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Abstract

Accurate population models are needed to build very large scale neural models, but
their derivation is difficult for realistic networks of neurons, in particular when nonlin-
ear properties are involved such as conductance-based interactions and spike-frequency
adaptation. Here, we consider such models based on networks of Adaptive Exponential
Integrate and Fire excitatory and inhibitory neurons. Using a Master Equation formal-
ism, we derive a mean-field model of such networks and compare it to the full network
dynamics. The mean-field model is capable to correctly predict the average sponta-
neous activity levels in asynchronous irregular regimes similar to in vivo activity. It
also captures the transient temporal response of the network to complex external inputs.
Finally, the mean-field model is also able to quantitatively describe regimes where high
and low activity states alternate (UP-DOWN state dynamics), leading to slow oscilla-
tions. We conclude that such mean-field models are ”biologically realistic” in the sense
that they can capture both spontaneous and evoked activity, and they naturally appear
as candidates to build very large scale models involving multiple brain areas.
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1 Introduction

Large-scale models of the brain can be built at cellular resolution (Markram et al.,
2015), but this approach requires huge computational resources. Another approach
is to build models where the smallest unit is not a neuron, but it is a population of neu-
rons, which corresponds to the resolution in imaging studies. Several examples of such
a mesoscopic approach have been proposed (reviewed in (Sanz Leon et al., 2013; Deco
et al., 2015; Breakspear, 2017; Bassett et al., 2018)). However, such models use rep-
resentations of neural populations which are mostly phenomenological and often use
linear models, and are thus non-realistic because they miss essential non-linear effects,
such as conductance-based interactions, or adaptation dynamics.

In the present paper, we would like to propose a first step towards a ”biologically
realistic” mesoscopic model of neural populations by explicitly including non-linear ef-
fects. We use a mean-field approach based on a Master Equation formalism describing
the dynamics of spiking neurons (El Boustani and Destexhe, 2009), which we mod-
ify so that it can account for both conductance-based interactions and spike-frequency
adaptation, yielding a population model which we compare to the cellular-level model.

To be biologically realistic, we focus on several essential features. First, cerebral
cortex has a high level of spontaneous activity in the adult mammalian brain. The dy-
namical regimes observed experimentally in cerebral cortex range from asynchronous
states, typically in wakefulness, to regimes displaying slow oscillations consisting of
alternating high and low activity states (UP and DOWN states), typically in slow-wave
sleep (Dehghani et al., 2016; Renart et al., 2010; Sanchez-Vives and McCormick, 2000;
Jercog et al., 2017; Sanchez-Vives and Mattia, 2014; Capone et al., 2017). These states
have a common ground of an irregular spiking activity of single neurons (Steriade et al.,
2001), while their interaction is known to be mediated by conductance-based synapses
(Destexhe et al., 2003). The role of irregularity in neurons activity has been proposed
to be important for neurons responsiveness and learning (Denève and Machens, 2016).
Because of this feature, the typical asynchronous state observed during awake animals
recording is usually named as asynchronous irregular (AI).

A second essential feature is the presence of conductances, and their associated non-
linearity. Conductances have been observed to play a key role in network responses to
external input, as different states of the system can lead to different outputs to the same
specific stimuli (Zerlaut and Destexhe, 2017). Accordingly, these features should be
taken into account in a realistic model of cortical populations. At the cellular level, sev-
eral spiking network models were proposed, including conductance-based interactions
(for example see (Vogels and Abbott, 2005; Destexhe, 2009)). Such models typically
use the classic integrate-and-fire (IF) model, and they can reproduce different dynamical
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states, such as AI states and UP/DOWN states.
A third important feature is the presence of spike-frequency adaptation. This form

of adaptation is present in virtually all excitatory neurons in cerebral cortex, which typ-
ically display slowly adapting spike frequency responses, a pattern which was called
”regular spiking” (RS), in contrast to inhibitory neurons which often fire at higher fre-
quencies with no adaptation, which was called ”fast spiking” (FS) neurons (Connors
and Gutnick, 1990). Such patterns can be modeled using Hodgkin-Huxley models
(Pospischil et al., 2008), or by IF models augmented with the mechanisms allowing
spike-frequency adaptation. One of the simplest of such models are two-dimensional
IF models including an adaptation variable (Izhikevich, 2003) or the Adaptive Exponen-
tial (AdEx) IF model (Brette and Gerstner, 2005). The AdEx model is able to simulate
the main cell types in the thalamo-cortical system, such as RS and FS neurons, as well
as various types of bursting neurons such as those found in the thalamus (Destexhe,
2009). Several derivations of mean-field models of networks of spiking neurons have
been proposed, mostly using current-based (CUBA) interactions (for example, see (Re-
nart et al., 2003)). In this context using the IF model, it is possible to approximate the
neuron transfer function (TF) (i.e. the output firing rate of a single neuron in function of
its inputs). Phenomenological approaches, based on the assumption of a linear transfer
function, have been used (Shriki et al., 2003) in order to reproduce the rate response of
the network. More recently, mean-field models were successful to reproduce network
dynamics (Augustin et al., 2017; Schwalger et al., 2017; Montbrió et al., 2015), but
such models cannot account for the presence of non-linearities such as conductances or
spike-frequency adaptation. Note that we here refer to voltage-dependent conductances
in neurons synaptic interaction and not in spike-frequency adaptation that we model as
a linear current flowing in excitatory cells.

On a theoretical ground various efforts have been done in order to derive differen-
tial equations for mean quantities by assuming Markovian dynamics (Ohira and Cowan,
1993; Ginzburg and Sompolinsky, 1994; El Boustani and Destexhe, 2009; Buice et al.,
2010; Dahmen et al., 2016). The application of such a theory to binary neurons led
to the derivation of dynamical equations for population rates (Ohira and Cowan, 1993;
Ginzburg and Sompolinsky, 1994). Moreover, under more general assumption it was
possible to extend this theory to spiking neurons, obtaining differential equations for
neurons average activity and for higher order moments, e.g. neurons covariances (El Bous-
tani and Destexhe, 2009; Buice et al., 2010). In particular, in this paper we follow
the formalism based on the Master Equation approach that was proposed in (El Bous-
tani and Destexhe, 2009). These formalisms, however, require that the neuronal TF is
known analytically, which is not the case for non-linear neurons with voltage–dependent
synapses. A significant advance in this direction has been recently realized by propos-
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ing a semi-analytical approach (Zerlaut et al., 2016, 2018) for the calculation of the TF
of AdEx neurons, which could be potentially applicable to any neuron model and, more
interestingly, to biological neurons. This approach permits to build a mean-field model
of AdEx networks (Zerlaut et al., 2018). This model can predict network responses to
some extent, but cannot account for the effects due to adaptation, which is manifested
in the time course of the network response, or the response to oscillatory inputs which
is poorly captured.

As these features are essential to obtain a realistic population model, we propose
here a mean-field model that include these effects. We restart from first principles,
and include adaptation in the Master Equation approach, leading to a mean-field model
of spiking networks including adaptation. We then compare this new formalism to a
network model of RS-FS AdEx neurons, and in particular focusing on the network
transient response to complex stimuli and the emergence of slow oscillations.

2 Model and mean field derivation

We describe in this section the spiking network model and the derivation of the corre-
sponding mean-field equations.

2.1 Spiking network models

We consider a population of N = 104 neurons connected over a random directed net-
work where the probability of connection between two neurons is p = 5%. We consider
excitatory and inhibitory neurons, with the 20% inhibitory neurons. The dynamics of
each of the two types of neurons is based on the adaptive integrate and fire model de-
scribed by the following equations (Brette and Gerstner, 2005):

cm
dvk
dt

= gL(EL − vk) + ∆e
vk−vthr

∆ − wk + Isyn (1)

dwk
dt

= −wk
τw

+ b
∑
tsp(k)

δ(t− tsp(k)) + a(vk − EL), (2)

where cm = 200pF is the membrane capacity, vk is the voltage of neuron k and,
whenever vk > vthr = −50mV at time tsp(k) , vk is reset to the resting voltage
vrest = −65mV and fixed to that value for a refractory time Trefr = 5ms. The leak
term gL has a fixed conductance of gL = 10nS and the leakage reversal EL is varied
in our simulations but is typically -65mV. The exponential term has a different strength
for RS and FS cells, i.e. ∆ = 2mV (∆ = 0.5mV) for excitatory (inhibitory) cells.
Inhibitory neurons are modeled according to physiological insights as fast spiking FS
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neurons with no adaptation (a = b = 0 for all inhibitory neurons) while excitatory
regular spiking RS neurons have a lower level of excitability due to the presence of
adaptation (while b varies in our simulations we fix a = 4nS and τw = 500ms if not
stated otherwise). The synaptic current Isyn received by neuron i is the result of the
spiking activity of all pre-synaptic neurons j ∈ pre(i) of neuron i. This current can
be decomposed in the result received from excitatory E and inhibitory I pre-synaptic
spikes Isyn = (Ee − vk)Ge

syn + (Ei − vk)Gi
syn , where Ee = 0mV (Ei = −80mV) is

the excitatory (inhibitory) reversal potential. Notice that we consider voltage dependent
conductances. Finally, we model Ge

syn as an decaying exponential function that takes
kicks of amount QE at each pre-synaptic spike, i.e.:

Ge
syn(t) = Qe

∑
exc.pre

Θ(t− tesp(k))e−
t−tesp(k)

τe , (3)

where Θ is the heaviside function, τe = τi = 5ms is the decay time scale of excitatory
and inhibitory synapses and Qe = 1nS (Qi = 5nS) the excitatory (inhibitory) quantal
conductance. We will have the same equation with e→ i for inhibitory neurons.

2.2 Mean-field equations

For the theoretical analysis of asynchronous dynamics in sparsely connected random
networks we make the hypothesis that the system is memoryless over a certain time
scale T , or, in other words, to consider a Markovian dynamics for the network, like
done in (Ohira and Cowan, 1993; Ginzburg and Sompolinsky, 1994; El Boustani and
Destexhe, 2009; Buice et al., 2010). In this framework, based on a master equation
formalism, mean field differential equations for the population average firing rate νe
(νi) of the excitatory (inhibitory) populations in the network are derived, with a time
resolution T .

The choice of the time scale T is delicate when we deal with non-stationary dy-
namics (Ostojic and Brunel, 2011). If not stated differently, we make the natural choice
T = τm = 20ms ( we will discuss this choice in Sec.3.2 ).

In this paper we follow the formalism described in (El Boustani and Destexhe, 2009)
and we extend it by including the effects of adaptation. The same formalism indeed
easily allows this kind of extension, as far as the time scale that drives the dynamics
of the adaptation variable w(t) is slow with respect to the time scale of the mean-
field formalism T . It is possible to show that when a generic slow variable W (with
time constant much longer than the mean-field time-scale T ) is added to the system,
one can close the equations for the population activities following (El Boustani and
Destexhe, 2009) by considering W as stationary at every step of the Markovian process
T (see Appendix). We will report in Sec.3.2 how the mean field prediction shows a
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quantitative discrepancy with network simulations when the time scale of adaptation
becomes comparable with the time scale T .

When applied to the simpler case discussed in this paper of one excitatory and one
inhibitory population, with population activities µ = {e, i}, the differential equations
read:

T∂tνµ = (Fµ − νµ) +
1

2
∂λ∂ηFµcλη (4)

T∂tcµν = δµνA
−1
µµ + (Fµ − νµ)(Fν − νν)

+∂λFµcνλ + ∂λFνcµλ − 2cµν (5)

∂tW = −W
τw

+ bνe + a(µV (νe, νI ,W )− EL). (6)

where Fµ={e,i} = Fµ={e,i}(νe, νi,W ) is the transfer function of a neuron of type µ, i.e.
its output firing rate when receiving excitatory and inhibitory inputs with rates νe and νe
and with a level of adaptation W and ∂λ = ∂

∂νλ
. Accordingly here the transfer function

is now a function not only of the firing rate νe and νi, but also of the adaptation W . In
absence of adaptation (i.e. Fµ = Fµ(νe, νi)) Eq.s (4–5) are the same of those already
obtained in (Ohira and Cowan, 1993; Ginzburg and Sompolinsky, 1994; El Boustani
and Destexhe, 2009; Buice et al., 2010). In particular, first order equations (i.e. not
considering the dynamics of cµν) have been obtained in (Ohira and Cowan, 1993) (see
Eq. (26)) and in (Ginzburg and Sompolinsky, 1994) (see. Appendix B ) while second
order equations (4–5) are the same of those reported in (El Boustani and Destexhe,
2009) (see Eq.s (3.16)) and in (Buice et al., 2010) (see second order truncation Eq.(27–
28)). The calculation of the adaptation–dependent transfer function and the average
population voltage µV (νe, νI ,W ) is described in the following sections.

2.3 Neurons transfer function

We perform a semi-analytical derivation of the transfer function TF of RS and FS
neurons following (Zerlaut et al., 2016). Here we take explicitly into account the effect
of adaptation for the transfer function calculation as the firing rate of a single neuron
depends on the input firing rate but also on the adaptation current w affecting its voltage
dynamics. The method is based on the hypothesis that the output firing rate of a neuron
can be written as a function of the statistics of its sub-threshold voltage dynamics, i.e.
the average sub-threshold voltage µV , its standard deviation σV and its time correlation
decay time τV .

We report first how to evaluate (µV , σV , τV ) as a function of the input firing rates
(νE, νI) and the adaptation intensity w.
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2.1 From input rates to sub-threshold voltage moments

Following (Kuhn2004), the mean membrane potential is obtained by taking the sta-
tionary solution to static conductances given by the mean synaptic bombardment with
firing rates (νE, νI). We can calculate the average µGe,Gi and standard deviation σGe,Gi
of such bombardment for both excitatory and inhibitory process (described by Eq. (3))
in the case spikes follow a Poissonian statistics (as it follows from the assumption of an
asynchronous irregular dynamics):

µGe(νe, νi) = νeKe τeQe

σGe(νe, νi) =

√
νeKe τe

2
Qe

µGi(νe, νi) = νiKi τiQi

σGi(νe, νi) =

√
νiKi τi

2
Qi,

(7)

where Kµ = pNµ. The mean conductances will control the input conductance of the
neuron µG and therefore its effective membrane time constant τ eff

m :

µG(νe, νi) = µGe + µGi + gL

τ eff
m (νe, νi) =

Cm
µG

(8)

For a specific valuew of the adaptation current (whose dynamics we remember to be
much slower than voltage fluctuations) we obtain the following formula for the average
voltage ( neglecting the exponential term in Eq.( 1) ):

µV (νe, νI , w) =
µGeEe + µGiEi + gLEL − w

µG
. (9)

The calculation of σV and of τV is identical to (Zerlaut et al., 2018) as we make
the hypothesis that adaptation is a slow process whose fluctuations are negligible with
respect to synaptic ones. Therefore we just report the final formula:

σV (νe, νi) =

√∑
s

Ks νs
(Us · τs)2

2 (τ eff
m + τs)

(10)

τV (νe, νi) =
( ∑

s

(
Ks νs (Us · τs)2

)∑
s

(
Ks νs (Us · τs)2/(τ eff

m + τs)
)), (11)

where s = {e, i} and we defined Us = Qs
µG

(Es − µV ) .
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Table 1: Fit parameters (expressed in mV)
Cell type P0 PµV PσV PτNV Pµ2

V
Pσ2

V
P(τNV )2 PµV σV PµV τNV PσV τNV

RS–cell -49.8 5.06 -25 1.4 -0.41 10.5 -36 7.4 1.2 -40.7
FS–cell -51.4 4.0 -8.3 0.2 -0.5 1.4 -14.6 4.5 2.8 -15.3

2.2 From sub-threshold voltage moments to the output firing rate

Once calculated (µV , σV , τV ) as a function of (νE, νI , w) we evaluate the output firing
rate of a neuron according to the following formula:

νout =
1

2 τV
· Erfc

(
V eff
thre − µV√

2σV

)
(12)

It has been shown, both theoretically and experimentally (Zerlaut et al., 2016), that
the voltage effective threshold V eff

thre can be expressed as a function of (µV , σV , τV ). In
particular, the phenomenological threshold was taken as a second order polynomial in
the following way:

V eff
thre(µV , σV , τ

N
V ) = P0 +

∑
x∈{µV ,σV ,τNV }

Px ·
(x− x0

δx0

)
+

∑
x,y∈{µV ,σV ,τNV }2

Pxy ·
(x− x0

δx0

)(y − y0

δy0

)
,

(13)

where we introduced the adimensional quantity τNV = τVGl/Cm. We evaluated {P}
through a fit according to simulations on single neurons activity setting first µ0

V =

−60mV, σ0
V = 0.004mV, (τNV )0 = 0.5, δµ0

V = 0.001mV, δσ0
V = 0.006mV and

δ(τNV )0 = 1.

In general, the values of {P} do not depend on the parameters of single neuron
dynamics (leakage, adaptation etc..) but we found a small dependence on the values
of the neurons coupling parameters and on the parameters of the exponential term in
single neuron dynamics that has been neglected in the derivation of membrane voltage
moments. We perform the fit and calculate {P} in a case without adaptation for the sake
of simplicity. We will use always these values of {P} for all the analyses performed in
the paper (see table 1).

The strong point of this analysis is that, once the fit is performed for a neuron with
b = 0 and other fixed parameters, like the leakage currents, the same transfer function
works also far from this fitting point because the effect of b, EL and the other param-
eters is included in the theoretical evaluation of (µV , σV , τV ) whose values define the
neuron output firing rate. In principle, the fit could be performed for any values of the
parameters.
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Figure 1: Transfer function evaluation Top: RS (green) and FS (red) neuron station-
ary firing rate in function of the input excitatory firing rate νE for νI = 8Hz. Dots
are direct simulation and continuous line prediction based on the semi-analytical trans-
fer function. Black dashed line is the prediction obtained neglecting adaptation in the
evaluation of neuron depolarization µV (see lower panel). Down: RS-cell average de-
polarization: dots direct simulation, line prediction based on Eq. (14) and dashed line
prediction neglecting adaptation. Observe the necessity of a good evaluation of µV to
predict correctly neuron firing rate (upper panel).

In Fig. 1 we show the result of the procedure here adopted for the evaluation of
the transfer function. We consider RS-cells with a relatively high adaptation (a = 4,
b = 20). We observe that this method is able to capture both neurons firing rate (upper
panel) and their average voltage (lower panel). Moreover, we notice that not considering
adaptation in the calculation of µV overestimates RS-cells voltage and would lead to a
dramatic discordance for neuron firing rate (see black dashed line). In the methodology
we use here we estimate the average voltage calculating adaptation in its stationary
state, yielding the following result:

µV =
µGeEe + µGiEi + gLEL − νoutτwb+ aEL

µG + a
, (14)

where νout is the predicted firing rate of the neuron according to the transfer function.
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3 Results

Equipped with the formalism described in the previous section, we analyzed the dy-
namics produced by the mean-field model and compared them to the simulated neural
network dynamics. We performed this analysis focusing on the response to various
time-dependent input stimuli and the transition to oscillatory regimes by exploring dif-
ferent directions in the parameters space (adaptation strength, neurons excitability etc..).

3.1 Network spontaneous activity and mean-field prediction

We started by considering a region in the parameters space in which an excitatory ex-
ternal drive νdrive > 0 is necessary in order to have spiking activity in the network. This
corresponds, as we will see later, to choose low excitability level (low leakage reversal)
for RS cells, i.e. EE

L = EI
L = −65mV. We chose νext = 2.5Hz, which guarantees

an asynchronous irregular (AI) network dynamics with physiological values of conduc-
tances and neuron firing rates. As a first step we investigated the effect of adaptation on
the spontaneous activity of the network, verifying the prediction capability of the mean-
field model, focusing on the role of the adaptation strength b. We report in Fig. 2 the
result of a network simulation, recording the average firing rate νe and νi of excitatory
and inhibitory neurons (Fig. 2A) as well as the average voltage (averages are intended
over time and over all neurons of the same type) µV (Fig. 2B). By increasing adapta-
tion strength b we observe, as expected, a decrease in both excitatory and inhibitory
firing rates (panel A, respectively green and red dots), accompanied by a decrease in µV
(panel B).

These quantities can be calculated from the mean-field model with adaptation de-
scribed in Sec. 2. The average voltage µV is obtained from Eq. (14). In the same figure,
we compare the simulation results with those of the mean-field model for the firing rates
of the population (green and red solid lines in Fig. 2A for excitatory and inhibitory pop-
ulations) and for the membrane potential (green solid line in Fig. 2B). In the insets we
report the comparison between the distribution of values in simulations and the theoret-
ical results in the mean-field, for the specific parameter value b = 60pA. We observe
that the mean-field is able to capture the spontaneous activity of the network and its
fluctuations. It is worth notice that the spontaneous activity of the network could have
been captured also with a ‘naive’ version of this mean-field model considering only
stationary values of adaptation and not its time dynamics (for the sake of simplicity we
refer to this version of the mean-field model as ”stationary” or ”non–adaptive”).
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Figure 2: Spontaneous activity. Panel A: average firing rate from spiking network
simulation. Solid lines are the means predicted by the mean-field model. In the right
inset we report the firing rate distribution sampled from the spiking simulation (his-
togram) and the theoretically predicted Gaussian distribution (shading), for b = 60pA.
Green and red are consistently referred to excitatory and inhibitory neurons. Panel B
(Dots) average membrane potential from spiking simulation and (line) theoretical pre-
diction. Inset, membrane potential distribution sampled from spiking simulation (his-
togram) and theoretically predicted distribution (shading), for the excitatory neurons for
b = 60pA.

3.2 Response to external stimuli

Even if the spontaneous activity of the populations firing rate in the network could
be sufficiently well predicted also by using a ”stationary” mean-field, in this section we
will show how adaptation dynamics needs to be taken into account when the stationarity
condition is not satisfied1. In particular we studied the response of the network to time-
dependent external stimuli. We report in Fig. 3 (A1-A3) three different examples of
external stimuli:

• In Fig. 3-A1 we add an extra stimulus νext with exponential rise and decay, to the
external drive (see dashed line in lower inset). If the rise and decay time scales are
smaller than the time scale of the adaptation dynamics (as it is usually the case,
since adaptation is a slow variable – τw = 500ms in our case) only a mean-field
model taking the dynamics of adaptation W into account can predict the network
response in a correct way. By looking at the comparison between a mean-field

1Notice that in the case of time-dependent external stimuli, the value of adaptation in the ”stationary”
mean-field is not constant. Nonetheless, it is ”stationary” in the sense that at time t we assigned to it the
value the adaptation would have in a stationary state with firing rate for the system as at time t.
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Figure 3: Response to external stimuli. A1-3 Population activity of the excitatory
sub-populations in presence of different time-varying external stimuli. Superimposed
is the mean and standard deviation over time predicted by the Markovian formalism.
(bottom) Time-course of the external stimulus. (blue dashed) The theoretical prediction
when the adaptation variable W is fixed to its stationary value W̄ = τw ∗b∗νE . In these
simulations we set a = 0.

model with or without adaptation (green vs. dashed blue line) we observe that the
extended version of the mean-field correctly captures the first peak of response,
as well as an hyper-polarization at the stimulus offset due to the accumulation of
adaptation.

12



• In Fig. 3-A2 we consider an input yielding an inhibition by temporarily turning
off the initially constant external drive νdrive. We observe a rebound response
captured very well in its time course by the mean-field model. The effect of
adaptation is therefore very strong also by looking at the network response after
inhibition.

• In Fig. 3-A3 we show the response to an oscillatory input of a fixed frequency
finp. It is evident how the effect of adaptation allows the mean-field to catch the
time-dependent amplitude of the response, while it is always constant and under-
estimated in the naive case of ”stationary” mean-field. Adaptation dynamics is
then responsible for network increased response to an oscillating external input
νext.

In the upper panel of Fig. 4 we study more extensively the response of the network
to oscillating external inputs, as a function of finp. In particular, we show that the am-
plitude of the oscillations of the firing rate (the difference between the maximum and
the minimum firing rate once the system has passed the transient phase) has a very non-
trivial behavior when the frequency varies (see green dots for network simulations and
green solid line for the mean field predictions). First, there is an increase at finp ∼ 2Hz.
Then, a peak appears around 10-50 Hz (Zerlaut et al., 2018). Finally, a maximum peak
is followed by a drop at a second time scale around finp ∼ 20Hz. The mean-field is able
to predict these combined effects and gives us an indication on their origin. The rise
observed at finp ∼ 0.2Hz can be related to the time scale of adaptation τw ∼ 1/finp. In
fact, without adaptation, the mean-field (dashed black line in the upper panel of Fig. 4)
does not show the same increase at low frequencies and instead it is completely trans-
parent to the frequency of the external input, until the appearance of a resonance peak. It
can be understood given the relatively high strength (compared to the external input) of
the excitatory-inhibitory loop, bringing the system close to a bifurcation toward oscilla-
tions ((Brunel and Wang, 2003)) and when forced at the correct frequency, the response
is amplified ((Ledoux and Brunel, 2011)). This is the case for both mean field models,
with or without adaptation. Finally, the decay from the baseline response amplitude ap-
pears at frequencies of order 1/T and can be easily understood by observing that when
the stimulus varies faster than the correlation time scale of the mean-field, it appears
as an effective constant external drive and the oscillations disappear. Consistently, the
same decay at high frequencies is conserved in the ”stationary” mean-field. Notice that
at high input frequencies it is very difficult to identify the amplitude of oscillations of
the network as they become comparable with firing rate fluctuations. That is why the
comparison becomes misleading for high frequencies (i.e. finp > 100− 200Hz ).

The mean field results here reported (green line) are obtained for the natural choice
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Figure 4: Response Amplitude Vs input frequency and mean field model limita-
tions Upper panel (Green dots) Amplitude of network oscillations, in response to an
oscillating input as a function of the input frequency. Superimposed is the mean and
standard deviation predicted by the model (green continuous line). (dashed black) The
theoretical prediction when the adaptation variable W is fixed to its stationary value
W̄ = τw ∗ b ∗ νE . We also report the mean field prediction for T = 2.5 ∗ τm = 50ms
(blue dotted line). Lower panels Comparison between spiking network (grey solid line)
and mean field predictions (black solid line for the mean field with adaptation and blue
dashed line for stationary mean field) for three different values of τw. Notice that here
a=0 and we fixed b · τw=5nC, so that the stationary value does not change by changing
τw.
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of T = τm = 20ms. We observe that changing T (T = 50ms, see blue dotted line in
the upper panel of Fig. 4), yields different results for relatively high input frequencies.
The choice of T is thus very important when considering fast dynamics even if the
agreement with network simulations is robust with respect to the specific choice of T .
Notice that the value of T can be also state–depentent, as shown in (Ostojic and Brunel,
2011). The investigation of an appropriate choice of T is an interesting topic that goes
beyond the aims of this study and we limit here to use a phenomenological value.

In the lower panel of Fig. 4 we report the comparison between network dynamics
(in this case the response to a single oscillating pulse of ampliture 5Hz) and the mean
field predictions for different values of the time scale τw. We observe that, as far as
τw is much larger then τm (one order of magnitude), mean field predictions are very
good. Nevertheless, for lower values of adaptation the adiabatic approximation (see
Appendix) is not valid anymore. Accordingly, the effects of the fluctuations in the
dynamics of adaptation (as a result of firing rate fluctuations) becomes crucial at small
τw. While we are here interested in slow dynamics of adaptation (i.e. τw >200ms)
it would be interesting to consider the effect of fluctuation on adaptation, for example
deriving a second order mean field also in the variable of adaptation following (Buice
et al., 2010). Notice that the role of fluctuations in adaptation current for small τw with
respect to τm has been reported also at the level of the AdExp neuron transfer function
in (Hertäg et al., 2014).

3.3 State-dependent responsiveness

We study in this section the response of the network as a function of its dynamical state
preceding the input arrival.

The input here considered corresponds to one cycle of a sinusoidal wave of spike
train at a frequency f = 5Hz (see insets in Fig. 5). We study two different parameter
setups that differ for the baseline drive that the system receives. In case (A) νdrive =

7Hz and the system sets in an asynchronous state with relatively high firing rate and
very high conductance level (GE/Gl ∼ 3) while in case (B) νdrive = 1.5Hz and neurons
firing rates are lower and conductance state has realistic values (GE/Gl ∼ 0.8 ). We
observe that, for the same stimuli, network (B) has a much greater response to the input
with respect to network (A). Moreover, the mean field model is able to capture this
difference and gives a very good prediction of response time course. This effect is
even stronger when comparing the relative response of the two networks with respect
to their baseline (see in Fig. 5C the comparison between the two continuous lines).
The state-dependent responsiveness of the system is a combination of two effects: the
dynamics of adaptation and the conductance state. In order to elucidate this mechanism
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Figure 5: State-dependent response. Population activity of the excitatory sub-
populations in response to a cycle of a sinusoidal input of amplitude 2Hz (see lower
insets). Superimposed is the mean and standard deviation over time predicted by the
Markovian formalism. Green dark color (B panel) has a different baseline firing rate
with respect to light cyan (A panel) due a different νdrive (νdrive = 1.5Hz for green and
νdrive = 7Hz for cyan). The dashed line correspond to the mean field model where
adaptation is not evolving in time but takes values corresponding to its stationary value
(as in Fig. 3). In these simulations b = 60pA and a = 0

.

we report in Fig. 5C (dashed lines) the responses in the ”stationary” model, as done in
Fig. 3. We observe that such model does not capture the right peak in response to the
stimuli. In fact, the peak is strongly affected by the level of adaptation pre-stimulus,
which is quite low as the excitatory neurons firing rate is low. Accordingly, when a
sufficiently fast stimuli (with respect to the time scale of adaptation, as it is the case
for 5Hz) is presented, the system will strongly activate. The dynamics of adaptation
is thus responsible for a good part of the state dependent response, due to the lower or
higher pre-stimuli adaptation/excitatory neurons firing rate. On the other hand, also a
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model that does not take into account the time evolution dynamics of adaptation (dashed
line) shows an increased responsiveness in the lower conductance state. This shows the
importance of using a mean-field model taking into account both conductances and
adaptation dynamics.

3.4 Transition to self-sustained bistable network activity

In the setup used so far, the network needs a constant external drive νdrive in order to
be set in an AI state. In the absence of external drive, νdrive = 0, the only stable state
of the system is silent, with νe = νI = 0. This is true for the case we investigate here
of adaptation set to zero. We will reintroduce adaptation in next section to study its
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Figure 6: Transition to self-sustained activity A: Firing rate of excitatory neurons
(averaged over 5s) after the kick of duration of 100ms. The black line is the prediction
from mean field for the transition point. In the lower panel we report the excitatory
response of the network to the kick in two cases (EE

L = −63mV and EE
L = −67mV ).

B: Function F derived by mean-field equations in the two cases (green and red curves).
The dashed black line is the bisector. Green light dots have been obtained from the net-
work simulation shown in the lower panel A. Adaptation is set to zero in this simulation
(a = b = 0).

effects.
We show in Fig.6 that it is possible to observe a transition to a bistable network,

by modifying the excitability of RS and FS cells. This is done by changing the resting
potential (actually changing the leakage reversal potentials EE

L and EI
L). In order to

verify the existence of a bistable network dynamics in the spiking network we perform
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a simulation with an initial kick (νdrive = 1 Hz) applied to the network for a small
period of time (around 100 ms). In the case of a bistable system the network activity
rises and then remains at a non-zero firing rates, even after the end of the stimulus. On
the contrary, the system will come back at some point to a silent state. We report in
the lower panel of Fig.6A the two cases (i) EE

L = −67mV, EI
L = −65mV and (ii)

EE
L = −63mV, EI

L = −65mV (see Fig.6A). By plotting the firing rates average after
the stimulus offset (we measure for 5s starting 1s after the stimulus offset) as a function
of EE

L and EI
L, we observe the existence of a clear transition line separating a bistable

regime to a state with only one silent stable state Fig.6A. The bi-stability regime is
achieved as soon as the excitability of RS cells overcomes the excitability of FS cells
by a certain amount. In particular, the transition line (the couples of critical points
(EE

L,c, E
I
L,c)) lies almost at the bisector of the square, meaning that the critical point is

achieved at the critical ratio Rc = EE
L,c/E

I
L,c ∼ 1.

The existence of two stable fixed points in the network dynamics can be then in-
vestigated in the mean-field model. We report in Fig.6B a graphical solution for the
fixed point of νe. It is calculated as follows. We scan the values of νe (x-axes) and
we calculate the corresponding ν̄I = TFS(νe, ν̄I) (1st order mean-field ν̇I = 0). We
then calculate the corresponding F(νe) = TRS(νe, ν̄I). We obtain a fixed point of the
system when F(νe) = νe. We thus plot the function F and search for intersection with
the bisector. Let us consider the case (i) (see heat plot in Fig.6A) which corresponds
to parameters for which in the network we observe only one silent stable state. We
observe that actually the mean-field predicts correctly that there is only one intersection
at νe = 0 . Let us notice, for the sake of completeness, that there are always a cou-
ple of other fixed points not shown in the plot at very high frequencies (one stable and
one unstable), corresponding to the unrealistic case νe = νI = 1/Trefr. Increasing the
excitability of RS cells (case (ii)) we observe the appearance of two new fixed points.
We verified that the higher in firing rates is indeed stable. We then superimpose the
firing rate of the network after a kick for these values of the leakage (green dots), and
we observe that actually the mean field fixed point matches with network simulations.
Using this method we are able to calculate the transition curve from a self-sustained
to a non-self-sustained regime in function of EE

L and EI
L, that we superimpose in the

spiking network simulations reported in the heat-plot of Fig. 6A, finding a very good
agreement.

Let us notice that, again, even if the fit for the transfer function (see methods) has
been done for a specific value of EE

L and EI
L, it still gives correct results also moving

around in the parameter space.
Moreover, we point out that this self-sustained regime is characterized by phys-

iological conductances, observing a quite large range of parameter values where the

18



conductances stay at a physiological value, at variance with other models present in the
literature ((Vogels and Abbott, 2005)).

3.5 UP-DOWN states dynamics triggered by noise and adaptation

We report here the effects of adaptation on the network dynamics in the case of a
bistable system (case (ii) of the previous section).

A

B

C

D

DOWN

UP

Spiking Network

Mean Field

Figure 7: UP DOWN state dynamics in bistable network Dynamics of a bistable
network (RS EL = −63mV ) with an external Poissonian input νext = 0.315, b = 60pA
and a = 0. A-B Raster plot and average firing rate in the spiking network (green stands
for excitation and red for inhibition). C Corresponding mean field model dynamics
with external additive noise (see text). D Phase plane derived from mean field with
superimposed the firing rate (green dots) of the network dynamics (panel B ). Black
line is relative to the transfer function for EL = −63mV (zero adaptation) and grey
line is relative to a lower leakage reversal due to adaptation building up during the UP
state. Green dashed arrows are used to guide the eyes through the spiking network
trajectory during DOWN-UP cycle.

In the absence of any external drive the system has still the same dynamics as in
the case without adaptation, i.e. silent or self-sustained state. Nevertheless, this state is
less stable the more the adaptation strength increases. We consider b = 60 pA, yielding
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a realistic level of adaptation to RS cells. For this parameter value the active state is
unstable and only a silent state is permitted.

As soon as a small external drive is added to the system (here we use νdrive = 0.315

Hz), it introduces a noisy level of activity in the silent (down) state. As in the down
state adaptation is almost zero, the second ”active” state is stable. Accordingly, noise
permits to the system to ”jump” to the active (UP) state. Nevertheless, as adaptation
grows (because of neurons firing), the UP state loses stability and the network goes back
to the DOWN state (see Fig. 7). The duration of the UP state is related to the speed
at which adaptation grows as function of the neurons firing rate increase. Nevertheless,
we observe that UP state durations are heterogeneous and characterized by ”bumps” of
activity, revealing a non-trivial dynamical structure that is induced by finite size noise
fluctuations. The alternation of UP states is irregular, as their duration and structure
(see Fig. 7A-B).

The deterministic mean-field model with adaptation used until now cannot repro-
duce this kind of dynamic as it does not take into account the amount of noise induced
by non-zero external drive (νdrive = 0.315 Hz). In order to account for noise induced
by an external drive νdrive of Poissonian spike trains targeting both excitatory and in-
hibitory networks we consider an additive noise modeled as an Ornstein–Ulhenbeck
(OU) process to Eqs. 4. Accordingly, the external drive νdrive becomes here a time
dependent variable νdrive(t) = νdrive + σξ(t), where ξ(t) is an (OU) process evolving
according to the following equation:

dξ(t) = −ξ(t) dt
τOU

+ dWt, (15)

where dWt is a Wiener process of amplitude 1 and zero average, τOU = 5ms the OU
process time scale and we choose σ = 10.5 that garantes a duration of down states
similar to network simulations. A simulation of the mean-field model in this set-up
is reported in Fig.7C. We observe the alternation of silent periods with transients of
high activity. The firing rates during the UP states are quantitatively matching those of
the spiking network simulations, as well as their duration. Finally, the heterogeneity
in between UP states is reproduced by the mean field, where rebounds of activity are
present, exactly as in spiking network simulations. The choice of the time scale T
shapes the duration of UP states. In order to have similar values as in the network
simulation we have chosen T = 50ms (see blue curve in Fig. 4 ). Using T = τm =

20ms does not change qualitatively the dynamics but leads to shorter UP states. As
we discussed in previous Section the choice of T is very delicate for fast dynamics
and future work need to focus on a choice based on theoretical estimations as done in
(Ostojic and Brunel, 2011).

In Fig.7D we superimpose the network dynamics during an UP-DOWN cycle to
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the activity map derived for the mean field (like done in Fig.6B). We observe that the
trajectory drawn by the network follows the stability principles dictated by the mean
field. The system is dynamically bistable when adaptation is zero (DOWN state) and
can jump to the UP state. Then, when adaptation builds up, the system is not bistable
anymore and comes back to the DOWN state.

Discussion

In the present paper, we derived a ”biologically realistic” mean-field model of neuronal
populations, that includes nonlinear effects important for neural dynamics. Our ap-
proach was similar to a previous Master Equation formalism (El Boustani and Destexhe,
2009), which we have augmented by explicitly including the dynamics of adaptation.
We discuss this model, how it relates to previous approaches, and what perspectives it
opens for future work.

The main originality of the mean-field model proposed here is that it takes into
account the presence of strong nonlinear effects such as conductance-based synaptic
interactions, and spike-frequency adaptation. To do this, we went back to first princi-
ples and re-derived the previous Master Equation formalism to take into account slow
variables like adaptation, taking into account the ”memory” of the network dynamics,
which was not considered in the original Markovian formulation (El Boustani and Des-
texhe, 2009). The TF of neurons is obtained using a semi-analytic approach, as done
previously (Zerlaut et al., 2016). This allowed us to obtain a mean-field model for
networks of spiking neurons, where excitatory and inhibitory neurons have different in-
trinsic properties (RS and FS cells), with conductance-based synaptic interactions and
where adaptation is taken into account.

The mean-field model was tested by comparing its predictions to the full spiking
network model, and it was found that several properties are correctly captured. First,
the model correctly predicts the level of spontaneous activity in AI states. Networks of
RS and FS cells are characterized by AI states where RS and FS cells display different
levels of spontaneous firing, with higher frequencies for FS cells. These features are
observed experimentally in cortex, where inhibitory neurons have a higher level of firing
(Roxin et al., 2011; Dehghani et al., 2016). The present mean-field model predicts the
level of firing activity when adaptation has settled to a steady-state, which was not
possible in previous mean-field models of AdEx networks (Zerlaut et al., 2018). In
fact, if adaptation is not considered, an ad-hoc fitting is necessary to adjust the transfer
function, making the procedure satisfactory but limited to the fitting point (Zerlaut et al.,
2018). The approach proposed here permits to avoid this problem and obtain a mean
field model which stays valid even far from such fitting point, a necessary ingredient
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when we investigate the phase space of the model (see Fig. 6A) or the emergence
of slow oscillations. In previous mean-field models, the level of spontaneous activity
of IF networks with conductance-based synapses could be predicted (El Boustani and
Destexhe, 2009), but this prediction was not quantitative because the transfer function
was approximated (and of course no adaptation was present).

A second property is that the present mean-field model captures the full time course
of the response of the network to external input. This includes the transient initial re-
sponse, the peak of the response and the ”tail” at longer times, where adaptation plays
a role. Previous mean-field models could predict the response dynamics of networks,
but only for current-based synaptic interactions (Schwalger et al., 2017; Montbrió et al.,
2015). The present mean-field model captures the response of conductance-based spik-
ing networks remarkably well, including complex stimuli like oscillations at different
frequencies. The whole spectrum of oscillatory responses could be well predicted (Fig.
3–5), while previous mean-field models of AdEx networks typically failed to capture
the frequency response (Zerlaut et al., 2018). This constitutes a major improvement, but
most importantly, it suggests that the present mean-field model should be able to ade-
quately capture the dynamics of interconnected networks, which opens the perspective
of more realistic modeling of large-scale systems. This constitutes an exciting perspec-
tive for future work.

A third important feature reproduced by this model is that the same network can
produce different responses to the same input, according to its level of spontaneous
activity. Such state-dependent responses are found experimentally at various levels,
from single cell level (Haider et al., 2007; Hasenstaub et al., 2007; Sachdev et al., 2004;
Timofeev et al., 1996; Reig and Sanchez-Vives, 2007; Reig et al., 2015; Shu et al.,
2003) to networks and large-scale systems (Silvanto et al., 2008, 2007). In the model,
we found that such a state dependency is due to the fact that different levels of activity
will set neurons in different conductance states, and thus individual neurons will have
different responsiveness. The steady level of adaptation is also dependent on the level
of spontaneous activity, and also contributes to the state-dependent response. To our
knowledge, no previous mean-field model is able to display such state dependency, and
this constitutes a significant advance in the biological realism of mean-field models.

A last important property reproduced by the mean-field is that networks of neurons
with adaptation can produce UP/DOWN state dynamics (Steriade et al., 2001; Timofeev
et al., 2000; Compte et al., 2003). Although simplified models were also proposed for
UP-DOWN state oscillations following the same mechanism (Capone and Mattia, 2017;
Jercog et al., 2017; Schwalger et al., 2017), there is at present no mean-field model of
such adaptation dynamics derived from conductance based spiking networks. If used
in a larger-scale system, the present mean-field model should be able to reproduce the
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dynamics of slow-wave activity at larger scales. This was never done using realistic
mean-field models and this also constitutes a possible extension of the present work.

In addition to those listed above, other extensions of the present model can be po-
tentially considered, by going beyond spike-frequency adaptation. One possibility is to
consider Spike-Time-Dependent-Plasticity (STDP), capable to yield different dynami-
cal regimes with respect to those investigated here (Tsodyks et al., 1998) or, more gen-
erally, synaptic dynamics. This would permit to consider fast oscillations, typically due
to synaptic or delay dynamics of excitation-inhibition (Buzsáki and Wang, 2012; Bos
et al., 2016). Nevertheless, this extension is far from straightforward. First, as discussed
in Sec. 2 in the case of fast variables (e.g. synaptic dynamics) it is important to update
the model considering variables fluctuations at variance as done here with adaptation.
Furthermore, an accurate choice of the time scale T needs to be done as it will affect the
dynamics of the model. Moreover, supplementary differential equations (e.g. synaptic
variables) could be necessary in order to take into account the time–lagged correlations
in neurons activities. Such time scale may represent an obstacle for the validity of the
Markovian assumption and we believe that an extended analyses of the correlations
present in the network should be considered in order to guide the theoretical derivation
of mean field equations.

Moreover, the approach we used to calculate the transfer function is very general
and it may be applied to other neuronal models or to real data (Zerlaut et al., 2016),
provided the neuron dynamics has a stationary firing rate. In fact, if neurons display
mechanism like bursting (Izhikevich, 2003) the calculation of the stationary transfer
function cannot even be well defined. For instance, it has been shown that neurons
may display stochastic resonance or in general, a non-trivial response in the frequency
domain (Lindner and Schimansky-Geier, 2001). For these classes of neurons a different
approach should be implemented, calculating the transfer function in the frequency
domain. Nevertheless, for the cortical regimes we described here, with highly realistic
features, our approach was very satisfactory.

Another possible extension is to include the heterogeneity of the TF of neurons
found experimentally in mouse cortex (Pospischil et al., 2008; Zerlaut et al., 2016),
where the parameters of adaptation dynamics strongly vary across neurons. In the
present mean field model formulation, neuronal heterogeneity is not taken into account
and might represent a future development of this work, similar to previous work (di Volo
et al., 2014), in order to obtain a heterogeneous mean field model based on experimental
measures (Zerlaut et al., 2016).

Finally, another extension is to further explore the state-dependent responses, in
the context of the detection of external stimuli or sensory awareness. This could link
the present approach to modeling different levels of sensory awareness in large-scale
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multi-areal networks. We believe that such models are relevant to biological data only
if they include biologically relevant features like state-dependent responsiveness. The
present mean-field model is to our knowledge the first one to account for such state
dependency, and thus should be considered as a step towards building biologically-
realistic large-scale models at mesoscopic scale.
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Appendix

Master equation formulation in presence of slow vari-
able.

We extend here the framework discussed in (El Boustani and Destexhe, 2009) using
a consistent notation. Let us consider a network with K homogeneous populations of
neurons. Each population γ is defined by its network activity mγ that is the number of
neurons which fired in that population in a time bin T . In the wit of making a probabilis-
tic Markovian formulation, T should be chosen of the time-scale of correlation decay
in order to have the system that only depends on the previous step. Also T should be
small enough to avoid to have the same neuron firing twice in the same bin.

We also define the variable Wγ = (1/Nγ)
∑

iwγ,i, where wγ,i is the adaptation of
the i − th neuron in population γ, as defined in the previous paragraph. The dynamics
of the variables W is assumed to be slow with respect to the autocorrelation time of the
system T .

We make the assumption that the state of the system is defined by the set of variables
{mγ,Wγ}. The network behavior can be investigated by studying the transition proba-
bility PT ({mγ,Wγ}|{m′γ,W ′

γ}), i.e. the probability that the system is in {mγ,Wγ} at
time t0 + T conditioned to the fact that it was at {m′γ,W ′

γ} at a generic time t0. Pro-
vided the choice for T we discussed above, we can reasonably assume that population-
conditional probabilities are independent beyond the time scale of T, thus allowing to
write:

PT ({mγ,Wγ}|{m′γ,W ′
γ}) =

∏
α=1..K

PT (mα,Wα|{m′γ,W ′
γ}) (16)

We can thus define the transition operator W as:

W({mγ,Wγ}|{m′γ,W ′
γ}) =

∏
α=1..K PT (mα,Wα|{m′γ,W ′

γ})
T

, (17)

For this approximation to be valid, the time constant τw � T , namely we assumed
that the adaptation dynamics is slower than the firing rate dynamics.

This also involves that W variables are independent on fluctuations in firing rates
and can be described by a deterministic equation. Thus the probabilities can be factor-
ized as follows

PT ({mγ,Wγ}|{m′γ,W ′
γ}) = P̄T ({mγ}|{m′γ,W ′

γ})

·δ(Wγ − [W ′
γ +

T

τw
f(W ′

γ,m
′
γ)]).
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where we used Euler integration forW dynamics that for linear f() can be explicitly
written in the following closed form

∂t〈Wµ〉 = −〈Wµ〉
τw

+ b〈mµ〉. (18)

Notice that here for the sake of simplicity we consider a = 0 (see Eq. 1), neglecting
voltage -dependent adaptation. The extension to a 6= 0 is trivial once the average
population voltage is calculated and is described in the model section.

Using the same approach as in (El Boustani and Destexhe, 2009) we obtain the
following equations for the average activity and for the correlations

∂t〈mµ〉 = āµ({〈mγ〉, 〈Wγ〉}) +
1

2
∂λ∂ηāµ({〈mγ〉, 〈Wγ〉})cλη

∂tcµν = āµν({〈mγ〉, 〈Wγ〉}) + ∂λāµ({〈mγ〉, 〈Wγ〉})cνλ +

∂λāν({〈mγ〉, 〈Wγ〉})cµλ

where

āµ({〈mγ〉, 〈Wγ〉}) =
∏

β,=1..K

∫ T−1

0

∫
Ω

dm′βdW
′
β

(m′µ − 〈mµ〉)W({m′γ,W ′
γ}|{mγ,Wγ}).

and

āµν({〈mγ〉, 〈Wγ〉}) =
∏

β,=1..K

∫ T−1

0

∫
Ω

dm′βdW
′
β

(m′µ − 〈mµ〉)(m′ν − 〈mν〉)W({m′γ,W ′
γ}|{mγ,Wγ}).

Using the assumption made in eq.(18)W can be explicitly written as (see (El Bous-
tani and Destexhe, 2009) for details)

W({mγ,Wγ}|{m′γ,W ′
γ}) =

1

T

√
det(A)

2πK

exp

[
− 1

2
(mµ − Fµ(m′γ,W

′
γ))Aµν(mν − Fν(m′γ,W ′

γ))

]
·δ(Wγ − [W ′

γ +
T

τx
f(W ′

γ,m
′
γ)]), (19)
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where the product T · Fµ is the probability that a neuron of this population fires
in the time interval T and depends on the single neuron model and where Aµν =

δµν
Nµ

Fµ(m′γ ,W
′
γ)(1/T−Fν(m′γ ,W

′
γ)

.
Then, calling νµ = 〈mµ〉, we finally get the equations for the moments:

T∂tνµ = (Fµ − νµ) +
1

2
∂λ∂ηFµcλη

T∂tcµν = δµνA
−1
µµ + (Fµ − νµ)(Fν − νν)

+∂λFµcνλ + ∂λFνcµλ − 2cµν

∂tWµ = −Wµ

τw
+ bνµ

where, once again, only the first order for the equation of W are considered, since
we suppose its dynamics not strongly affected by fluctuations. Here we stress that the
activity variables dynamics are a function of the adaptation level.
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