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In least costly experiment design, the optimal spectrum of an identification experiment is determined in such a way that the cost of the experiment is minimized under some accuracy constraint on the identified parameter vector. Like all optimal experiment design problems, this optimization problem depends on the unknown true system, which is generally replaced by an initial estimate. One important consequence of this is that we can underestimate the actual cost of the experiment and that the accuracy of the identified model can be lower than desired. Here, based on an a-priori uncertainty set for the true system, we propose a convex optimization approach that allows to prevent these issues from happening. We do this when the to-be-determined spectrum is the one of a multisine signal.

Introduction

We consider in this paper the problem of optimally designing the spectrum Φ u of the excitation signal u of an open-loop identification experiment. By optimal spectrum, we here mean the spectrum yielding the smallest experiment cost while guaranteeing that the accuracy of the identified parameter vector of the plant transfer function is larger than a given threshold. We thus consider the least costly experiment design framework [START_REF] Bombois | Least costly identification experiment for control[END_REF], but the approach can easily be adapted to other (dual) frameworks [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF][START_REF] Rojas | On the equivalence of least costly and traditional experiment design for control[END_REF][START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF]. The experiment cost J can be defined as a linear combination of the power of the excitation signal u and of the power of the part of the output signal induced by u. The experiment cost will therefore be a function of the spectrum Φ u , but also of the unknown true parameter vector θ 0 (we therefore denote the cost as J (θ 0 , Φ u )). Likewise, the accuracy constraint will also depend on θ 0 and on Φ u since the classical accuracy constraints are of the type P -1 (θ 0 , Φ u ) ≥ R adm where P (θ 0 , Φ u ) is the covariance matrix of the to-be-identified parameter vector (which depends on θ 0 and Φ u ) and R adm a matrix reflecting the desired accuracy. The dependency of the optimal spectrum Φ u,opt on the unknown true parameter vector θ 0 is the so-called chickenand-egg issue encountered in optimal experiment design. This issue is generally circumvented by replacing θ 0 by an initial estimate θinit of θ 0 since, in this case, the optimal experiment design problem boils down to a convex optimization problem (see e.g. [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF][START_REF] Bombois | Least costly identification experiment for control[END_REF]). However, this approach has the drawback that the optimal spectrum is not guaranteed to yield the desired accuracy and that the experiment cost computed with θinit and Φ u,opt can underestimate the actual experiment cost. These observations are at the root of the research area on robust optimal experiment design (see [START_REF] Rojas | Robust optimal experiment design for system identification[END_REF] for a good survey).

In robust experiment design, different lines of research have been considered. In [START_REF] Rojas | Robustness in experiment design[END_REF], a spectrum that yields good accuracy for a very broad set of systems (also of different orders) is discussed. However, in the engineering literature, the most widely used approach is the one that consists in considering an uncertainty set U containing the unknown true parameter vector θ 0 (the socalled min-max design [START_REF] Rojas | Robust optimal experiment design for system identification[END_REF][START_REF] Pronzato | Robust experiment design via optimization[END_REF]). The optimal experiment design problem can then be formulated as determining the spectrum Φ u minimizing the value of a scalar γ under the constraints that J (θ, Φ u ) ≤ γ ∀θ ∈ U and that P -1 (θ, Φ u ) ≥ R adm ∀θ ∈ U . If we denote by γ opt and Φ u,opt the solution of this optimization problem, we have the guarantee that P -1 (θ 0 , Φ u,opt ) ≥ R adm and that γ opt is an upper bound for the actual experiment cost J (θ 0 , Φ u,opt ). However, finding a tractable approach to deal with such a robustified optimal experiment design Preprint submitted to Automatica problem is still an open research question. While this optimization problem can be exactly solved in very particular and simple situations (see e.g. [START_REF] Rojas | Robust optimal experiment design for system identification[END_REF][START_REF] Abrashov | Simple and Robust Experiment Design for System Identification Using Fractional Models[END_REF]), the general approach when facing more complex systems is to replace the initial uncertainty set (containing an infinite number of elements) by a number n of grid points of this uncertainty set U (see e.g. [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF][START_REF] Bombois | Least costly identification experiment for control[END_REF][START_REF] Rojas | Robust optimal experiment design for system identification[END_REF]). Consequently, the cost constraint and the accuracy constraint over the set U in the robustified optimal experiment design problem are replaced each by n constraints (one for each grid point). Even though it is obviously better from a robustification point-of-view than just replacing θ 0 by one grid point i.e. θinit , this relaxation of the original robustified optimal experiment design problem cannot yield the guarantees linked to the original problem and it can become computationally heavy for large values of n.

In [START_REF] Kumar | Robust plant friendly optimal input design[END_REF][START_REF] Forgione | Data-driven model improvement for model-based control[END_REF][START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF], approaches are presented to uniquely tackle the robustified cost constraint J (θ, Φ u ) ≤ γ ∀θ ∈ U (i.e. in the accuracy constraint, θ 0 is replaced by θinit ). However, these approaches all entail some approximation: a first-order approximation in [START_REF] Forgione | Data-driven model improvement for model-based control[END_REF], a second-order approximation in [START_REF] Kumar | Robust plant friendly optimal input design[END_REF] and an approximation based on the unscented transform in [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF].

Our main contribution in this paper is to present an approach in order to tackle the robust optimal experiment design problem without approximation. For this purpose, we observe that, except for its dependence on the to-be-determined spectrum, the robustified cost constraint and the robustified accuracy constraint are similar to constraints that are treated in robustness analysis. Based on this observation and on the separation of graph framework [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF][START_REF] Goh | Robust analysis, sectors and quadratic functionals[END_REF][START_REF] Megretski | System analysis via integral quadratic constraints[END_REF], we derive constraints that are linear in the decision variables of the optimal experiment design problem and that imply the original robustified cost and accuracy constraints. We do that for one of the most commonly used parametrization of the to-be-determined spectrum Φ u i.e. the one corresponding to a multsine [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF]. We however restrict attention to Box-Jenkins (BJ) model structures and to accuracy constraints on the parameters of the plant transfer functions (we can indeed not robustify the noise part of the covariance matrix using the tools presented in this paper).

Notations. The matrix

     X1 0 0 0 . . . 0 0 0 XN     
will be denoted diag(X 1 , ..., X N ) if the elements X i (i = 1, ..., N ) are scalar quantities while it will be denoted bdiag(X 1 , ..., X N ) if the elements X i (i = 1, ..., N ) are matrices. In addition, the Fourier transform of a signal x(t) is denoted x(e jω ), I n represents the identity matrix of dimension n and ⊗, the Kronecker product. Finally, 0 represents a vector or a matrix containing only zeros and A * is the conjugate transpose of the complex matrix A.

Identification

We consider a single-input single-output true system with input u and output y:

y(t) = G 0 (z)u(t) + H 0 (z)e(t) =v(t) (1)
where v(t) = H 0 (z)e(t) is the disturbance acting on the system. In (1), e(t) is a white noise with variance σ 2 e and G 0 (z) and H 0 (z) are stable transfer functions. In addition, H 0 (z) is also assumed to be inversely stable and monic.

The true system (1) will be identified in a BJ model structure i.e., {G(z,

θ) = G(z, ρ), H(z, θ) = H(z, ζ) | θ = (ρ T , ζ T ) T ∈ R k }.
The orders of G(z, θ) and H(z, θ) are chosen in such a way that there exists

θ 0 = (ρ T 0 , ζ T 0 ) T such that G 0 (z) = G(z, θ 0 ) = G(z, ρ 0 ) and H 0 (z) = H(z, θ 0 ) = H(z, ζ 0
). We will denote by k G (resp. k H ) the dimension of ρ 0 (resp. ζ 0 ) and we have thus

k = k G + k H .
If we apply a sequence {u(t) | t = 1, ..., N } of spectrum Φ u to (1) and collect the corresponding output {y(t) | t = 1, ..., N }, an estimate θN of θ 0 can be deduced using prediction error identification [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF]:

θN = arg min θ 1 N N t=1 2 (t, θ) (t, θ) = H -1 (z, θ) (y(t) -G(z, θ)u(t)) (2) 
The estimate θN is (asymptotically) normally distributed around θ 0 with a covariance matrix P θ (θ 0 , Φ u ) whose known expression is a function of θ 0 and of the input spectrum Φ u used during the identification experiment [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF]. It is important to note that P -1 θ (θ 0 , Φ u ) is a measure of the accuracy of θN [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF]. In general, we are mainly interested in the accuracy of the part ρN of the vector θN = (ρ T N , ζT N ) T (the part that defines the model G(z, ρN ) of G(z, ρ 0 )). The covariance matrix P ρ of ρN can be deduced from P θ as follows:

P ρ = (I k G 0) P θ (I k G 0) T ,
and its inverse has the following expression as a function of Φ u and θ 0 [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF][START_REF] Bombois | Open-loop vs. closed-loop identification of box-jenkins systems in a least costly context[END_REF]:

P -1 ρ (θ 0 , Φ u ) = N σ 2 e 1 2π π -π F u (e jω , θ 0 )F * u (e jω , θ 0 )Φ u (ω) dω (3) with F u (z, θ) = H -1 (z, ζ) ∂G(z, ρ) ∂ρ (4) 
In the sequel, we will suppose that an initial identification experiment has delivered an initial estimate θinit = (ρ T init , ζT init ) T with covariance matrix P θ,init .

Consequently, the following ellipsoid U init is a η%confidence region for the unknown true parameter vector θ 0 :

U init = θ | (θ -θinit ) T P -1 θ,init (θ -θinit ) ≤ χ (5) 
with χ such that P r(χ 2 (k) ≤ χ) = η (say 95 %). The significance of this set is that, if the initial experiment and the estimation of θinit is repeated, the true parameter θ 0 will belong to U init in the fraction η of these essays. For this reason, U init can be used as a description of the uncertainty of the initial estimate. From now on, we will assume that θ 0 indeed belongs to the ellipsoid U init constructed based on the initial estimate θinit and its covariance matrix P θ,init . We will suppose that the accuracy P -1 ρ,init of ρinit is not sufficient for the purpose of the identified model (P ρ,init = (I k G 0)P θ,init (I k G 0) T ). In the sequel, we will deem an estimate of ρ 0 sufficiently accurate when the inverse of its covariance matrix satisfies

P -1 ρ ≥ R adm for a given positive-definite matrix R adm ∈ R k G ×k G .
In order to obtain a sufficiently accurate estimate of θ 0 , we need to perform a second experiment that yields an estimate θN = (ρ T N , ζT N ) T having the property that the covariance matrix P ρ (θ 0 , Φ u ) of ρT N is such that P -1 ρ (θ 0 , Φ u ) ≥ R adm (Φ u is the spectrum of the input signal used during the second experiment). Note that the initial and the second identification experiments can also be combined [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF] and the inverse P -1 ρ (θ 0 , Φ u ) of the covariance matrix corresponding to the second experiment must then satisfy: P -1 ρ (θ 0 , Φ u ) + P -1 ρ,init ≥ R adm . For the sequel, it will be important to make the following assumptions:

Assumption 1 We restrict attention to parametrizations G(z, θ) and H(z, θ) that are rational functions of the parameter vector θ:

G(z, θ) = Z N (z)θ 1 + Z D (z)θ (6) H(z, θ) = 1 + Z N,H (z)θ 1 + Z D,H (z)θ ( 7 
)
where Z N (z), Z D (z), Z N,H (z) and Z D,H (z) are row vectors of transfer functions.

Assumption 2

The uncertainty U init defined in ( 5) is small enough to guarantee that, like G(z, θ 0 ) and H -1 (z, θ 0 ), G(z, θ) and H -1 (z, θ) are stable transfer functions for all θ ∈ U init . Due to (4), this also implies that F u (z, θ) is a vector of stable transfer functions for all θ ∈ U init .

Note that the classical BJ parametrization used in prediction error identification satisfy Assumption 1 (see Appendix A). Moreover, we can easily verify whether a given U init satisfies the property mentioned in Assumption 2 using the results in [START_REF] Bombois | Robustness analysis tools for an uncertainty set obtained by prediction error identification[END_REF].

Optimal experiment design

As done in the least costly experiment design framework [START_REF] Bombois | Least costly identification experiment for control[END_REF], we will design the spectrum Φ u of the excitation signal u of the second experiment in such a way that the accuracy constraint is met with the least perturbation on the system (i.e. with the least identification cost). The perturbation on the system induced by u will be here measured by a linear combination of the power of the input signal and of the power of y(t) = G(z, θ 0 )u(t):

J (θ 0 , Φ u ) = 1 2π π -π 1 + β |G(e jω , θ 0 )| 2 Φ u (ω) dω (8) 
where β is an user-chosen constant that weighs the two terms in J . We observe that the cost J (θ 0 , Φ u ) is a function of the unknown θ 0 and of the chosen spectrum Φ u . Based on the above expression, the optimal experiment design can be formulated as the problem of determining the power spectrum Φ u of the second experiment which guarantees that P -1 ρ (θ 0 , Φ u ) + P -1 ρ,init ≥ R adm with the smallest cost J (θ 0 , Φ u ). Like all other optimal experiment design problems, the above optimization problem unfortunately depends on the unknown true parameter vector. As mentioned in the introduction, we will here robustify this optimal experiment design problem using U init . The robustified optimal experiment design problem is therefore: min

Φu, γ γ (9) 
such that J (θ, Φ u ) ≤ γ ∀ θ ∈ U init [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF] and

P -1 ρ (θ, Φ u ) + P -1 ρ,init ≥ R adm ∀ θ ∈ U init (11)
If we denote by Φ orig u,opt and γ orig opt the solution of this optimization problem, we have that γ orig opt = sup θ∈Uinit J (θ, Φ orig u,opt ). Moreover, the spectrum Φ orig u,opt is, by construction, the spectrum Φ u leading to the smallest value of sup θ∈Uinit J (θ, Φ u ) while guaranteeing the robustified accuracy constraint [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF]. Since we assume that θ 0 ∈ U init , this robustified formulation ensures 1) that the a-priori unknown cost J (θ 0 , Φ orig u,opt ) is smaller than γ orig opt and 2) that P ρ (θ 0 , Φ orig u,opt ) is guaranteed to satisfy P -1 ρ (θ 0 , Φ orig u,opt ) + P -1 ρ,init ≥ R adm . The above optimization problem will be a convex optimization problem if [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF] and ( 11) can be transformed into two constraints that are linear in the decision variables Φ u and γ. In the sequel, we will show that, as very often in robustness analysis theory, we cannot find tractable linear constraints that are equivalent to [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF] and ( 11), but we can find one that implies [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF] and another one that implies [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF]. This entails a certain conservatism. However, if we solve the optimization problem with these alternative constraints and if we denote its solution by γ opt and Φ u,opt , we still have the guarantee that (1)

P -1 ρ (θ, Φ u,opt ) + P -1 ρ,init ≥ R adm ∀ θ ∈ U init and thus P -1 ρ (θ 0 , Φ u,opt ) + P -1 ρ,init ≥ R adm (2) J (θ 0 , Φ u,opt ) ≤ sup θ∈Uinit J (θ, Φ u,opt ) ≤ γ opt .
In addition, we have also that γ opt is an upper bound for γ orig opt , the solution of the original optimization problem ( 9)- [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF].

We will derive the tractable alternative constraints discussed in the previous paragraph in the case of a commonly used parametrization of the to-be-determined spectrum Φ u [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF]. This spectrum parametrization corresponds to the spectrum of a multisine signal at fixed frequencies ω m (m = 1, ..., L) but with arbitrary amplitudes1 :

Φ u (ω) = π L m=1 c m (δ(ω -ω m ) + δ(ω + ω m )) ≥ 0 ∀ω (12)
The positivity of Φ u (ω) for all ω can be imposed by the constraints c m ≥ 0 (m = 1, . . . , L). Using [START_REF] Kumar | Robust plant friendly optimal input design[END_REF], the constraint (10) can be rewritten successively as follows: [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF] with G(θ) = (G(e jω1 , θ), G(e jω2 , θ), ..., G(e jω L , θ)) T and C = diag(c 1 , c 2 , ..., c L ). Using (3) and ( 12), the term P -1 ρ (θ, Φ u ) in [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF] can also be rewritten as follows:

L m=1 c m 1 + β |G(e jωm , θ)| 2 ≤ γ ∀ θ ∈ U init (13) L m=1 c m + β G * (θ) C G(θ) ≤ γ ∀ θ ∈ U init
P -1 ρ (θ, Φu) = N 2 σ 2 e L m=1 cm
Fu(e jωm , θ)F * u (e jωm , θ) + Fu(e -jωm , θ)F * u (e -jωm , θ)

P -1 ρ (θ, Φu) = N 2 σ 2 e k G i=1 k G j=1 (ei ⊗ Fi(θ)) * C(ej ⊗ Fj(θ)) + (ei ⊗ Fj(θ)) * C(ej ⊗ Fi(θ)) (15) 
where e i (i = 1, ..., k G ) is a unit vector of dimension 1 × k G whose entries are all zero except the i th entry which is equal to 1 and where F i (θ) (i = 1, ..., k G ) is a complex vector of dimension L × 1 defined as:

Fi(θ) = (Fu,i(e jω 1 , θ), Fu,i(e jω 2 , θ), ..., Fu,i(e jω L , θ)) T [START_REF] Pronzato | Robust experiment design via optimization[END_REF] with F u,i (z, θ) the i th entry of the vector F u (z, θ).

Remark. In [START_REF] Morelli | Optimal Experiment Design for the Identification of One Module in the Interconnection of Locally Controlled Systems[END_REF], the actual value of the variance σ 2 e of the white noise e (see [START_REF] Abrashov | Simple and Robust Experiment Design for System Identification Using Fractional Models[END_REF]) is generally unknown. However, we can also robustify the optimal experiment design problem against this uncertainty. For this purpose, we can replace σ 2 e in (15) by σ 2 e,max where σ 2 e,max is the maximal value of the η%-confidence interval [σ 2 e,min , σ 2 e,max ] for σ 2 e that can be constructed using the initial identification experiment (the one yielding θinit ) [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF].

In the next two sections, we will derive, using robustness analysis tools, tractable alternatives for both [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF] and [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF] when the parametrization ( 12) is used for Φ u . These tractable alternatives will be under the form of Linear Matrix Inequality (LMI) constraints [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF] that are linear in γ and in the spectrum coefficients c m (m = 1, . . . , L).

4 Tackling the robustified cost constraint using robustness analysis tools 4.1 Introduction

We will start by deriving a tractable alternative for ( 13)-( 14). The constraints ( 13)-( 14) are indeed equivalent to [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF] when the parametrization ( 12) is used for Φ u . In the paper [START_REF] Morelli | Optimal Experiment Design for the Identification of One Module in the Interconnection of Locally Controlled Systems[END_REF], we have proposed the following tractable alternative for ( 13)-( 14):

L m=0 c m (1 + β α G (ω m )) ≤ γ (17) 
with α G (ω m ) = sup θ∈Uinit |G(e jωm , θ)| 2 (a computable quantity for each ω m [START_REF] Bombois | Robustness analysis tools for an uncertainty set obtained by prediction error identification[END_REF]). It is clear that [START_REF] Rojas | On the equivalence of least costly and traditional experiment design for control[END_REF] implies [START_REF] Ljung | System Identification: Theory for the User, 2nd Edition[END_REF] and that it is linear in γ and in c m (m = 1, . . . , L). However, the constraint ( 17) is rather conservative since α G (ω m ) = sup θ∈Uinit |G(e jωm , θ)| 2 can be obtained for different θ at different frequencies ω m (m = 1, . . . , L). In this paper, we propose an alternative approach which, as will be shown in the example section, will generally be less conservative since it will explicitly take into account the dependency on θ of the frequency response elements G(e jωm , θ) in G(θ) (see ( 14)).

Linear Fractional Transformation

An important step towards the developments of this result is to rewrite G(θ) in the Linear Fractional Transformation (LFT) framework [START_REF] Zhou | Essentials of Robust Control[END_REF]. For this purpose, let us first observe that, due to Assumption 1, y(t) = G(z, θ)u(t) can be written as the following LFT in θ involving the internal scalar signal q and the internal vector of signals p: p = θ q and q y = -Z D (z) 1

Z N (z) 0 M G (z) p u (18) 
Recall now that the Fourier transform y(e jω ) of y(t) = G(z, θ)u(t) is equal to G(e jω , θ) when u(t) is equal to a pulse signal δ(t) (i.e. u(e jω ) = 1). Consequently, the frequency response G(e jω , θ) of G(z, θ) at one given frequency ω can also be deduced by solving for y(e jω ) in the following system of equations:

p(e jω ) = θ q(e jω ) and q(e jω ) y(e jω ) = M G (e jω ) p(e jω ) 1 [START_REF] Rojas | Robust optimal experiment design for system identification[END_REF] Note that, in this system of equations, all Fourier transforms are well defined for all θ ∈ U init due to Assumption 2.

Using the same reasoning, the vector G(θ), containing the frequency response of G(z, θ) at the frequencies present in the spectrum [START_REF] Kumar | Robust plant friendly optimal input design[END_REF], can be determined by solving for ȳ in the system of equations ( 20) derived using [START_REF] Rojas | Robust optimal experiment design for system identification[END_REF]:

p = (I L ⊗ θ) q q ȳ = M11,G M12,G M21,G M22,G MG p 1 ( 20 
)
with p = (p T (e jω1 ), ..., p T (e jω L )) T , q = (q(e jω1 ), ... ...., q(e jω L )) T Remark. It is important to note that the relation between p and q in (20) is in I L ⊗ θ = bdiag(θ, ..., θ) i.e. a repetition of the same θ. This is due to the dependency on θ of the frequency response elements G(e jωm , θ) in G(θ). The approach in [START_REF] Morelli | Optimal Experiment Design for the Identification of One Module in the Interconnection of Locally Controlled Systems[END_REF] (see Section 4.1) would in fact correspond to a relation between p and q of the form diag(θ(ω 1 ), θ(ω 2 ), ..., θ(ω L )) where θ(ω m ) ∈ U init for all ω m (m = 1, ..., L), but can be different for each frequency ω m (m = 1, ..., L). Indeed α G (ω m ) can be rewritten as sup θ(ωm)∈Uinit |G(e jωm , θ(ω m ))|2 (m = 1, ..., L).

Set of multipliers related to the uncertainty set U init

Since we consider here ( 14), the parameter vector θ in the LFT for G(θ) is restricted to be in the uncertainty set U init (see [START_REF] Bombois | Least costly identification experiment for control[END_REF]). In our approach, a necessary ingredient to find a tractable alternative for ( 14) is to associate, with the set U init , a so-called set of multipliers. In a nutshell, the set of multipliers A n that we will consider in this paper is an explicit and affine parametrization of the quadratic constraint satisfied by the graphs of the signals q n and p n when p n (t) = (I n ⊗ θ)q n (t) with θ ∈ U init (n is an arbitrary integer such that n ≥ 1) [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF][START_REF] Goh | Robust analysis, sectors and quadratic functionals[END_REF][START_REF] Megretski | System analysis via integral quadratic constraints[END_REF]. Definition 1 Consider the set U init defined in (5) satisfying Assumption 2 and an arbitrary integer n ≥ 1. For each value of n, we define the set of multipliers A n as a set of affinely parametrized Hermitian matrices A n (of dimension n(k + 1) × n(k + 1)) that all have the following property:

  In In ⊗ θ   T An   In In ⊗ θ   ≥ 0 ∀θ ∈ Uinit (21) 
In other words, A n ∈ A n =⇒ [START_REF] Zhou | Essentials of Robust Control[END_REF].

It is important to stress that the more extensive the parametrization of the set of multipliers, the smaller the conservatism discussed in Section 3 will be [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF][START_REF] Goh | Robust analysis, sectors and quadratic functionals[END_REF][START_REF] Megretski | System analysis via integral quadratic constraints[END_REF]. The set of multipliers A n corresponding to U init can be easily derived 2 from our previous contribution (see Proposition 2 of [START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF]).

In [START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF], the set of multipliers A n is in fact developed for an uncertainty set of the form U init = δθ | δθ T P -1 δθ ≤ χ . As shown in these papers, the use of this set of multipliers therefore entails the straightforward transformation of the LFT (18) (i.e. an LFT in θ) into an LFT in δθ = θ -θinit . Another option is to adapt the multipliers of [START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF] to an uncertainty set U init that is not centered at zero.

Remark.

It is also to be noted that the set of multipliers in Definition 1 can also be derived for uncertainty sets U init that are not ellipsoidal. In other words, the approach presented in this paper is valid for all uncertainty sets U init for which the sets of multipliers A n of Definition 1 can be constructed.

Robustified cost contraint

Taking a set of multipliers A n with n equal to the number of frequencies in the to-be-determined spectrum (i.e., n = L) and considering the LFT representation [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF] of G(θ), we have now all the ingredients to derive a tractable alternative constraint for [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF].

Proposition 1 Consider an initial uncertainty set U init (see ( 5)) satisfying Assumption 2 and the robust cost constraint [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF] obtained when the spectrum Φ u is parametrized as in [START_REF] Kumar | Robust plant friendly optimal input design[END_REF]. Consider the LFT representation [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF] for G(θ) as well as the set of multipliers A L associated with U init (see Definition 1 with n = L). Then, the constraint ( 14) holds for a given γ if we can find a matrix A L ∈ A L such that

V * A L V + L * C L ≤   0 0 0 γ- L m=1 cm β   ( 22 
)
where L = M21,G M22,G and

V =   M11,G M12,G I kL 0  
We observe that the matrix inequality (22) is linear in γ, A L and in the coefficients c m (m = 1, ..., L) present in C.

Proof. Let us consider [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF] for a given θ ∈ U init and let us consider the corresponding signals p, q and ȳ = G(θ). Let us then pre-and post-multiply the LMI constraint ( 22) with (p * , 1) and (p T , 1) T , respectively. Using [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF] and ȳ = G(θ), this yields:

q p * A L q p + G * (θ) CG(θ) ≤ γ - L m=1 c m β ( 23 
)
Since p = (I L ⊗ θ)q, we can rewrite (23) as follows:

q *   IL IL ⊗ θ   T AL   IL IL ⊗ θ   q+G * (θ) CG(θ) ≤ γ -L m=1 cm β (24) 
The above reasoning can be done for any value of θ ∈ U init . In other words, for the matrix A L ∈ A L found by the optimization problem, (24) holds true for all θ ∈ U init . Consequently, using Definition 1 with n = L, we have therefore also that

G * (θ) CG(θ) ≤ γ- L m=1 cm β
for each θ ∈ U init ; which is the desired result.

In Proposition 1 (but also later in this paper), when we speak of finding a matrix A L ∈ A L , we more precisely mean finding the free parameters in the affine structure of the matrix A L .

Robustified accuracy constraint

Taking inspiration from what has been done for the robustified cost constraint, we will now derive a tractable alternative for the accuracy constraint [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF] when the parametrization ( 12) is used for Φ u . Recall the expression [START_REF] Morelli | Optimal Experiment Design for the Identification of One Module in the Interconnection of Locally Controlled Systems[END_REF] for P -1 ρ (θ, Φ u ) and let us observe that F u (z, θ) (see ( 4)) is a rational function of θ due to Assumption 1. Consequently, we can find signals p F and q F such that s(t) = F u (z, θ)u(t) can be expressed as:

p F = (I f ⊗ θ) q F q F s = M 11,F M 12,F M 21,F M 22,F M F (z) p F u ( 25 
)
where f = 3 as shown in Appendix A. Note that f = 2 in the case where H(z, θ) = 1 (OE model structure).

Using a similar reasoning as in Section 4.2, we can derive from (25) an LFT expression for si = F i (θ) (i = 1, ..., k G ) defined in [START_REF] Pronzato | Robust experiment design via optimization[END_REF] 

M21,F = (H T 1 , ..., H T k G ) T M22,F = (K T 1 , ..., K T k G ) T H i = bdiag(M i:
21,F (e jω1 ), ..., M i:

21,F (e jω L )) (i = 1, ..., k G ) K i = (M i 22,F (e jω1 ), ..., M i 22,F (e jω L )) T (i = 1, ..., k G )
where M i: 21,F (resp. M i 22,F ) denotes the i th line of M 21,F (resp. the i th entry of M 22,F ). Note that, in this system of equations, all elements are well defined for all θ ∈ U init due to Assumption 2.

We have then the following result that gives a tractable alternative for the robustified accuracy constraint [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF].

Proposition 2 Consider an initial uncertainty set U init (see ( 5)) satisfying Assumption 2 and the robustified accuracy constraint [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF] when the spectrum Φ u is parametrized as in [START_REF] Kumar | Robust plant friendly optimal input design[END_REF] and where, for this reason, P -1 ρ (θ, Φ u ) has the expression given in [START_REF] Morelli | Optimal Experiment Design for the Identification of One Module in the Interconnection of Locally Controlled Systems[END_REF]. Consider the LFT (26) in I f L ⊗ θ which is the LFT representation for s = (F 1 (θ) T , F 2 (θ) T , ..., F k G (θ) T ) T and consider the set of multipliers A k G f L associated with U init (see Definition 1 with n = k G f L). Then, the constraint [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF] holds for a given R adm and a given P ρ,init if we can find a matrix

A k G f L ∈ A k G f L such that 3 N 2 σ 2 e k G i=1 k G j=1 (ei ⊗ Xi) * C(ej ⊗ Xj) + (ei ⊗ Xj) * C(ej ⊗ Xi) +   (P -1 ρ,init -R adm ) ⊗   0 0 0 1     -M * A k G f L M ≥ 0 ( 27 
)
where

X i = H i K i (i = 1, ...k G ) and M =   I k G ⊗ M11,F M12,F I k G ⊗ I kf L 0  
We observe that the matrix inequality

(27) is linear in A k G f L and in the coefficients c m (m = 1, ..., L) present in C.
Proof. Let us consider (26) for a given θ ∈ U init and let us consider the corresponding signals pF , qF and s = (F 1 (θ) T , F 2 (θ) T , ..., F k G (θ) T ) T . Let us then pre-and post-multiply the LMI constraint ( 27) with (I k G ⊗ (p T F , 1) T ) * and I k G ⊗ (p T F , 1) T , respectively. Using (26), [START_REF] Morelli | Optimal Experiment Design for the Identification of One Module in the Interconnection of Locally Controlled Systems[END_REF] and the lemma in Appendix B , this yields:

P -1 ρ (θ, Φu) + P -1 ρ,init -R adm -X(θ) ≥ 0 ( 28 
)
where P -1 ρ (θ, Φ u ) is given by ( 15) and X(θ) is a matrix given by

X(θ) =   I k G ⊗ qF I k G ⊗ pF   * A k G f L   I k G ⊗ qF I k G ⊗ pF  
Since pF = (I f L ⊗ θ) qF , X(θ) can be rewritten as:

X(θ) = (I k G ⊗ qF ) * Y (θ) (I k G ⊗ qF ) Y (θ) =   I k G f L I k G f L ⊗ θ   T A k G f L   I k G f L I k G f L ⊗ θ  
The above reasoning can be done for any value of θ ∈ U init . In other words, for the matrix

A k G f L ∈ A k G f L
found by the optimization problem, (28) holds true for all θ ∈ U init . Using Definition 1 with n = k G f L and the Lemma in Appendix B, note also that:

X(θ) ≥ 0 ∀θ ∈ U init
Consequently, we have that P -1 ρ (θ, Φ u )+P -1 ρ,init ≥ R adm for each θ ∈ U init ; which is the desired result.

6 Convex formulation of the optimal experiment design problem Using Propositions 1 and 2, we can now straightforwardly derive a convex formulation for the robust optimal experiment design problem ( 9)- [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF]. This formulation will be under the form of a LMI optimization problem [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF].

LMI formulation Consider the parametrization [START_REF] Kumar | Robust plant friendly optimal input design[END_REF] for the to-be-designed spectrum Φ u . The LMI optimization problem has as decision variables a scalar γ > 0, Definition 1) and consists in determining the smallest value of γ for which the LMI constraints ( 22) and (27) hold.

coefficients c m ≥ 0 (m = 1, ..., L), a matrix A L ∈ A L and a matrix A k G f L ∈ A k G f L (see
As mentioned in Section 3, if we denote the solution of the above LMI optimization problem by γ opt and Φ u,opt , γ opt is an upper bound for the solution γ orig opt of the original robustified optimization problem (9)- [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF] i.e. the minimal value of the cost that is required to guarantee the robust accuracy constraint [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF]. Moreover, γ opt is an upper bound for sup θ∈Uinit J (θ, Φ u,opt ) and, since we assume θ 0 ∈ U init , we have the guarantees 1) that P -1 ρ (θ 0 , Φ u,opt ) + P -1 ρ,init ≥ R adm and 2) that J (θ 0 , Φ u,opt ) ≤ γ opt .

Remark. In this paper, we have considered the least costly optimal experiment framework and we have supposed that the desired accuracy is represented by a given matrix R adm . As mentioned in the introduction, the results of this paper can also be used for other optimal experiment design frameworks. For example, let us consider the classical E-optimality framework that, when robustified, consists in:

max Φu, ε ε such that 1 2π π -π Φ u (ω) dω ≤ γ and P -1 ρ (θ, Φ u ) + P -1 ρ,init ≥ εI k G ∀ θ ∈ U init ( 29 
)
where ε is a scalar decision variable and γ is a given bound on the power of the input signal. It is clear that (29) can be tackled with the tools of Section 5. Note that, here, R adm = εI k G is not fixed, but a decision variable. This however does not pose a problem since the constraint ( 27) is also linear in R adm .

Numerical illustration

In this section we present simulation results in order to show the effectiveness of our approach. We consider the following system y(t) = G 0 (z)u(t) + e(t) with G 0 (z) = 1 z -1 1-0.7 z -1 and e(t) a white noise having variance σ 2 e = 1. The true parameter vector θ 0 is thus θ 0 = ρ 0 = (1, -0.7)

T . An initial estimate θinit of θ 0 and its covariance matrix P θ,init have been obtained using an experiment of duration N = 1000 with a white noise input signal of variance 0.1: θinit = (0.904, -0.7161)

T . This allows to build the initial uncertainty U init (see [START_REF] Bombois | Least costly identification experiment for control[END_REF]) that is a confidence region for θ 0 with probability level η = 95% (χ = 5.99). This initial estimate does not satisfy the desired accuracy which is here that the standard deviation of the two parameters is smaller than two percents of their exact value. Based on this requirement, R adm is chosen as the inverse of the following diagonal matrix diag((0.02) 2 , (0.014) 2 ) (see e.g., [START_REF] Ghosh | Optimal identification experiment design for LPV systems using the local approach[END_REF]).

We use the LMI formulation of Section 6 to determine the spectrum Φ u of a second identification experiment of duration N = 1000 that will minimize a robustified version of the cost [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF] under the robust accuracy constraint [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF]. Note that we here choose β = 1 in the expression of the cost [START_REF] Ghosh | Optimal identification experiment design for LPV systems using the local approach[END_REF]. In [START_REF] Kumar | Robust plant friendly optimal input design[END_REF], we choose L = 9 with ω m (m = 1, ..., 9) covering the interval [0. 1 3]. With these settings, the LMI optimization problem of Section 6 yields γ opt = 5.4948 and an optimal multisine of spectrum Φ u,opt for which all the amplitudes are negligible except the ones at ω = 0.5 and ω = 1. By construction, we know that, if an excitation signal of spectrum Φ u,opt is used in the second identification experiment, the obtained accuracy will be satisfactory (i.e. P -1 ρ (θ 0 , Φ u,opt ) + P -1 ρ,init ≥ R adm ) and the cost J (θ 0 , Φ u,opt ) of this second identification experiment will be such that J (θ 0 , Φ u,opt ) ≤ γ opt = 5.4948. The value γ opt is indeed an upper bound for sup θ∈Uinit J (θ, Φ u,opt ) as discussed in Section 3 and thus also an upper bound for the a-priori unknown cost J (θ 0 , Φ u,opt ) which is here equal to 4.7.

In order to check the conservatism linked to the proposed LMI formulation, we will compare the above result with the one that is obtained using the gridding approach for robust optimal experiment design. This approach considers the following optimization problem: min Φu,g, γg

γ g such that J (θ i , Φ u,g ) ≤ γ g ∀ θ i ∈ Θ n and P -1 ρ (θ i , Φ u,g ) + P -1 ρ,init ≥ R adm ∀ θ i ∈ Θ n where Θ n is a set containing n grid points θ i (i = 1, ..., n) such that θ i ∈ U init .
We have solved the above optimization problem for n = 25 using the same spectrum parametrization as above (same number L of frequencies and same frequencies ω m ) and we have obtained γ g,opt = 5.4866 and a spectrum Φ u,g,opt which has also contributions at two frequencies ω = 0.5 and ω = 1, but with (slightly) different amplitudes.

As mentioned in Sections 3 and 6, γ opt (obtained with the approach proposed in this paper) is an upper bound for the solution γ orig opt of the original robustified optimization problem ( 9)- [START_REF] Kumar | Optimal input signal design for plant friendly identification of process systems[END_REF]. It is also clear that the value γ g,opt obtained with the gridding approach is a lower bound for the same quantity. We thus observe that, in this example, the upper bound γ opt = 5.4948 is almost equal to the lower bound γ g,opt = 5.4866. The conservatism is thus very limited in this example. It is also important to note that, unlike the gridding approach, the approach proposed in this paper gives the guarantee that, with Φ u,opt , the robustified accuracy constraint (11) will be respected and also gives a guaranteed upper bound (i.e., γ opt ) on both sup θ∈Uinit J (θ, Φ u,opt ) and the actual cost J (θ 0 , Φ u,opt ) of the second experiment.

To verify this property, we have generated 1000 grid points θ i in U init and we have computed J (θ i , Φ u,opt ) and P -1 ρ (θ i , Φ u,opt ) for these 1000 grid points. For all these grid points, we have indeed observed that P -1 ρ (θ i , Φ u,opt ) + P -1 ρ,init ≥ R adm . We have also observed that the smallest eigenvalue of P -1 ρ (θ i , Φ u,opt ) + P -1 ρ,init -R adm is, for one of these grid points θ i , equal to 0.0004 (and thus very close to zero) and that the cost J (θ i , Φ u,opt ) is equal to 5.4948 for one of these grid points. This once again confirms that the conservatism of our approach is very limited in this example. Let us now compute, for these 1000 grid points, P -1 ρ (θ i , Φ u,g,opt ) with the spectrum Φ u,g,opt obtained with the gridding approach. Here, 82 of the θ i led to a matrix P -1 ρ (θ i , Φ u,g,opt ) for which P -1 ρ (θ i , Φ u,g,opt ) + P -1 ρ,init ≥ R adm is not satisfied. This shows the clear advantage of the approach of this paper upon the gridding approach.

Finally, let us illustrate the discussion in Section 4.1. For this purpose, we will compare the upper bound for sup θ∈Uinit J (θ, Φ u ) given by the lefthand side of ( 17) and the one corresponding to the LMI formulation proposed in this paper. We will do that for Φ u,opt . We know that the upper bound for sup θ∈Uinit J (θ, Φ u,opt ) obtained using the tools proposed in this paper is γ opt = 5.4948. Let us now compute the upper bound

γ α = L m=1 c m,opt (1 + α G (ω m ))
for sup θ∈Uinit J (θ, Φ u,opt ) (see [START_REF] Rojas | On the equivalence of least costly and traditional experiment design for control[END_REF]). This yields γ α = 5.7408, which shows that the approach discussed in Section 4.1 is more conservative.

Conclusion

In this paper, we have presented a convex relaxation that allows to robustify the least costly optimal experiment design problem using an initial uncertainty set for the unknown true parameter vector θ 0 . This robustification is obtained using tools from robustness analysis. In this paper, we have restricted attention to multisine excitation signals. In the future, we will investigate whether the least costly optimal experiment design problem can also be robustified when the to-be-determined excitation spectrum is the one of a filtered white noise. This spectrum parametrization is indeed also a commonly used parametrization in optimal experiment design [START_REF] Jansson | Input design via LMIs admitting frequency-wise model specifications in confidence regions[END_REF]. We will also investigate how the results presented in this paper can be extended to tackle the robustification of more complex accuracy constraints (such as the ones presented in [START_REF] Bombois | Least costly identification experiment for control[END_REF]).

A LFT representation of F u (z, θ)

The classical BJ paramatetrization is as follows: Moreover, we have also that s(t) = F u (z, θ)u(t) is given by:

G(z, θ) = z -n k b 0 + b 1 z -1 + ... + b n b z -n b 1 + f 1 z -1 + ... + f n f z -n f
s(t) =             s 1 (t) ... s n b +1 s n b +2 ... s k G (t)             =             z -n k 1+Z D (z)θ ... z -(n k +n b ) 1+Z D (z)θ -z -1 Z N (z)θ (1+Z D (z)θ) 2
... 

    p 1 p 2 p 3     =p F = (I 3 ⊗ θ)     q 1 q 2 q 3     =q F             q 1 q 2 q 3 s 1 ... s k G             =             -Z N,H 0 0 1 Z ∆ -Z D 0 1 0 -Z N -Z D 0 z -n k Z ∆ -z -n k Z D 0 z -n k ... ... .... .... 0 -z -n f Z N -z -n f Z D 0             M F (z)        p 1 p 2 p 3 u       
with Z ∆ (z) = Z D,H (z) -Z N,H (z). When H(z, θ) = 1, the above LFT can be simplified and f = 2.

B Useful lemma for the proof of Proposition 2

Lemma 1 Consider an Hermitian matrix A = A * of dimension n × n and a (complex) matrix B of dimension n × ñ. Then, we have that

A ≥ 0 =⇒ B * AB ≥ 0
Proof. B * AB ≥ 0 is equivalent to the fact that, for all complex vector x of dimension ñ,

x * B * ABx ≥ 0 Denoting y the complex vector Bx of dimension n, the latter matrix inequality is equivalent to: y * Ay ≥ 0 which always holds since A ≥ 0.

  and M11,G = -bdiag(Z D (e jω1 ), ..., Z D (e jω L )) M12,G = (1, ..., 1) T M21,G = bdiag(Z N (e jω1 ), ..., Z N (e jω L )) M22,G = 0

  . If we denote by s = (s T 1 , sT 2 , ..., sT k G ) T , we have indeed pF = (I f L ⊗ θ) = bdiag(M 11,F (e jω1 ), ..., M 11,F (e jω L )) M12,F = (M 12,F (e jω1 ), ..., M 12,F (e jω L )) T

H(z, θ) = 1 +

 1 c 1 z -1 + ... + c nc z -nc 1 + d 1 z -1 + ... + d n d z -n d with θ = (ρ T , ζ T ) T ∈ R k with ρ = (b 0 , ..., b n b , f 1 , ..., f n f ) T and ζ = (c 1 , ..., c nc , d 1 , ..., d n d ) T (k G = n b + n f + 1,

Fig. A. 1 .

 1 Fig. A.1. Representation of the vector Fu(z, θ) given in (A.1)k H = n c + n d , k = k G + k H ). This parametrization satisfies Assumption 1. As an example, if n k = n f = n c = n d = 1 and n b = 0 (i.e., θ = (b 0 , f 1 , c 1 , d 1 ) T ), we have Z N (z) = (z -1 0 0 0), Z D (z) = (0 z -1 0 0), Z N,H(z) = (0 0 z -1 0) and Z D,H (z) = (0 0 0 z -1 ). Moreover, we have also that s(t) = F u (z, θ)u(t) is given by:

1 +

 1 -z -n f Z N (z)θ (1+Z D (z)θ) Z D,H (z)θ 1 + Z N,H (z)θ u(t) (A.1) which is a rational function in θ. This rational function can be expressed as in (25) with f = 3 (see Figure A.1):

The amplitude Am of the sinusoid at ωm is given by Am = √

2cm (m = 1, ..., L)

Note that, in[START_REF] Barenthin | Identification for control of multivariable systems: controller validation and experiment design via LMIs[END_REF], the notations A (resp. ñ) are used instead of An (resp. n).

The matrix made of zeros and a one in the second line of (27) has dimension (f Lk + 1) × (f Lk + 1) .