
HAL Id: hal-02363549
https://hal.science/hal-02363549v1

Submitted on 14 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic smart contracts for blockchain-based services
in the Internet of Things

Hamza Baqa, Nguyen B Truong, Noel Crespi, Gyu M. Lee, Franck Le Gall

To cite this version:
Hamza Baqa, Nguyen B Truong, Noel Crespi, Gyu M. Lee, Franck Le Gall. Semantic smart con-
tracts for blockchain-based services in the Internet of Things. NCA 2019: 18th International Sympo-
sium on Network Computing and Applications, Sep 2019, Cambridge (MA), United States. pp.1-5,
�10.1109/NCA.2019.8935016�. �hal-02363549�

https://hal.science/hal-02363549v1
https://hal.archives-ouvertes.fr


Semantic Smart Contracts for Blockchain-based
Services in the Internet of Things

Hamza Baqa∗‡, Nguyen B. Truong†, Noel Crespi∗, Gyu Myoung Lee§, Franck Le Gall‡
∗ Easy Global Market, Sophia Antipolis, France

Email: {hamza.baqa, franck.le-gall}@eglobalmark.com
† Data Science Institute, Imperial College London, United Kingdom

Email: n.truong@imperial.ac.uk
‡ Telecom SudParis, Paris, France

Email: noel.crespi@telecom-sudparis.eu
§ Department of Computer Science, Liverpool John Moores University, United Kingdom

Email: g.m.lee@ljmu.ac.uk

Abstract— The emerging Blockchain (BC) and Distributed
Ledger technologies have come to impact a variety of domains,
from capital market sectors to digital asset management in the
Internet of Things (IoT). As a result, more and more BC-based
decentralized applications for numerous cross-domain services
have been developed. These applications implement specialized
decentralized computer programs called Smart Contracts (SCs)
which are deployed into BC frameworks. Although these SCs
are open ato public, it is challenging to discover and utilize such
SCs for a wide range of usages from both systems and end-users
because such SCs are already compiled in form of byte-codes
without any associated meta-data. This motivates us to propose
a solution called Semantic SC (SSC) which integrates RESTful
semantic web technologies in SCs, deployed on the Ethereum
Blockchain platform, for indexing, browsing and annotating
such SCs. The solution also exposes the relevant distributed
ledgers as Linked Data for enhancing the discovery capability.
To achieve this goal, the OWL-S service ontology is extended
by incorporating some domain specific terminologies, which are
used in the development of the proposed SSCs. As a result,
SSC can be utilized to enrich queries for a domain-specific
terms across multiple distributed ledgers, which greatly increases
the discovery capability of decentralized IoT applications and
services. Contribution in standardization is also discussed. We
believe that our research work takes the first steps towards
connecting BC-based decentralized services with semantic web
services in order to provide better IoT ecosystems.

Keywords-Blockchain, Distributed Ledger, Internet of Things,
Semantic Indexing, Semantic Web, Smart Contract.

I. INTRODUCTION

The turn of the last century brought us to the Internet of
Things (IoT) in which a variety of applications and services
are deployed on top of an infrastructure constituted from
billions of interconnected devices. However, the large scale
and heterogeneous IoT infrastructure results in difficulties in
efficiently managing resources and providing trustworthy and
secure services. In this regard, Blockchain (BC) has emerged
as a promising solution to tackle these challenges. BC enables
a huge number of decentralized applications (DApps) by
establishing an trusted environment even though there is no

participants to be trusted without the need for a trusted inter-
mediary. For this purpose, Smart Contracts (SC) are integrated
for autonomous functionality in a decentralized environment
for implementing various services business logics such as
provenance tracking in supply-chain and logistics [1]–[3], data
processing and sharing in large-scale IoT [4], [5], and digital
asset management [6], [7]. A wide range of services have been
utilizing advanced features (e.g., decentralization, automation,
transparency, immutability, and trace-ability), inherited from
BC and SC technologies, in the design and development of
a distributed ledger technology (DLT) in order to effectively
manage and secure IoT resources and DApps. As a result,
a variety of BC-based systems with corresponding SCs have
been developed and deployed in the real-world. For instance,
Ethereum ecosystem has more than 2000 live DApps and
26,000 SCs have been deployed through Truffle framework1.
This amount of Dapps along with corresponding SCs have
been expanding with diversity in crossed-domain knowledge,
particularly IoT services, creating a huge DApps eco-system.

This poses an urgent need for a SC manager which enables
the discovery, processing and usage of variety crossed-domain
SCs deployed in BC frameworks. However, by default, a SC,
implementing a service’ business logic, is written in a pro-
gramming language, compiled into byte-code, and deployed
in a BC framework without any meta-data or descriptions.
Except the owner of the SC, other parties can only observe
the SC as a byte-code. As a consequence, it is impractical
for third-parties, who do not directly participate in the service
whom the SC belongs to, to understand and utilize such SCs
for numerous purposes. Furthermore, associated with such SCs
are distributed ledgers that is also deployed onto BC recording
massive amount of data in different formats. These ledgers also
come without any semantics; consequently it is unfeasible to
query desired information or to understand the context.

Motivated by the need for such a SC manager, we propose
a solution leveraging Semantic Web technologies to develop

1https://media.consensys.net/ethereum-by-the-numbers-3520f44565a9



a SC manager for Ethereum BC platform which facilitates
the indexing capability and a semantic-based discovery for
SCs. Our idea is to incorporate meta-data as semantics into
Ethereum SCs so-called Semantic SCs (SSCs) for enabling the
semantic-based resource discovery capability within BC oper-
ations. For this purpose, some domain-specific terminologies
for the SSCs are incorporated in the OWL-S ontology, then the
expanded OWL-S ontology are used for the semantic annota-
tion of the SSC. After that, the annotations are registered as
assets onto the Ethereum BC. Relevant distributed ledgers are
also treated as Linked Data for the further discovery capability.
By following this design concept, a rich query for SSCs can be
conducted over the platform using any domain-specific terms
across multiple distributed ledgers. Therefore, the proposed
solution considerably increases the discovery capability of IoT
DApps deployed onto any BC ecosystems.

The rest of the paper is organized as follow. Section II
presents background knowledge on BC, SC and Semantic
Indexing, and related work. Section III presents the novel
concept of SSCs in which Semantic Web is leveraged for
Ethereum SCs. Section IV is dedicated to the standardization
activities. The last section concludes our work and outlines
future research directions.

II. BACKGROUND AND RELATED WORK

A. Blockchain and Smart Contracts

A BC is a distributed immutable database consisting of
a list of blocks recording transactions between peers in a
network. The BC is then synchronized and distributed across
the network, playing as a role of a distributed ledger. Data once
confirmed and written in any block of the BC cannot be altered
retroactively as this would invalidate all hashes in the previous
blocks and break the consensus agreed among nodes in the BC
network. The initial element in the BC structure is known as
genesis block which is manually created; all subsequent blocks
are added to the BC by a process of consensus between nodes.
These nodes compete to be accepted as having the network’s
permission to add a new block and create consensus over
the network. Consensus protocols vary among different BC
systems such as Proof Of Work (POW), Proof Of Stake (POS),
Delegated Proof Of Stake (DPOS) [8].

The concept of BC was introduced and implemented
as a key component in Bitcoin cryptocurrency by Satoshi
Nakamoto a decade ago [9]; until now, the use of BC goes
further than cryptocurrency only [10]–[12]. BC enables the
distributed ledger technology (DLT) for a wide range of
DApps, which are deployed on top of a blockchain framework
leveraging the use of SCs. In this regard, distributed ledgers
go beyond a simple list of transactions as in cryptocurrency.
This BC-based DLT has been gaining significant attention in
recent years for a highly-diverse set of digital assets audit
and management [6], [13]. To manage such ledgers, SCs are
computer programs deployed onto a BC network in form
of decentralized automation that automatically perform corre-
sponding functions when specific conditions are met. A SC is
invoked by a valid transaction generated from a BC client and

then executed by designated nodes in the BC network. Results
of the execution on the SC are validated and then disseminated
over the network by a valid miner so that all the nodes update
their local distributed ledger to synchronize with each other. In
other word, the consensus of the distributed ledger is reached.
The contents of a SC and corresponding ledgers are visible to
all peers in a BC network for execution and validation in a
deterministic and decentralized manner.

B. Semantic Indexing for Smart Contracts

As a mean of implementing a service, each SC with cor-
responding distributed ledgers contain variety of information
related to the business logic of the service. However, such dis-
tributed ledgers do not have a global registry; and due to their
structure, contents in such ledgers are not straight-forward to
be queried [14]. As BCs are strictly time-ordered structures
where data exists across multiple blocks (as inevitably it must),
there currently is no convenient way to identify, group or query
it. Thus it is necessary to develop an indexing mechanism
for SCs and distributed ledgers. This indexing system, where
present, provides the ability to search and analyze any services
deployed onto a BC, and potentially to expose them to the
outside world for inter-operability.

As BC-based IoT services (i.e., IoT DApps) contain millions
of connected devices operating in different scenarios, a BC-
based platform for these IoT DApps needs to manage a
considerable number of SCs and distributed ledgers in different
domains and contexts. For example, in a smart city, IoT DApps
(i.e., corresponding SCs) which utilize crowd sensors, parking
sensors, etc. need to be managed for efficient co-operation.
For this purpose, there are different levels of granularity at
which indexing can be carried out. At a low level, it necessary
to index the basic entities of a distributed ledger, blocks,
transactions. At a higher level, more functional orientation for
SCs should be also indexed (i.e., SC indexing).

C. Related Work and Motivation

There is limited research on integrating and developing se-
mantics in BC, particularly for SCs. The only notable work is
the Ethereum ontology (EthOn) which describes BC concepts
(e.g.blocks, transactions, contracts) and relations using W3C
RDF Schema and the Web Ontology Language [15]. EthOn
enables some basic semantics in BC such as ”has parent
block?” query. Its main goal is to serve as a data model and
learning resources for understanding Ethereum. While actively
developed, EthOn is, at the time of writing, at an early stage. It
has recently been envisioned that the EthOn ontology should
include extension for SCs, which further describes valuable
information about concepts and properties specific to SCs such
as Functions, Events, Inputs, Outputs and Opcodes. Classes
and properties in Ethereum ontology are presented in Fig. 1.

The EthOn concept covers only the relations between SCs
in Ethereum framework. Given that SCs themselves are es-
sentially executable software, it is necessary to represent their
semantics using ontologies leveraging vocabularies that are
already defined in other forms of software. Indeed, there is



Fig. 1. EthOn Message concept

a wealth of existing work on the semantic annotation of Web
services that can be used for SCs semantics. Also, there are
sufficient ontology language, existing ontologies, and tools
that can be utilized for annotating SCs. For instance, some
well-known ontologies for semantically annotating services
are OWL-S, WSMO, SAWSDL, WSMO-Lite when it comes
to WSDL services, and MicroWSMO, and SA-REST for
Web APIs. We choosed OWL-S as a service ontology based
on five reasons: i) Recommended by W3C ii) Flexible, no
restriction of the way to implement the web of services.
iii) Rich description of the service composition process. iv)
The implementation is an orchestration mechanism and finally
v) The service composition process description is near the
language programming so that it will be accessible to a
implementation orchestration program.

As being too simple and limited usage of the EthOn ontol-
ogy, our ultimate goal is to extend the existing EthOn with
a service ontology to support Ethereum SCs by considering
the SCs under the context of semantic web services. For this
purpose, both Web APIs and SCs can be seen as executable
functionality exposed in a distributed environment for arbitrary
(suitably authorized) third-parties to call. The notion of a
Semantic Web Service [16] [17] is an important concept in
our paper. It describes services, messages, and concepts in a
machine-readable format that can also facilitate logical rea-
soning. Thus, service descriptions can be interpreted based on
their meanings, rather than simply a symbolic representation.
Provided that there is support for reasoning over a Semantic
Web Service description (i.e. the ontologies used to ground
the service concepts are identified, or if multiple ontologies
are involved, then there exist alignments/mapping between
ontologies to facilitate the transformation of concepts from one
ontology to the other) [18]. Section III will describe the OWL-

S ontology and how it is mapped to the SC EthOn extension.

III. A NOVEL SEMANTIC WEB FOR SMART CONTRACTS

Our solution (i.e., ”SSC”) is to represent the SC semantics
using EthOn contract extension concepts and a business related
vocabulary in order to facilitate integrity as well as fostering
resource discovery. EthOn contract extension describes BC
contract concepts (e.g. event, functions, inputs) using W3C
RDF Schema and the Web Ontology Language. Our solution
allows comparing a request with multiple resource descriptions
by taking into account semantics of their annotations referred
to a shared domain ontology. The SC semantics have been ex-
tended with a service layer that provides a formal explanation
of discovery outcomes, reinforcing user trust in the discovery
process. To achieve this, we firstly designed domain-specific
ontology and its mapping to EthOn contract extension. Then,
we extend the OWL-S service ontology with EthOn concepts
allowing indexing, browsing and invoking SCs on Ethereum
BC via URIs.

A. Resource registration

SC semantics can be described using ontology - a funda-
mental concept for describing the knowledge of a domain,
represented by a set of concepts and relationships among
them. The SC semantics ontology can be designed using
Web Ontology Language (OWL) specifications2. In order to
design an ontology, concepts and entities of a domain must be
identified, which are defined as OWL classes. Relationships
between classes as object properties and those between class
instances and literals as data properties are denoted accord-
ingly in the ontology. Protege3, the popular ontology editor
and knowledge-base framework, is used to construct the SC
semantics ontology.

We demonstrate the ontology design by considering a use-
case that defines the eligibility criteria of a user to access
an IoT device using a SC (illustrated in Fig. 2). A user is
required to register an account along with a public address
and an associated private key - which will be parameters for
calling the SC. Therefore, the proposed ontology is designed
to have a class called User which is associated with an
Ethereum account, an attributes account, an address, a private
key, and other details. For this purpose, a new ontology
class called EthereumContractsConcepts is implemented
containing Ethereum contract data property. Similarly, the
ContractAccount class is implemented including the license
number, expiration date, information about the IoT and SC
owner, and the current status. Finally, the SC ontology is
extended with the ”access condition” vocabulary, as a general
domain-based ontology. In this regard, the query ”get enforce-
ment policies SCs related to IoT device with ID” with specific
conditions (e.g, ”a specific access condition set”) shows SCs
that satisfy all the criteria of the query.

2https://www.w3.org/OWL/
3https://protege.stanford.edu/



Fig. 2. Domain ontology and EthOn usage example

In order to make a resource available for discovery and
usage, an owner node registers itself as an asset on the BC-
based stream storage by calling a registration transaction. For
higher efficiency, only resource URIs are stored onto BC.

B. Service-Based Smart Contracts

Similarly, we have borrowed concepts from EthOn (de-
scribed in Section II) and Ontology Web Language for Ser-
vices OWL-S [19] to build our semantic web service for SCs.
We extend OWL-S, which is an ontology of services that
makes these functionalities (discover, invoke, compose, and
monitor) possible, by providing additional vocabulary along
with formal semantics to support Ethereum SC concepts like
name (i.e. policy management in IoT system). As a result,
semantic queries such as finding a SC with policies related
to a specific device name can be carried out. The OWL-S
ontology is structured in a way to provide three essential types
of descriptions about service as shown in Fig. 3.

Fig. 3. Top level of the service ontology

Using Ethereum web3 library4, we monitor every block
that is added to the BC and retrieve transactions within
that block. When a transaction contains a SC, we re-
trieve the contract address using Ethereum API (i.e.
web3.eth.getTransactionReceipt). Then we save SCs ad-
dress, binary, and Application Binary Interface (ABI) each as
a triple in the RDF store. ABI describes the names of SCs
methods and how to call them. We save each method in ABI

4https://github.com/ethereum/wiki/wiki/White-Paper

as an RDF triple based on an extension of OWL-S ontology.
Table I shows the extended OWL-S vocabulary that we used
for describing the SCs.

TABLE I
EXTENDED OWL-S ONTOLOGY FOR SMART CONTRACTS

Smart Contract Methods OWL-S
Smart Contract ABI owls:service

Input owls:ServiceModel
Output owls:ServiceModel

Function owls:ServiceProfile

C. Semantic Discovery of SSC

The proposal adopts a gossip based (a.k.a. epidemic) ap-
proach [20] to disseminate discovery requests and aggregate
results. This grants protocol simplicity and consequently low
computational overhead, which is a primary requirement for
system scalability. The protocol consists of a four-step proce-
dure as follows:

1) The requester randomly selects n nodes and sends a
multi-cast request with the discover SCs: Parameters of the
SC are: (a) URI of the domain-ontology: this determines the
resource domain as well as the vocabulary used to express
both the request and the resources to be retrieved; nodes
receiving the request will not process resources annotated with
other ontologies in the semantic matchmaking; (b) semantic
annotation of the request in OWL language, specifying desired
resource features and constraints; (c) maximum price pmax

(Ethereum SC concepts like cost) the requester is willing to
pay; resources with a price higher than this threshold will
be skipped from matchmaking (thus reducing computational
overhead); (d) minimum semantic relevance threshold smin, as
a floating-point number in the [0, 1] interval, with a value of
1 corresponding to a full match and 0 to a complete mismatch
(both rare situations in realistic scenarios); after matchmaking,
resources with a relevance score below this threshold will
not be returned, as deemed irrelevant to the requester; (e)
maximum number of results rmax to be returned.

2) Nodes receiving the original request: these nodes per-
form two operations in parallel: [O1] Execute semantic match-
making of their own resources with the request. For this
purpose, resource providers are assumed to be equipped with
an on-board lightweight matchmaking engine [21], A list of
at most rmax results is returned, ranked by relevance: each
outcome Ri is characterized by: (i) resource owners public
key; (ii) resource URI ui; (iii) semantic relevance score si
smin; (iv) cost pi ≤ pmax, in platform currency. [O2] Select
other n nodes randomly and forward the request. Nodes
receiving the forwarded requests behave in the same way.
When a search depth threshold m is reached (in hops from
the original requester), nodes do not forward the request any
further and just perform matchmaking locally. Each queried
node returns results to the sender, which propagates them
back to the original requester following the same route of
the requests. In this way, each request will reach

∑m
i=1 n

i

random nodes, with n and m tune-able parameters: in the



current implementation they have been chosen a priory at
global level. However with the proposed infrastructure already
in place, it is trivial to implement them as variable on a
node-by-node basis and/or dynamically adaptable in order to
maximize application-specific performance goals.

3) Resource selection: After receiving all results or just a
subset, if the response delay of some nodes is greater than a
fixed timeout the requester selects the best resource(s) with the
select SCs, sending a unicast message to the resource owner
with the resource URI and contextually a currency payment.

IV. STANDARDIZATION ACTIVITIES

ETSI has created a new Industry Specification Group on
cross-sector Context Information Management (ISG -CIM)
for IoT-enabled applications, and one of the main items is
related to trust, security, and ”Device democracy” in the
IoT environment. We believe that our proposal significantly
contributes to further stimulating standardization activities of
this work package.

V. SUMMARY AND CONCLUSIONS

We have introduced a RESTful semantic web service that
allows indexing and invoking SCs on Ethereum BC via a
URI. We extended the EthOn combined with the OWL-S
ontology to support Ethereum SCs deployed in the Ethereum
blockchain framework. As a result, semantic queries over SCs
such as ”finding a SC with the minimal gas payment” can
be executed using the existing semantic web platform. We
have taken an initial step in connecting SCs with Linked
Data. The validation of the framework is under investigation.
A system for the demonstration of the proposed SSC has
being developed and deployed in our testbeds which offers
the dynamism needed to set up experiments and harvest data
streaming needed for analyzing the outcomes of our proposed
framework. As a part of our SMESEC project, this system will
be used to verify and validate our SSC proposal. In the future,
performance evaluation along with comparisons between our
proposal and other approaches for SCs indexing will be carried
out. Moreover, we intend to extend this work to other BC
platforms, besides Ethereum, such as Hyperledger Fabric. For
this purpose, we plan to migrate the testbed toward the Docker
Swarm scheduling tool in cluster computing environments,
which increases the simulation scalability of several order
of magnitude nodes. Other future works include the usage
of the process of semantification, linked data capabilities, on
the current distributed ledgers. An important feature of the
proposal resides on the logic-based explanation of discovery
outcomes, obtained through non-standard inference for match-
making among requests and resources.

ACKNOWLEDGMENT

This research was supported by the European Union’s
Horizon 2020 research and innovation programmes under
grant agreement No 740787, the Swiss State Secretariat for
Education, Research and Innovation (SERI) and the Insti-
tute for Information Communications Technology Promotion

(IITP) grant funded by the Korea government (MSIT).[2018-0-
00261, GDPR Compliant Personally Identifiable Information
Management Technology for IoT Environment].

REFERENCES

[1] N. Hackius and M. Petersen, “Blockchain in logistics and supply chain:
trick or treat?” in Proceedings of the Hamburg International Conference
of Logistics (HICL). epubli, 2017, pp. 3–18.

[2] F. Tian, “An agri-food supply chain traceability system for china based
on rfid & blockchain technology,” in 2016 13th international conference
on service systems and service management (ICSSSM). IEEE, 2016,
pp. 1–6.

[3] N. Hackius and M. Petersen, “Blockchain in logistics and supply chain:
trick or treat?” in Proceedings of the Hamburg International Conference
of Logistics (HICL). epubli, 2017, pp. 3–18.

[4] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in Proceed-
ings of the 2017 on Cloud Computing Security Workshop. ACM, 2017,
pp. 45–50.

[5] R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun, “Blockchain
for large-scale internet of things data storage and protection,” IEEE
Transactions on Services Computing, 2018.

[6] N. B. Truong, T.-W. Um, B. Zhou, and G. M. Lee, “Strengthening the
blockchain-based internet of value with trust,” in 2018 IEEE Interna-
tional Conference on Communications (ICC). IEEE, 2018, pp. 1–7.

[7] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global
naming and storage system secured by blockchains,” in {USENIX}
Annual Technical Conference, 2016, pp. 181–194.

[8] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A survey on consensus mechanisms and mining strategy
management in blockchain networks,” IEEE Access, 2019.

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Bit-
coin.org, 2008.

[10] M. Crosby, P. Pattanayak, S. Verma, V. Kalyanaraman et al., “Blockchain
technology: Beyond bitcoin,” Applied Innovation, vol. 2, no. 6-10, p. 71,
2016.

[11] M. Swan, Blockchain: Blueprint for a new economy. O’Reilly Media,
Inc., 2015.

[12] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[13] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
2017 IEEE International Congress on Big Data (BigData Congress).
IEEE, pp. 557–564. [Online]. Available: http://ieeexplore.ieee.org/
document/8029379/

[14] A. Third and J. Domingue, “Linked data indexing of distributed
ledgers,” in Proceedings of the 26th International Conference on World
Wide Web Companion - WWW ’17 Companion. ACM Press, pp.
1431–1436. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
3041021.3053895

[15] J. Pfeffer, A. Beregszazi, and S. Li, “Ethon - an ethereum ontology,,”
no. 4, 2016. [Online]. Available: https://ethon.consensys.net/index.html

[16] S. A. McIlraith, T. C. Son, and H. Zeng, “T he web, once solely a
repository for text and images, is evolving into a provider,” p. 8.

[17] T. Payne and O. Lassila, “Guest editors’ introduction: Semantic web
services,” IEEE Intelligent Systems, vol. 19, no. 4, pp. 14–15, Jul.
2004. [Online]. Available: https://doi.org/10.1109/MIS.2004.29

[18] H. H. Wang, N. Gibbins, T. R. Payne, and D. Redavid, “A formal
model of the semantic web service ontology (WSMO),” vol. 37, no. 1,
pp. 33–60. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0306437911001049

[19] D. L. Martin, M. Paolucci, S. A. McIlraith, M. H. Burstein, D. McDer-
mott, D. L. McGuinness, B. Parsia, T. R. Payne, M. Sabou, M. Solanki,
N. Srinivasan, and K. P. Sycara, “Bringing semantics to web services:
The owl-s approach,” in SWSWPC, 2004.

[20] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” vol. 23, no. 3, pp. 219–252.

[21] F. Gramegna, S. Ieva, G. Loseto, M. Ruta, F. Scioscia, and E. Di Scias-
cio, “A lightweight matchmaking engine for the semantic web of things,”
pp. 103–114.


