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Abstract. Redirection Detection Thresholds (RDTs) are defined to rep-
resent the limits of undetectable gains and serve as important input
parameters for redirected walking algorithms. However, it is not trivial
to get a user’s RDT estimation in a few trials with existing methods
such as the commonly used Method of Constant Stimuli (MCS). In aim
to achieve efficient RDT estimation, we chose a classic psychophysical
method - the Method of Adjustment (MoA), and compared it against
MCS with a series of within-subject experiments respectively on trans-
lation, rotation and curvature gains. The results show that MoA gets
overall similar RDT estimations with MCS over the same population,
except for some systematic differences on translation and rotation gains.
Moreover, MoA (with 20 trials) saves about 33% experiment time when
compared against MCS, and has the potential to save more as the results
of MoA remain relatively stable when the number of trials decreases. Fur-
ther studies are needed to compare MoA with adaptive methods and to
discover the potential relationship between RDTs and perception traits
at individual level.

Keywords: Navigation · Redirected Walking · Detection Threshold ·
Method of Adjustment.

1 Introduction

Exploring large virtual worlds by natural walking within limited physical work-
space is still an open research problem in Virtual Reality and related fields.
Unlike walk-in-place [31] or other motion-based steering metaphors [2], natural
walking is considered to yield best subjective presence [32].
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Besides sophisticated walking hardware, many software solutions were de-
veloped to enable natural infinite walking with lower cost and easier hardware
deployment [30]. Most existing techniques either have limited applicable vir-
tual scenes, or somehow interrupt users’ ongoing task which may lead to the
break of presence. In searching for redirection methods that minimize artificial
interventions during walking, Razzaque et al. [24] developed another method
called redirected walking. It allows users to walk through a large virtual world
while keeping their real-world path inside a much smaller region than the virtual
counterpart. It leverages users’ tolerance of subtle visual-vestibular conflicts to
decouple their virtual and physical paths while a user walks in the virtual en-
vironment. In general, three types of gains - translation, rotation and curvature
gains [29] - can be allocated at specific moments by algorithms using reactive [11]
or predictive control strategies [16].

Redirected walking has been actively developed and is pushed forward by
advances from both virtual reality and science of perception for more than ten
years [20]. Besides designing algorithms for optimal gain distribution during
walking, the main question to be answered for redirected walking is - how much
can we redirect the users before they notice the gains? To answer this question,
the Redirection Detection Thresholds (RDTs) are defined to represent the limits
of undetectable gains and serve as important input parameters for redirected
walking algorithms. Any type of redirection gain applied at a given moment shall
not go over the corresponding RDT in order to remain imperceptible (although
being perceptible will not necessarily lead to the break of presence as shown
recently [27]).

To understand the mechanism of gain detection, existing studies begun by
measuring RDTs with psychophysical experiments [23]. Since the comprehensive
study by Steinicke et al. [28], many follow-up studies repeated the measurement
of RDTs with the same estimation method, but under different experimental
conditions [14]. The mainstream estimation method used in these experiments is
the Method of Constant Stimuli combined with a Two-Alternative Forced Choice
task (MCS-2AFC). The MCS can help us to draw the whole psychometric curve
for a given subject, but at the cost of large number of trials.

The use of MCS as a threshold estimation method leads to several prob-
lems due to its high time cost: first, it is difficult to scale up the experiments
by involving more subjects or testing different factors that may have potential
influence on RDTs. Second, it is difficult, even impossible to collect data from
people having trouble with long-exposure VR experience (e.g. cybersickness).
Moreover, as the RDTs appear to be user-dependent [1], a time-saving RDT
evaluation method can help to provide users with personalized RDTs through
calibration instead of the average thresholds from all users. As a consequence,
we need a more time-efficient evaluation method that allows us to make quick
estimation of RDTs.

In this paper, we present a series of experiments using a classical psychophys-
ical method - the Method of Adjustment (MoA) to make quick assessment of
RDTs for redirected walking. The reason for choosing MoA is that it is intu-
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itively appealing, easy to set up, and in general requires much fewer test trials
than other classical or adaptive psychophysical methods.

We conducted a group of experiments using MoA and another group with
MCS-2AFC on the same group of subjects. Through the comparison, the goal is
not to find the ”better” method for RDT estimation, but rather to see whether
a time-efficient method like MoA yields similar results with MCS over the same
population, despite their inherent methodological differences. The experimental
design and preliminary results were briefly reported in [5]. Here we detail all
the experimental settings and conditions, along with results and in-depth dis-
cussions, that shall serve as a basis for future studies. Moreover, with the aim of
understanding the between-user variability of RDTs, we report a series of tests
we conducted to collect users’ perception traits related to space and motion. We
conclude that further correlation analyses between such perception traits and
RDT identification tests are necessary.

2 Related Work

The study of RDTs actually concerns the measurement of subjective sensation
in response to physical stimuli, so we can use psychophysical theories and tools
to get estimations of RDTs.

In fact, the estimation of RDTs is more complex than other perception-
related tasks (e.g. size or color discrimination) as we are comparing the stimuli
from visual and non-visual channels - at least three different sensory channels (vi-
sual, vestibular and proprioceptive) of human sensorimotor system are involved
in the walking process.

Here we first briefly present the three classical psychophysical methods, then
describe in detail how they have been applied for the estimation of RDTs, and
finally some existing observations on the between-subject variation of RDTs.

2.1 Threshold Estimation in Psychophysics

Threshold estimation is one of the fundamental tasks in Psychophysics. Two
types of thresholds are defined: Absolute Threshold (or Absolute Limen) - the
intensity at which a stimulus becomes detectable, and the Difference Threshold
(or Difference Limen) - the difference in intensities at which an observer can
notice the differences.

No matter the type of threshold that we are targeting, threshold estimation
experiments are composed of tasks and sampling methods [7]:

– The task: it can be either a detection (“yes/no” questions) or discrimination
(e.g. forced choice) task. In general forced choice is considered more robust
as compared to “yes/no” questions by eliminating response bias.

– The sampling methods: they define the way that stimuli intensities are pre-
sented to the subject. The three classical sampling methods are the Method
of Constant Stimuli (MCS), the Method of Limits (MoL) and the Method
of Adjustment (MoA).
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MCS is characterized by large number of trials with equally spaced levels
of stimulus intensities in a randomized order, whereas MoL uses alternate as-
cending and descending trials and the threshold is taken as the average of the
transition points from each series. MoA is quite similar with MoL in term of
intensity sampling, except that the subjects are given direct control of the stim-
ulus intensity [8]. Being the most intuitive and efficient method among the three,
MoA is often used to get initial estimates of thresholds.

It is known that threshold values depend in part on the employed experi-
mental method [10]. Many studies [22,34] reported the difference of threshold
values obtained with these methods for different research purposes, but were
careful about their recommendations on choosing the “best” method because
there was no common rule found for the thresholds and the results seemed to be
experiment-dependent.

2.2 RDT Estimation Overview

With the inherent complexity of walking, it is unlikely that one could get a clear
picture of the whole process from a single experiment, our knowledge about
RDTs had grown incrementally as more experiments were conducted.

Razzaque [23] conducted several initial experiments on RDT estimation,
mostly on scene rotation detection with adaptive 2-track staircase methods (20
trials). These experiments were conducted with limited number of subjects and
trials, and the results turned out to have wide confidence interval.

Steinicke et al. [28] conducted the first formal study on RDT evaluation by
a series of psychophysical experiments in which RDTs for translation, rotation
and curvature gains were tested separately. The evaluation method used was
a combination of MCS and 2AFC. They describe the experiments as 2AFC
experiments for simplicity (as commented by Grechkin et al. [9], the 2AFC used
here is actually a kind of pseudo-2AFC task since subjects didn’t choose between
a test signal and a reference signal as in traditional 2AFC tasks), and found
that the detection thresholds for translation gain were [0.86, 1.26], similarly the
detection thresholds for rotation gains were [0.67, 1.24] and a curvature gain of
no more than 0.045 was considered unnoticeable.

Many following experiments employed the MCS-2AFC method for RDT es-
timation, but instead of studying all three kinds of gains, they often focused on
one type of redirection gain and found that RDTs could vary under different
testing conditions [33,14]. For example, the threshold for translation gain was
smaller with the presence of virtual feet [12], the threshold for rotation gains
was different when users were sitting in a wheelchair [3], or exposed to different
level of visual densities [21]. For the curvature gains, the corresponding threshold
could interact with factors such as ambient noise [23], walking speed [17] and
cognitive load [4], etc.

It would be interesting to scale up the experiments mentioned above for all
types of redirection gains, or to check the interaction between these factors.
However, the MCS-2AFC method is too time consuming for such purpose. So
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researchers started to work with more light-weight adaptive methods. For exam-
ple, Grechkin et al. [9] studied the interaction between translation and curvature
gains by using Green’s maximum likelihood procedure, which is a variant of the
adaptive method combined with a “yes/no” task. Nguyen et al. [19] used a two
interleaved 2AFC task combined with a three-down/one-up staircase method
with fixed step size for left and right directions.

The adaptive methods are surely more efficient than MCS as they require
less trials, but it is more complex to make design choices with numerous variants
and parameters as compared to MCS and MoA. Another potential bias using
adaptive methods is that participants are less likely to detect large gains when
the gain value increases progressively from trial to trial, because it is known
that users adapt to increasing redirection gains to become less sensitive to the
manipulation over time [9]. Considering the two drawbacks that we just high-
lighted for adaptive methods, we choose to study the usability of MoA for the
estimation of RDTs.

2.3 The Between-subject Variability of RDTs

An observation can be made from existing studies that the reported RDTs to
some extent all differ from one to another, which leads researchers to look into
the exact cause of such diversity. Besides methodological differences, Nguyen
et al. [19] proposed to put different factors into two groups: intrinsic and ex-
trinsic. Intrinsic factors are specific to a person’s perception trait (e.g. visual
dependence, sensitivity to visual-vestibular conflict, etc.), while extrinsic factors
include user-related factors (engagement, cognitive load, etc.), environment de-
sign (e.g. presence of virtual feet, visual density, etc.) and hardware setup (HMD
intrinsics, tracking fidelity, etc.) [1].

Recent research work has just begun to study the between-subject variability
of RDTs. For example, Nguyen et al.’s experiment [19] shows that on average
women have higher detection thresholds for curvature gains than men. Rothacher
et al. [26] find that the threshold for curvature gains is positively correlated with
a user’s visual dependency, though they did not test other types of redirection
gains in this experiment.

The study of the relationship between intrinsic factors and RDTs is not
only useful for building a user-specific profile in order to provide better user
experience, but can also help us to understand the underlying model of sensory
fusion during redirected walking.

3 Experiments

Since MoA is an efficient classical sampling method in psychophysics, but has
not yet been formally used in the context of RDT estimation, we designed the
following experiments to see how its results differ from those of MCS-2AFC
(which is believed to be the most reliable method, and hereafter referred as MCS
for simplicity) on the same population. In addition, we examined the correlation
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between each user’s perception trait and their RDTs in order to see how RDTs
differ between individuals. Experimental protocol and results for all experiments
are presented in this section.

3.1 Participants

In total 24 graduate students participated our experiments (17 male and 7 fe-
male) with an average age of 23 years old (+/- 0.8). All participants have normal
or corrected to normal vision. Besides age and sex, we collected their familiarity
with video game and virtual reality devices using questions with a 4-point rating
scale, ranging from 1 (none), 2 (a little), 3 (sometimes), 4 (often). The average
score of video game experience is relatively high (mean=3.04, sd=1.04) since only
two of them have never played video games. On the contrary, most participants
have little experience with virtual reality devices (mean=1.67, sd=0.87).

All participants had no experience with redirected walking and were naive
about the purpose of the experiments. We used a within-subject design for
the comparison between results from experiments with MCS and MoA. These
two groups of experiments were counterbalanced to reduce order effects and
were arranged on different days. Each group of experiments contained three
sub-experiments (translation, rotation and curvature) that were also counter-
balanced. Subjects participated a training session of about 10 minutes to get
familiar with the hardware setup and experiment procedures, they were allowed
to take breaks at any time during the experiments. Although no official research
ethics committee is yet available in our establishment, all participants were re-
cruited and treated in accordance with the principles outlined in the Declaration
of Helsinki.

3.2 Experimental Setup

The experiments were carried out in a lab room with a standard commercial
VR setup (HTC Vive Pro) that contains an HMD (1400 × 1600 pixels per eye,
90Hz refresh rate, 110 field of view) and two handheld controllers. During the
experiments, subjects wore the HMD and held one controller as input device
(see Figure 1).

The two base stations used for tracking were placed at a distance of 5.5m
(slightly larger than the specified 5m limit) forming a valid rectangular tracking
zone of 3m × 4m with a safety margin of 0.3m to the walls. Users were able to
cover the whole tracking area with a cable (5m) attached to the headset from a
workstation positioned on one side of the workspace.

The workstation (Intel Core i7 7700K CPU, 32GB RAM, GeForce GTX
1080Ti) was fully VR compatible and was able to run the simulation at 90Hz.
The virtual scene was a futuristic city3 rendered by Unity 3D. Only a small
part of the whole city was used for our experiments (see Figure 2), its asymmet-
ric configuration and many animation effects in the surroundings allowed users

3 https://assetstore.unity.com/packages/3d/environments/sci-fi/pbr-sky-city-62261
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Fig. 1. A user walked in the physical workspace with an HMD and a handheld con-
troller.

to quickly locate themselves with respect to the landmarks around. We coded
the redirection control and the experiment process with C# scripts on top of
SteamVR components.

3.3 Measures

RDT estimation In existing literature, RDTs were mostly reported in form of
a tuple of lower and upper detection limits. This form is intuitive as it directly
shows the usable interval of undetectable gains for the redirection controller.
Here we took a different representation of the threshold: a combination of the
Point of Subjective Equality (PSE) and the Interval of Uncertainty (IU) [6].

The RDT for a user could be written in form of [PSE-IU/2, PSE+IU/2].
As found in previous studies, the PSE seldom meets exactly the theoretical
equivalence point (i.e. gain=1) which leads to a bias (positive or negative) on
gain perception, for example, a user with a PSE higher than 1 tends to be
more sensitive to smaller gains (< 1) than larger ones (> 1). The IU is another
important factor characterizing user’s gain detection ability, for example, a user
with high IU provides more room for maneuver to the redirection system than
those who have lower ones.

MCS and MoA employ very different ways to compute PSE and IU. The
former gets PSE and IU indirectly from the fitted psychometric curve. We used
the same logistic function as described in [28]:

p = f(x) =
1

1 + eax+b
(1)

Here x is the applied redirection gain and p is the probability that the user
considers the amplitude of real locomotion to be greater than the virtual coun-
terpart. This probability is computed by counting the ”real is greater” trials
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Fig. 2. Overview of the T-formed street in a futuristic city used for walking in our
experiments.

divided by the total trial number per gain value. a and b are parameters setting
by curve fitting.

The PSE corresponds to the gain value of f−1(0.5). IU is bounded by a lower
detection threshold f−1(0.25) and a upper bound f−1(0.75), which is two times
the Just Noticeable Difference (JND). Here are the equations for computing PSE
(2) and IU (3):

PSE = f−1(0.5) = − b

a
(2)

IU = f−1(0.75) − f−1(0.25) = 2 · JND = −2 · ln 3

a
(3)

Unlike MCS, MoA directly asks users to manually adjust the magnitude of
redirection gain from a random starting value till no difference can be detected
between visual and non-visual stimuli.

MoA contains equal number of ascending and descending trials that are tested
alternatively in order to reduce estimation error. The computation of PSE (Equa-
tion 4) and IU (Equation 5) for MoA is described as follows:

PSE = µ(g) (4)

IU = 2 · JND = 2 · z(0.75) · σ(g) = 1.349 · σ(g) (5)

g is the gain value submitted at the end of each trial, µ and σ are the mean
and standard deviation of submitted gain values. JND is given by multiplying the
standard deviation of PSEs by a z score of probability of 0.75 (about 0.6745) [13].

In addition to PSE and IU, we also collected each subject’s mean walking
speed during trials for translation and curvature gains. Since Neth et al. [17]
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found that the sensitivity to walking on a curved path was significantly lower
for slower walking speeds. The walking speed data may provide cues to help us
understand the obtained detection thresholds.

Perception Trait Since all subjects were tested under the same experimental
protocol and condition, their RDTs should be mostly influenced by intrinsic
factors such as each individual’s perception trait. So we conducted a series of
tests on each subject to collect their spatial and motion perception ability before
starting experiments for RDTs identification.

Here we conducted tests respectively for egocentric distance and orientation
perception and several other tests recommended by Ngoc et al. [18] (i.e. the
Rod & Frame, Romberg and vection test) to measure a user’s visual depen-
dence during sensory integration, which are listed in Table 1. Here are some
implementation details of these tests:

Group A We assume that the error of users’ egocentric distance and orientation
estimation is positively correlated with RDT for translation and rotation. For
distance perception, we employed a visually directed action method - blind walk-
ing [15], to assess subject’s distance perception accuracy. Each subject walked 5
times with each time a random distance ranging from 2.5m to 4.5m (interval of
0.5m). The final score is the root mean square error (RMSE) of all trials.

The spatial orientation test was conducted in a similar way. Each subject
was tested 8 times with angles ranging from 30 to 120 degrees (with interval of
30 degrees and left/right symmetry).

Group B The Rod & Frame test experiment followed the standard procedure of
the original test [35] except that the rod and frame were displayed through the
HMD. We tested five different angles for the frame: 0◦, 3◦, 15◦, 27◦, 42◦, each
tested twice in a random order. The final score is also the RMS error of all trials.

In the Romberg’s test [25], the subject was asked to stand with feet together
on the Wii balance board4, hands by the sides, eyes open and then closed for
respectively 20 seconds. The final score is the ratio between deviations of a
subject’s center of pressure (CoP) with eyes open and eyes closed. We also noted
the deviations of CoP with eyes closed as an additional score (put in Group A)
to describe a subject’s profile regarding non-visual balance control.

The vection test was performed by asking the subject to stand inside a rotat-
ing optokinetic drum with constant speed (shown through an HMD). We tested
three rotation speed - 20, 30 and 40 deg/s - each for twice in a random order.
The time from the beginning till the subject reported self-motion was logged (a
limit of 45s was used if no self-motion was reported).

4 https://en.wikipedia.org/wiki/Wii Balance Board
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Table 1. A summary of tests for perception trait.

group test description

A - non-visual perception
(1) ego-distance: blind walking
(2) ego-orientation: blind rotation
(3) balance eye-closed: control of CoP

B - visual dependence
(4) Rod & Frame: vertical alignment
(5) Romberg’s ratio: control of CoP
(6) vection: on-set time for self-motion

4 Experiment MCS

In this experiment, we tried to identify users’ RDTs for different types of gains -
translation, rotation and curvature. This experiment primarily serves as a base-
line for the other experiment with MoA since MCS is considered to be more
robust against various bias.

4.1 Procedure

We followed similar procedure of Steinicke et al.’s previous experiment [28].
Figure 3 shows a subject’s first person view of the virtual street used for RDT
evaluation. In the translation and curvature sub-experiments, for each trial, the
subject begun by standing on the starting point, then walked towards the target
(a green floating sphere) till it changed color. In the rotation sub-experiment,
the subject started from a fixed orientation and then rotated in place towards
the target sphere till it changed color. After each trial, a question was shown in
a pop-up window that allowed the subject to make the forced choice.

The detailed settings of each sub-experiment is shown in Table 2. It should
be noted that the curvature gain is expressed by angles, here it is actually the
amount of direction change after walking 3m straight in the virtual world. The
actual curvature gain can be computed by Equation 6:

gc =
1

r
≈ π · θ

180 · d
(6)

where r is the radius of the corresponding circle, θ is the direction change
expressed in degree and d is the virtual walking distance (not exactly the arc
length).

For the curvature sub-experiment, we used a small step (5◦ interval) at gains
in range [0◦, 20◦] and a bigger one (10◦) for gains larger than 20◦. We also
measured left and right turns separately so each angle was tested five times.

This experiment differs from the one of Steinicke et al. on two aspects: First,
since the physical workspace available was quite small, in the translation sub-
experiment we fixed the virtual travel distance to be 2.5m and the real walking
distance varied according to the gain value. No “redirection-free” pre-walking
was possible due to the space limitation. Second, Steinicke et al. got estimates
of RDTs from the average samples of all subjects instead of fitting individual
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Fig. 3. The subject’s first-person view in Experiment MCS. Left: the orange cylinder
is the starting point for the subject to step on; Right: the green target sphere.

Table 2. Detailed settings used in Experiment MCS.

Parameters Translation Rotation Curvature

Lower limit of gains 0.6 0.5 0◦

Upper limit of gains 1.4 1.5 50◦

Step of gains 0.1 0.1 5-10◦

Trials per gain value 10 10 5
Total number of trials 90 110 75

Virtual walking distance/rotation angle 2.5m ±90◦ 3m

psychometric functions. Here we fitted the psychometric curve for each subject
so we can get a per-subject RDT estimation.

4.2 Results

We employed the logistic function in Equation 1 to fit the psychometric curve of
each subject. The mean and standard deviation of RDTs, experiment duration
and walking speed are presented in Table 3.

All 24 subjects finished all the trials, however, two of them got data unable
to be fitted by a logistic function under all three sub-experiments. The rotation
and curvature sub-experiments had respectively three more subjects that were
not included in the final results shown in Table 3. The data for these subjects

Table 3. The mean and standard deviation for the results of Experiment MCS.

Translation Rotation Curvature

Number of subjects 22 19 19
PSE 0.95±0.13 1.03±0.22 0.01±0.06
IU 0.23±0.16 0.5±0.34 0.31±0.48

Upper & lower bounds [0.83, 1.06] [0.78, 1.28] [-0.14, 0.17]
duration (minutes) 26.8±5.3 25.5±3.8 24.3±4.5
walking speed (m/s) 0.62±0.17 / 0.61±0.12
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Table 4. Detailed settings used in Experiment MoA.

Parameters Translation Rotation Curvature

Lower limit of gains 0.6 0.5 0◦

Upper limit of gains 1.4 1.5 ±50◦

Step of gains 0.01 0.01 1◦

Total number of trials 20 20 20

either resulted in abnormal fitted thresholds (e.g. PSE < 0 for translation and
rotation) or were even unable to be fitted by a sigmoid curve.

The detection threshold DTc(left) = −0.14 and DTc(right) = 0.17 cor-
respond respectively to a radius of 7.1m and 5.9m, or 8.02◦/m and 9.74◦/m
(mean=8.88◦/m).

5 Experiment MoA

The goal of this experiment was to collect users’ RDTs with MoA. Similar to the
experiments with MCS, the experiment with MoA also contains three randomly
ordered sub-experiments: translation, rotation and curvature.

5.1 Procedure

In Experiment MoA, subjects were not constrained in a routine starting position
and walking path as imposed by MCS. The settings for this experiment are shown
in Table 4. The task for the subjects to accomplish was to adjust gain values
until they can no longer feel the discrepancy between the virtual and real paths.

During the test, the subject was given a handheld controller with buttons
to adjust the gain in two directions, they can adopt fine tuning with the step
value described in Table 4 by clicking the button, or apply quick modifications
by pressing and holding the button. There was no imposed starting location for
all trials, so the next trial begun immediately after each gain submission. For
translation and curvature tests, the subject was instructed to walk back and
forth between two target objects. For rotation, a random rotation direction (left
or right) was chosen by the program and the subject should follow the given
direction.

The angle notation used for the curvature sub-experiment was with respect
to an arc length of 3m, which means the step of gains was 0.33◦ direction change
per meter, and the curvature gain can vary from −0.29 to 0.29 according to
Equation 6.

For the translation and rotation sub-experiments, ascending (ginit < 1) and
descending (ginit > 1) trials were presented alternatively, where ginit was the
starting gain value. For the curvature sub-experiment, we did not force left-right
alternative distribution of the starting gain ginit to prevent learning effect. In all
sub-experiments, ginit was a random value chosen to be away from the neutral
zone and the lower or upper limits of gains.
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Table 5. The mean and standard deviation for the results of Experiment MoA (only
subjects with valid results for MCS were included).

Translation Rotation Curvature

Number of subjects 22 19 19
PSE 1.01±0.09 0.98±0.10 -0.01±0.03
IU 0.22±0.08 0.26±0.10 0.15±0.07

Upper & lower bounds [0.90, 1.12] [0.85, 1.11] [-0.08, 0.06]
duration (minutes) 17.0±5.9 14.4±6.3 19.8±8.2
walking speed (m/s) 0.54±0.11 / 0.39±0.07

There was no time limit or predefined path for all subjects during the exper-
iment. They can submit the final choice for a trial by pulling the trigger button
on the same controller.

5.2 Results

All 24 subjects finished successfully all the trials in this experiment, though we
put aside the results of the subjects who failed to get valid data with MCS
so we can compare the two methods over the same group of subjects. A brief
summary of the results for the remaining subjects can be found in Table 5. The
PSE and IU was computed using Equation 4 and 5. The detection threshold
DTc(left) = −0.08 and DTc(right) = 0.06 correspond respectively to a radius
of 12.5m and 16.7m, or 4.58◦/m and 3.44◦/m.

Since it was difficult to choose a threshold to determine whether a subject
was walking, the walking speed shown in Table 5 was the average speed from
the start till the end of the experiment for a given subject.

6 Analyses and Discussions

In this section, we thoroughly analyzed the data collected in the previous section.
All the analyses were performed with R5. The results presented were considered
statistically significant when p ≤ 0.05.

6.1 Comparison between MCS & MoA

We first used Shapiro-Wilk test for normality checking. Several RDT variables
from different sub-experiments failed the normality test, therefore we employed
Wilcoxon Signed-rank test to compare dependent variables like RDTs, exper-
iment durations and walking speeds of two conditions - MCS and MoA, the
results are summarized in Table 6. We denote M as the median value for a given
data set.

Regarding RDTs, the PSE for translation gains obtained with MCS (M =
0.938) was smaller than that (M = 1.013) of MoA (W = 65, Z = −1.9966, p <

5 https://www.r-project.org/
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Fig. 4. Comparisons between MCS and MoA on PSE, IU and experiment duration in
the translation, rotation and curvature sub-experiments.

Table 6. A summary of comparisons between MCS and MoA (n = non significant, *
p ≤ 0.05, ** p ≤ 0.01).

Translation Rotation Curvature

PSE MCS<MoA* n n
IU n MCS>MoA** n

duration MCS>MoA** MCS>MoA** n
avg speed MCS>MoA* / MCS>MoA**

0.05, r = 0.3), but no significant difference was detected between the PSEs of
rotation and curvature gains. Moreover, significant difference on IU between
MCS (M = 0.36) and MoA (M = 0.27) was found for rotation gains (W =
182, Z = 3.5011, p < 0.01, r = 0.57). The boxplots showing the data distributions
of PSE and IU for different sub-experiments can be found in Figure 4.

For the experiment duration, we can see from Figure 4 that MoA was in-
deed more time-efficient than MCS in the translation sub-experiment (MMCS =
25.35,MMoA = 17.65,W = 247, Z = 3.9121, p < 0.01, r = 0.59), and also
in the rotation sub-experiment (MMCS = 24.5,MMoA = 13.6,W = 184, Z =
3.5823, p < 0.01, r = 0.58). However, the difference between MCS (M = 23.0)
and MoA (M = 19.2) on experiment duration was not significant in the curva-
ture sub-experiment. Globally, MoA takes on average about 50 minutes to test
all three types of gains, which scales down the experiment duration by about
33% compared to MCS (mean ≈ 75 minutes).
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Regarding walking speed during experiments, subjects on average took quicker
moves with MCS than MoA in the translation (MMCS = 0.62,MMoA = 0.51,W =
185, Z = 1.8996, p = 0.05, r = 0.28) and the curvature (MMCS = 0.6,MMoA =
0.4,W = 189, Z = 3.7831, p < 0.01, r = 0.61) sub-experiments (see Figure 5).
This difference is possibly due to the uncontrolled walking behavior with MoA,
as we observed that some subjects switched constantly between gain adjusting
and walking during the sub-experiments with MoA. Overall, subjects walked
relatively slow compared to the study of Neth et al. [17] (possibly due to our rel-
atively small physical workspace), which may explain why the detection thresh-
old for curvature gain we got with MCS (v = 0.61m/s, g = 8.88◦/m) was higher
than what they found (v = 0.75m/s, g = 5.42◦/m). However, their finding (i.e.
lower walking speed corresponds to higher DT for curvature gain) did not apply
to the results of Experiment MoA.

0.4

0.6

0.8

1.0

MCS MoA

av
g 

w
al

ki
ng

 s
pe

ed

Translation

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

MCS MoA

av
g 

w
al

ki
ng

 s
pe

ed

Curvature

Fig. 5. Comparisons between MCS and MoA on average walking speed in the trans-
lation and curvature sub-experiments.

In fact, if we compare the results provided by these two methods at subject
level, no apparent rules can be seen because some subjects got very close RDTs
in these two experiments while others not. However, when we run statistical
analyses on the whole population, significant effects can be found regarding
the PSE for translation gains and the IU for rotation gains (see Table 6). The
latter might be linked to the initial experiment by Razzaque [23], in which he
used MoA for scene rotation detection, but abandoned at last because the pilot
subjects found the rotation to be more noticeable while turning the knob (for
gain adjustment) in either direction.

It is also interesting to see that the between-subject variances of PSE and
IU obtained with MoA were quite small despite the diversity of gain submission
strategies among the subjects (some were really quick while others were always in
hesitation). Since we were comparing MCS and MoA with the same population,
virtual environment and hardware setup, it is safe to claim that the difference
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of results shown in Table 6 came from the sampling methods or the conducted
tasks, but no further conclusions can be drawn from the current data.

6.2 Analyses of MoA
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Fig. 6. Further comparisons between MCS and MoA (the number of trials varies from
20 to 2) on PSE and IU.

An important question arises when we use MoA is to decide the number
of trials. More trials theoretically lead to more robust results as the chance of
random choice reduces. However, increasing the number of trials also makes the
experiment more time-consuming and burdensome for the participants, which
deviates from our initial purpose of using MoA. Here we picked the first 2 and
10 trials per subject respectively, and compared their results with the full-trials
(i.e. 20 trials) MoA and MCS. We denote MoA20 as the previously mentioned
MoA to facilitate the illustration of its comparison with MoA10 and MoA2.

Since the RDTs did not follow a normal distribution, we applied a within-
subject repeated-measures non-parametric test - Friedman test to assess the
influence of testing method (MCS, MoA20, MoA10, MoA2) on RDTs. For post-
hoc comparisons, we did pairwise comparison with Wilcoxon rank sum tests with
Bonferroni correction.

For the translation sub-experiment, no significant effect of testing method
on PSE (χ2(3) = 1.78, p = 0.62) or IU (χ2(3) = 2.02, p = 0.57) was found. The
significant difference between MCS and MoA20 found in section subsection 6.1
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disappeared with the application of Bonferroni correction, so conclusions on the
influence of testing method on PSE should be carefully reconsidered.

For the rotation sub-experiment, there was no effect of testing method on PSE
(χ2(3) = 0.79, p = 0.85), but significant effect on IU (χ2(3) = 21.88, p < 0.01).
A post-hoc test showed the significant differences between MCS and MoA20
(p < 0.01, r = 0.57), between MCS and MoA10 (p < 0.01, r = 0.51) and between
MCS and MoA2 (p < 0.01, r = 0.41).

Regarding the curvature sub-experiment, no significant effect of testing method
on PSE (χ2(3) = 3.76, p = 0.29) and IU (χ2(3) = 7.61, p = 0.055) was found.
We still conducted a post-hoc test for testing method on IU since the p-value
was close to 0.05, but no significant effects were found.

The above results show that the number of trials for MoA did not seem
to drastically influence the obtained results, except that the between-subject
variances (especially for PSE) tend to become smaller as the number of trials
increases (see Figure 6).

It is interesting to see that the significant difference between MCS and MoA
on IU for rotation gains (Table 6) still holds even when MoA only contains two
tests (one ascending trial paired with one descending trial). This means more
time can be saved with MoA by reducing the number of trials.

The large variance of experiment duration in the curvature sub-experiment
was actually not only due to the diversity of gain submission strategy, but also
the difficulties for some subjects to detect the curvature gain. This is possibly
because the participants tend to walk in a triangle rather than on an arc when
the walking route is short [28].

6.3 Perception Trait Correlation Test

Our hypothesis is that users’ IUs for redirection are positively related to the
scores of tests in group A (in Table 1) since larger non-vision estimation errors
should lead to higher tolerance for visual and non-visual sensory conflicts. We
also assume that IUs for redirection are positively associated with scores of tests
in group B because users with higher visual dependence should be easier to be
redirected by visual manipulations.

We used Pearson’s product-moment correlation test to examine the corre-
lation between subjects’ perception traits and their RDTs given by MCS and
MoA. We also created two additional variables - diffPSE and diffIU - to check
the potential relationship between the difference of RDTs (given by MCS and
MoA) and other existing variables.

The correlation tests showed that subjects’ perception traits were neither
correlated with their RDTs nor the difference of RDTs in all sub-experiments,
which means our hypothesis of a simple linear correlation between the two groups
of perceptual abilities and RDTs does not hold.
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7 Conclusion

Based on the reported experiments and associated analyses, our primary conclu-
sion is that MoA can provide similar RDT estimates over the same population
with MCS except for slightly higher PSE for translation gains and smaller IU
for rotation gains. The main advantage of MoA over MCS is that it is highly
time-efficient, which can save about 33% and even more experiment time as the
results of MoA remain relatively stable when the number of trials decreases. So
MoA is a good option if we want to quickly assess averaged RDTs for a given
population, which can serve as a useful tool for pre-walking calibration or to
evaluate the impact of different factors on RDTs in an affordable way.

However, it is still unclear how to explain the difference between results from
MoA and MCS at individual level, and how they are correlated with a user’s
perception trait. The interaction between RDTs and users’ intrinsic characteris-
tics such as perception trait should be tested on a bigger yet more heterogeneous
population to attempt a personalized model for redirection detection.

Although we had put aside the theoretical difference between MCS and MoA
in this paper, we should keep in mind that the underlying psychophysical eval-
uation method do have an impact on the collected RDTs. Moreover, the RDTs
are intrinsically more complex to be explained than other problems studied in
the literature of Psychophysics since these usually focus on stimuli getting from
the same sensory channel (e.g. the perception of sound, pain, etc.). So inputs
from the multi-sensory integration community may help to shed light on this
question.

In the future, experiments can be designed using MoA and adaptive methods
to clarify the influence of more extrinsic factors (e.g. cognitive load, configuration
of the virtual world, real-world ambient noise, etc.) on RDTs. The comparison
between MoA and popular adaptive methods can be conducted in a separate
study (as there are many variants and parameters for adaptive methods) in
order to provide more useful information about the impacts of methodology on
RDTs.
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