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Abstract

Within the cytoplasm of a single cell, several actin networks can coexist with distinct sizes,

geometries, and protein compositions. These actin networks assemble in competition for a

limited pool of proteins present in a common cellular environment. To predict how two dis-

tinct networks of actin filaments control this balance, the simultaneous assembly of actin-

related protein 2/3 (Arp2/3)-branched networks and formin-linear networks of actin filaments

around polystyrene microbeads was investigated with a range of actin accessory proteins

(profilin, capping protein, actin-depolymerizing factor [ADF]/cofilin, and tropomyosin).

Accessory proteins generally affected actin assembly rates for the distinct networks differ-

ently. These effects at the scale of individual actin networks were surprisingly not always

correlated with corresponding loss-of-function phenotypes in cells. However, our observa-

tions agreed with a global interpretation, which compared relative actin assembly rates of

individual actin networks. This work supports a general model in which the size of distinct

actin networks is determined by their relative capacity to assemble in a common and com-

peting environment.

Introduction

Eukaryotic cells assemble a range of filamentous actin (F-actin) structures from actin mono-

mers (globular actin [G-actin]) to accomplish diverse processes. Actin assemblies may be

formed generally through two different mechanisms: (1) branched networks of actin filaments,

for which actin filaments are nucleated and elongate from the side of pre-existing ones by a

7-subunit complex called the actin-related protein 2/3 (Arp2/3) complex and (2) linear net-

works of actin filaments, for which actin filaments are capped at their dynamic barbed ends by

a homo-dimer of formin and elongate processively by the insertion of actin monomers [1]. In

addition, different actin networks have distinct geometrical organizations, sizes, dynamics,

and mechanical properties, which are adapted to their precise function. These parameters are

tightly controlled by specific accessory proteins. The accessory proteins may have one or
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multiple effects on actin filaments, which may include nucleating new filaments from free

actin monomers, cross-linking filaments into specific geometries, controlling elongation rates,

and severing and disassembling actin filaments [2]. The presence of all of these variables within

a dynamic cell raises a number of challenges to our understanding of actin biology.

The size of actin networks is controlled by the balance between their specific rates of

actin filament nucleation, rates of assembly at actin filament barbed ends, and rates of net-

work disassembly. Originally, it was thought that each cellular actin network was assembling

independently of the others due to the presence of a large and unlimited pool of actin mono-

mers. As a consequence, this original model proposed that rates of actin polymerization and

disassembly were constant and that the size of each actin network was mainly determined

by the rate of actin nucleation. However, recent studies challenged this idea and demon-

strated that different actin networks in cells were in tight competition for a limited pool of

actin monomers [3–5]. This discovery of homeostatic actin networks suggests that beyond

the regulation of actin nucleation, the growth rate and size of actin networks was also con-

trolled by the concentration of polymerizable actin left in a competitive environment. For

instance, cells in which the Arp2/3 complex activity is diminished, the disappearance of

branched networks is tightly correlated with the assembly of an unusually high number of

formin-dependent actin cables [3,6]. Conversely, formin inhibition does not change the

level of F-actin but promotes the assembly of Arp2/3-branched networks in cells. With this

new model, any growth of an actin network beyond its usual extent partially depletes the

amount of G-actin that is available in the cytoplasm and therefore reduces the size of other

actin networks. This concept was recently formalized theoretically under the name of global

treadmilling [7].

The actin accessory protein profilin, which tightly binds to G-actin, was demonstrated to

regulate F-actin network homeostasis by favoring the formin assembly pathway over the Arp2/

3 complex assembly pathway [6,8]. Control of profilin expression is a powerful mechanism to

regulate the formation of dynamic actin-rich protrusions and collective cell migration [9].

Such an observation suggests that fine-tuning the activity or expression of actin accessory pro-

teins is an efficient and physiological mechanism for cells needing to reorganize rapidly their

actin cytoskeleton. Besides profilin, most other actin accessory proteins have been shown to

impact globally the organization of the actin cytoskeleton. This is the case for cultured cells

[10,11] as well as in more complex processes such as epithelial-to-mesenchymal transitions

[12]. However, how specific factors modulate globally the organization of the actin cytoskele-

ton in a homeostatic environment is not yet clear.

Understanding the global impact of an accessory protein is a challenge, as most proteins

have multiple effects on actin assembly. For example, actin-depolymerizing factor (ADF)/cofi-

lin binds to G-actin as well as to F-actin, with multiple effects on actin assembly, disassembly,

and monomer recycling [2,13,14]. Furthermore, understanding how the activity of these acces-

sory proteins modulates branched versus linear network assembly is confounded by the fact

that they have different consequences on the formin and Arp2/3 assembly pathways. To cir-

cumvent this problem, the assembly of both actin assembly pathways were reconstituted in

this study from a minimal number of essential components in a shared experimental environ-

ment in which the steady state is rapidly reached. Although both types of actin networks

assembled independently, this system enabled us to test and compare side-by-side the effect of

various families of proteins on both actin assembly pathways. Our results indicate that all actin

accessory proteins potentially impact actin assembly pathways differently. This work demon-

strates that the interpretation of these differences in the context of a competitive environment

provides a general explanation of how the size of linear and branched networks is balanced in

cells.

Size regulation of actin networks

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000317 June 10, 2019 2 / 25

BioImaging infrastructure supported by the French

National Research Agency (ANR-10-INSB-04-01).

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: ABP, actin-binding protein; ADF,

actin-depolymerizing factor; ADP, adenosine

diphosphate; Arp2/3, actin-related protein 2/3; ATP,

adenosine triphosphate; Bni1p, bud neck involved

protein 1; Cap1/2, capping protein 1 and 2; CK-666,

Arp2/3 complex inhibitor I; F-actin, filamentous

actin; FH1-FH2, formin homology domain 1 and 2;

G-actin, globular actin; Las17p, budding yeast

WASp ortholog; Pfy1, profilin; WASp, Wiskott–

Aldrich syndrome protein.

https://doi.org/10.1371/journal.pbio.3000317


Results

Reconstitution of actin-based motility from WASp and formin-coated

beads in a common environment

Previous studies reconstituted separately Arp2/3-based and formin-based actin motilities in

vitro [15–17]. Typical assays use polystyrene microbeads coated by a nucleation-promoting

factor of the Arp2/3 complex or coated by formins in an environment in which actin filament

elongation is funneled at the bead surface to generate propulsive forces. Arp2/3-based actin

motility is characterized by the assembly of dense tails of branched actin networks, in which

beads are pushed by the continuous elongation of uncapped actin filament barbed ends at

their surface [15]. Formin-based actin motility is characterized by the assembly of dense cables

of linear actin filaments, in which beads are pushed by the processive elongation of actin fila-

ments capped at their barbed ends by the formins [16,17].

Simultaneous Arp2/3-based and formin-based actin nucleation was reconstituted in vitro

[8,18], but the set of essential accessory proteins that is required to obtain a simultaneous

steady-state actin network assembly from Wiskott–Aldrich syndrome protein (WASp)

and formin-coated beads has not yet been determined. Polystyrene microbeads of 2-μm diam-

eter were coated with the budding yeast WASp ortholog (Las17p), and 4-μm diameter

microbeads with the formin homology domains 1 and 2 (FH1-FH2) of a budding yeast formin,

bud neck involved protein 1 (Bni1p) (Fig 1A). A sustained and organized actin assembly

occurred immediately at the surface of the beads when they were mixed in a buffer solution

containing solely 8 μM prepolymerized F-actin, 250 nM Arp2/3 complex, 1 μM capping pro-

tein, and 15 μM profilin (Fig 1B). Such experimental conditions were sufficient to generate

actin networks of visibly distinct architectures. WASp-coated beads were propelled by assem-

bling actin networks at rates that are comparable with other studies (typically up to 2 μm/min)

[15,19], showing that the system is competent for actin-based motility and, more generally,

for force generation. In the case of formin-coated beads, the beads often stalled rapidly, but

force generation of actin networks is inferred from the buckling of some actin cables polymer-

izing at their surface [17] (Fig 1C). The use of a fluorescent actin reporter shows that the

amount of polymer around both types of beads increases linearly from the beginning of

the experiment and for several tens of minutes, suggesting a constant and measurable rate

of actin assembly for all conditions tested (S1A Fig). Actin assembly rates on WASp-coated

beads were systematically measured on comet tails after symmetry breaking, and experiments

performed with submicron size beads, which undergo symmetry breaking more rapidly,

gave similar results (S1B Fig). The design of this biomimetic system presents the advantage to

compare the efficiency of actin assembly for two distinct assembly pathways in equivalent

conditions.

WASp/formin biomimetic assay recapitulates the effect of an inhibition of

the Arp2/3 complex

We wanted to confirm that beyond visibly distinct actin architectures, both WASp and for-

min-coated beads were mimicking appropriately the assembly of branched and linear actin

networks in vivo. We investigated first the sensitivity of actin network assembly in the biomi-

metic assay to variable concentrations of Arp2/3 complex. The concentrations of profilin and

capping protein were fixed at values that are optimal for both branched and linear network

assembly, and the concentration of Arp2/3 complex was varied between 0 and 500 nM (Fig 2A

and 2B). As expected, increasing concentrations of Arp2/3 complex enhanced actin nucleation

on WASp-coated beads and increased the rate of actin assembly on these beads (Fig 2C).
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Fig 1. Simultaneous assembly of branched and linear networks of actin filaments in vitro. A. Schematic of

experimental bead assay setup. B. Phase contrast and fluorescence snapshots of branched actin networks assembled

around 2-μm diameter WASp-coated microbeads and linear actin networks assembled around 4-μm diameter formin-

coated microbeads in the presence of fluorescent actin, Arp2/3 complex, profilin, and capping protein. Images were

taken 30 min after the initiation of the experiment. Scale bar: 5 μm. C. Fluorescence snapshot of actin networks

assembled around multiple formin-coated microbeads 45 min after the initiation of the experiment. Buckling events

indicated by the black arrowheads. Scale bar: 10 μm. Arp2/3, actin-related protein 2/3; WASp, Wiskott–Aldrich

syndrome protein.

https://doi.org/10.1371/journal.pbio.3000317.g001
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Fig 2. Modulation of the branched-to-linear actin network balance by the Arp2/3 complex. The underlying data

can be found within S1 Data. A. Fluorescence snapshots of actin networks assembled around WASp-coated

microbeads in the presence of fluorescent actin, profilin, capping protein, and variable concentrations of Arp2/3

complex. Images were taken 30 min after the initiation of the experiment. Scale bar: 5 μm. B. Fluorescence snapshots of

actin networks assembled around formin-coated microbeads in the presence of fluorescent actin, profilin, capping

protein, and variable concentrations of Arp2/3 complex. Images were taken 30 min after the initiation of the

experiment. Scale bar: 5 μm. C. Quantification of (A). Rate of actin assembly around WASp-coated microbeads as a

function of the Arp2/3 complex concentration, normalized to the maximum value. D. Quantification of (B). Rate of

actin assembly around formin-coated microbeads as a function of the Arp2/3 complex concentration, normalized to

the maximum value. E. Snapshots of the actin cytoskeleton organization in budding yeast cells fixed and labeled with

fluorescent phalloidin, in the presence or in the absence of 200 μM CK-666 (left images), and for the formin defective

mutant bni1-FH2#1 bnr1Δ at nonrestrictive temperature (25 ˚C; center images) or restrictive temperature (37 ˚C; right

images). Scale bars: 2 μm. F. Quantification of (E). Average number of actin patches and cables per cell. G. In vitro

deviation index, calculated as a function of the Arp2/3 complex concentration. This index compares how actin

assembly rates around WASp and formin-coated beads deviate from a balanced situation in which both types of

networks assemble optimally. H. In vivo deviation index, based on structures number, calculated in the presence of

DMSO, 200 μM CK-666, at 37 ˚C for wild-type cells or at 37 ˚C for bni1-FH2#1 bnr1Δ cells. This index compares how

the number of actin patches and cables deviate from the wild-type condition. Arp2/3, actin-related protein 2/3; CK-

666, Arp2/3 complex inhibitor I; WASp, Wiskott–Aldrich syndrome protein.

https://doi.org/10.1371/journal.pbio.3000317.g002
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However, the Arp2/3 complex is not expected to affect actin nucleation on formin-coated

beads, and actin assembly on formin-coated beads was constant over a large range of Arp2/3

concentration (Fig 2D).

We next determined if the reconstitution mimics the effect of an Arp2/3 inhibition in

vivo. Budding yeast is a convenient system for such comparison as only two spatially distinct

actin networks are present during most of its cell cycle. The Arp2/3 assembly pathway is rep-

resented by the presence of endocytic actin patches, while the formin assembly pathway is

represented mainly by the presence of spatially distinct actin cables and in a lesser propor-

tion by the presence of a cytokinetic actin ring [10,20]. Addition of the Arp2/3 complex

inhibitor I (CK-666) in fission yeast reduces dramatically the number of patches, while the

number and size of cables increases [3]. We stabilized, labeled with fluorescent phalloidin,

and imaged the actin cytoskeleton of budding yeast cells in the presence or absence of CK-

666 (Fig 2E and S2A Fig). On average, 15 actin patches per cell were visible in control condi-

tions, but their number decreased to 6 actin patches on average in the presence of CK-666

(Fig 2F). The quantification of the total patch intensity per cell indicates a similar tendency,

with an actin patch intensity per cell reduced on average by 75% in the presence of CK-666

(S2B Fig). The situation is inversed for actin cables. The number of visible cables per cell

increases from 9 to 13 in the presence of CK-666, and cables assembled per cell are on aver-

age 240% brighter with CK-666 than in control conditions (Fig 2F and S2B Fig). These

results demonstrate a similar effect of CK-666 in budding yeast as in fission yeast. Con-

versely, inhibition of formins in the temperature sensitive yeast mutant bni1-FH2#1 bnr1Δ
[21] increases the number of actin patches to 41, while no actin cables are visible anymore

(Fig 2E and 2F).

A close comparison of the results from the biomimetic assay and in cells shows a correlated

increase in branched network assembly. However, the Arp2/3-independant linear actin net-

work assembly in the biomimetic assay does not match with the variation in cable assembly

observed in cells. The reason is that if the biomimetic assay allows an understanding of how

two different networks of actin filaments assemble when encountering similar conditions, it

does not take into account how they may compete for a common pool of proteins as they do in

cells [3,5]. This discrepancy imposed a second type of analysis of our results in order to evalu-

ate the capacity of each actin network to assemble relatively to the other actin network. This

comparison was made by defining a deviation index, which compares the efficiency of actin

assembly for both branched and linear networks of actin filaments for a given biochemical

condition in vitro. This index measures how actin assembly between branched and linear net-

works deviates from an equilibrium situation in which actin assembles equally well for both

networks and is defined as follows:

In vitro deviation index ½ABP�ð Þ ¼
rbranchedð½ABP�Þ � rlinearð½ABP�Þ
rbranchedð½ABP�Þ þ rlinearð½ABP�Þ

;

in which r is the rate of actin assembly for branched or linear networks for a given concentra-

tion of a given accessory protein (actin-binding protein [ABP]).

This index varies between the values −1 and +1, in which −1 represents an extreme case in

which only formin-coated beads assemble actin networks in vitro; 0 represents a balanced situ-

ation in which formin-coated beads assemble as much actin as WASp-coated beads; and +1

represents the other extreme case in which only WASp-coated beads assemble actin networks

in vitro (Fig 2G).
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Similarly, an in vivo index comparing the deviation in the number of actin patches and

cables in yeast cells is defined as follows:

In vivo deviation index ½CK666�ð Þ ¼

Npatches;CK666

Npatches;DMSO
�

Ncables;CK666

Ncables;DMSO
Npatches;CK666

Npatches;DMSO
þ

Ncables;CK666

Ncables;DMSO

;

in which N is the number of actin patches and cables in the presence or in the absence of CK-

666 (Fig 2H). Defining an in vivo deviation index based on the intensity actin patches and

cables gave us similar results throughout this study (S2C Fig). The in vivo deviation index also

varies between the values −1 and +1, in which −1 represents an extreme case in which only

actin cables are visible in cells; 0 represents the wild-type equilibrium; and +1 represents the

other extreme case in which only actin patches are detected.

A comparison of the in vitro and in vivo indexes (Fig 2G and 2H) indicates that an appro-

priate interpretation of the biomimetic assay is able to predict how the balance between Arp2/

3 and formin networks is modified by a change of the Arp2/3 complex activity. Both indexes

indicate trends, thus should not be compared quantitatively, as a value 0 for the in vivo index

is equivalent to the wild-type condition, while a value 0 for the in vitro index is equivalent to a

condition in which both linear and branched network assemble equally well relative to their

respective optimal condition of assembly. A more thorough analysis would require the precise

knowledge of the cytoplasmic concentrations of the proteins used in these assays.

WASp/formin biomimetic assay recapitulates the biochemical effect of the

actin assembly regulator profilin

Profilin is an established regulator for the homeostasis of actin networks [6,8,22]. Profilin

binds tightly to ATP-G-actin (Kd� 100 nM) and prevents the spontaneous nucleation and the

elongation of actin filaments at their pointed ends [1]. Profilin also binds directly to the poly-

L-proline domain of formin and enhances processive barbed end elongation rates. In contrast,

profilin reduces nucleation and branching by the Arp2/3 complex [8]. Profilin also binds to

actin filament barbed ends, competing with other barbed end interactors, therefore triggering

a multitude of effects on actin filament barbed-end dynamics [22]. Profilin also contributes to

actin recycling by promoting the exchange of adenosine diphosphate (ADP) to adenosine tri-

phosphate (ATP) on actin monomers.

Profilin was added in the biomimetic assay at various concentrations ranging from 0 to

60 μM (Fig 3A and 3B). Actin assembly curves for both types of networks displayed bell-

shaped curves but with different characteristics (Fig 3C and 3D). Actin assembly and bead

motility were modestly efficient for WASp-coated beads in the absence of profilin but were

inhibited by the presence of large amounts of profilin (Fig 3C). On the contrary, actin assembly

into cables was inefficient on formin-coated beads in the absence of profilin but efficient in the

presence of up to 60 μM of profilin (Fig 3D). Another difference between these curves is that

optimal conditions for actin assembly were reached at different concentrations of profilin, i.e.,

about 15 μM for WASp-coated beads and 30 μM for formin-coated beads (Fig 3C and 3D).

These assays are performed at low bead densities, and we verified that the assembly of one

type of actin network does not influence the assembly of the other (S3 Fig). Therefore, as for

the Arp2/3 complex, the side-by-side comparison of these curves does not show intuitively

whether branched network or linear network assembly is favored for a given concentration

of profilin. Consequently, we plotted for each concentration of profilin the in vitro deviation

index (Fig 3E). This deviation index varies between +0.94 in the absence of profilin to −0.75

for a high concentration of profilin, indicating nonambiguously the ability of this protein to
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Fig 3. Modulation of the branched-to-linear actin network balance by profilin. The underlying data can be found

within S1 Data. A. Fluorescence snapshots of actin networks assembled around WASp-coated microbeads in the

presence of fluorescent actin, Arp2/3 complex, capping protein, and variable concentrations of profilin. Images were

taken 30 min after the initiation of the experiment. Scale bar: 5 μm. B. Fluorescence snapshots of actin networks

assembled around formin-coated microbeads in the presence of fluorescent actin, Arp2/3 complex, capping protein,

and variable concentrations of profilin. Images were taken 30 min after the initiation of the experiment. Scale bar:

5 μm. C. Quantification of (A). Rate of actin assembly around WASp-coated microbeads as a function of the profilin

concentration, normalized to the maximum value. D. Quantification of (B). Rate of actin assembly around formin-

coated microbeads as a function of the profilin concentration, normalized to the maximum value. E. In vitro deviation

index, calculated as a function of the profilin concentration. F. Snapshots of the actin cytoskeleton organization in

wild-type, pfy1Δ, and Pfy1 overexpressing budding yeast cells fixed and labeled with fluorescent phalloidin. Scale bars:

2 μm. G. Quantification of (F). Average number of actin patches and cables per cell. H. In vivo deviation index for

pfy1Δ and Pfy1 overexpressing cells. Arp2/3, actin-related protein 2/3; Pfy1, profilin; WASp, Wiskott–Aldrich

syndrome protein.

https://doi.org/10.1371/journal.pbio.3000317.g003
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switch actin assembly from branched networks on WASp-coated beads to cable assembly on

formin-coated beads.

We compared our results with the effect of profilin in budding yeast cells [23]. Labeling of

actin structures with fluorescent phalloidin indicated that profilin null (pfy1Δ) cells do not

assemble any visible actin cables but assemble >5 times more actin patches than wild-type

cells (Fig 3F and 3G and S2A Fig). On the contrary, overexpression of profilin reduced the

number of actin patches from 15 in wild-type cells to 12 on average, while the number of actin

cables increased from 7 to 12. As above, an in vivo deviation index is defined as follows:

In vivo deviation index ¼
Npatches;mutant
Npatches;wild type

�
Ncables; mutant
Ncables;wild type

Npatches;mutant
Npatches;wild type

þ
Ncables;mutant
Ncables; wild type

;

in which N is the number of actin patches and cables for wild-type or mutant cells. Calculation

of the in vivo deviation index for wild-type, pfy1Δ, and profilin overexpressing cells shows a

similar trend than the in vitro deviation index (Fig 3E and 3H), demonstrating again that the

biomimetic assay and its analysis recapitulate the physiological effect of profilin in vitro.

Effect of capping protein on Arp2/3-based and formin-based actin

assembly pathways

Our previous results demonstrated that proteins such as Arp2/3 and profilin modulate

branched and linear actin network assembly differently and, therefore, impact the balance

between branched and linear networks of actin filaments in vivo. We followed for the rest of

this study the hypothesis that any other protein implicated in actin assembly was also likely to

affect actin assembly pathways differently and, therefore, impact the branched/linear actin net-

work balance [7].

We first tested this hypothesis by focusing our attention on capping protein. Capping pro-

tein, which is a heterodimer of Cap1 and Cap2, binds tightly to the barbed end of actin fila-

ments and inhibits their elongation [1]. On branched networks of actin filaments, capping

protein limits the size of individual actin filaments, contributes to the densification of actin

networks [24], and promotes filament nucleation by the Arp2/3 complex [25]. On linear net-

works of actin filaments, capping protein is able to bind simultaneously with formin to actin

filament barbed ends [26,27]. However, this mutual binding is weak and enables rapid dis-

placement of one by the other. As a consequence, capping protein competes with formin to

bind actin filament barbed ends [28,29]. Capping protein also increases the steady-state con-

centration of monomeric actin in these assays, which can influence both pathways [30,31].

The concentration of capping protein was varied in the biomimetic assay between 0 and

15 μM (Fig 4A and 4B). As for profilin, both actin assembly pathways display bell-shaped

curves with optimal concentrations of capping protein around 1 μM for both types of actin

networks (Fig 4C and 4D). Actin network assembly occurred noticeably faster on WASp-

coated beads than on formin-coated beads. At high concentration of capping protein, both

networks were found to assemble equally well. Preincubation of proteins for 2 h at room tem-

perature before introduction of the beads did not change our observations, indicating that

steady-state actin assembly in these assays is reached rapidly from the disassembly of the pool

of filamentous actin (S4A and S4B Fig). Overall, the determination of the in vitro deviation

index for capping protein predicts that the assembly of branched networks is favored over lin-

ear networks for low concentrations of capping protein (<1 μM) and reaches a stable equilib-

rium between both structures for concentrations of capping protein above 1 μM (Fig 4E, S4A

and S4B Fig). We compared these results with the effect of an absence of capping protein in
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Fig 4. Modulation of the branched-to-linear actin network balance by capping protein. The underlying data can be found

within S1 Data. A. Fluorescence snapshots of actin networks assembled around WASp-coated microbeads in the presence of

fluorescent actin, Arp2/3 complex, profilin, and variable concentrations of capping protein. Images were taken 30 min after

the initiation of the experiment. Scale bar: 5 μm. B. Fluorescence snapshots of actin networks assembled around formin-

coated microbeads in the presence of fluorescent actin, Arp2/3 complex, profilin, and variable concentrations of capping

protein. Images were taken 30 min after the initiation of the experiment. Scale bar: 5 μm. C. Quantification of (A). Rate of

actin assembly around WASp-coated microbeads as a function of the capping protein concentration, normalized to the

maximum value. D. Quantification of (B). Rate of actin assembly around formin-coated microbeads as a function of the

capping protein concentration, normalized to the maximum value. E. In vitro deviation index, calculated as a function of the
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yeast. As described previously, cap1Δ and cap2Δ cells have a similar phenotype because cap-

ping protein requires the expression of both subunits for its function [32]. Absence of capping

protein in yeast was also correlated with higher amounts of actin polymer in cells, suggesting

that capping protein is also important in cells to increase the concentration of polymerizable

actin [33]. In both cap1Δ and cap2Δ cells, an elevated number of patches and very few actin

cables were detectable (Fig 4F and 4G and S2A Fig). Remaining actin cables may be present

due to the presence of other inhibitors of actin filament barbed-end elongation in yeast

[34,35]. As a consequence, the in vivo deviation index was higher for both strains, as predicted

by the biomimetic assay (Fig 4E and 4H). We also investigated the effect of an overexpression

of capping protein in yeast cells. Overexpression was induced from a multicopy plasmid

derived from the plasmid used for the endogenous expression and purification of a functional

capping protein [36] (S5 Fig). Surprisingly, despite the strong overexpression of capping pro-

tein in these cells, their actin cytoskeleton appears to be normal (Fig 4F and 4G).

As low rates of actin assembly for weak barbed-end capping are partly due to a depletion of

the monomeric actin pool in the biomimetic assay [31], we also investigated a situation in

which actin networks were initiated from a fixed concentration of G-actin. However, low con-

centrations of capping protein in the presence of high amounts of G-actin leads to an uncon-

trolled barbed-end assembly from WASp beads and the formation of nonpolarized actin

networks whose fluorescence signal was difficult to quantify (S4C Fig [25,37]). The geometry

of such actin networks also does not reflect the well-defined structure of the actin patches

observed in the cap1Δ or cap2Δ cells (Fig 4F). Overall, the different conditions tested for these

experiments (Fig 4C, 4D and 4E, S4A, S4B and S4C Fig) suggest that the pool of actin mono-

mers reaches a deterministic steady state rapidly when experiments are initiated from F-actin

and mimics best what is observed in cells.

Effect of ADF/cofilin on Arp2/3-based and formin-based actin assembly

pathways

Another protein that is expected to impact actin assembly is ADF/cofilin. While ADF/cofilin

is mostly known for its importance on actin disassembly [2,13,14,31], it is also identified as a

strong competitor of the Arp2/3 complex [38]. ADF/cofilin inhibits actin nucleation and

branch formation by the Arp2/3 complex, but ADF/cofilin does not have, to our knowledge,

any reported direct effect on actin nucleation or elongation by formins.

ADF/cofilin at various concentrations ranging from 0 to 10 μM was added in the biomi-

metic assay, and the net rates of actin assembly were measured (Fig 5A and 5B). Similar to pro-

filin, optimal concentrations of ADF/cofilin are different for the assembly of actin on WASp-

coated beads (around 0.3 μM of ADF/cofilin) and for the assembly of actin on formin-coated

breads (around 1 μM of ADF/cofilin) (Fig 5C and 5D). Low concentrations of ADF/cofilin

favored the assembly of actin on WASp-coated beads. On the contrary, concentrations of

ADF/cofilin above 1 μM reduced sharply actin assembly on WASp-coated beads, while actin

assembly remained possible on formin-coated beads. Overall, the in vitro deviation index

for ADF/cofilin indicates that while low concentrations of ADF/cofilin (<1 μM) favor

branched network assembly over linear network assembly, higher concentrations of ADF/

cofilin (>1 μM) progressively favor linear network assembly over branched network assembly

capping protein concentration. F. Snapshots of the actin cytoskeleton organization in wild-type, cap1Δ, cap2Δ, and capping

protein overexpressing budding yeast cells fixed and labeled with fluorescent phalloidin. Scale bars: 2 μm. G. Quantification

of (F). Average number of actin patches and cables per cell. H. In vivo deviation index for cap1Δ, cap2Δ, and capping protein

overexpressing cells. Arp2/3, actin-related protein 2/3; WASp, Wiskott–Aldrich syndrome protein.

https://doi.org/10.1371/journal.pbio.3000317.g004
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Fig 5. Modulation of the branched-to-linear actin network balance by ADF/cofilin. The underlying data can be found

within S1 Data. A. Fluorescence snapshots of actin networks assembled around WASp-coated microbeads in the presence of

fluorescent actin, Arp2/3 complex, profilin, capping protein, and variable concentrations of ADF/cofilin. Images were taken

30 min after the initiation of the experiment. Scale bar: 5 μm. B. Fluorescence snapshots of actin networks assembled around

formin-coated microbeads in the presence of fluorescent actin, Arp2/3 complex, profilin, capping protein, and variable

concentrations of ADF/cofilin. Images were taken 30 min after the initiation of the experiment. Scale bar: 5 μm. C.

Quantification of (A). Net rate of actin assembly around WASp-coated microbeads as a function of the ADF/cofilin

concentration, normalized to the maximum value. D. Quantification of (B). Net rate of actin assembly around formin-coated

microbeads as a function of the ADF/cofilin concentration, normalized to the maximum value. E. In vitro deviation index,
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(Fig 5E). We compared these results with the effect of an inhibition of a temperature-sensitive

mutant of ADF/cofilin (cof1-22) [39] and of an overexpression of ADF/cofilin in yeast. As

expected, while cof1-22 cells did not show any visible defect in actin patch or cable assembly at

nonrestrictive temperature (25 ˚C), cof1-22 cells had an abnormally high number of patches

and less cables at 37 ˚C. On the contrary, overexpressing cells had a small decrease of patch

numbers and significantly more actin cables (Fig 5F and 5G and S2A Fig). Comparison of the

in vivo and in vitro deviation indexes show a similar trend for ADF/cofilin and predicts that a

higher concentration of ADF/cofilin in cells would progressively imbalance cells toward even

more cable assembly (Fig 5E and 5H).

Effect of tropomyosin on Arp2/3-based and formin-based actin assembly

pathways

Finally, we tested the impact of tropomyosin in the biomimetic assay. Tropomyosin also

strongly modulates actin assembly. First, as a competitor of the Arp2/3 complex, it inhibits

actin nucleation and branch formation by the Arp2/3 complex [40–42]. Second, tropomyosin

cooperates with profilin to enhance formin-dependent nucleation of actin cables [43].

Various concentrations of tropomyosin ranging from 0 to 40 μM were added in the biomi-

metic assay and we measured the net rates of actin assembly (Fig 6A and 6B). Tropomyosin

progressively reduced the rate of actin assembly on WASp-coated beads, while it progressively

increased actin assembly on formin-coated beads (Fig 6C and 6D). As a consequence, the in

vitro deviation index predicts a shift from a favorable branched actin assembly in the absence

of tropomyosin to a favorable actin cable assembly in the presence of increasing concentra-

tions of tropomyosin (Fig 6E). We compared these results with the effect of an inhibition of a

temperature-sensitive mutant of tropomyosin (tpm1-2 tpm2Δ) [44] and with an overexpres-

sion of tropomyosin in yeast. As previously reported, while tpm1-2 tpm2Δ cells did not show

any visible defect in actin patch or cable assembly at nonrestrictive temperature (25 ˚C), tpm1-
2 tpm2Δ cells presented a higher number of patches and a severe decrease of cables number at

37 ˚C. On the contrary, overexpression of tropomyosin induced a dramatic phenotype where

cells are often misshaped, with a much-reduced number of actin patches and the formation of

numerous actin cables (Fig 6F and 6G and S2A Fig). Side-by-side analysis of the in vitro and in

vivo deviation indexes reveal a similar trend for both indexes (Fig 6E and 6H). A small shift

between these indexes in the absence of tropomyosin also suggests a possible slight overestima-

tion of cable stability in the bead assay at low concentration of tropomyosin (see Discussion).

Discussion

In this work, we measured quantitatively for a range of communal biochemical conditions the

efficiencies of actin assembly on dually present branched (WASp/Arp2/3) networks and on

linear (formin) networks. For most actin accessory proteins tested in this work, actin network

assembly rates were strongly dependent on the concentration of the actin accessory proteins

present in solution. Assembly rates displayed bell-shaped curves almost systematically, indicat-

ing the existence of optimal concentrations of these accessory proteins for the assembly of

calculated as a function of the ADF/cofilin concentration. F. Snapshots of the actin cytoskeleton organization of budding

yeast cells fixed and labeled with fluorescent phalloidin for ADF/cofilin overexpressing cells (right image) and for cof1-22
cells at nonrestrictive (25 ˚C; left images) and restrictive (37 ˚C; center images) temperatures. Scale bars: 2 μm. G.

Quantification of (F). Average number of actin patches and cables per cell in the wild-type, cof1-22mutant, and ADF/cofilin

overexpressing conditions. H. In vivo deviation index of ADF/cofilin overexpressing cells and cof1-22 cells at 37 ˚C. ADF,

actin-depolymerizing factor; Arp2/3, actin-related protein 2/3; WASp, Wiskott–Aldrich syndrome protein.

https://doi.org/10.1371/journal.pbio.3000317.g005
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Fig 6. Modulation of the branched-to-linear actin network balance by tropomyosin. The underlying data can be found within S1

Data. A. Fluorescence snapshots of actin networks assembled around WASp-coated microbeads in the presence of fluorescent actin,

Arp2/3 complex, profilin, capping protein, and variable concentrations of tropomyosin. Images were taken 30 min after the

initiation of the experiment. Scale bar: 5 μm. B. Fluorescence snapshots of actin networks assembled around formin-coated

microbeads in the presence of fluorescent actin, Arp2/3 complex, profilin, capping protein, and variable concentrations of

tropomyosin. Images were taken 30 min after the initiation of the experiment. Scale bar: 5 μm. C. Quantification of (A). Net rate of

actin assembly around WASp-coated microbeads as a function of the tropomyosin concentration, normalized to the maximum
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actin networks. The effect of these accessory proteins is different for the assembly properties of

each actin networks (Fig 7, upper panel), which suggests that all accessory proteins control the

amount of actin polymer assembled on each pathway. Actin regulators generally exhibited

their characteristic differential effects on branched and linear networks even in the absence of

competition for soluble factors. The main differences observed were that (1) an accessory pro-

tein may be essential for the assembly of an actin network but not another network and (2)

that the range of optimal concentrations for actin assembly is not necessarily the same for both

networks (Fig 7, upper panel).

Our results indicate that rates of actin assembly for each individual actin assembly pathway

should not be interpreted separately. The existence of a global competition between actin net-

works requires an interpretation of these results in the light of how a common pool of compo-

nents is shared in a given biochemical environment (Fig 7, lower panel).

Predicting the shape of these curves is difficult because accessory proteins often have multi-

ple effects on actin assembly. However, our results indicate that in most cases, a side-by-side

comparison of actin assembly rates between these structures is sufficient to predict which actin

network will be favored in cells, i.e., in an environment in which the competition for a limiting

pool of actin monomers exists (Fig 7, lower panel). If we compare now the effect of all the

actin accessory proteins tested in this study, we notice that profilin is the most efficient regula-

tor to switch actin assembly from branched to linear networks, i.e., in which the in vitro devia-

tion index varies to its extreme values. Other accessory proteins also regulate actin network

homeostasis but only partially.

We also verified the validity of our predictions by evaluating the numbers and intensities of

actin patches and actin cables in yeast for a variety of mutant conditions. We generally found

an exact correlation between the predictions made with the in vitro reconstitution assay and

the observations in cells, indicating that actin assembly rules the balance between branched

and linear networks for most accessory proteins. Such biomimetic system can also help us to

make predictions that would be difficult to test experimentally. For example, our model pre-

dicts that an overexpression of Arp2/3 in cells would not prevent a remaining population of

cables to assemble. In the absence of tropomyosin, we found that observations in the biomi-

metic overestimated slightly the number of actin cables. A possible explanation is that in the

case of tropomyosin specifically, the size of actin structures may not be only determined by the

effect of tropomyosin on actin assembly but may also be partially controlled by its effect on

actin disassembly. This hypothesis is strongly supported by previous models, suggesting that

tropomyosin protects actin filaments from the cellular actin disassembling machinery [45,46].

It would be interesting in the future to integrate principles of actin disassembly in the biomi-

metic assay developed in this study. For instance, the addition of factors such as Aip1 and cor-

onin would determine to which extent actin disassembly may also regulate the size of actin

networks in cells [47–49].

General principles highlighted in this work are likely to apply to other cellular models,

although the existence of multiple overlapping actin structures in higher eukaryotes makes

these principles harder to decipher. Notably, the inhibition or the depletion of the Arp2/3

value. D. Quantification of (B). Net rate of actin assembly around formin-coated microbeads as a function of the tropomyosin

concentration, normalized to the maximum value. E. In vitro deviation index, calculated as a function of the tropomyosin

concentration. F. Snapshots of the actin cytoskeleton organization of budding yeast cells fixed and labeled with fluorescent

phalloidin for tropomyosin overexpressing cells (right image) and for tpm1-2 tpm2Δ at nonrestrictive (25 ˚C; left images) and

restrictive (37 ˚C; center images) temperatures. Scale bars: 2 μm. G. Quantification of (F). Average number of actin patches and

cables per cell. H. In vivo deviation index of tropomyosin overexpressing cells and tpm1-2 tpm2Δ cells at 37˚C. Arp2/3, actin-related

protein 2/3; WASp, Wiskott–Aldrich syndrome protein.

https://doi.org/10.1371/journal.pbio.3000317.g006
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complex leads to an excess of F-actin linear networks such as bundles and transverse arcs at

the expense of lamellipodial networks and ruffle formation in insect and animal cells [50–53].

Conversely, profilin depletion increases the branching density and enhances Arp2/3 complex

localization to the lamellipodium, whereas F-actin linear structures are strongly impaired [6].

Strikingly, microinjection of profilin in cells rescues the phenotype and induces the formation

of F-actin bundles to the expense of the peripheral lamellipodia length [6]. Generally, ADF/

Fig 7. Cartoon representing how the size of actin networks is controlled in a common and competing

environment. Results from this study indicate that actin assembly pathways (e.g., branched Arp2/3 and linear formin)

do not have the same sensitivities to variable concentrations accessory proteins (upper panel). Principally, actin

assembly rates vary differently and can span from cases in which only one type of network is able to assemble to cases

in which they both assemble with similar efficiencies. Optimum concentrations of accessory proteins are also generally

different for both pathways. Arp2/3, actin-related protein 2/3.

https://doi.org/10.1371/journal.pbio.3000317.g007

Size regulation of actin networks

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000317 June 10, 2019 16 / 25

https://doi.org/10.1371/journal.pbio.3000317.g007
https://doi.org/10.1371/journal.pbio.3000317


cofilin and tropomyosin depletions cause the expansion of branched networks [11,54]. On the

contrary, elimination of any of the tropomyosin isoforms fatally compromises stress fiber for-

mation [45]. Unexpectedly, our results indicate that a low barbed-end capping activity favors

actin assembly on branched networks in conditions in which the pool of polymerizable actin

drops. This is likely due to the fact that nucleation by the Arp2/3 complex generates a large

number of barbed ends, which remain free to elongate in the absence of capping. In an appar-

ent contradiction, depletion of capping protein in many cell types abolishes the lamellipodium

and promotes the formation of filopodial structures [28,55,56]. However, these data do not

indicate to our knowledge whether actin filaments elongating in these structures are nucleated

and elongated by formins or if they simply elongate due to the absence of sufficient capping in

the lamellipodium.

As the size, shape, and activity of many other cellular structures are tightly regulated by a

large number of factors in a competitive environment, we expect that a better understanding

of their regulation will emerge from the principles presented in this work.

Material and methods

Plasmid constructions

Plasmids for protein expression and purification. Standard methods were employed

for DNA manipulations. DNA fragments corresponding to gene coding sequences were

obtained by PCR amplification (Phusion High-Fidelity DNA Polymerase, Finnzymes) of

Saccharomyces cerevisiae genomic DNA. For WASp overexpression (Gst-Las17(375-Cter)-

6xHis), the coding sequence was cloned in pGEX-4T-1 plasmid between BamHI and NotI.

This construction of Las17 keeps the poly-L-proline domains necessary for the interaction

with profilin. For capping protein overexpression (6xHis-Cap1/Cap2), the coding sequence

of Cap1 was cloned in pRSFDuet-1 plasmid between BamHI and NotI and the coding

sequence of Cap2 was cloned between BglII and XhoI. For tropomyosin overexpression, the

coding sequence of Tpm1 was cloned in pRSFDuet-1 plasmid between NdeI and PacI with

an Ala-Ser extension at the N-terminal end in order to increase actin affinity [57]. For for-

min overexpression (Gst-Bni1(1215-Cter)-TEV-9xHis, corresponding to the proline rich

FH1 and the FH2 domains) the coding sequence of Gst and Bni1 were cloned simultaneously

in a yeast multicopy plasmid (2 μ URA3) under the control of a GAL1 promoter between

BamHI and PacI [48].

Plasmids for overexpression and phalloidin labeling. The coding sequences of profilin,

ADF/cofilin, tropomyosin (Tpm1 and Tpm2 with an Ala-Ser extension), and capping protein

(Cap1 and Cap2) were cloned in yeast 2 μ multicopy plasmids under the control of a GAL1

promoter. The plasmids are derived from the pRS425 and pRS426-based constructs that

we use for protein purification in yeast, but a stop codon was kept at the end of the coding

sequences. Control of capping protein overexpression was also verified with a 9 myc-tagged

Cap2.

Protein expression, purification and labeling

Actin. S. cerevisiae actin was purified from commercially purchased baker’s yeast (Kasta-

lia, Lesaffre, Marcq-en-Baroeul, France), as described in [48,58]. As labeling on cysteines

impacts profilin binding, rabbit muscle actin was purified and labeled on lysines with Alexa

Succinimidyl Ester dyes, as described in [59,60].

Arp2/3 complex. S. cerevisiae Arp2/3 complex was purified from commercially purchased

baker’s yeast (Kastalia, Lesaffre, Marcq-en-Baroeul, France) based on a protocol modified

from [61,62]. Droplets of liquid yeast culture were frozen in liquid nitrogen and ground in a
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steel blender (Waring, Winsted, CT, USA). 50 g of ground yeast powder was mixed with a lysis

buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM EDTA, 1 mM DTT supplemented with

protease inhibitors (Set IV, Calbiochem, Merck4Biosciences, Darmstadt, Germany). The yeast

extract was cleared by centrifugation at 160,000 g for 30 min and fractioned by a 50% ammo-

nium sulfate cut. The insoluble fraction was dissolved and dialyzed in HKME buffer (25 mM

Hepes pH 7.5, 50 mM KCl, 1 mM EGTA, 3 mM MgCl2, 1 mM DTT, 0,1 mM ATP) overnight

at 4 ˚C. This fraction was then loaded onto a 2-ml Glutathione-Sepharose 4B (GE Healthcare

Life Sciences, Piscataway, NJ, USA) column pre-charged with GST-N-WASp-VCA [61,62].

Bound Arp2/3 complex was purified with HKME buffer and eluted with 20 mM Tris-HCl pH

7.5, 25 mM KCl, 200 mM MgCl2, 1 mM EGTA and 1 mM DTT. Fractions of interest were

detected by Bradford assay, pooled, concentrated with an Amicon Ultra 4-ml device (Merck4-

Biosciences, Darmstadt, Germany), and dialyzed against HKG buffer (20 mM Hepes, pH 7.5;

200 mM KCl; 6% glycerol).

Formin. S. cerevisiae formin was overexpressed in yeast (MATa, leu2, ura3-52, trp1, prb1-

1122, pep4-3, pre1-451) under the control of a GAL1 promoter for 12 h at 30 ˚C with 2% galac-

tose. Cells were harvested by centrifugation, frozen in liquid nitrogen, and ground in a steel

blender (Waring, Winsted, CT, USA). For protein purification, 5 g of ground yeast powder

was mixed with 45 ml of HKI10 buffer (20 mM Hepes, pH 7.5; 200 mM KCl; 10 mM Imidaz-

ole, pH 7.5), supplemented with 50 μl of protease inhibitors (Set IV, Calbiochem, Merck4Bios-

ciences, Darmstadt, Germany), and thawed on ice. The mixture was centrifugated at 160,000 g

for 30 min, and the supernatant was incubated with 500-μl bed volume of Nickel-Sepharose 6

Fast Flow (GE Healthcare Life Sciences, Piscataway, NJ, USA) for 2 h at 4 ˚C. Bound protein

was batch purified with HKI20 buffer (20 mM Hepes, pH 7.5; 200 mM KCl; 20 mM Imidazole,

pH 7.5) and was TEV-cleaved from Nickel-Sepharose for 1 h at room temperature. The protein

was concentrated with an Amicon Ultra 4 ml device (Merck4Biosciences) and dialyzed against

HKG buffer.

WASp and capping protein. S. cerevisiaeWASp were overexpressed in Rosetta 2(DE3)

pLysS cells. Bacteria were lysed in 20 mM Tris-HCl pH 7.5, 1 mM DTT, 1 mM EDTA, 200

mM NaCl, 0,1% Triton X-100, 5% glycerol and protease inhibitors (Complete Protease Inhibi-

tor Cocktail, Roche). After clearing the bacterial lysate by centrifugation at 160,000 g for 20

min, the protein was subjected to a first-step purification on Glutathione-Sepharose beads fol-

lowing the manufacturer’s recommendations. It was then eluted with 100 mM L-glutathione

reduced and further purified by the addition of Nickel-Sepharose beads 6 Fast Flow (GE

Healthcare Life Sciences, Piscataway, NJ, USA). An elution was performed using HKI500

buffer (20 mM Hepes, pH 7.5; 200 mM KCl; 500 mM Imidazole, pH 7.5). The protein was con-

centrated with an Amicon Ultra 4-ml device (Merck4Biosciences) and dialyzed against HKG

buffer.

S. cerevisiae capping protein was purified with a similar protocol including only a Nickel-

Sepharose purification step in HKI20 buffer (20mM Hepes pH 7.5, 200 mM KCl, 20 mM imid-

azole pH 7.5, 0,1% Triton X-100, 10% glycerol).

Tropomyosin. S. cerevisiae tropomyosin was overexpressed in Rosetta 2(DE3)pLysS cells

and purified based on a protocol modified from [63]. Briefly, cells were lysed in extraction

buffer (50 mM imidazole-HCl, pH 6.9, 300 mM KCl, 5 mM MgCl2, 0.3 mM phenylmethylsul-

fonyl fluoride and protease inhibitors (Complete Protease Inhibitor Cocktail, Roche)) by soni-

cation and boiled for 10 min. Cell debris and insoluble proteins were pelleted at 300,000 g for

20 min. The clear supernatant containing pure tropomyosin was finally dialyzed into 50 mM

KCl, 10 mM Tris-HCl pH 7.5 and 0.5 mM DTT overnight at 4 ˚C.

Profilin and ADF/cofilin. S. cerevisiae profilin and cofilin were overexpressed in Rosetta

2(DE3)pLysS cells and purified as described in [48,64,65].
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Actin assembly assays

Functionalization of beads. Polystyrene microspheres (2 μm diameter, 2.5% solids [w/v]

aqueous suspension, Polysciences, Inc) were diluted 10 times in HK buffer (20 mM Hepes pH

7.5, 150 mM KCl) and incubated with 100 nM Las17 for 30 min on ice. Beads were saturated

with 1% bovine serum albumin (BSA) for 15 min, washed and eventually stored on ice in HK

buffer supplemented with 0,1% BSA. Bni1 (1 μM) was coated on glutathione-coated particles

(4.37 μm diameter, 0.5% solids [w/v] aqueous suspension, Spherotech, Inc) with a similar

protocol.

Bead motility assays. Unlabeled and labeled actins were mixed to reach a final labeling

percentage of 2%. Actin was prepolymerized in KMEI buffer (50 mM KCl, 1 mM MgCl2, 1

mM EGTA, 10 mM Imidazole pH 7.8) for 1 h at room temperature. To initiate actin network

assembly, Las17 and Bni1-coated beads (104 beads of each type per μl) were incubated with

F-actin and other proteins in a motility buffer (20 mM Hepes pH 7.5; 100 mM KCl; 2 mM

EGTA; 2 mM MgCl2; 50 mM DTT; 5 mM ATP; 0.3 mg/ml glucose; 0.03 mg/ml catalase; 0.15

mg/ml glucose oxidase; 0.8% methylcellulose 1,500 cP and 0.5% BSA). Standard optimal pro-

tein concentrations are 8 μM F-actin, 15 μM profilin, 1 μM capping protein, and 250 nM

Arp2/3 complex unless otherwise stated. These values were kept as reference values for all

experiments related to the titration of accessory proteins. For every titration experiment, the

range of concentration of the tested protein was chosen so that its effect could be analyzed

from its absence up to saturating amounts for both actin networks. Highest concentrations

therefore represent situations that are out of the physiological regime.

Image acquisition, processing and analysis. For in vitro actin assembly assays, images

were acquired on a Zeiss Axio Observer Z1 microscope equipped with a 100x/1.4NA Oil Ph3

Plan-Apochromat objective and a Hamamatsu ORCA-Flash 4.0LT camera. Images were

acquired with Zen 2.3 blue edition.

Data quantification. All set of images were taken using the same light intensity and expo-

sure time. Intensity values were measured over time before reaching the steady state using Fiji

(Version 1.52e). Fluorescence of the background was subtracted for each value. Actin assembly

rates r were calculated as follows:

r ¼
It2 � It1
t2 � t1

;

in which I is the intensity value at a given time point t. Actin assembly rates were normalized

to their maximal values. Data were quantified and statistically analyzed with GraphPad Prism

6.05, and plotted with R using the package ggplot2 (https://ggplot2.tidyverse.org). For all con-

ditions, experiments were repeated independently at least 3 times. Data presented in the man-

uscript correspond to one set of experiments, which includes a minimum of n = 30 data points

per condition from a minimum of 6 independent beads. In all plots of actin assembly rates,

error bars indicate standard deviations.

Actin organization in yeast

Yeast cell fixation and phalloidin staining. Yeast strains used in this study were obtained

from previous published studies, including [21,36,39,44,66]. To assess actin organization,

yeast cells were fixed and stained with fluorescently labeled phalloidin as described in [43,67].

Briefly, strains were grown in YPD medium at 25 ˚C to early/mid log phase and fixed at 25 ˚C

with 4% formaldehyde for 1 h. Thermosensitive mutants were cultivated for 1 h at 37 ˚C before

fixation. For protein overexpression, wild-type and cells carrying the plasmid of interest were

grown in synthetic yeast medium supplemented with 2% galactose before fixation. Cells were
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then stained overnight at 25 ˚C with AlexaFluor-568-phalloidin and washed three times with

PBS before imaging.

Cell imaging. Cells were imaged in PBS– 70% glycerol on a Leica TCS SP8 STED inverted

confocal microscope using a 63x, 1.4 NA oil Plan Apochromatic objective lens in combination

with a hybrid detector. Full z-stacks were acquired with LAS X software.

Data quantification. Number of actin cables and patches was scored from a maximal

intensity projection done with Fiji. For all conditions, a minimum of 50 cells were imaged and

analyzed. In all plots, error bars indicate standard deviations and symbols � indicate significant

statistical differences compared to the wild-type conditions using a Student t test (p< 0.0001).

All data used to draw conclusions are available in S1 Data.

Supporting information

S1 Data. Data for Figs 2, 3, 4, 5 and 6 and S1, S2, S3 and S4 Figs.

(XLSX)

S1 Fig. Fluorescence intensity analysis of branched and linear actin networks. The underly-

ing data can be found within S1 Data. A. Fluorescence intensity of F-actin networks were

quantified over time for standard conditions (in black) and for the most extreme perturbations

performed (lowest protein concentration in green; highest protein concentration in red). Lines

indicate linear regressions. B. Rate of actin assembly around 0.5-μm diameter WASp-coated

microbeads in the presence of fluorescent actin, profilin, and capping protein as a function of

the Arp2/3 complex concentration, normalized to the maximum value. Arp2/3, actin-related

protein 2/3; F-actin, filamentous actin; WASp, Wiskott–Aldrich syndrome protein.

(TIF)

S2 Fig. Wide field snapshots of the actin cytoskeleton organization in yeast strains pre-

sented in this study. Scale bars: 5 μm. The underlying data can be found within S1 Data. A.

Budding yeast cells fixed and labeled with fluorescent phalloidin at the indicated temperatures.

B. Quantification of Fig 2E based on total intensities and not numbers of actin structures. C. In

vivo deviation index, based on structures intensities, calculated in the presence of DMSO and

200 μM CK-666. CK-666, Arp2/3 complex inhibitor I.

(TIF)

S3 Fig. Branched and linear actin networks emerging from bead surfaces do not influence

each other in these reconstituted assays. The underlying data can be found within S1 Data.

A. Rate of actin assembly around WASp-coated microbeads as a function of the profilin con-

centration when formin-coated beads are not present. B. Rate of actin assembly around for-

min-coated microbeads as a function of the profilin concentration when WASp-coated beads

are not present. C. In vitro deviation index, calculated as a function of the profilin concentra-

tion, measured from data obtained in (A) and (B). WASp, Wiskott–Aldrich syndrome protein.

(TIF)

S4 Fig. Modulation of the branched-to-linear actin network balance by capping protein at

steady state and in conditions in which actin assembly is initiated from G-actin. Quantifi-

cation of actin networks assembly at steady-state around WASp-coated and formin-coated

microbeads in the presence of fluorescent actin, Arp2/3 complex, profilin, and variable con-

centrations of capping protein. Left plots indicate rates of actin assembly around WASp-coated

and formin-coated microbeads as a function of the capping protein concentration, normalized

to the maximum value. Right plot indicates the in vitro deviation index calculated as a function

of the capping protein concentration. The underlying data can be found within S1 Data. A.
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Condition in which the accessory proteins were incubated for 2 h at room temperature with

prepolymerized actin (F-actin) before addition of the microbeads. B. Condition in which 8 μM

G-actin, 15 μM profilin, and 250 nM Arp2/3 were incubated for 2 h at room temperature

before addition of the microbeads. C. Condition in which 4 μM of G-actin, 12 μM of profilin,

250 nM Arp2/3, and the microbeads were incubated at room temperature simultaneously. Red

dots indicate that the intensity of actin networks was difficult to quantify due to the uncon-

trolled barbed-end assembly around WASp-coated beads at low concentration of capping

protein. The image is a fluorescence snapshot of an actin network assembled around WASp-

coated microbeads in the presence of 4 μM fluorescent G-actin, 250 nM Arp2/3 complex,

12 μM profilin, and 100 nM capping protein, taken 30 min after the initiation of the experi-

ment. Scale bar: 5 μm. Arp2/3, actin-related protein 2/3; F-actin, filamentous actin; G-actin,

globular actin; WASp, Wiskott–Aldrich syndrome protein.

(TIF)

S5 Fig. Overexpression of capping protein in yeast. Western blot control of capping protein

overexpression with a 9 myc-tagged Cap2. Pgk1 is a loading control. Cap2, capping protein 2.

(TIF)
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9. Ghiglione C, Jouandin P, Cérézo D, Noselli S. The Drosophila insulin pathway controls Profilin expres-

sion and dynamic actin-rich protrusions during collective cell migration. Development. 2018; 145.

https://doi.org/10.1242/dev.161117 PMID: 29980565

10. Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism.

Microbiol Mol Biol Rev. 2006; 70: 605–645. https://doi.org/10.1128/MMBR.00013-06 PMID: 16959963

11. Iwasa JH, Mullins RD. Spatial and temporal relationships between actin-filament nucleation, capping,

and disassembly. Curr Biol. 2007; 17: 395–406. https://doi.org/10.1016/j.cub.2007.02.012 PMID:

17331727

12. Izdebska M, Zielińska W, Grzanka D, Gagat M. The Role of Actin Dynamics and Actin-Binding Proteins

Expression in Epithelial-to-Mesenchymal Transition and Its Association with Cancer Progression and

Evaluation of Possible Therapeutic Targets. Biomed Res Int. 2018; 2018: 4578373. https://doi.org/10.

1155/2018/4578373 PMID: 29581975

13. Poukkula M, Kremneva E, Serlachius M, Lappalainen P. Actin-depolymerizing factor homology domain:

a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken). 2011; 68:

471–490. https://doi.org/10.1002/cm.20530 PMID: 21850706

14. Pollard TD. What We Know and Do Not Know About Actin. Handb Exp Pharmacol. 2017; 235: 331–

347. https://doi.org/10.1007/164_2016_44 PMID: 27873086

15. Loisel TP, Boujemaa R, Pantaloni D, Carlier M-F. Reconstitution of actin-based motility of Listeria and

Shigella using pure proteins. Nature. 1999; 401: 613–616. https://doi.org/10.1038/44183 PMID:

10524632

16. Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D, Carlier M-F. Formin Is a Processive Motor that

Requires Profilin to Accelerate Actin Assembly and Associated ATP Hydrolysis. Cell. 2004; 119: 419–

429. https://doi.org/10.1016/j.cell.2004.09.039 PMID: 15507212
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