2 for vector fields V 1 , V 2
, and similarly for higher derivatives. We say that u has a k-th weak derivative if there exists a measurable section v ∈ L 1,loc (X, (T * X) ⊗k ) such that

X u • (∇ * ) k ϕ dg = X v, ϕ g dg for all ϕ ∈ C ∞ c (X, (T * X) ⊗k )
, where ∇ * denotes the (formal) adjoint of ∇. We set

H k p (X, g) := ¶ u ∈ L p (X, g) the weak derivatives ∇ j u exist in L p (X, g) for j ≤ k © ,
with norm given by

u p H k p (X,g) := k j=0 ∇ j u p Lp(T * X ⊗j ,g)
for p ≥ 1, and H k (X, g) := H k 2 (X, g). Note that the above defined Sobolev space H 1 (X, g) agrees with the one defined in the beginning of the section, i.e., H 1 (X, g) = dom d (X,g) = H 1 (∆ (X,g) ) and the corresponding norms agree.

Bounded geometry, harmonic radius and Euclidean balls

We also need some estimates of higher order Sobolev spaces in terms of Laplace-graph norms: 3.1. Definition. We say that (X, g) is an elliptically regular Riemmannian manifold (of order k ≥ 2) if dom(∆ (X,g) + 1) k/2 ⊂ H k (X, g) and if there is

C ell.reg,k ≥ 1 such that f H k (X,g) ≤ C ell.reg,k (∆ (X,g) + 1) k/2 f L 2 (X,g)
for all f ∈ dom(∆ (X,g) + 1) k/2 . We say that (X, g) is elliptically regular, if (X, g) is elliptically regular of order k = 2.

An immediate consequence of elliptic regularity (of order k) is that the Sobolev and Laplace-Sobolev spaces agree, i.e., H k (X, g) = H k (∆ (X,g) )(= (dom ∆ (X,g) + 1) k/2 ). Typically, assumptions assuring elliptic regularity of order k also imply elliptic regularity of lower order, but we will not put this in our definition.

The elliptic regularity of a manifold is not given for higher order without further assumptions: 3.2. Definition. We say that a complete Riemannian manifold (X, g) has bounded geometry if the injectivity radius is uniformly bounded from below by some constant ι 0 > 0 and if the Ricci tensor Ric is uniformly bounded from below by some constant κ 0 ∈ R, i.e., Ric x ≥ κ 0 g x for all x ∈ X (3.1) as symmetric 2-tensors.

We will not need assumptions on derivatives of the curvature tensor (i.e., bounded geometry of higher order) in this article.

3.3. Proposition ([Heb96, Prp. 2.10]). Suppose that (X, g) is a complete manifold with bounded geometry, then the set of smooth functions with compact support D(X) is dense in the Sobolev space H 2 (X, g). Moreover, (X, g) is elliptically regular (of order 2), and the constant C ell.reg depends only on the lower bound κ 0 on the Ricci curvature.

Proof. For the proof of the first claim, we refer to the proof of Prp. 2.10 in [Heb96]. For sufficiently smooth metrics, there is a constant c ell.reg > 0 depending on g and its first derivatives such that

c ell.reg (∆ (X,g) + 1)f L 2 (X,g) ≤ f H 2 (X,g)
for all f ∈ D(X). For the estimate of the Sobolev norm in terms of the (Laplace) graph norm, we use the following consequence of the Bochner-Lichnerowicz-Weitzenböck formula, namely,

∇ 2 u 2 L 2 (T * X ⊗2 ) = ∆ (X,g) u 2 L 2 (X,g) -Ric du, du L 2 (T * X,g) (3.2)
for all u ∈ D(X), where we understand Ric as endomorphism on T * X. From this equality and the spectral calculus for the self-adjoint operator ∆ (X,g) we obtain the desired result, namely that C ell.reg of Definition 3.1 depends only on κ 0 .

We now give some estimates on the Riemannian metric in order to compare small balls with Euclidean balls: We now give some estimates on the Riemannian metric in order to compare small balls with Euclidean balls. To this purpose, we recall the useful notion of a harmonic chart:

3.4. Definition ([Heb96, Def. 1.1]). Let U be an open subset of a Riemannian manifold (X, g). A chart ϕ = (y 1 , ..., y n ) : U -→ R n on (X, g) is called harmonic if ∆ (X,g) y k = 0 for all k = 1, . . . , n. Since ∆ (X,g) y k = n i,j=1 g ij Γ k ij , a chart ϕ = (y 1 , . . . , y n ) is harmonic if and only if n i,j=1 g ij Γ k ij = 0 for all k = 1, . . . , n.
Here, g ij and Γ k ij are as usual the components of the inverse metric tensor and the Christoffel symbols with respect to the chart ϕ, respectively.

We now give some estimates on the Riemannian metric in order to compare small balls with Euclidean balls: 3.5. Proposition ([Heb96, Thm. 1.3]). Assume that (X, g) is complete and has bounded geometry (with constants κ 0 ∈ R and ι 0 > 0). Then for all a ∈ (0, 1) there exist r 0 > 0, K ≥ 1 and k > 0 depending only on κ 0 , ι 0 and a, such that around any point x ∈ X there exists a harmonic chart ϕ x = (y 1 , . . . , y m ) defined on B r 0 (x), and in these charts we have

K -1 (δ ij ) ≤ (g ij ) ≤ K (δ ij )
(as bilinear forms) and (3.3a)

|g ij (x ) -g ij (x )| ≤ k d g (x , x ) a . (3.3b) for all x , x ∈ B r 0 (x).
The radius r 0 will be called harmonic radius in the following. We refer to [HPW14, Heb96, Heb99] and the references therein for more details. We assume r 0 ≤ 1 here, as it simplifies some estimates later on, when using estimates of cut-off functions on small balls, see e.g. Lemma 3.9.

Denote by g eucl,x the Euclidean metric in the harmonic chart ϕ x defined in the ball B r (x) by

g eucl (∂ y i , ∂ y j ) = δ ij . (3.4)
We immediately conclude from (3.3a):

3.6. Corollary. Let p ∈ X and let B := B r (p) with B r (p) := { x ∈ X | d g (x, p) < r } (3.5)
be a ball around p with geodesic radius r ∈ (0, r 0 ) in (M, g). Then (i) the volume measures and the cotangent norm satisfy the estimates

K -n/2 dg eucl ≤ dg x ≤ K n/2 dg eucl and K -1 |ξ| 2 g eucl ≤ |ξ| 2 gx ≤ K|ξ| 2 g eucl (3.6)
for all x ∈ B and ξ ∈ T * x X; (ii) we have the following norm estimates

K -n/4 u L 2 (B,g eucl ) ≤ u L 2 (B,g) ≤ K n/4 u L 2 (B,g eucl ) , K -(n+2)/4 du L 2 (T * B,g eucl ) ≤ du L 2 (T * B,g) ≤ K (n+2)/4 du L 2 (T * B,g eucl ) , K -(n+2)/4 u H 1 (B,g eucl ) ≤ u H 1 (B,g) ≤ K (n+2)/4 u H 1 (B,g eucl ) for all u ∈ L 2 (B, g) resp. u ∈ H 1 (B, g).

The non-concentrating property

We now formulate a property which will be used in all our examples. Typically, A = A ε and δ ε → 0 as ε → 0; the name "non-concentrating" comes from the fact that if (f ε ) ε is a family of (normalised) eigenfunctions with eigenvalues

λ ε bounded in ε, then the L 2 -norm of f = f ε on A ε is controlled by a constant times δ = δ ε . In particular, if δ ε → 0, then the family (f ε ) ε does not concentrate on A ε as ε → 0. 3.7. Definition. Let (X, g) be a Riemannian manifold, A ⊂ B ⊂ X and δ > 0. We say that (A, B) is δ-non-concentrating (of order 1) if f L 2 (A,g) ≤ δ f H 1 (B,g) (3.7)
for all f ∈ H 1 (B, g).

Note that if B ⊃ B and if (A, B) is δ-non-concentrating, then (A, B) is also δ-nonconcentrating. Once we have the non-concentrating property, we can immediately conclude a similar estimate for the derivatives:

3.8. Proposition. Assume that (A, B) is δ-non-concentrating, then (A, B) is δ-non- concentrating of order 2, i.e., df L 2 (A,g) ≤ δ f H 2 (B,g) (3.8) for all f ∈ H 2 (B, g).
Proof. Let f ∈ H 2 (X, g). We apply (3.7) to the function ϕ = |df | g and calculate for any x ∈ X with df (x) = 0 and any V ∈ T x X: 

d V ϕ = d V » df , df g = 1 » df , df g ∇ V df , df g . ( 3 
df L 2 (A,g) = ϕ L 2 (A,g) ≤ δ ϕ H 1 (B,g) = δ Ä df 2 L 2 (B,g) + dϕ 2 L 2 (B,g) ä 1/2 ≤ δ Ä df 2 L 2 (B,g) + ∇ 2 f 2 L 2 (B,g) ä 1/2 ≤ δ f H 2 (B,g) .
Let us now check the non-concentrating property for balls of different radii.

3.9. Lemma. Assume that (X, g) has bounded geometry with harmonic radius r 0 ∈ (0, 1]. Let η ∈ (0, r 0 ) and ε ∈ (0, η/2) then (B ε (p), B η (p)) are τ n (ε/η)-non-concentrating for all p ∈ X, i.e.,

f L 2 (Bε(p),g) ≤ τ n Å ε η ã f H 1 (Bη(p),g)
for all f ∈ H 1 (B η (p), g). Here,

τ n (ω) := √ 8K (n+1)/2 ω resp. τ 2 (ω) := √ 8K 3/2 ω » |log ω| (3.10) if n ≥ 3 resp. n = 2.
Proof. We apply the results of [P12, Sec. A.2]. We first consider Euclidean balls: note that in polar coordinates the Euclidean metric is a warped product g eucl = ds 2 +s 2 h with density function (s) = s n-1 , where h is the standard metric on the (n -1)-dimensional sphere. We then apply [P12, Cor. A.2.7 (A.9b)] with s 0 = 0,

s 1 = ε, s 2 = η, a = η -ε.
We conclude

f 2 L 2 (Bε,g eucl ) ≤ 2η 2 (0, ε, η) Å f 2 L 2 (Bη,g eucl ) + 1 (η -ε) 2 f 2 L 2 (Bη,g eucl ) ã
, where f denotes the radial derivative and where

η 2 (0, ε, η) := ε 0 Å η t 1 (s) ds ã (t) dt ≤    ε 2 log(η/ε), if n = 2, ε 2 , if n ≥ 3, provided ε ≤ η/2 < e -1/2 η. In particular, ε 2 (η -ε) 2 = ω 2 (1 -ω) 2 ≤ 4ω 2
with ω = ε/η ≤ 1/2. We then use Corollary 3.6 (ii) to carry over the estimates to the original metric g, namely

f 2 L 2 (Bε(p),g) ≤ K n/2 f 2 L 2 (Bε,g eucl ) ≤ 8K n/2 [|log ω|]ω 2 f 2 H 1 (Bη,g eucl ) ≤ 8K n+1 [|log ω|]ω 2 f 2 H 1 (Bη,g) , where [|log ω|] appears only if n = 2.
Let us now consider a disjoint union of small balls as obstacle; in our setting, I is a discrete subset of X: 3.10. Definition. We denote by

B r (I) := ¶ x ∈ X d g (x, I) := inf p∈I d g (x, p) ≤ r © (3.11)
the r-neighbourhood of a subset I ⊂ X. We say that I ⊂ X is an r-separated set if for all p 1 , p 2 ∈ I, p 1 = p 2 , we have d(p 1 , p 2 ) ≥ 2r.

Let I be an η-separated set in X, then B ε (I) consists of |I|-many disjoint balls of radius ε ∈ (0, η) around each point in I.

Let us now check the non-concentrating property for the union of balls: 3.11. Proposition. Let (X, g) be a complete Riemannian manifold with bounded geometry and harmonic radius r 0 > 0. Let η ∈ (0, r 0 ) and ε ∈ (0, η/2). Assume that I is η-separated, then (B ε (I), B η (I)) are τ n (ε/η)-separated, i.e.,

f L 2 (Bε(I),g) ≤ τ n Ç ε η å f H 1 (Bη(I),g)
for all f ∈ H 1 (B η (I), g).

Proof. The estimate follows from

f 2 L 2 (Bε(I),g) = p∈I f 2 L 2 (Bε(p),g) ≤ p∈I τ n Ç ε η å f 2 H 1 (Bη(p),g) = τ n Ç ε η å f 2 H 1 (Bη(I),g)
using Lemma 3.9 and the disjointness of the balls in B η .

Neumann obstacles without an effect

4.1. Abstract Neumann obstacles without effect

Let (X, g) be a Riemannian manifold of dimension n ≥ 2 and let B ε ⊂ X be a closed subset for each ε ∈ (0, ε 0 ]. We will impose conditions on the family (B ε ) ε such that the Neumann Laplacian on X ε := X \ B ε converges to the Laplacian on X. Later in Subsection 4.2, B ε will be the disjoint union of many balls, and we show there that the abstract properties of the following definition can actually be realised: 4.1. Definition. We say that a family (B ε ) ε of closed subsets of a Riemannian manifold (X, g) is Neumann-asymptotically fading if the following conditions are fulfilled: (i) Non-concentrating property: We assume that (B ε , X) is δ ε -non-concentrating with δ ε → 0. (ii) Uniform extension property: We assume that there is a constant

C ext ≥ 1 such that E ε ≤ C ext for all ε ∈ (0, ε 0 ]
, where

E ε : H 1 (X ε , g) -→ H 1 (X, g)
is an extension operator, i.e., (E ε u) Xε = u for all u ∈ H 1 (X ε , g). 4.2. Remark. The uniform extension property of Definition 4.1 (ii) is closely related to a property of a (bounded) domain X in R n , called strongly connected in [START_REF] Marchenko | Homogenization of partial differential equations[END_REF], we refer to the discussion in Chapter 4, especially of Section 4.2 of this book, for further details.

We now show our first main result: 4.3. Theorem. Let (X, g) be an elliptically regular Riemannian manifold and (B ε ) ε be a family of closed subsets of X. If (B ε ) ε is Neumann-asymptotically fading, then the energy form d (X,g) of (X, g) and the (Neumann) energy form d N (Xε,g) of (X ε , g) with

X ε = X \ B ε are δ ε -quasi-unitarily equivalent of order k = 2 with δ ε = C ext C ell.reg δ ε .
Proof. We show that the hypotheses of Definition 2.1 are fulfilled. To do so, we first need to specify the spaces and transplantation operators. Namely, we set

J : H := L 2 (X, g) -→ H := L 2 (X ε , g), f → f Xε , J 1 : H 1 := H 1 (X, g) -→ H 1 := H 1 (X ε , g), f → f Xε J : H = L 2 (X ε , g) -→H = L 2 (X, g), u → ū, J 1 : H 1 = H 1 (X ε , g) -→H 1 = H 1 (X, g), u → E ε u,
where ū denotes the extension of u : X ε -→ C by 0 on B ε .

We check the hypotheses of Definition 2.1: We easily see that

J = J * , JJ = id H and J 1 = J H 1 .
Moreover, we have

Jf 2 L 2 (Xε,g) = Xε |f | 2 dg ≤ X |f | 2 dg = f 2 L 2 (X,g) ,
and if supp f ⊂ X ε , then Jf = f , hence we have J = 1; in particular, (2.3a) is fulfilled with δ = 0.

The first estimate in (2.3b) follows since (B ε , X) is δ ε -non-concentrating (see (3.7)), namely we have

f -J Jf L 2 (X,g) = f L 2 (Bε,g) ≤ δ ε f H 1 (X,g) .
Moreover, J 1 u -J u = 1 Bε E ε u (the uniform extension onto B ε ), hence

J 1 u -J u L 2 (X,g) = E ε u L 2 (Bε,g) ≤ δ ε E ε u H 1 (X,g) ≤ δ ε C ext u H 1 (Xε,g)
by the non-concentrating property (3.7) and the uniform extension property Definition 4.1 (ii). Finally,

d ε (J 1 f, u) -d(f, J 1 u) = df , d(E ε u) L 2 (Bε,g) ≤ df L 2 (Bε,g) d(E ε u) L 2 (Bε,g) ≤ δ ε f H 2 (X,g) C ext u H 1 (Xε,g) ≤ C ext C ell.reg δ ε (∆ (X,g) + 1)f L 2 (X,g) u H 1 (Xε,g) (4.1)
by the non-concentrating property (3.8), the elliptic regularity assumption and again the uniform extension property in Definition 4.1 (ii).

4.4. Remark. Note that we have to use the estimate against the graph norm on (X, g) (i.e., the unitary equivalence of order k = 2 and not of order k = 1), as the following example shows: Let X = B 1 (0) be the Euclidean ball of radius 1, B ε = B ε (0) and X ε = X \ B ε the annulus with inner radius ε and outer radius 1. We will show that Estimate (4.1) cannot hold if we replace the graph norm f 2 = (∆ (X,g) + 1)f by the quadratic form norm f 1 = f H 1 (X,g) : Namely, let u ∈ H 1 (X ε ) be given in polar coordinates (r, θ) ∈ (ε, 1) × (0, 2π) by u(r, θ) = r β cos θ for some β ∈ R. Then the harmonic extension u ε = E ε u (used also in the next Subsection 4.2) is given by u ε (r, θ) = ε β-1 r cos θ. Moreover, we have

d u ε 2 L 2 (Bε,g) = π • ε 2β , u ε 2 L 2 (Bε,g) = π 4 • ε 2(β+1) , d u ε 2 L 2 (Xε,g) = π(β 2 + 1) 2β • (1 -ε 2β ), u ε 2 L 2 (Xε,g) = π 2(β + 1) • (1 -ε 2(β+1) ),
hence we have (with f = u ε , the optimal case for the Cauchy-Schwarz estimate in (4.1))

d ε (J 1 f, u) -d(f, J 1 u) f H 1 (X,g) u H 1 (Xε,g) = d u ε 2 L 2 (Bε,g) u ε H 1 (X,g) u H 1 (Xε,g) → - 2β β 2 + 1 > 0 (4.2)
as ε → 0 provided β < 0. In particular, Estimate (4.1) cannot hold with the quadratic form norm instead of the graph norm of f = u ε . Note also, that we have chosen the harmonic extension, which minimises d u ε 2 L 2 (Bε,g) among all extensions with given boundary values u ε (ε, θ) = ε β cos θ, hence Estimate (4.1) cannot hold either for any extension operator E ε having the uniform extension property Definition 4.1 (ii), as (setting

f = E ε u) d ε (J 1 f, u) -d(f, J 1 u) f H 1 (X,g) u H 1 (Xε,g) = d(E ε u) 2 L 2 (Bε,g) E ε u H 1 (X,g) u H 1 (Xε,g) ≥ d u ε 2 L 2 (Bε,g) C ext u 2 H 1 (Xε,g) → -2β C ext (β 2 + 1) > 0.

Application: many small balls as Neumann obstacles

We now let B ε be the disjoint union of many balls: Assume that for each ε > 0 there is η ε such that ε/η ε → 0 (e.g., η ε = ε α for some 0 < α < 1). Assume additionally, that (I ε ) ε is a family of η ε -separated subsets I ε ⊂ X (i.e., different points in I ε have distance at least 2η ε , see Definition 3.10). We denote by

B ε := B ε (I ε ) and X ε = X \ B ε
the ε-neighbourhood of all points in I ε resp. its complement in X. Note that -by the η ε -separation -B ε consists of |I ε |-many disjoint balls around each point in I ε .

Let us first show the uniform extension property of Definition 4.1 (ii): We define

E ε : H 1 (X ε , g) -→ H 1 (X, g), u → u,
where u denotes the harmonic extension on B ε with respect to the Euclidean metric g eucl on B ε (the metric g eucl is defined in (3.4) on each small ball). We first need an estimate of the harmonic extension from an annulus to the inside ball: 4.5. Lemma. For 0 < ε ≤ 1, let B ε and B 2ε be Euclidean balls in R m of radius ε and 2ε around 0. For u ∈ H 1 (B 2ε \ B ε ), denote by u the harmonic extension of u into B ε . Then u ∈ H 1 (B ε ) and there exist constants C 0 , C 1 > 0 depending only on m such that

Bε | u| 2 ≤ C 0 B 2ε \Bε (|u| 2 + ε 2 |du| 2 ) and Bε | d u| 2 ≤ C 1 B 2ε \Bε |du| 2 for all u ∈ H 1 (B 2ε \ B ε ).
Proof. This result is proven in [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF]. For the convenience of the reader, we repeat the proof using a scaling argument:

For u ∈ H 1 (B 2ε \ B ε ) let f (x) = u(εx). Then f ∈ H 1 (B 2 \ B 1
) and we have the scaling behaviour

B 2 \B 1 |f | 2 = ε -m B 2ε \Bε |u| 2 and B 2 \B 1 |df | 2 = ε 2-m B 2ε \Bε |du| 2
We know that • : H 1 (B 2 \ B 1 ) -→ H 1 (B 1 ), f → f , is a continuous operator. In particular, there exists a constant C 0 > 0 depending only on m such that

B 1 Ä | f | 2 + |d f | 2 ä ≤ C 0 B 2 \B 1 Ä |f | 2 + |df | 2 ä
holds. After scaling, we obtain

Bε |ũ| 2 ≤ C 0 B 2ε \Bε Ä |u| 2 + ε 2 |du| 2 ä ≤ C 0 B 2ε \Bε Ä |u| 2 + |du| 2 ä
as ε ≤ 1. For the control of the derivative, we remark that the harmonic extension of the constant function 1 on B 2 \ B 1 is the constant function 1 on B 1 . Therefore, we can assume that u (and after rescaling also f ) is orthogonal to 1. If λ 1 denote the first positive eigenvalue of the Neumann problem of the standard annulus B 2 \ B 1 , we can conclude with the min-max principle and obtain

B 2 \B 1 |f | 2 ≤ 1 λ 1 B 2 \B 1 |df | 2 , so that B 1 |d f | 2 ≤ C 0 Å 1 + 1 λ 1 ã B 2 \B 1 |df | 2 .
Since both sides scale with the same order, rescaling gives

Bε |d u| 2 ≤ C 0 Å 1 + 1 λ 1 ã =:C 1 B 2ε \Bε |du| 2 .
4.6. Proposition. Assume that (X, g) is a Riemannian manifold with harmonic radius r 0 > 0. Assume additionally that I ε is 2ε-separated for each ε ∈ (0, r 0 /2). Then there is a constant

C ext > 0 such that u H 1 (B 2ε ,g) ≤ C ext u H 1 (B 2ε \Bε,g)
for all u ∈ H 1 (X ε , g) and all ε. In particular, there exists C ext ≥ 1 such that E ε ≤ C ext for all ε ∈ (0, r 0 /2), i.e., In particular, the extension operator given by E ε u = u has the unique extension property Definition 4.1 (ii).

Proof. We have

u 2 H 1 (Bε,g) = p∈Iε u 2 H 1 (Bε(p),g) ≤ K m/2+1 p∈Iε u 2 H 1 (Bε(p),g eucl ) ≤ K m/2+1 (C 0 + C 1 ) p∈Iε u 2 H 1 (B 2ε (p)\Bε(p),g eucl ) ≤ K (m+2) (C 0 + C 1 ) p∈Iε u 2 H 1 (B 2ε (p)\Bε(p),g) =: C 2 ext u 2 H 1 (B 2ε \Bε,g)
using Corollary 3.6 (ii) and Lemma 4.5.

The proof of the following theorem follows now directly from Theorem 4.3 together with Proposition 3.11 ((B ε , B η (I ε )) and hence (B ε , X) are τ m (ε/η ε )-non-concentrating, see Definition 4.1 (i)), Proposition 3.3 (for the elliptic regularity assumption) and Proposition 4.6 (Recall that, by Proposition 3.5, bounded geometry implies that the harmonic radius r 0 is strictly positive; we always assume that the separation distance η ε fulfills 0 < 2ε < η ε < r 0 for all ε small enough): 4.7. Theorem. Let (X, g) be a complete Riemannian manifold with bounded geometry, and let B ε = • p∈Iε B ε (p) be the union of η ε -separated balls of radius ε. If ε/η ε → 0, then (B ε ) ε is Neumann-asymptotically fading, i.e., the energy form d (X,g) and the (Neumann) energy form d N (Xε,g) are δ ε -quasi-unitarily equivalent of order k = 2 with

δ ε = O(ε/η ε ) if m ≥ 3 resp. δ ε = O( » log(η ε /ε)ε/η ε ) if m = 2.
The error depends only on m, K and κ 0 , see (3.3a) and (3.1). In particular, if

η ε = ε α with α ∈ (0, 1), then δ ε = O(ε 1-α ) if m ≥ 3 resp. δ ε = O(ε 1-α » |log ε|) if m = 2. 4.8. Example.
For a single ball of radius ε removed from a bounded subdomain X of R 2 with Neumann boundary conditions on the ball and Dirichlet ones on ∂X, Ozawa [START_REF]Spectra of domains with small spherical Neumann boundary[END_REF] proved that the difference of the perturbed and unperturbed k-th eigenvalue is of order ε 2 (he even gave a precise asympotic expression in terms of the k-th eigenfunction and its gradient). Hempel [Hem06] generalised the result to irregular obstacles and higher dimensions (obtaining the convergence rate ε m ). Our results (together with the eigenvalue convergence (1.2b) of Theorem 1.2) only give the weaker estimate O(δ ε ) = O(ε 1-0 ) for the eigenvalue difference. Here, notation δ ε = O(ε γ-0 ) means that there is τ 0 > 0 such that δ ε /ε γ-τ → 0 as ε → 0 for all τ ∈ (0, τ 0 ). 4.9. Remark. If α = 1, or, more generally, η ε /ε converges to a constant, then we do not expect that the Neumann Laplacian converges to the free Laplacian on X in general. If the balls are placed on a periodic lattice of order ε, and if their radius is ε, then we are in the setting of homogenisation (with Neumann boundary conditions), and we expect that the limit operator is no longer the free Laplacian, see e.g. [START_REF] Allaire | Homogenization of the Neumann problem with nonisolated holes[END_REF] and also [START_REF] Marchenko | Homogenization of partial differential equations[END_REF]Ch. 5] and very recently [START_REF] Suslina | Spectral Approach to Homogenization of Elliptic Operators in a Perforated Space[END_REF]. Suslina proved operator norm estimates for the resolvents on a periodic problem. Using a scaling argument, she works on an ε-independent space.

Dirichlet obstacles without an effect

Abstract Dirichlet obstacles without effect

Let us now consider the same problem, but with Dirichlet boundary conditions on the obstacles: 5.1. Definition. We say that a family (B ε ) ε of closed subsets of a Riemannian manifold (X, g) is Dirichlet-asymptotically fading (of order k ≥ 2) if there exists a sequence (χ ε ) ε of Lipschitz-continuous cut-off functions χ ε : X -→ [0, 1] with supp χ ε ⊂ X ε such that the following conditions are fulfilled:

(i) Non-concentrating property: We assume that (B + ε , X) is δ ε -non-concentrating with δ ε → 0, where B + ε := supp(1 -χ ε ). (It follows that B ε ⊂ B + ε .) (ii)
The cut-off function has moderate decay of order k ≥ 2, i.e., If B ε is a union of small balls, then this problem is the famous crushed ice problem of [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF], see below in Subsection 5.2.

T + ε : H k (X, g) -→ L 2 (T * B + ε , g), f → f B + ε dχ ε has norm T + ε = δ + ε → 0 as ε → 0. χ ε (x) x B ε B + ε B ε (p) B + ε (p) p
Our next main result is the following: 5.2. Theorem. Let (X, g) be an elliptically regular Riemannian manifold of order 2 and k and (B ε ) ε be a family of closed subsets of X. If (B ε ) ε is Dirichlet-asymptotically fading (of order k), then the energy form d (X,g) of (X, g) and the (Dirichlet) energy form

d D (Xε,g) of (X ε , g) with X ε = X \ B ε are δ ε -quasi-unitarily equivalent of order k with δ ε = max{δ ε , C ell.reg,2 δ ε + C ell.reg,k δ + ε }.
Proof. We show again that the hypotheses3 of Definition 2.1 are fulfilled, and specify the spaces and transplantation operators by

J : H := L 2 (X, g) -→ H := L 2 (X ε , g), f → f Xε , J 1 : H 1 := H 1 (X, g) -→ H 1 := H1 (X ε , g), f → χ ε f J : H = L 2 (X ε , g) -→H = L 2 (X, g), u → ū, J 1 : H 1 = H1 (X ε , g) -→H 1 = H 1 (X, g), u → ū,
where ū denotes the extension of u : X ε -→ C by 0 on B ε .

We check the hypotheses of Definition 2.1: We easily see that

J = J * , JJ = id H and J 1 = J H 1 .
As in the Neumann case, we have J = 1 and (2.3a) is fulfilled with δ = 0. The first estimate in (2.3b) follows from the non-concentrating property Definition 5.1 (i), namely we have

f -J Jf L 2 (X,g) = f L 2 (Bε,g) ≤ f L 2 (B + ε ,g) ≤ δ ε f H 1 (X,g) . Moreover, Jf -J 1 f = (1 -χ ε )f , hence Jf -J 1 f L 2 (Xε,g) = (1 -χ ε )f L 2 (Xε,g) ≤ f L 2 (B + ε ∩Xε,g) ≤ f L 2 (B + ε ,g) ≤ δ ε f H 1 (X,g) by the same argument. Finally, d(f, J 1 u) -d ε (J 1 f, u) = df -d(χ ε f ), du L 2 (T * B + ε ,g) ≤ (1 -χ ε )df , du L 2 (T * B + ε ,g) + f dχ ε , du L 2 (T * B + ε ,g) ≤ Ä df L 2 (T * B + ε ,g) + f dχ ε L 2 (T * B + ε ,g) ä du L 2 (T * B + ε ,g) ≤ Ä δ ε f H 2 (X,g) + δ + ε f H k (X,g) ä u H 1 (Xε,g) ≤ Ä C ell.reg,2 δ ε (∆ (X,g) + 1)f + δ + ε C ell.reg,k (∆ (X,g) + 1) k/2 f ä u H 1 (Xε,g) = (C ell.reg,2 δ ε + C ell.reg,k δ + ε ) f k u 1 by
the non-concentrating property together with Proposition 3.8 and the elliptic regularity assumption and the moderate decay property Definition 5.1 (ii).

Application: many small balls as Dirichlet obstacles

The obstacles are of the same kind as in Subsection 4.2. Let I ε be η ε -separated as before with 0 < η ε < r 0 for ε ∈ (0, ε 0 ) and some ε 0 > 0, where r 0 denotes the harmonic radius of (X, g). Let (•) + : (0, ε 0 ) -→ (0, r 0 ) be a function such that ε < ε + ≤ η ε /2 for all ε ∈ (0, ε 0 ). Let We now check the conditions of Definition 5.1 and need good cut-off functions. Define by h = h n the radially symmetric, harmonic function in dimension n given by

B + ε := B ε + (I ε ) = p∈Iε B ε + (p). χ ε (x) B ε (p) B + ε (p) B ηε (p) η ε ε + ε x x
h(s) :=      - 1 (n -2)s n-2 , n > 2, ln s, n = 2.
(5.1)

Note that h (s) = 1/s n-1 . Furthermore, let χ ε : X -→ [0, 1] be the radial cut-off function given by

χ ε (r) =            0, 0 ≤ r ≤ ε, h(r) -h(ε) h(ε + ) -h(ε) , ε ≤ r ≤ ε + 1, ε + ≤ r.
This function is Lipschitz-continuous. We define the cut-off function of Definition 5.1 by

χ ε (x) := χ ε (d(x, p)) for x ∈ B ηε (p) (5.2)
for each p ∈ I ε and extend it by 1 on X \ B ηε ; again χ ε is Lipschitz-continuous. Clearly, supp(1 -χ ε ) = B + ε and χ ε Bε = 0 by definition. 5.3. Remark. For the moderate decay property of Definition 5.1 (ii), we need to control f dχ ε L 2 (B + ε ,g) and will use Sobolev embedding theorems. If we stay in the L 2 -world, the order k must satisfy k > dim X/2 to have control of the L ∞ -norm of f by its H knorm, and we only need cut-off functions satisfying dχ ε L 2 (T * B + ε ,g) → 0 as ε → 0. The counterpart are stronger assumptions concerning the sectional curvature to control the norm of H k with the graph norm in H k (∆ (X,g) ) in Definition 3.1: typically, one needs uniform bounds on the derivatives of the sectional curvature up to order (k -2). We explain another approach in Remark 5.8.

In the sequel, we prefer to use only a lower bound on the Ricci curvature, using Hölder inequalities and the Sobolev embeddings given in Proposition A.1. For this argument, we need the estimate dχ ε Lq(T * B + ε ,g) → 0 as ε → 0 for some q, see Proposition 5.5. As proposed, we now want to use the Hölder estimate

f dχ ε L 2 (T * B + ε ,g) ≤ f L 2pn (B + ε ) dχ ε L 2qn (T * B + ε )
(5.3) with 1 ≤ p n , q n ≤ ∞ such that 1/p n + 1/q n = 1. For this estimates it is good that q n is as small as possible, but the Sobolev embedding forces that p n is not too large, at least for higher dimensions. This restriction leads us to introduce the following definition of p n and q n , namely

p m = n n -4 if n ≥ 5, p 4 = 2 β , p 3 = p 2 = ∞,
(5.4a)

q n = n 4 if n ≥ 5, q 4 = 2 2 -β , q 3 = q 2 = 1 (5.4b)
with β ∈ (0, 1] if n = 4, similarly as in [START_REF] Khrabustovskyi | Operator estimates for the crushed ice problem[END_REF]. 5.4. Lemma. The cut-off function χ ε at a ball B ε + (p) satisfies

dχ ε L 2qn (T * B ε + (p),g) = δε
for all p ∈ I ε , where

δε = O(ε 1-β ) if n ≥ 3 with β = β n        = 0, n ≥ 5, ∈ (0, 1), n = 4, = 1/2, n = 3, resp. δε = O(1/ » log(ε + /ε)) if n = 2.
Proof. We calculate

dχ ε 2qn L 2qn (T * B ε + (x),g) ≤ K qn+n/2 vol n-1 (S n-1 ) ε + ε |χ ε (r)| 2qn r n-1 dr = K qn+n/2 vol n-1 (S n-1 ) (h(ε + ) -h(ε)) 2qn ε + ε r (1-2qn)(n-1) dr =: ( δε ) 2qn using Corollary 3.6 (ii). If n = 2 the exponent of r in the integral is different to -1, thus δ2qn ε =            K qn+n/2 vol n-1 (S n-1 )(ε n-2qn(n-1) -(ε + ) (n-2qn(n-1)) ) (h(ε + ) -h(ε)) 2qn (2q n (n -1) -n) if n ≥ 3 K 2 2π (log ε + -log ε) if n = 2
by the definition of h in (5.1). The result follows.

We can now show the moderate decay property of Definition 5.1 (ii): 5.5. Proposition. Assume that (X, g) is a complete manifold with bounded geometry and let I ε be η ε -separated, then there exists δ + ε such that

f dχ ε L 2 (T * B + ε ,g) ≤ δ + ε f H 2 (∆ (X,g) )
for all ε > 0 with ε + ≤ η ε /4 and f ∈ dom ∆ (X,g) , where

δ + ε =      O ÅÅ ε ε + ã 1-β 1 ε + ã if n ≥ 3, O Ä 1/(ε + » log(ε + /ε)) ä if n = 2
with β = β n as in Lemma 5.4. In particular, if δ + ε → 0 as ε → 0, then the cut-off function has moderate decay of order k = 2, i.e., Definition 5.1 (ii) is fulfilled.

Proof. We have

f dχ ε 2 L 2 (T * B + ε ,g) = p∈Iε f dχ ε 2 L 2 (T * B ε + (p),g) ≤ p∈Iε f 2 L 2pn (B ε + (p),g) dχ ε 2 L 2qn (T * B ε + (p),g) ≤ C 2 Sob (ε + ) -2an δ2 ε p∈Iε f 2 H 2 (B 4ε + (p),g) ≤ C 2 ell.reg,2 C 2 Sob (ε + ) -2an δ2 ε =:(δ + ε ) 2 f 2 H 2 (∆ (X,g) )
by Hölder's inequality for the first inequality, Proposition A.1 and Lemma 5.4 for the second inequality and Proposition 3.3 for the last one.

Note that we have the integral estimate in Lemma 5.4 only for single balls, and used the supremum when considering all balls in the previous proof.

Recall that, by Proposition 3.5, bounded geometry implies that the harmonic radius r 0 is strictly positive; we always assume that the separation distance η ε fulfills 0 < 2ε < η ε < r 0 for all ε small enough. Recall that the exponent of ε in the following theorem has the form

1 -β 2 -β = 1 2 if n ≥ 5, 1 -β 2 -β ∈ (0, 1 2 ) for β ∈ (0, 1) if n = 4, and 1 -β 2 -β = 1 3 if n = 3,
where β = β n is defined in Lemma 5.4. 5.6. Theorem. Let (X, g) be a complete Riemannian manifold of bounded geometry. Moreover, let B ε = • p∈Iε B ε (p) be the union of balls of radius ε centred at the points of the η ε -separated set I ε . If n ≥ 3 assume that

ω ε := ε (1-β)/(2-β) η ε → 0 as ε → 0.
If n = 2 assume that

ω ε := 1 η ε » |log ε| → 0 as ε → 0.
Then (B ε ) ε is Dirichlet-asymptotically fading, i.e., the energy form d (X,g) and the (Dirichlet) energy form d D (Xε,g) are δ ε -quasi-unitarily equivalent (of order k = 2)

with δ ε = O( √ ω ε ) if n ≥ 3 and δ ε = O( » |log ω ε |ω ε ) if n = 2.
Proof. According to Definition 5.1, Theorem 5.2 and Proposition 5.5, we have to find

ε + such that δ ε = O(τ n (ε + /η ε )) → 0 and δ + ε = O((ε/ε + ) 1-β /ε + ) → 0. We set ε + = η ε √ ω ε .
First, we have ε + /η ε = √ ω ε → 0 and ε + → 0 by our assumption, hence

δ ε = O(τ n ( √ ω ε )) by Proposition 3.11. If n ≥ 3, then δ + ε is of order Å ε ε + ã 1-β 1 ε + = Å ε η ε ã 1-β 1 η ε • ω -(2-β)/2 ε = ω 2-β ε • ω -(2-β)/2 ε = ω (2-β)/2 ε .
Since β < 1 we have (2 -β)/2 ≥ 1/2, and the error term from

δ ε = O( √ ω ε ) wins, hence δ ε = O( √ ω ε ) as error in the quasi-unitary equivalence. If n = 2, then δ + ε is of order 1 ε + » |log ε| = 1 η ε √ ω ε » |log ε| = √ ω ε .
As a consequence,

(ε + ) 2 log Å ε + ε ã = (ε + ) 2 Å |log ε| + log ε + ã ≥ 1 2 (ε + ) 2 |log ε|, for ε ∈ (0, 1) as (ε + ) 2 log(ε + ) → 0 and (ε + ) 2 |log ε| → ∞. Finally, we have 1 ε + » |log(ε + /ε)| ≤ √ 2 ε + » |log ε| = √ 2ω ε .
In particular, the error term from δ ε wins again, and gives

δ ε = O( » |log ω ε |ω ε ).
We now make the previous theorem more explicit by assuming that η ε = ε α for some α ∈ (0, 1): 5.7. Corollary. Let (X, g) be a complete Riemannian manifold of bounded geometry. Moreover, let B ε = • p∈Iε B ε (p) be the union of balls of radius ε centred at the points of the η ε -separated set

I ε . Assume that η ε = ε α for α ∈ (0, 1/2) if n ≥ 4 and α ∈ (0, 1/3) if n = 3 and η ε = |log ε| -α if n = 2 for α ∈ (0, 1/2).
Then (B ε ) ε is Dirichlet-asymptotically fading, i.e., the energy form d (X,g) and the (Dirichlet) energy form d D (Xε,g) are δ ε -quasi-unitarily equivalent (of order k = 2) with

δ ε =              O(ε (1/2-α)/2 ), n ≥ 5, O(ε (1/2-α)/2-0 ), n = 4, O(ε (1/3-α)/2 ), n = 3, O(|log ε| (α-1/2)/2 log|log ε|), n = 2.
For the notation δ ε = O(ε γ-0 ) see the end of Example 4.8.

Proof. If n ≥ 3 we just have to assume that

ω ε = ε 1-β 2-β -α → 0 as ε → 0, and this is equivalent with 1-β 2-β > α. If n ≥ 5 this means 1/2 > α, if n = 3 it is 1/3 > α. If n = 4, we can choose β ∈ (0, 1) for given α ∈ (0, 1 2 ) such that 1 2 > 1-β 2-β > α;
the smaller we choose β, the better and closer the error δ ε comes to O(ε (1/2-α)/2 ). If n = 2, we have ω ε = |log ε| α-1/2 → 0 as ε → 0, since α ∈ (0, 1/2). The error term is then as given above.

5.8. Remark. Note that the critical parameter for the balls to fade is the capacity (see the discussion in [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF] or [START_REF] Khrabustovskyi | Operator estimates for the crushed ice problem[END_REF]). In our notation, the capacity of the balls of radius ε with η ε -separated balls (

η ε = ε α ) is vanishing if ε n-2 η n ε , i.e., if (n-2)/n > α for n ≥ 3, or |log ε| -1/2
η ε for n = 2. In particular, our result is optimal in small dimensions n ∈ {2, 3, 4}, as we can come arbitrary close to the critical separation parameter. If n ≥ 5, our result is no longer optimal (as we have to assume α < 1/2 instead of the optimal bound α < (n -2)/n). This is the price to pay for only staying at second order Sobolev spaces (see also Remark 5.3): If we actually use a result by [CGT82, Prop. 1.3] stating that

|f (x 0 )| ≤ c(n) N j=0 r -n/2+2j (∆ (X,g) ) j f L 2 (Br(x 0 )) ,
provided 0 < r ≤ min{|K| -1/2 , ι 0 }, where |K| is the maximal absolute value of the sectional curvature, ι 0 is the injectivity radius and N = [n/4] + 1. In particular, we can use a similar argument as in Proposition 5.5 to show that

f dχ ε 2 L 2 (T * B + ε ,g) ≤ p∈Iε f 2 L ∞ (B ε + (p),g) dχ ε 2 L 2 (T * B ε + (p),g) ≤ c (n)ε n-2 (ε + ) -n (∆ (X,g) + 1) N f 2 L 2 (X,g) as dχ ε 2 L 2 (T * B ε + (p),g) = O(ε n-2 ) uniformly in p ∈ I ε (for n ≥ 3). In particular, if we choose again ε + = η ε √ ω ε and η ε = ε α , we can find for any α ∈ (0, (n -2)/n) a sequence ω ε → 0 such that δ + ε = O((ε + ) -n/2 ε (n-2)/2 ) = O(ε (n-2-nα)/2 ω -n ε ) and δ ε = O( √ ω ε ).
As a consequence, the forms energy form d (X,g) and the (Dirichlet) energy form d D (Xε,g) are δ ε -quasi-unitarily equivalent with

δ ε = O(δ + ε +δ ε ), but now of order k = 2N = 2+2[n/4
]. Hence we obtain also the optimal ball density for dimensions n ≥ 5, but the price is a higher resolvent power (namely the power m = max{k -2, 0} = 2[n/4], see Definition 1.1 and Section 2) entering in the resolvent convergence.

The opposite effect of solidifying happens if α > (n -2)/n, see (6.4).

Solidifying obstacles for Dirichlet boundary conditions

Abstract solidifying Dirichlet obstacles

Let us now consider the case, when the obstacles fill out some closed subset S, on which the limit operator has a Dirichlet boundary condition (it "solidifies" on S). We assume that the obstacles B ε in some sense "converge" to S in the following sense: 6.1. Definition. We say that a family (B ε ) ε∈(0,ε 0 ] of closed subsets of a Riemannian manifold (X, g) is Dirichlet-asymptotically solidifying towards a closed subset S if there is a sequence (χ ε ) ε of Lipschitz-continuous cut-off functions χ ε : X -→ [0, 1] with supp(χ ε ) ⊂ X 0 := X \ S such that the following conditions are fulfilled: (we let X ε := X \ B ε ) (i) Non-concentrating property: We assume that (A ε , X ε ) is δ ε -non-concentrating of order 1 with δ ε → 0, and (A ε , X 0 ) is δ ε -non-concentrating of order 2 with δ ε → 0, where A ε := supp(dχ ε ) is an annulus region around the boundary of S. (ii) Spectrally solidifying: We assume B ε ⊂ S and that there is δε → 0 as ε → 0 such that u L 2 ( S\B ε ,g) ≤ δε u H 1 (Xε,g) for all u ∈ H1 (X ε , g) and ε ∈ (0, ε 0 ]. (iii) The cut-off functions χ ε have moderate decay in the sense that δ + ε := δ ε δ ε dχ ε ∞ → 0 as ε → 0, where δ ε and δ ε are given in (i). A sufficient condition for the spectral non-concentration property of Definition 6.1 (ii) is as follows (explaining also the terminology) (Rauch-Taylor [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF] say that such obstacles "become solid" in S). Proof. Note that the mentioned Laplacian is the operator associated with the quadratic form given by du 2 L 2 (T * ( S\B ε ),g) with domain u ∈ { f S\B ε | f ∈ H1 (X ε ) }. By the variational characterisation of the first eigenvalue, we have

λ ε = inf    S\B ε |du| 2 dg S\B ε |u| 2 dg u ∈ H1 (X ε ) \ {0}    .
From this characterisation via an infimum, we conclude

u L 2 ( S\B ε ,g) ≤ 1 √ λ ε du L 2 (T * ( S\B ε ),g) ≤ 1 √ λ ε u H 1 (Xε,g) .
As λ ε → ∞, we can choose δε = 1/ √ λ ε → 0 as ε → 0.

Remark.

There is a subtle point in Definition 6.1 (i) and (iii): if we would assume that (A ε , X 0 ) is δ ε -non-concentrating for the same δ ε = δ ε = δ ε , then δ + ε will most likely not converge to 0 as it contains the cut-off function, see also Remark 6.15 for details. This is why we have two different assumptions of non-concentration in Definition 6.1 (i).

In the applications below in Subsection 6.2 we show similarly as in Proposition 6.2 that (A ε , X ε ) is non-concentrating of order 1, see Proposition 6.7.

We extend our notion of elliptic regularity (Definition 3.1) of a manifold (X 0 , g) with boundary and Dirichlet boundary conditions as follows: We say that (X 0 , g) is elliptically regular, i.e., we have dom ∆ D (X 0 ,g) ⊂ H 2 (X 0 , g) and there is C ell.reg ≥ 1 such that f H 2 (X 0 ,g) ≤ C ell.reg (∆ D (X 0 ,g) + 1)f L 2 (X 0 ,g) for all f ∈ H 2 (∆ D (X 0 ,g) ) = dom ∆ D (X 0 ,g) , where ∆ D (X 0 ,g) denotes the Dirichlet Laplacian on (X 0 , g). c

Our next main result is as follows: 6.4. Theorem. Let (X, g) be an elliptically regular Riemannian manifold and (B ε ) ε be a family of closed subsets of X. If (B ε ) ε is Dirichlet-asymptotically solidifying towards S, then the Dirichlet energy form d D (X 0 ,g) of (X 0 , g) with X 0 = X \ S and the Dirichlet energy form d D (Xε,g) of (X ε , g) with X ε = X \ B ε are δ ε -quasi-unitarily equivalent of order 2 with δ ε = max{ δε , C ell.reg (δ ε + δ + ε )}. Proof. We show again that the hypotheses4 of Definition 2.1 are fulfilled. Here, X 0 ⊂ X ε , so extension by 0 and restriction are swapped. We set

J : H := L 2 (X 0 , g) -→ H := L 2 (X ε , g), f → f, J 1 : H 1 := H1 (X 0 , g) -→ H 1 := H1 (X ε , g), f → f J : H = L 2 (X ε , g) -→H = L 2 (X 0 , g), u → u X 0 , J 1 : H 1 = H1 (X ε , g) -→H 1 = H1 (X 0 , g), u → χ ε u,
where f denotes the extension of f : X 0 -→ C by 0 onto X ε , as X 0 ⊂ X ε .

We check the hypotheses of Definition 2.1: We easily see that

J = J * , J J = id H and J 1 = J H 1 .
As in the Neumann case, we have J = 1 and (2.3a) is fulfilled with δ = 0. The second estimate in (2.3b) follows from the spectral non-concentrating property Definition 6.1 (ii), namely we have

u -JJ u L 2 (X,g) = u L 2 ( S\B ε ,g) ≤ δε u H 1 (Xε,g) . Moreover, J u -J 1 u = ((1 -χ ε )u) X 0 , hence J u -J 1 u L 2 (X 0 ,g) = (1 -χ ε )u L 2 (X 0 ,g) ≤ u L 2 (Aε,g) ≤ δ ε u H 1 (Xε,g)
by the non-concentration property of (A ε , X 0 ) in Definition 6.1 (i) (implying the same property for (A ε , X ε ) as X 0 ⊂ X ε ). Finally,

d ε (J 1 f, u) -d(f, J 1 u) = ¨df , d((1 -χ ε )u) ∂ L 2 (T * Aε,g) ≤ df , (1 -χ ε )du L 2 (T * Aε,g) + df , u dχ ε L 2 (T * Aε,g) ≤ df L 2 (T * Aε,g) Ä du L 2 (T * Aε,g) + u L 2 (Aε,g) dχ ε ∞ ä ≤ δ ε f H 2 (X 0 ,g) Ä 1 + δ ε dχ ε ∞ ä u H 1 (Xε,g) ≤ C ell.reg (δ ε + δ + ε ) (∆ D (X 0 ,g) + 1
)f u 1 by the non-concentrating property of order 2 in Definition 6.1 (i) for the second last estimate and the elliptic regularity assumption and the moderate decay property (Definition 6.1 (iii)) for the last estimate.

Application: many solidifying small balls as Dirichlet obstacles

The obstacles are of the same kind as in Subsection 4.2 but denser: let now I ε be εseparated and let B ε = p∈Iε B ε (p) be the disjoint union of balls of radius ε. Before checking the conditions of Definition 6.1, we first need the following result: 6.5. Lemma (Rauch-Taylor [START_REF] Rauch | Potential and scattering theory on wildly perturbed domains[END_REF]). Assume that η > ε and that

A ε,η (0) := B η (0) \ B ε (0)
is an annulus with inner radius ε and outer radius η in Euclidean space R n . Denote by λ eucl ε the first eigenvalue of the Laplacian with Dirichlet boundary condition on the inner sphere, and Neumann on the outer sphere. Then there exists a constant C eucl > 0 (depending only on the dimension) such that

λ eucl ε ≥ C eucl ε n-2 η n for n ≥ 3 resp. λ eucl ε ≥ C eucl η 2 |log ε| for n = 2.
for all 0 < ε < η < r 0 . 6.6. Definition. We say that {B ηε (p)} p∈Iε is a uniformly locally finite cover of S if there is ε 0 > 0 and N ∈ N such that

| ¶ q ∈ I ε B ηε (p) ∩ B ηε (q) = ∅ © | ≤ N and S ⊂ B ηε = p∈Iε B ηε (p) (6.1)
for all q ∈ I ε and all ε ∈ (0, ε 0 ]. 6.7. Proposition. Assume that (X, g) is a Riemannian manifold with bounded geometry with harmonic radius r 0 > 0. Let ε, η ε ∈ (0, r 0 ) such that 0 < ε < η ε < r 0 . Assume that I ε is ε-separated and that (B ηε (p)) p∈Iε is a uniformly locally finite cover of S.

Then we have

u L 2 ( S\B ε ,g) ≤ u L 2 (Aε,η ε ,g) ≤ δε u H 1 (Xε,g) (6.2)
for all u ∈ H 1 (X ε , g), where A ε,ηε = B ηε \ B ε and δε = Cω ε for some constant C > 0 depending only on N , K and n and where

ω ε = » η n ε /ε n-2 (n ≥ 3) resp. ω ε = η ε » |log ε| (n = 2). (6.3)
In particular, if ω ε → 0 as ε → 0 then (B ε ) ε is spectrally solidifying (see Definition 6.1 (ii)).

Proof. Note first that S \ B ε ⊂ A ε,ηε , hence we have

u 2 L 2 ( S\B ε ,g) ≤ u L 2 (Aε,η ε ,g) ≤ p∈Iε u 2 L 2 (Aε,η ε (p),g) ≤ K n+1 C eucl • η n ε ε n-2 p∈Iε du 2 L 2 (T * Aε,η ε (p),g) ≤ N K n+1 C eucl =:C 2 • η n ε ε n-2 du 2 L 2 (T * Aε,η ε ,g)
using Corollary 3.6 (ii) and Lemma 6.5, where A ε,η (p) := Bη (p) \ B ε (p) is the annulus with inner radius ε and outer radius η around p and A ε,η := p∈Iε A ε,η (p).

6.8. Remark. If η ε = ε α with α ∈ (0, 1), then B ε is spectrally solidifying, i.e., ω ε = ε (nα-(n-2))/2 → 0 if and only if n -2 n < α. (6.4)
The value α 0 = (n -2)/n is actually the critical parameter for the ε α -separation of balls when the behaviour changes from fading (α ∈ (0, α 0 ) as in Section 5 to solidifying (α ∈ (α 0 , 1) as in this section. If α = (n-2)/2 and under suitable additional assumptions on the spacing of the obstacles, one obtains a different limit, due to a homogenisation effect, see e.g. [START_REF] Khrabustovskyi | Operator estimates for the crushed ice problem[END_REF]) and the references cited therein and in Section 1.2.

To check the remaining properties of Definition 6.1 we need some regularity on Y = ∂S.

6.9. Assumption (Geometric asumption on the boundary of the solidifying set). We assume that Y = ∂S is a smooth manifold with embedding ι : Y → X and induced metric h := ι * g, we assume also that Y admits a uniform tubular neighbourhood, i.e., that Y has a global normal unit vector field N (so Y is orientable) and that there is r 0 > 0 such that exp : Y × [0, r 0 ) -→ X, (y, t) → exp y (t N (y)) (6.5) is a diffeomorphism. 6.10. Remark. This assumption includes the fact that the principal curvatures of the hypersurface Y are bounded by a constant depending on 1/r 0 and κ 0 , see e.g. [HK78, Cor. 3.3.2]. But our assumption is stronger: we need also that Y does not admit infinitely close points which are far away for the inner distance.

Let ε → ε ∈ (0, r 0 ) be a function of ε such that ε → 0 as ε → 0 (to be specified later). Moreover set

A ε := { x ∈ X 0 = X \ S | d(x, S) < ε }.
Then A ε has tubular coordinates (r, y) ∈ (0, ε) × Y by Assumption 6.9.

Let χ : R -→ [0, 1] be a smooth function with χ(r) = 0 for r ≤ 0, χ strictly monotone on (0, 1) and χ(r) = 1 for r ≥ 1 and χ ∞ ≤ 2. We then define

χ ε (x) := χ Å d(x, S) ε ã (6.6)
as cut-off function. We clearly have dχ ε ∞ ≤ 2/ ε and A ε = supp(dχ ε ) ∩ X 0 Before using the cut-off function χ ε , we use Proposition 6.7 to show the following result: 6.11. Proposition. Assume that (X, g) has bounded geometry with harmonic radius r 0 > 0. Assume additionally that A ε ⊂ B ηε (6.7) (it then follows that A ε ⊂ B ηε \ B ε ) and that (6.2) holds. Then u L 2 (Aε,g) ≤ δε u H 1 (Xε,g) for all u ∈ H 1 (X ε , g) and ε ∈ (0, r 0 ) ( δε = O(ω ε ) and ω ε are given in Proposition 6.7) and (6.3), respectively. In particular, (A ε , X ε ) is δε -non-concentrating of order 1.

Proof. As

A ε ⊂ A ε,ηε = B ηε \ B ε , we have u L 2 (Aε,g) ≤ u L 2 (Aε,η ε ,g) ≤ δε u H 1 (Xε,g)
using (6.2). 6.12. Remark. Note that there is a hidden assumption on ε and η ε in A ε ⊂ B ηε : namely, as A ε is the ε-neighbourhood of S and B ε ⊂ S, such an inclusion can only be true if ε/η ε tends to 0 or at least is bounded. This assumption is the reason why we will not come arbitrarily close to the critical parameter for the spacing of the balls, where the behaviour changes from fading to solidifying, see Remark 6.19, 6.13. Proposition. Assume that (X, g) has bounded curvature with radius r 0 > 0. Assume additionally that (Y, h) is a complete smooth orientable hypersurface admitting a uniform tubular neighbourhood also with radius r 0 > 0. Then there is δ ε = O( √ ε) depending only on Y and r 0 such that

df L 2 (Aε,g) ≤ δ ε f H 2 (X 0 ,g)
for all f ∈ H 2 (X 0 , g) and ε ∈ (0, r 0 ). In particular, (A ε , X 0 ) is δ ε -non-concentrating of order 2.

Proof. From Lemma A.3 (with ε and r 0 instead of ε and ε + ) we conclude that (A ε , X 0 ) is δ ε -non-concentrating with δ ε = C r 0 ,Y » ε/r 0 , and Proposition 3.8 then yields

df L 2 (Aε,g) ≤ δ ε f H 2 (Ar 0 ,g) ≤ δ ε f H 2 (X 0 ,g) for all f ∈ H 2 (X 0 , g).
Recall that the parameter ω ε is defined in (6.3). 6.14. Corollary. Let ε → ε ∈ (0, r 0 ) be a function with ε → 0 as ε → 0. Assume that ω 2 ε / ε → 0 as ε → 0. Then the cut-off function χ ε has moderate decay, i.e., Definition 6.1 (iii) is fulfilled with δ

+ ε = O(ω ε / √ ε).
Proof. We have

δ + ε = δε δ ε dχ ε ∞ ≤ 2CC r 0 ,Y ω ε ε r 0 • 2 ε as dχ ε ∞ ≤ 2/ ε,
and hence δ + ε → 0 as ε → 0 by the assumption ω 2 ε / ε → 0. 6.15. Remark. There is a subtle point in the combination of arguments for the nonconcentrating property: If we used for Proposition 6.13 an analogue result as for Proposition 6.11 (with δ ε instead of δε also of order √ ε), then δ + ε would not tend to 0, as δ ε δ ε is of order ε, but dχ ε ∞ is of order ε -1 . So we need somehow also S \ B ε for the convergence. In particular, we need that A ε is covered by B ηε , which assures that the balls in B ε are not too far separated, see Remark 6.12. This is also the reason why we need the additional regularity on ∂S in Assumption 6.9.

We can now state our main result of solidifying of a union of many balls. 6.16. Theorem. Let (X, g) be a complete Riemannian manifold of bounded geometry with harmonic radius r 0 > 0 and let B ε = • p∈Iε B ε (p) be the union of ε-separated balls of radius ε. Assume that there are η ε ∈ (0, r 0 ) and ε ∈ (0, r 0 ) such that η ε → 0 and ε → 0 as ε → 0, and such that the following holds: (i) We have ω ε → 0, where

ω ε :=    » η n ε /ε n-2 , if n ≥ 3 and η ε » |log ε|, if n = 2.
(ii) There is a closed subset S ⊂ X with smooth boundary Y = ∂X admitting a uniform tubular neighbourhood of radius r 0 > 0; denote by A ε the (outer) εneighbourhood. Moreover,

ω ε √ ε → 0 as ε → 0.
(iii) We have B ε ⊂ S and A ε ⊂ B ηε , and the latter cover (B ηε ) p∈Iε is uniformly locally bounded (see (6.1)). Moreover, assume that ε η ε is bounded as ε → 0.

Then (B ε ) ε is Dirichlet-asymptotically solidifying towards S, i.e., the Dirichlet energy form d D (X 0 ,g) and the Dirichlet energy form d D (Xε,g) are δ ε -quasi-unitarily equivalent with

δ ε = O Å max ß ω ε , √ ε, ω ε √ ε ™ã .
(Recall that X ε = X \ B ε and X 0 = X \ S.)

Proof. By Proposition 6.11, (A ε , X ε ) is δε -non-concentrating of order 1 with δ ε = δε = O(ω ε ). Moreover, by Proposition 6.13, (A ε , X 0 ) is δ ε -non-concentrating of order 1 with δ ε = O( √ ε). In particular, Definition 6.1 (i) is fulfilled. For the elliptic regularity assumption we remark that the proof of Proposition 3.3 based on (3.2) works as well for the Dirichlet Laplacian. Definition 6.1 (ii) is fulfilled by Proposition 6.7 with δε = O(ω ε ), and finally, Definition 6.1 (iii) is fulfilled by Corollary 6.14 with δ + ε = 2 δε δ ε / ε = O(ω ε / √ ε). The total error δ ε is now of order as the maximum of δε , δ ε and δ + ε . 6.17. Remark. There is a competition between ε/η ε to be bounded and ω ε / √ ε → 0. Choosing simply ε = ε τ and η ε = ε α implies that τ ≥ α (by the boundedness of ε/η ε = ε τ -α ) and that (nα -(n -2))/2 > τ (as ω ε / √ ε = ε (nα-(n-2))/2-τ ) → 0). Together, these two requirements imply nα -(n -2) > 2α, i.e., α > 1. This is in contradiction with ε < η ε = ε α .

We therefore use the more advanced setting ε := ω 2γ ε for γ ∈ (0, 1) in the next corollary. This setting and the requirement that ω ε → 0 imply that ε → 0, δ ε = O(ω γ ε ) and

δ + ε = O(ω 1-γ ε
) as ε → 0. Only the requirements η ε → 0 and ε/η ε bounded remain to be checked.

Let us now specify η ε and ε and show that the assumptions of Theorem 6.4 can actually be fulfilled: 6.18. Corollary. Let (X, g) be a complete Riemannian manifold of bounded geometry with harmonic radius r 0 > 0 and let B ε = • p∈Iε B ε (p) be the union of ε-separated balls of radius ε. Assume that η ε = ε α with α ∈ (0, 1) and that the following holds:

(i) There is a closed subset S ⊂ X with smooth boundary Y = ∂X admitting a uniform tubular neighbourhood of radius r 0 > 0. (ii) we have B ε ⊂ S and A ε ⊂ B ηε , and the latter cover (B ηε ) p∈Iε is uniformly locally bounded (see (6.1)). Moreover, assume that n -2 n -1 < α < 1 if n ≥ 3 and 0 < α < 1 if n = 2.

Then (B ε ) ε is Dirichlet-asymptotically solidifying towards S, i.e., the Dirichlet energy form d D (X 0 ,g) and the Dirichlet energy form d D (Xε,g) are δ ε -quasi-unitarily equivalent with δ ε → 0 given in (6.8).

Proof. We check the conditions of Theorem 6.16. Let n ≥ 3. From

α > n -2 n -1 > n -2 n ,
we conclude that α > (n -2)/n and hence ω ε = ε (nα-(n-2))/2 → 0 as ε → 0. If n = 2, then ω ε = ε α |log ε| → 0 for any α > 0. In particular, Theorem 6.16 (i) is fulfilled. For Theorem 6.16 (ii), we set ε := ω 2γ ε for γ > 0, then ε → 0 as before. Moreover,

ω ε √ ε = ω 1-γ ε → 0 as ε → 0 provided γ < 1.
For the final requirement Theorem 6.16 (iii), we specify γ ∈ (0, 1): If n ≥ 3 and α > (n -2)/(n -1), then ε η ε = ε (nα-(n-2))γ-α = O(1) ⇐⇒ (nα -(n -2))γ ≥ α, ⇐⇒ γ ≥ α nα -(n -2) .

The latter can only be true for some γ < 1 if and only if

1 > α nα -(n -2) ⇐⇒ α > n -2 n -1 .
If n = 2, then ε η ε = ε α(2γ-1) |log ε| γ = O(1) ⇐⇒ γ > 1 2 for any α > 0. From Theorem 6.16 we conclude the result with error of order

δ ε = O Ä ω max{γ,1-γ} ε ä .
(6.8) 6.19. Remark. Unfortunately, the condition α > n -2 n -1 is not the optimal one, namely α > (n -2)/n. Note that the condition comes from the boundedness of ε/η ε in Theorem 6.16 (iii).

We now argue as in (3.9) and estimate |dϕ| g ≤ |∇ 2 f | g , hence we have f Lp(Br(x),g) ≤ C(p, K) r -2 f H 2 (B 4r (x),g) for all f ∈ H 2 2 (X, g) and x ∈ X with C(p, K) = C(p , 2, K)C(p, p , K) and p n = p/2 = (n -4)/n. For small dimensions, we can use the following special Sobolev embeddings results: there exists a constant C > 0 such that f L∞(B 1 (0)) ≤ C f H 1 q (B 2 (0)) , f L∞(Br(0)) ≤ r -n/q C f H 1 q (B 2r (0))

(A.3) f Lp(B 1 (0)) ≤ C f H 1 n (B 2 (0)) , f Lp(Br(0)) ≤ r n/p-1 C f H 1 n (B 2r (0)) (A.4)
for all f ∈ H 1 q (B 2 (0), g eucl ) and q > n resp. q = n and p ∈ [n, ∞), see [Ada75, Thm. 5.4]. For n = 4, choose p = 4 and p ≥ 4, then we have, applying (A.4) and using the assumption of bounded geometry, f Lp(Br(x),g) ≤ C(p, K) r 4/p-2 f H 2 (B 4r (x),g) for all f ∈ H 2 2 (X, g) and x ∈ X. We hence choose p 4 = p/2 = 2/β with β ∈ (0, 1]. For n = 3, choose p = 6 and p = ∞, then we have, applying (A.3) using the assumption of bounded geometry, f L∞(Br(x),g) ≤ C(∞, K) r -3/2 f H 2 (B 4r (x),g) . for all f ∈ H 2 2 (X, g) and x ∈ X. Finally, for n = 2, choose p = 4 and p = ∞, then f L∞(Br(x),g) ≤ C(∞, K) r -1 f H 2 (B 4r (x),g) for all f ∈ H 2 2 (X, g) and x ∈ X. A.2. Remark. If we apply directly the Sobolev embedding theorem [Ada75, Thm. 5.4] for Euclidean balls, then we would obtain an estimate f L 2p (B 1 (0),g eucl ) ≤ C p,n f H 2 (B 1 (0),g eucl ) for some C p,n > 0 and after a scaling argument we obtain f L 2p (Br(0),g eucl ) ≤ C p,n r n/(2p)-n/2 f H 2 (Br(0),g eucl ) for all r ∈ (0, 1] and f ∈ H 2 (B r (0), g eucl ). But then, we need an estimate of the Euclidean derivative

|∇ 2 f | 2 in terms of |∇ 2 g f | 2 g , but (∇ 2 g f ) ij = ∂ ij f -k Γ k ij ∂ k f
, hence we would need additional assumptions on the derivative of the metric (entering in the Christophel symbols Γ k ij ). A.3. Lemma. Assume that (X, h) has bounded geometry with harmonic radius r 0 > 0 and that (Y, h) is a complete orientable submanifold of codimension 1 in X (a hypersurface). We assume that Y admits a uniform tubular neighbourhood (as defined in Assumption 6.9) also with radius r 0 > 0 Let ε and ε + such that 0 < ε < ε + < r 0 ≤ 1. Then there is C r 0 ,Y > 0 depending only on Y and r 0 such that

f L 2 (Bε(Y ),g) ≤ C r 0 ,Y Å ε ε + ã 1/2 f H 1 (B ε + (Y ),g)
for all f ∈ H 1 (X, g).

Proof. In the coordinates defined by exp in (6.5) the metric is of the form dt 2 + h(t) where h(t) is metric on Y equal to h at t = 0. We then apply [P12, Lem. A.2.16] with a = ε and b = ε + and obtain that ([0, ε] × Y, [0, ε + ] × Y ) is 2(ε/ε + )-non-concentrating (provided ε + < 1). Moreover, (B ε (Y ), g) is an almost product in the sense of App. A.2 in [P12], and the relative distortion factor is √ C r 0 ,Y .

do with the obstacles. We believe that this makes the definitions 4.1, 5.1 and 6.1 more clear. The "elliptic regularity" of a manifold now is in Definition 3.1. We unifed the notation "quasi-unitary" (always with "-") We also corrected some minor typos. Some parts in the latex-diff file appear red or blue just because we changed some internal labels.

Figure 1 .

 1 Figure 1. Dark grey: the obstacle set B ε (consisting here of the disjoint union of balls B ε (p) as in Subsection 5.2); dark and light grey: the set B + ε (again consisting of the disjoint union of balls B + ε (p)), and a profile of the cut-off function χ ε (dotted line, 0 on B ε , 1 outside B + ε ).

Figure 2 .

 2 Figure 2. The obstacle (union of balls) of radius ε (dark grey); the separation balls (very light grey and dotted balls) of radius η ε and the intermediate balls (light grey and dashed) of radius ε + .

Figure 3 .

 3 Figure3. The solidifying part S (light grey and dotted) with the annulus region A ε (middle dark grey and dotted) and the obstacles B ε inside (dark grey balls); the larger balls B ηε (dashed lines) for a uniformly locally finite cover of the annulus region and the solidifying part S.

  and H k is the completion of H with respect to the norm • k for k < 0. Obviously, the scale of Hilbert spaces for k = 1 and its associated norm agrees with H 1 and • 1 defined above (see[START_REF]Spectral analysis on graph-like spaces[END_REF] Sec. 3.2] for details). Similarly, we denote by H k the scale of Hilbert spaces associated with ∆.

  .9) We conclude |d V ϕ| ≤ |∇df | g |V | g by the Cauchy-Schwarz inequality. In particular, |dϕ| g ≤ |∇df | g = |∇ 2 f | g , and this inequality (also called Kato's inequality) is also true if df (x) = 0. Inequality (3.7) now yields

In our applications here, we set J = J * .

Most of the results are also true for incomplete manifolds, but then we have some more technicalities with fixing different boundary conditions and with elliptic regularity. In order to keep this presentation readable, we simply assume that the manifold is complete.

Note that the Dirichlet fading case is in some sense dual to the Neumann case, as here, J 1 needs a (more complicated) cut-off function and J 1 is simply the extension by 0.

Note that the Dirichlet solidifying case is in some sense dual to the Dirichlet fading case: Here, we have again X 0 ⊂ X ε , hence J 1 is more complicated (as in the Neumann fading case).
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Appendix A. Sobolev estimates on balls on manifolds A.1. Proposition. Assume that (X, g) is complete and has bounded geometry with harmonic radius r 0 > 0. Then there is a constant C Sob > 0 such that f L 2pn (Br(x),g) ≤ C Sob r -an f H 2 (B 4r (x),g) for all x ∈ X, r ≤ r 0 /4 and f ∈ H 2 (B 4r (x), g), where

Proof. The Sobolev embedding theorem in R n states that

) is a continuous embedding provided 1/p = 1/q -1/n (see e.g. [START_REF] Adams | Sobolev spaces[END_REF]Thm. 5.4] or [Heb99, Thm. 2.5]). Thus, using a cut-off function we conclude that there exists a constant C p,q > 0 such that

for all f ∈ H 1 q (R n ). By a scaling argument we conclude that

for all f ∈ H 1 q,loc (R n ). Finally, by the hypothesis of bounded geometry, we obtain

for all f ∈ H 1 q,loc (X, g) and x ∈ X as soon as 2r ≤ r 0 . To obtain the desired estimate we have to apply this argument twice.

If n ≥ 5, let p and p be such that

Let f ∈ H 2 2 (X, g), and r ≤ r 0 /4. We know already that f Lp(Br(x),g) ≤ C(p, q, K) r -1 f H 1 p (B 2r (x),g) . Moreover, applying (A.2) to the function ϕ = |df | we obtain

Comments to the referee

First, we would like to thankt the anonymous referee for carefully reading our manuscript and giving many helpful suggestions.

1. Indeed, the literare was rather poor in the first submitted version. We have added all references the referee mentioned (and even some more).

We also added some comments concerning the eigenvalue expansion: we can also get eigenvalue estimates as in previous works, but it seems that for a single ball, they are not optimal: (Thanks to the referee to point out this question!)

• we added the eigenvalue convergence statement of Khrabustovskyi-Post:18 in (1.2b) in Thm. 1.2; • we added/rewrote the second paragraph in Section 1.2 ("Previous works") • We added Example 4.8. 2. We added a comment on the [BCD16]-paper (last paragraph before Section 1.3):

indeed, the referee is right, in the fading case, we can place the obstacles also along a line (or curve), as far as the separation distance η ε fulfils the requirements of Thms. 4.7 and 5.6 (better apply the results for balls here, not the general ones Thms. 4.3 and 5.2). Thanks also for this observation! 3. We commented on the asymmetry in Remark 2.7. This asymmetry is actually crucial! 4. We changed Remark 2.3 (ii) and explained how the classical result of Kato is a special case of ours. 5. We removed the proof of (old) Prop. 3.3; actually, its result was used on (old) Prop. 3.2. We now formulated it as a new Prop. 3.3, referring to the new Definition 3.1 (see also the text below this list). 6. We added a short proof of Prop. 2.5. 7. We added an explanation of "harmonic charts" (Def. 3.4) 8. We added some text before Def. 3.7 explaining the notion "non-concentrating" (actually, there was some text, but probably not clear enough). 9. We added a sentence just before (new) Def. 3.10 (not inside Def. 3.10, as it is only needed in the second part). 10. This is a very good remark! We actually can construct a pair (X, B ε ) not fulfilling the uniform extension property: Let X = (R/Z) 2 be the (flat) 2-dimensional torus, and B ε = (-ε, ε) × S 1 . One can check that the extension operator (extending harmonically) has norm at least of order 1/ε (use as function u on X \B ε a function with value 1 at x = ε and -1 at x = -ε for (x, y) ∈ X).

Clearly, vol B ε → 0. We could include this example if wanted. It actually turned out more difficult to find a counterexample to the nonconcentrating property: maybe one can even show (under some mild conditions) that if vol B ε → 0, then "non-concentrating" holds with δ ε → 0. We are not aware of a proof, nor a counterexample, so we would like to leave this question open.

We could add a comment near (new) Def. 3.10 if wanted. 11. We added the references not in Remark 6.8, but in the introduction (and referred to it in Rem. 6.8). 12. We also cited Rauch's nice lectures in the introduction now. We also made some other little changes: we took the elliptic regularity condition out of our "fading Neumann/Dirichlet" and "solidifying" condition, as this has nothing to