Massimo Tisi 
email: massimo.tisi@imt-atlantique.fr
  
Jean-Marie Mottu 
email: jean-marie.mottu@imt-atlantique.fr
  
Dimitrios S Kolovos 
email: dimitris.kolovos@york.ac.uk
  
Juan De Lara 
  
Esther M Guerra 
email: esther.guerra@uam.es
  
Davide Di Ruscio 
  
Alfonso Pierantonio 
email: alfonso.pierantoni@univaq.it
  
Manuel Wimmer 
email: manuel.wimmer@jku.at
  
  
  
Lowcomote: Training the Next Generation of Experts in Scalable Low-Code Engineering Platforms

des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

A large number of research efforts in the history of computer science have shared a common objective: enabling the construction of software applications without recurring to traditional procedural computer programming. Early products of these research efforts, like fourth-generation programming languages and rapid application development tools, have seen a significant industrial adoption in alternating periods since the nineties, but never reached a dominating position in the software construction landscape. Today a new generation of tools is successfully addressing this challenge in specific domains. They are commonly called Low-Code Development Platforms (LCDPs): software development platforms on the Cloud, provided through a Platform-as-a-Service (PaaS) model, that allow users to build fully operational applications by interacting through dynamic graphical user interfaces, visual diagrams and declarative languages. In a recent report [START_REF] Richardson | The forrester wave TM : Low-code development platforms, q2 2016[END_REF], the research firm Forrester is forecasting a market increase for LCDP companies to over $21 billion over the next four years. Major PaaS players are all integrating LCDPs (e.g., Google App Maker and Microsoft PowerApps [START_REF] Vincent | Magic quadrant for enterprise high-productivity application platform as a service[END_REF]) in their general-purpose solutions.

LCDPs build on top of recent advancements in visual programming, automatic code generation, and Cloud infrastructures. LCDPs provide the user with a completely managed environment for the whole application life-cycle, including development, deployment, execution and monitoring. Therefore, they are highly usable by customers with no particular background in programming, called citizen developers in the LCDP jargon, without sacrificing the productivity of professional developers. So far LCDPs have been especially successful for the development of domain-specific applications in four market segments, identified in [START_REF] Rymer | Low-code platforms deliver customer-facing apps fast, but will they scale up?[END_REF]: database applications, mobile applications, process applications, and request-handling applications. Internet of Things (IoT) will be the fifth one.

Lowcomote considers three main limitations that hamper the use of LCDPs. Scalability: as LCDPs are currently popular for the development of small applications but their use in large-scale and mission-critical enterprise applications is requested for next evolution. Fragmentation: Each tool vendor proposes his own low-code development paradigm, associated with a particular programming model. Software-only systems: while citizen developers have little knowledge of programming, they are often experts in some other engineering domain. These domain experts expect to be able to use their knowledge in the application, at the right level of abstraction and using familiar formalisms.

Cloud Computing Machine Learning

Low-Code Development

Low-Code Engineering

Model-Driven Engineering

Fig. 1: Lowcomote in a nutshell

Lowcomote is an Innovative Training Network (ITN) aiming to train a generation of professionals in the design, development and operation of new LCDPs, overcoming the current limitations, by being scalable (i.e., supporting the development of largescale applications, and using artefacts coming from a large number of users), open (i.e., based on interoperable and exchangeable programming models and standards), and heterogeneous (i.e., able to integrate with models coming from different engineering disciplines). They will drive the upgrade of the current landscape of LCDPs to Low-Code Engineering Platforms (LCEPs).

The 15 doctoral subjects (https://www.lowcomote.eu/call/) in Lowcomote address the hard research problems that are blocking factors for the achievement of these objectives. One of the key research ideas of Lowcomote is that platforms for Low-Code Engineering (LCE) can be built by injecting in LCDPs the theoretical and technical framework defined by recent research in Model-Driven Engineering (MDE). MDE research promotes a linguistic approach to software engineering, by the design of domain-specific modelling languages and their automated transformation in executable artefacts. Research in MDE has produced modelling frameworks supported by open standards, with a natural support for heterogeneity. While scalability has been traditionally problematic in MDE, some Lowcomote partners have been involved in the EC FP7 research project MONDO (2013-2016), which made substantial breakthroughs on scalable modelling and model management. Lowcomote builds on top of MONDO theoretical and technical solutions, but upgrades them to enable their use for LCEPs. This is achieved by a multi-disciplinary research program integrating research on Cloud Computing and Machine Learning.

Main challenges and outlines

This section identifies the main challenges that need to be overcome, and outlines the envisioned contributions of Lowcomote.

Low-code Engineering of Large-Scale Heterogeneous Systems

LCDPs are typically targeted to users with low technical profile. The supported applications are frequently form-based enterprise systems (sometimes deployed on mobile phones), which are described graphically. However, the approach fails to scale for more complex software -beyond simple CRUD applications -and is not applicable to domains with high impact nowadays, like data science or IoT. Shortening the development times in those domains, by being able to apply a low-code development approach, would be have a considerable economic impact in today's industry.

To scale LCDP for more complex applications and challenging domains, Lowcomote proposes employing solid language engineering principles [START_REF] Brambilla | Model-Driven Software Engineering in Practice[END_REF] to generate a new generation of scalable Cloud-based low-code editors. By using abstraction and graph summarisation techniques, such editors will be able to scale to models exceeding millions of elements. At the same time, the platform will be neutral on the underlying modelling technology to avoid vendor lock-in issues, and support heterogeneity (required by e.g., the IoT domain) through multi-view modelling. To help users with low technical profile to develop complex applications, we propose enriching LCDPs with recommendation chatbots. These will interact using natural language and use information retrieval and machine learning techniques to recommend appropriate task completions, or propose example fragments and templates.

Based on the notion of Active DSL [START_REF] Vaquero-Melchor | Active domain-specific languages: Making every mobile user a modeller[END_REF], LCEP will support citizen development of sophisticated mobile apps, beyond the capacities of current LCDPs. Our targeted apps will be collaborative, and offer interaction based on graphical diagramming, where elements may be geolocated on maps. They will be able to incorporate information from open APIs to access services (e.g., weather), and be context sensitive, able to adapt to changing conditions like device position, time or other conditions retrieved from APIs.

Finally, LCEP will be applied to construct domain-specific LCDPs for data science and IoT. Many tasks of data science projects are currently performed in an ad-hoc way, and solutions many times need to be re-implemented with more scalable and robust technologies before entering in production. Our envisioned LCDP will provide the necessary languages for a high level description of the solution, supporting integrated deployment automation, and scalable execution and monitoring. Similarly, our envisioned IoT platform will enable the scalable modelling of heterogeneous, dynamic data sources and devices, while retaining the low code benefits of reduced development times.

Large-scale Repository and Services for Low-Code Engineering

Over the last decade, several technologies have been proposed for supporting a wide range of model management activities, such as model validation, transformation and code generation. Even though existing technologies provide practitioners with facilities that can simplify and automate many steps of MDE processes, empirical studies show that some barriers still exist for their wider adoption [START_REF] Whittle | The state of practice in model-driven engineering[END_REF]. In particular, the support for discovery and reuse of existing modelling artefacts is very limited. As a result, similar transformations and other model management tools often need to be developed from scratch, thus raising the upfront investment and compromising the productivity benefits of modelbased processes. Lowcomote will advance the state of the art by developing an extensible model repository specifically defined to address issues related to scalability and heterogeneity of the considered modelling artefacts. This model repository will be used to enable capability discovery and reuse across different low-code systems using reinforcement learning algorithms.

Another important aspect of model repositories is which kind of information may be stored and which kind of tools, systems, and applications may contribute content [START_REF] Altmanninger | A survey on model versioning approaches[END_REF][START_REF] Brosch | An introduction to model versioning[END_REF]. Currently, model repositories are limited for mostly hosting different versions of design models created by development environments [START_REF] Altmanninger | A survey on model versioning approaches[END_REF]. But further support is needed, especially for runtime aspects and runtime information may be manifold [START_REF] Mazak | Towards liquid models: An evolutionary modeling approach[END_REF]. For instance, runtime information may concern the interactions with the development environment and the associated repository which will be explored as interaction mining. Another important kind of runtime information which should be accessible in model repositories is operational data monitored in running systems which may lead to more reactive models usable not only for design but also for supervisory control and data acquisition.

Finally the repository will include a quality workbench (QW). The latter requires to distribute the tests (which are low-code artefacts) and to query the repository to get and to store operational data of the tests, considering scalability [START_REF] Rymer | Low-code platforms deliver customer-facing apps fast, but will they scale up?[END_REF]. Moreover, the QW will manage the test automation [START_REF] Buenen | World quality report 2017-18[END_REF] by implementing low-code tests based on existing but distributed low-code artefacts and testing the distribution over the Cloud itself [START_REF] Albonico | Generating Test Sequences to Assess the Performance of Elastic Cloudbased Systems[END_REF].

Scalable Low-Code Artefact Management

Management and evolution of large-scale LCEPs presents complexity and scalability challenges. Even though MDE provides a number of tools for artefact management, current MDE frameworks fall short when it comes to manipulating and analysing models of the required complexity and scale, both in terms of performance and terms of resource requirements (e.g., memory footprint) [START_REF] Kolovos | The grand challenge of scalability for model driven engineering[END_REF][START_REF] Garmendia | Emf splitter: A structured approach to emf modularity[END_REF]. Moreover, currently-available tools for developing and executing model transformations struggle with very large and distributed models over a parallel and distributed environment [START_REF] Kolovos | A research roadmap towards achieving scalability in model driven engineering[END_REF]. The challenge is multiplied in the case of live model transformations, which are continuously run in the background and react to changes and events in the environment [START_REF] Ráth | Live model transformations driven by incremental pattern matching[END_REF]. This requires investigating an efficient search-based pattern matching algorithm that can apply to models of millions of elements, and the solution must efficiently run on distributed and parallel environments.

Lowcomote will go beyond the state of the art by developing the theoretical underpinnings and technical components for a model management engine that is able to execute transformations over a highly distributed computing infrastructure, providing scalability both in terms of model size and transformation complexity, and reacting immediately to changes in the environment. The engine will support multiple distributed programming models, automatically selecting the most convenient one, for the whole transformation or only part of it. The engine will support also chains of transformations, with mechanisms for the automatic selection and composition of model transformations in the Cloud.

Lowcomote will advance the state of the art in the field of efficient persistence and querying of large-scale models. Novel techniques and algorithms will be developed to optimise computationally-expensive queries operating on models specified with different modelling languages and in model representation formats. Advanced mechanisms for selective/partial loading and persistence of large-scale models will be proposed and implemented.

Conclusion

In this paper we have provided an outline of the main challenges of Low-Code Engineering and how the Lowcomote ITN will address them. The technical outcome will be a set of components of a single open platform named Lowcomotive. It will be a platform as a service, based on open standards at all levels (e.g., EMF, language-server-protocol, OpenStack). A frontend will provide LCE languages and smart interfaces that end-users will exploit to produce their artefacts. A backend will come in the form of a LCE repository providing server-side services for LCE developers. Industrial partners will provide case studies to ESRs develop and run their experiments.

Acknowlegments. This project has received funding from the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813884.

/duration: 1st January, 2019 (48 months)