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Abstract. 3D fine renal artery segmentation on abdominal CTA image
targets on the segmentation of the complete renal artery tree which will
help clinicians locate the interlobar artery’s corresponding blood feeding
region easily. However, it is still a challenging task that no one has re-
ported success due to the large intra-scale changes, large inter-anatomy
variation, thin structures, small volume ratio and limitation of labeled
data. Hence, in this paper, we propose a novel semi-supervised learning
framework named DPA-DenseBiasNet for 3D fine renal artery segmenta-
tion. The dense biased connection method is presented for multi-receptive
field feature maps merging and implicit deep supervision [5] which enable
the network to adapt to large intra-scale changes and improve its training
process. The dense biased network (DenseBiasNet) is designed based on
this method. We develop deep priori anatomy (DPA) for semi-supervised
learning of thin structures. Differ from other semi-supervised methods, it
embeds priori anatomical features to segmentation network which avoids
inaccurate results sensitive to thin structures as optimizing targets, so
that the network achieves generalization of different anatomies with the
help of unlabeled data. Only 26 labeled and 118 unlabeled images were
used to train our framework and it achieves satisfactory results on the
testing dataset. The mean centerline voxel distance is 1.976 which re-
duced by 3.094 compared to 3D U-Net. The results illustrate that our
framework has great prospects in the diagnosis and treatment of kidney
disease.
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1 Introduction

3D fine renal artery segmentation on abdominal CTA image targets on achieving
3D renal artery tree that reaches the end of interlobar arteries. If successful, clin-
icians will locate the blood feeding region corresponding to each interlobar artery
easily which is important for the diagnosis and pre-operative planning of kidney
disease [7, 11, 12]. For example, it will show the tumor-feeding artery branches for
segmental renal arteries clamping before laparoscopic partial nephrectomy [11,
12]. With the increasing probability of kidney disease [9], 3D fine renal artery
segmentation will play an important role in its diagnosis and treatment.

However, no one has reported success in 3D fine renal artery segmentation
because it is a challenging task [3]: (1) Large intra-scale changes. The thickest
renal artery of a patient can up to 7.4 mm, which can be more than 5 times of the
thinnest artery as is shown in Fig.1(a). This makes the network have to sensitive
to different scale features, which increases the difficulty in feature extraction. (2)
Large inter-anatomy variation. 11 different renal artery structures were found
just from 461 patients [3]. The number of ostia, branch and accessory renal
artery are variable between patients as Fig.1(b) shows. This makes it difficult
for a small dataset to cover all variation and causes the network to overfit easily.
(3) Thin structure. The thinnest artery is less than 1.5 mm which is much smaller
than other organs in the same region so that the network is prone to lose these
structures. (4) Small volume ratio. Renal arteries just account for 0.27% of the
kidney region which will cause serious class imbalance problem, so the network
is difficult to train. (5) Limitation of labeled data. It is difficult to learn the
feature representation of different renal artery anatomies on a small data set,
which limits the network’s generalization ability. Therefore, how to overcome
these challenges and to achieve 3D fine renal artery segmentation is an urgent
problem.

There is no success to achieve 3D fine renal artery segmentation automati-
cally, although some rough segmentation methods [6, 13] that only segmented up
to segmental arteries have been proposed. Li et al. [6] only segmented the main
and the thick segmental renal arteries using 400 images. Taha et al. [6, 13] used
99 cases to achieve the main arteries out of the renal. These methods cannot be
applied to our task directly for two reasons: (1) The rough results. Main and seg-
mental arteries usually correspond to multi blood feeding regions so that these
rough results cannot be used to locate the specific blood feeding region of each
vessel. (2) Large labeled dataset requirements. These methods used supervised
learning which relies on a large labeled dataset and made it difficult to achieve
satisfactory results when the 3D fine renal artery labeled dataset is small.

Semi-supervised learning gives us a tool to solve the limitation of labeled
data because it uses unlabeled data to improve the model’s performance [15].
Nie et al. [10] designed an attention-based network trained by 35 labeled and 20
unlabeled data to achieve the segmentation on a pelvic dataset. Bai et al. [1],
applied CRF to a full convolutional network, and achieved the cardiac MR im-
age segmentation with 240 unlabeled and 80 labeled images. However, these
methods cannot be used for our tasks directly because they use unlabeled data



Title Suppressed Due to Excessive Length 3

Fig. 1. The challenges of 3D fine renal artery segmentation. (a) The thickest artery of
a patient is up to 7.4 mm which can be more than 5 times of the thinnest artery. (b)
The number of ostia, branch and accessory renal artery are variable between patients.
(c) Renal arteries account for 0.27% of the kidney region and are much thinner than
other organs.

to get inaccurate labels which lose thin structures easily so that the model is
optimized in wrong targets and its performance is weak in our task.

We propose a novel semi-supervised framework (DPA-DenseBiasNet) for 3D
fine renal artery segmentation in this paper. Our work has the following con-
tributions: (1) To the best of our knowledge, this work is the first achievement
in 3D fine renal artery segmentation. (2) It presents a dense biased connec-
tion method which merges multi-receptive field feature maps to adapt to large
intra-scale changes. Further, each layer has direct access to the gradients from
the loss function, leading to deep supervision [5], to simplify the training pro-
cess. Dense biased network (DenseBiasNet) is designed based on this method.
(3) Deep priori anatomy (DPA) is proposed for semi-supervised learning of thin
structures. It embeds priori anatomical features from the encoder trained by
unlabeled data to the DenseBiasNet to avoid inaccurate results sensitive to thin
structures as optimizing target like other semi-supervised methods. Therefore,
DenseBiasNet trained by a small labeled dataset has a higher generalization of
different anatomies and keeps the segmentation ability of thin structures. The
experimental results show that our framework has enormous potential for clinical
application.

2 Methodology

As is illustrated in Fig.2, DPA-DenseBiasNet adopts a dense biased network
(DenseBiasNet) and deep priori anatomy (DPA) for 3D fine renal artery seg-
mentation. DenseBiasNet (Sect.2.1) is a segmentation network which uses dense
biased connection method for multi-receptive field feature maps merging and im-
plicit deep supervision to achieve the segmentation with large scale changes and
simplify the training process. DPA (Sect.2.2) is a semi-supervised method of thin
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Fig. 2. The framework of DPA-DenseBiasNet: (a) and (d) are DenseBiasNet and dense
biased connection method which introduced in Sect.2.1. (b) is the encoder network
from denoising autoencoder trained by numerous unlabeled data and (c) is the priori
anatomical features from the encoder. (b) and (c) constitutes DPA which introduced
in Sect.2.2 .

structures which uses a trained encoder to provide priori anatomical features for
DenseBiasNet to guide the adaptation of variable anatomical structures.

2.1 Dense Biased Network (DenseBiasNet) for Fine Segmentation

DenseBiasNet is a 3D fine renal artery segmentation network which based on
dense biased connection method. It connects a part of feature maps in each layer
to every other forward layer to build dense connectivity pattern. These feature
maps are optimized by richer gradients and play a more important role in the
network. Hence, we call the method dense biased connection.

Advantages of Dense Biased Connection: (1) It allows the network to
adapt to large intra-scale changes via merging multi-receptive field feature maps
which have different sensitivities to different scale vessels in each convolutional
layer. (2) It simplifies the training process because the gradients from the loss
function optimize each layer along the dense biased connection directly.

Dense Biased Connection: As is illustrated in Fig.2(d), each layer gets a
part of feature maps from all preceding layers as additional inputs and trans-
mits a part of its output feature maps to all forward layers. If the sizes of
feature maps do not match, maxpooling or upsample method will be used. We
denoted the output of the lth layer as Fl. The lth layer receives a part of fea-
ture maps of previous layers, F0, . . . , Fl−2, and all the feature maps of Fl−1 as
input: Fl = Hl(Fl−1 ◦ Fl−2 [0 : kl−2] ◦ . . . ◦ F0 [0 : k0]). Where Hl(•) can be a
composite function of operations such as group normalization (GN), rectified
linear units(ReLU), pooling, upsampling, or convolution (Conv). The symbol ◦
refers to the concatenation of the feature maps. k0, . . . , kl−2 is the number of the
feature maps the lth layer can receive from 0,... , l − 2 layers. In our experiments,
we set k0, ..., kl−2 = 1.
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Structure and Loss Function of DenseBiasNet: Figure 2(a) illustrates
DenseBiasNet’s structure. It comprises of 14 3D convolution layers which fol-
lowed a GN and a ReLU, 3 maxpooling layers, 3 3D deconvolution layers used
to change scales and a 1×1×1 convolution layer followed a softmax as the output
layer to reduce the number of channels to classes. The dense biased connection
is used throughout the network to adapts to different scale arteries.

The network is trained by minimizing the loss function consisting of dice
coefficient loss and cross-entropy loss. The dice coefficient loss Ldice helps to
establish a balance between artery and background from a global perspective,
and the cross-entropy loss Lce is used for correct classification of each voxel at
a local perspective:
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where C is the number of channels output from the network, and N is the
size of each channel. ŷn,c is the predicted result and yn,c indicates the label. λ
is used to balance these loss functions. In our experiments, we set λ = 0.1.

2.2 Deep Priori Anatomy (DPA) Based Semi-supervised Learning

DPA is a novel semi-supervised method that avoids inaccurate optimizing tar-
gets which sensitive to thin structures during training. It first trains an autoen-
coder [14] with numerous unlabeled data, and then uses the encoder part to
extract input image’s priori anatomical features of different semantic levels in
different depth in order to guide the anatomical adaptation of the segmentation
network which trained with a small labeled dataset as shown in Fig.2(b)(c).

Advantages of DPA: (1) Deep priori anatomical feature representation
learned from unlabeled data which adapts to more anatomical structures than
manual priori features. (2) It focuses on both local and global anatomical in-
formation because different semantic levels features are extracted from differ-
ent depths. (3) It improves the network’s generalization ability utilizing these
priori features. (4) It is suitable for thin structures compared with other semi-
supervised methods [1, 10] because embedding priori knowledge will not intro-
duce inaccurate labels that are easy to lose thin structures.

DPA for Semi-supervised Anatomical Adaptation: Figure 2 shows
the process of extracting and embedding deep prior anatomical features into the
DenseBiasNet. Prior to this, a convolutional denoising autoencoder was trained
with numerous unlabeled data, and then its encoder part was frozen and used to
extract anatomical features (Fig.2(b)). The image x is putted into the encoder
to obtain priori anatomical features at different depths {Ff1, Ff2, Ff3, Ff4} =
f(x; θf ). These feature maps (Fig.2(c)) together with input image x are putted
into the DenseBiasNet’s different convolution layers to predict fine renal artery
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segmentation ŷ = d(x, Ff1, Ff2, Ff3, Ff4; θd). The learning process is minimizing
the loss function Lseg(y, ŷ) to optimize the DenseBiasNet. y is the renal artery
mask, f( · ) is the encoder operation and d( · ) is the DenseBiasNet operation.

3 Experiments and Results

Setting: Abdominal contrast-enhanced CT images of 170 patients who under-
went LPN surgery were included in this study. The pixel size of these CT images
is between 0.59 mm2 to 0.74 mm2. The slice thickness and the spacing in zdi-
rection were fixed at 0.75 mm and 0.5 mm respectively. 52 of these images have
renal artery mask, half of them were used as the training sets and the other
half as the test set. The remaining 118 unlabeled images are used to train the
denoising autoencoder. On the training set, we mirrored each image on three
axes to expand the training data to 104 images. The kidney region of interest
which size was 152 × 152 × Z was extracted firstly. The denoising autoencoder
and DenseBiasNet are all trained with Adam where the batch size was 1, the
learning rate was 1× 10− 4 and the decay rate was 1× 10− 5. They all trained
200 epochs on their corresponding data sets.

To demonstrate the advantage of our framework, we compared our method
with 2 supervised methods (3D U-Net and VNet) and 2 semi-supervised methods
(SemiFCN and ASDNet). We adopt the following evaluation metrics to evaluate
our proposed method: mean dice coefficient (Dice), mean centerline distance
(MCD) and mean surface distance (MSD).

Visual Superiority: Figure 3 shows the visual superiority of our framework.
Case 1 is a left kidney region whose artery has many singular anatomical struc-
tures which difficult to segment. Case 2 is a right kidney region whose artery has
great scale changes at the branches. Compared with ground truth, DPADense-
BiasNet achieves fine segmentation in these cases thanks to the dense biased
connection which merges multi-receptive field feature maps and DPA which en-
sures the segmentation quality of thin structures and generalization of different
anatomies. Without the help of DPA, DenseBiasNet loses some parts in case1.
SemiFCN cannot realize our task, because CRF removes thin renal arteries so
that the inaccurate optimize target weakens the network’s performance. ASDNet
has serious mis-segmentations due to the more serious class imbalance caused
by the confidence map and the instability caused by adversarial learning.

Evaluation Metrics Advantages: The advantages of our DPA-DenseBiasNet
on each metric are demonstrated in Table 1. DPA-DenseBiasNet achieves the
best segmentation results compared with other methods. The dice coefficient,
mean centerline distance and mean surface distance are 0.861, 1.976 and 1.472,
and their corresponding standard deviations are 0.095, 1.394 and 1.738. Ablation
experiments in the last two rows validate the importance of DPA which improves
the segmentation accuracy obviously.

Training Process Improvement: Figure 4 illustrates the improvement of
the training process due to dense biased connection. We compared DenseBias-
Net, 3D U-Net (3 layers have skip connections) and the network without skip
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Fig. 3. The visual superiority of our framework (DPA-DenseBiasNet).

Table 1. The advantages of our method (DPA-DenseBiasNet) on each metrics.

Network Dice MCD MSD

V-Net [8] 0.787 (0.113) 2.872 (2.196) 2.213 (2.155)
3D U-Net [4] 0.750 (0.162) 5.070 (4.949) 4.385 (4.208)
(semi)SemiFCN [2] 0.388 (0.259) 8.772 (10.085) 7.921 (10.593)
(semi)ASDNet [10] 0.555 (0.191) 8.557 (5.124) 7.484 (5.132)

DenseBiasNet 0.851 (0.110) 2.478 (2.090) 1.920 (2.354)
(semi)Proposed 0.861 (0.095) 1.976 (1.394) 1.472 (1.738)

connections. DenseBiasNet has faster convergence speed and higher test accu-
racy because the gradients from the loss function optimize each convolution layer
directly.

Fig. 4. The improvement of the training process by the dense biased connection. Dense-
BiasNet has faster convergence speed and higher accuracy than the other two networks.

4 Conclusion

This paper proposed a novel semi-supervised framework which achieved 3D fine
renal artery segmentation. The proposed framework used dense biased connec-
tion method to enable DenseBiasNet to adapt to large intra-scale changes and
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simplify its training process. Further, our developed semi-supervised method of
thin structures, DAP, embedded priori anatomical features from an encoder net-
work to DenseBiasNet to improve its generalization of different anatomies. The
performance of our framework was compared with other methods. The results
showed that our framework had great prospects in the diagnosis and treatment
of kidney disease.
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3. Bordei, P., Şapte, E., Iliescu, D., Brânzaniuc, K., Baz, R., Matusz, P., Dina, C.:
Morphological assessments on the arteries of the superior renal segment. Surgical
and radiologic anatomy 34, 137–144 (2012). https://doi.org/10.1007/s00276-011-
0866-y
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