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Abstract

In least costly experiment design, the optimal spectrum of an identification experiment is determined in such a way that
the cost of the experiment is minimized under some accuracy constraint on the identified parameter vector. Like all optimal
experiment design problems, this optimization problem depends on the unknown true system, which is generally replaced by
an initial estimate. One important consequence of this is that we can underestimate the actual cost of the experiment and
that the accuracy of the identified model can be lower than desired. Here, based on an a-priori uncertainty set for the true
system, we propose a convex optimization approach that allows to prevent these issues from happening. We do this when the
to-be-determined spectrum is the one of a multisine signal.
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1 Introduction

We consider in this paper the problem of optimally de-
signing the spectrum Φu of the excitation signal u of an
open-loop identification experiment. By optimal spec-
trum, we here mean the spectrum yielding the smallest
experiment cost while guaranteeing that the accuracy
of the identified parameter vector of the plant transfer
function is larger than a given threshold. We thus con-
sider the least costly experiment design framework [5],
but the approach can easily be adapted to other (dual)
frameworks [10,17,13]. The experiment cost J can be
defined as a linear combination of the power of the exci-
tation signal u and of the power of the part of the output
signal induced by u. The experiment cost will therefore
be a function of the spectrum Φu, but also of the un-
known true parameter vector θ0 (we therefore denote the
cost asJ (θ0,Φu)). Likewise, the accuracy constraint will
also depend on θ0 and on Φu since the classical accuracy
constraints are of the type P−1(θ0,Φu) ≥ Radm where
P (θ0,Φu) is the covariance matrix of the to-be-identified
parameter vector (which depends on θ0 and Φu) and
Radm a matrix reflecting the desired accuracy. The de-
pendency of the optimal spectrum Φu,opt on the un-
known true parameter vector θ0 is the so-called chicken-
and-egg issue encountered in optimal experiment design.
This issue is generally circumvented by replacing θ0 by

an initial estimate θ̂init of θ0 since, in this case, the opti-
mal experiment design problem boils down to a convex
optimization problem (see e.g. [10,5]). However, this ap-
proach has the drawback that the optimal spectrum is
not guaranteed to yield the desired accuracy and that

the experiment cost computed with θ̂init and Φu,opt can
underestimate the actual experiment cost. These obser-
vations are at the root of the research area on robust
optimal experiment design (see [19] for a good survey).

In robust experiment design, different lines of research
have been considered. In [18], a spectrum that yields
good accuracy for a very broad set of systems (also of
different orders) is discussed. However, in the engineer-
ing literature, the most widely used approach is the one
that consists in considering an uncertainty set U con-
taining the unknown true parameter vector θ0 (the so-
called min-max design [19,16]). The optimal experiment
design problem can then be formulated as determining
the spectrum Φu minimizing the value of a scalar γ un-
der the constraints that J (θ,Φu) ≤ γ ∀θ ∈ U and that
P−1(θ,Φu) ≥ Radm ∀θ ∈ U . If we denote by γopt and
Φu,opt the solution of this optimization problem, we have
the guarantee that P−1(θ0,Φu,opt) ≥ Radm and that
γopt is an upper bound for the actual experiment cost
J (θ0,Φu,opt). However, finding a tractable approach to
deal with such a robustified optimal experiment design
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problem is still an open research question. While this
optimization problem can be exactly solved in very par-
ticular and simple situations (see e.g. [19,1]), the gen-
eral approach when facing more complex systems is to
replace the initial uncertainty set (containing an infinite
number of elements) by a number n of grid points of this
uncertainty set U (see e.g. [10,5,19]). Consequently, the
cost constraint and the accuracy constraint over the set
U in the robustified optimal experiment design problem
are replaced each by n constraints (one for each grid
point). Even though it is obviously better from a ro-
bustification point-of-view than just replacing θ0 by one

grid point i.e. θ̂init, this relaxation of the original robus-
tified optimal experiment design problem cannot yield
the guarantees linked to the original problem and it can
become computationally heavy for large values of n.

In [12,7,11], approaches are presented to uniquely
tackle the robustified cost constraint J (θ,Φu) ≤ γ
∀θ ∈ U (i.e. in the accuracy constraint, θ0 is replaced

by θ̂init). However, these approaches all entail some
approximation: a first-order approximation in [7], a
second-order approximation in [12] and an approxima-
tion based on the unscented transform in [11].

Our main contribution in this paper is to present an
approach in order to tackle the robust optimal experi-
ment design problem without approximation. For this
purpose, we observe that, except for its dependence
on the to-be-determined spectrum, the robustified cost
constraint and the robustified accuracy constraint are
similar to constraints that are treated in robustness
analysis. Based on this observation and on the separa-
tion of graph framework [20,9,14], we derive constraints
that are linear in the decision variables of the optimal
experiment design problem and that imply the origi-
nal robustified cost and accuracy constraints. We do
that for one of the most commonly used parametriza-
tion of the to-be-determined spectrum Φu i.e. the one
corresponding to a multsine [10]. We however restrict
attention to Box-Jenkins (BJ) model structures and
to accuracy constraints on the parameters of the plant
transfer functions (we can indeed not robustify the noise
part of the covariance matrix using the tools presented
in this paper).

Notations. The matrix
X1 0 0

0
. . . 0

0 0 XN


will be denoted diag(X1, ..., XN ) if the elementsXi (i =
1, ..., N) are scalar quantities while it will be denoted
bdiag(X1, ..., XN ) if the elements Xi (i = 1, ..., N) are
matrices. In addition, the Fourier transform of a signal
x(t) is denoted x(ejω), In represents the identity matrix
of dimension n and ⊗, the Kronecker product. Finally, 0
represents a vector or a matrix containing only zeros and
A∗ is the conjugate transpose of the complex matrix A.

2 Identification

We consider a single-input single-output true system
with input u and output y:

y(t) = G0(z)u(t) +H0(z)e(t)︸ ︷︷ ︸
=v(t)

(1)

where v(t) = H0(z)e(t) is the disturbance acting on the
system. In (1), e(t) is a white noise with variance σ2

e
and G0(z) and H0(z) are stable transfer functions. In
addition, H0(z) is also assumed to be inversely stable
and monic.

The true system (1) will be identified in a BJ
model structure i.e., {G(z, θ) = G(z, ρ), H(z, θ) =

H(z, ζ) | θ = (ρT , ζT )T ∈ Rk}. The orders of G(z, θ)
and H(z, θ) are chosen in such a way that there exists
θ0 = (ρT0 , ζ

T
0 )T such that G0(z) = G(z, θ0) = G(z, ρ0)

and H0(z) = H(z, θ0) = H(z, ζ0). We will denote by kG
(resp. kH) the dimension of ρ0 (resp. ζ0) and we have
thus k = kG + kH .

If we apply a sequence {u(t) | t = 1, ..., N} of spectrum
Φu to (1) and collect the corresponding output {y(t) | t =

1, ..., N}, an estimate θ̂N of θ0 can be deduced using
prediction error identification [13]:

θ̂N = arg minθ
1
N

N∑
t=1

ε2(t, θ)

ε(t, θ) = H−1(z, θ) (y(t)−G(z, θ)u(t))

(2)

The estimate θ̂N is (asymptotically) normally dis-
tributed around θ0 with a covariance matrix Pθ(θ0,Φu)
whose known expression is a function of θ0 and of the
input spectrum Φu used during the identification exper-
iment [13]. It is important to note that P−1

θ (θ0,Φu) is a

measure of the accuracy of θ̂N [10]. In general, we are
mainly interested in the accuracy of the part ρ̂N of the

vector θ̂N = (ρ̂TN , ζ̂
T
N )T (the part that defines the model

G(z, ρ̂N ) of G(z, ρ0)). The covariance matrix Pρ of ρ̂N
can be deduced from Pθ as follows:

Pρ = (IkG 0) Pθ (IkG 0)T ,

and its inverse has the following expression as a function
of Φu and θ0 [10,3]:

P−1
ρ (θ0,Φu) =

N

σ2
e

1

2π

∫ π

−π
Fu(ejω, θ0)F ∗u (ejω, θ0)Φu(ω) dω

(3)
with

Fu(z, θ) = H−1(z, ζ)
∂G(z, ρ)

∂ρ
(4)

In the sequel, we will suppose that an initial iden-
tification experiment has delivered an initial estimate

θ̂init = (ρ̂Tinit, ζ̂
T
init)

T with covariance matrix Pθ,init.
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Consequently, the following ellipsoid Uinit is a η%-
confidence region for the unknown true parameter
vector θ0:

Uinit =
{
θ | (θ − θ̂init)TP−1

θ,init(θ − θ̂init) ≤ χ
}

(5)

with χ such that Pr(χ2(k) ≤ χ) = η (say 95 %). The
significance of this set is that, if the initial experiment

and the estimation of θ̂init is repeated, the true param-
eter θ0 will belong to Uinit in the fraction η of these es-
says. For this reason, Uinit can be used as a description
of the uncertainty of the initial estimate. From now on,
we will assume that θ0 indeed belongs to the ellipsoid

Uinit constructed based on the initial estimate θ̂init and
its covariance matrix Pθ,init.

We will suppose that the accuracy P−1
ρ,init of ρ̂init is

not sufficient for the purpose of the identified model
(Pρ,init = (IkG 0)Pθ,init(IkG 0)T ). In the sequel, we will
deem an estimate of ρ0 sufficiently accurate when the in-
verse of its covariance matrix satisfies P−1

ρ ≥ Radm for

a given positive-definite matrix Radm ∈ RkG×kG .
In order to obtain a sufficiently accurate estimate of

θ0, we need to perform a second experiment that yields

an estimate θ̂N = (ρ̂TN , ζ̂
T
N )T having the property that

the covariance matrix Pρ(θ0,Φu) of ρ̂TN is such that
P−1
ρ (θ0,Φu) ≥ Radm (Φu is the spectrum of the input

signal used during the second experiment). Note that
the initial and the second identification experiments can
also be combined [13] and the inverse P−1

ρ (θ0,Φu) of the
covariance matrix corresponding to the second experi-
ment must then satisfy: P−1

ρ (θ0,Φu) + P−1
ρ,init ≥ Radm.

For the sequel, it will be important to make the fol-
lowing assumptions:

Assumption 1 We restrict attention to parametriza-
tions G(z, θ) and H(z, θ) that are rational functions of
the parameter vector θ:

G(z, θ) =
ZN (z)θ

1 + ZD(z)θ
(6)

H(z, θ) =
1 + ZN,H(z)θ

1 + ZD,H(z)θ
(7)

where ZN (z), ZD(z), ZN,H(z) and ZD,H(z) are row vec-
tors of transfer functions.

Assumption 2 The uncertainty Uinit defined in (5)
is small enough to guarantee that, like G(z, θ0) and
H−1(z, θ0), G(z, θ) and H−1(z, θ) are stable transfer
functions for all θ ∈ Uinit. Due to (4), this also implies
that Fu(z, θ) is a vector of stable transfer functions for
all θ ∈ Uinit.

Note that the classical BJ parametrization used in pre-
diction error identification satisfy Assumption 1 (see Ap-
pendix A). Moreover, we can easily verify whether a
given Uinit satisfies the property mentioned in Assump-
tion 2 using the results in [4].

3 Optimal experiment design

As done in the least costly experiment design frame-
work [5], we will design the spectrum Φu of the exci-
tation signal u of the second experiment in such a way
that the accuracy constraint is met with the least per-
turbation on the system (i.e. with the least identification
cost). The perturbation on the system induced by u will
be here measured by a linear combination of the power of
the input signal and of the power of y̆(t) = G(z, θ0)u(t):

J (θ0,Φu) =
1

2π

∫ π

−π

(
1 + β |G(ejω, θ0)|2

)
Φu(ω) dω

(8)
where β is an user-chosen constant that weighs the two
terms in J . We observe that the cost J (θ0,Φu) is a func-
tion of the unknown θ0 and of the chosen spectrum Φu.
Based on the above expression, the optimal experiment
design can be formulated as the problem of determining
the power spectrum Φu of the second experiment which
guarantees that P−1

ρ (θ0,Φu) + P−1
ρ,init ≥ Radm with the

smallest cost J (θ0,Φu). Like all other optimal experi-
ment design problems, the above optimization problem
unfortunately depends on the unknown true parameter
vector. As mentioned in the introduction, we will here
robustify this optimal experiment design problem using
Uinit. The robustified optimal experiment design prob-
lem is therefore:

min
Φu, γ

γ (9)

such that J (θ,Φu) ≤ γ ∀ θ ∈ Uinit (10)

and P−1
ρ (θ,Φu) + P−1

ρ,init ≥ Radm ∀ θ ∈ Uinit (11)

If we denote by Φorigu,opt and γorigopt the solution of

this optimization problem, we have that γorigopt =

supθ∈Uinit
J (θ,Φorigu,opt). Moreover, the spectrum Φorigu,opt

is, by construction, the spectrum Φu leading to the
smallest value of supθ∈Uinit

J (θ,Φu) while guarantee-
ing the robustified accuracy constraint (11). Since we
assume that θ0 ∈ Uinit, this robustified formulation en-
sures 1) that the a-priori unknown cost J (θ0,Φ

orig
u,opt) is

smaller than γorigopt and 2) that Pρ(θ0,Φ
orig
u,opt) is guaran-

teed to satisfy P−1
ρ (θ0,Φ

orig
u,opt) + P−1

ρ,init ≥ Radm.
The above optimization problem will be a convex op-

timization problem if (10) and (11) can be transformed
into two constraints that are linear in the decision vari-
ables Φu and γ. In the sequel, we will show that, as
very often in robustness analysis theory, we cannot find
tractable linear constraints that are equivalent to (10)
and (11), but we can find one that implies (10) and an-
other one that implies (11). This entails a certain conser-
vatism. However, if we solve the optimization problem
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with these alternative constraints and if we denote its
solution by γopt and Φu,opt, we still have the guarantee
that
(1) P−1

ρ (θ,Φu,opt) + P−1
ρ,init ≥ Radm ∀ θ ∈ Uinit and

thus P−1
ρ (θ0,Φu,opt) + P−1

ρ,init ≥ Radm
(2) J (θ0,Φu,opt) ≤ supθ∈Uinit

J (θ,Φu,opt) ≤ γopt.
In addition, we have also that γopt is an upper bound

for γorigopt , the solution of the original optimization prob-
lem (9)-(11).

We will derive the tractable alternative constraints
discussed in the previous paragraph in the case of a
commonly used parametrization of the to-be-determined
spectrum Φu [10]. This spectrum parametrization cor-
responds to the spectrum of a multisine signal at fixed
frequencies ωm (m = 1, ..., L) but with arbitrary ampli-
tudes 1 :

Φu(ω) = π

L∑
m=1

cm (δ(ω − ωm) + δ(ω + ωm)) ≥ 0 ∀ω

(12)
The positivity of Φu(ω) for all ω can be imposed by
the constraints cm ≥ 0 (m = 1, . . . , L). Using (12), the
constraint (10) can be rewritten successively as follows:

L∑
m=1

cm
(
1 + β |G(ejωm , θ)|2

)
≤ γ ∀ θ ∈ Uinit (13)

(
L∑

m=1

cm

)
+ β G∗(θ) C̄ G(θ) ≤ γ ∀ θ ∈ Uinit (14)

with G(θ) = (G(ejω1 , θ), G(ejω2 , θ), ..., G(ejωL , θ))T and
C̄ = diag(c1, c2, ..., cL). Using (3) and (12), the term
P−1
ρ (θ,Φu) in (11) can also be rewritten as follows:

P−1
ρ (θ,Φu) =

N

2 σ2
e

L∑
m=1

cm(
Fu(ejωm , θ)F ∗u (ejωm , θ) + Fu(e−jωm , θ)F ∗u (e−jωm , θ)

)

P−1
ρ (θ,Φu) =

N

2 σ2
e

kG∑
i=1

kG∑
j=1

(ei ⊗Fi(θ))∗C̄(ej ⊗Fj(θ))

+ (ei ⊗Fj(θ))∗C̄(ej ⊗Fi(θ)) (15)

where ei (i = 1, ..., kG) is a unit vector of dimension
1 × kG whose entries are all zero except the ith entry
which is equal to 1 and where Fi(θ) (i = 1, ..., kG) is a
complex vector of dimension L× 1 defined as:

Fi(θ) = (Fu,i(e
jω1 , θ), Fu,i(e

jω2 , θ), ..., Fu,i(e
jωL , θ))T (16)

1 The amplitude Am of the sinusoid at ωm is given by Am =√
2cm (m = 1, ..., L)

with Fu,i(z, θ) the ith entry of the vector Fu(z, θ).

Remark. In (15), the actual value of the variance σ2
e

of the white noise e (see (1)) is generally unknown.
However, we can also robustify the optimal experiment
design problem against this uncertainty. For this pur-
pose, we can replace σ2

e in (15) by σ2
e,max where σ2

e,max

is the maximal value of the η%-confidence interval
[σ2
e,min, σ

2
e,max] for σ2

e that can be constructed using
the initial identification experiment (the one yielding

θ̂init) [13].

In the next two sections, we will derive, using robust-
ness analysis tools, tractable alternatives for both (10)
and (11) when the parametrization (12) is used for Φu.
These tractable alternatives will be under the form of
Linear Matrix Inequality (LMI) constraints [6] that are
linear in γ and in the spectrum coefficients cm (m =
1, . . . , L).

4 Tackling the robustified cost constraint using
robustness analysis tools

4.1 Introduction

We will start by deriving a tractable alternative
for (13)-(14). The constraints (13)-(14) are indeed equiv-
alent to (10) when the parametrization (12) is used for
Φu. In the paper [15], we have proposed the following
tractable alternative for (13)-(14):

L∑
m=0

cm (1 + β αG(ωm)) ≤ γ (17)

with αG(ωm) = supθ∈Uinit
|G(ejωm , θ)|2 (a computable

quantity for each ωm [4]). It is clear that (17) implies (13)
and that it is linear in γ and in cm (m = 1, . . . , L).
However, the constraint (17) is rather conservative since
αG(ωm) = supθ∈Uinit

|G(ejωm , θ)|2 can be obtained for
different θ at different frequencies ωm (m = 1, . . . , L). In
this paper, we propose an alternative approach which,
as will be shown in the example section, will generally be
less conservative since it will explicitly take into account
the dependency on θ of the frequency response elements
G(ejωm , θ) in G(θ) (see (14)).

4.2 Linear Fractional Transformation

An important step towards the developments of
this result is to rewrite G(θ) in the Linear Fractional
Transformation (LFT) framework [21]. For this pur-
pose, let us first observe that, due to Assumption 1,
y̆(t) = G(z, θ)u(t) can be written as the following LFT
in θ involving the internal scalar signal q and the inter-
nal vector of signals p:

p = θ q and

(
q

y̆

)
=

(
−ZD(z) 1

ZN (z) 0

)
︸ ︷︷ ︸

MG(z)

(
p

u

)
(18)
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Recall now that the Fourier transform y̆(ejω) of y̆(t) =
G(z, θ)u(t) is equal to G(ejω, θ) when u(t) is equal to
a pulse signal δ(t) (i.e. u(ejω) = 1). Consequently, the
frequency response G(ejω, θ) of G(z, θ) at one given fre-
quency ω can also be deduced by solving for y̆(ejω) in
the following system of equations:

p(ejω) = θ q(ejω) and(
q(ejω)

y̆(ejω)

)
= MG(ejω)

(
p(ejω)

1

)
(19)

Note that, in this system of equations, all Fourier trans-
forms are well defined for all θ ∈ Uinit due to Assump-
tion 2.

Using the same reasoning, the vector G(θ), contain-
ing the frequency response of G(z, θ) at the frequen-
cies present in the spectrum (12), can be determined by
solving for ȳ in the system of equations (20) derived us-
ing (19):

p̄ = (IL ⊗ θ) q̄(
q̄

ȳ

)
=

(
M̄11,G M̄12,G

M̄21,G M̄22,G

)
︸ ︷︷ ︸

M̄G

(
p̄

1

)
(20)

with p̄ = (pT (ejω1), ..., pT (ejωL))T , q̄ = (q(ejω1), ...
...., q(ejωL))T and

M̄11,G = −bdiag(ZD(ejω1), ..., ZD(ejωL))

M̄12,G = (1, ..., 1)T

M̄21,G = bdiag(ZN (ejω1), ..., ZN (ejωL))

M̄22,G = 0

Remark. It is important to note that the relation be-
tween p̄ and q̄ in (20) is in IL ⊗ θ = bdiag(θ, ..., θ) i.e. a
repetition of the same θ. This is due to the dependency
on θ of the frequency response elements G(ejωm , θ) in
G(θ). The approach in [15] (see Section 4.1) would in
fact correspond to a relation between p̄ and q̄ of the form
diag(θ(ω1), θ(ω2), ..., θ(ωL)) where θ(ωm) ∈ Uinit for
all ωm (m = 1, ..., L), but can be different for each fre-
quency ωm (m = 1, ..., L). Indeed αG(ωm) can be rewrit-
ten as supθ(ωm)∈Uinit

|G(ejωm , θ(ωm))|2 (m = 1, ..., L).

4.3 Set of multipliers related to the uncertainty set Uinit
Since we consider here (14), the parameter vector θ in

the LFT for G(θ) is restricted to be in the uncertainty
set Uinit (see (5)). In our approach, a necessary ingredi-
ent to find a tractable alternative for (14) is to associate,
with the set Uinit, a so-called set of multipliers. In a nut-
shell, the set of multipliers An that we will consider in
this paper is an explicit and affine parametrization of the
quadratic constraint satisfied by the graphs of the sig-
nals qn and pn when pn(t) = (In⊗θ)qn(t) with θ ∈ Uinit

(n is an arbitrary integer such that n ≥ 1) [20,9,14].

Definition 1 Consider the set Uinit defined in (5) satis-
fying Assumption 2 and an arbitrary integer n ≥ 1. For
each value of n, we define the set of multipliers An as a
set of affinely parametrized Hermitian matrices An (of
dimension n(k+1)×n(k+1)) that all have the following
property: In

In ⊗ θ

T

An

 In

In ⊗ θ

 ≥ 0 ∀θ ∈ Uinit (21)

In other words, An ∈ An =⇒ (21).

It is important to stress that the more extensive the
parametrization of the set of multipliers, the smaller the
conservatism discussed in Section 3 will be [20,9,14]. The
set of multipliers An corresponding to Uinit can be eas-
ily derived 2 from our previous contribution (see Propo-
sition 2 of [2]).

In [2], the set of multipliers An is in fact devel-
oped for an uncertainty set of the form Uinit ={
δθ | δθTP−1δθ ≤ χ

}
. As shown in these papers, the use

of this set of multipliers therefore entails the straight-
forward transformation of the LFT (18) (i.e. an LFT in

θ) into an LFT in δθ = θ − θ̂init. Another option is to
adapt the multipliers of [2] to an uncertainty set Uinit
that is not centered at zero.

Remark. It is also to be noted that the set of multipli-
ers in Definition 1 can also be derived for uncertainty
sets Uinit that are not ellipsoidal. In other words, the
approach presented in this paper is valid for all uncer-
tainty sets Uinit for which the sets of multipliers An of
Definition 1 can be constructed.

4.4 Robustified cost contraint

Taking a set of multipliers An with n equal to the
number of frequencies in the to-be-determined spec-
trum (i.e., n = L) and considering the LFT represen-
tation (20) of G(θ), we have now all the ingredients to
derive a tractable alternative constraint for (14).

Proposition 1 Consider an initial uncertainty set
Uinit (see (5)) satisfying Assumption 2 and the robust
cost constraint (14) obtained when the spectrum Φu is
parametrized as in (12). Consider the LFT representa-
tion (20) for G(θ) as well as the set of multipliers AL
associated with Uinit (see Definition 1 with n = L).
Then, the constraint (14) holds for a given γ if we can
find a matrix AL ∈ AL such that

V∗ AL V + L∗ C̄ L ≤

 0 0

0
γ−
(∑L

m=1
cm
)

β

 (22)

2 Note that, in [2], the notationsA (resp. ñ) are used instead
of An (resp. n).
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where L =
(
M̄21,G M̄22,G

)
and

V =

 M̄11,G M̄12,G

IkL 0


We observe that the matrix inequality (22) is linear in
γ, AL and in the coefficients cm (m = 1, ..., L) present
in C̄.

Proof. Let us consider (20) for a given θ ∈ Uinit and let us
consider the corresponding signals p̄, q̄ and ȳ = G(θ). Let
us then pre- and post-multiply the LMI constraint (22)
with (p̄∗, 1) and (p̄T , 1)T , respectively. Using (20) and
ȳ = G(θ), this yields:(

q̄

p̄

)∗
AL

(
q̄

p̄

)
+ G∗(θ)C̄G(θ) ≤

γ −
∑L
m=1 cm
β

(23)

Since p̄ = (IL ⊗ θ)q̄, we can rewrite (23) as follows:

q̄∗

 IL

IL ⊗ θ

T

AL

 IL

IL ⊗ θ

 q̄+G∗(θ)C̄G(θ) ≤
γ −

∑L
m=1 cm

β

(24)
The above reasoning can be done for any value of θ ∈
Uinit. In other words, for the matrix AL ∈ AL found
by the optimization problem, (24) holds true for all θ ∈
Uinit. Consequently, using Definition 1 with n = L, we

have therefore also that G∗(θ)C̄G(θ) ≤
γ−
∑L

m=1
cm

β for

each θ ∈ Uinit; which is the desired result.

In Proposition 1 (but also later in this paper), when
we speak of finding a matrixAL ∈ AL, we more precisely
mean finding the free parameters in the affine structure
of the matrix AL.

5 Robustified accuracy constraint

Taking inspiration from what has been done for the ro-
bustified cost constraint, we will now derive a tractable
alternative for the accuracy constraint (11) when the
parametrization (12) is used for Φu. Recall the expres-
sion (15) for P−1

ρ (θ,Φu) and let us observe that Fu(z, θ)
(see (4)) is a rational function of θ due to Assumption 1.
Consequently, we can find signals pF and qF such that
s(t) = Fu(z, θ)u(t) can be expressed as:

pF = (If ⊗ θ) qF(
qF

s

)
=

(
M11,F M12,F

M21,F M22,F

)
︸ ︷︷ ︸

MF (z)

(
pF

u

)
(25)

where f = 3 as shown in Appendix A. Note that f = 2
in the case where H(z, θ) = 1 (OE model structure).

Using a similar reasoning as in Section 4.2, we can
derive from (25) an LFT expression for s̄i = Fi(θ)
(i = 1, ..., kG) defined in (16). If we denote by
s̄ = (s̄T1 , s̄

T
2 , ..., s̄

T
kG

)T , we have indeed

p̄F = (IfL ⊗ θ) q̄F(
q̄F

s̄

)
=

(
M̄11,F M̄12,F

M̄21,F M̄22,F

)
︸ ︷︷ ︸

M̄F (z)

(
p̄F

1

)
(26)

M̄11,F = bdiag(M11,F (ejω1), ...,M11,F (ejωL))

M̄12,F = (M12,F (ejω1), ...,M12,F (ejωL))T

M̄21,F = (HT1 , ...,HTkG)T M̄22,F = (KT1 , ...,KTkG)T

Hi = bdiag(M i:
21,F (ejω1), ...,M i:

21,F (ejωL)) (i = 1, ..., kG)

Ki = (M i
22,F (ejω1), ...,M i

22,F (ejωL))T (i = 1, ..., kG)

where M i:
21,F (resp. M i

22,F ) denotes the ith line of M21,F

(resp. the ith entry of M22,F ). Note that, in this system
of equations, all elements are well defined for all θ ∈ Uinit
due to Assumption 2.

We have then the following result that gives a tractable
alternative for the robustified accuracy constraint (11).

Proposition 2 Consider an initial uncertainty set
Uinit (see (5)) satisfying Assumption 2 and the robus-
tified accuracy constraint (11) when the spectrum Φu
is parametrized as in (12) and where, for this reason,
P−1
ρ (θ,Φu) has the expression given in (15). Consider

the LFT (26) in IfL⊗θ which is the LFT representation
for s̄ = (F1(θ)T ,F2(θ)T , ...,FkG(θ)T )T and consider
the set of multipliers AkGfL associated with Uinit (see
Definition 1 with n = kGfL). Then, the constraint (11)
holds for a given Radm and a given Pρ,init if we can find
a matrix AkGfL ∈ AkGfL such that 3

N

2 σ2
e

kG∑
i=1

kG∑
j=1

(ei ⊗Xi)∗C̄(ej ⊗Xj) + (ei ⊗Xj)∗C̄(ej ⊗Xi)

+

(P−1
ρ,init −Radm)⊗

 0 0

0 1

−M∗ AkGfL M≥ 0

(27)

where Xi =
(
Hi Ki

)
(i = 1, ...kG) and

M =

 IkG ⊗
(
M̄11,F M̄12,F

)
IkG ⊗

(
IkfL 0

) 
We observe that the matrix inequality (27) is linear in
AkGfL and in the coefficients cm (m = 1, ..., L) present

3 The matrix made of zeros and a one in the second line
of (27) has dimension (fLk + 1)× (fLk + 1) .
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in C̄.

Proof. Let us consider (26) for a given θ ∈ Uinit
and let us consider the corresponding signals p̄F , q̄F
and s̄ = (F1(θ)T ,F2(θ)T , ...,FkG(θ)T )T . Let us then
pre- and post-multiply the LMI constraint (27) with
(IkG ⊗ (p̄TF , 1)T )∗ and IkG ⊗ (p̄TF , 1)T , respectively. Us-
ing (26), (15) and the lemma in Appendix B , this yields:

P−1
ρ (θ,Φu) + P−1

ρ,init −Radm − X(θ) ≥ 0 (28)

where P−1
ρ (θ,Φu) is given by (15) and X(θ) is a matrix

given by

X(θ) =

 IkG ⊗ q̄F
IkG ⊗ p̄F

∗AkGfL
 IkG ⊗ q̄F
IkG ⊗ p̄F


Since p̄F = (IfL ⊗ θ) q̄F , X(θ) can be rewritten as:

X(θ) = (IkG ⊗ q̄F )∗ Y (θ) (IkG ⊗ q̄F )

Y (θ) =

 IkGfL

IkGfL ⊗ θ

T

AkGfL

 IkGfL

IkGfL ⊗ θ


The above reasoning can be done for any value of θ ∈
Uinit. In other words, for the matrix AkGfL ∈ AkGfL
found by the optimization problem, (28) holds true for
all θ ∈ Uinit. Using Definition 1 with n = kGfL and the
Lemma in Appendix B, note also that:

X(θ) ≥ 0 ∀θ ∈ Uinit

Consequently, we have that P−1
ρ (θ,Φu)+P−1

ρ,init ≥ Radm
for each θ ∈ Uinit; which is the desired result.

6 Convex formulation of the optimal experi-
ment design problem

Using Propositions 1 and 2, we can now straight-
forwardly derive a convex formulation for the robust
optimal experiment design problem (9)-(11). This for-
mulation will be under the form of a LMI optimization
problem [6].

LMI formulation Consider the parametrization (12)
for the to-be-designed spectrum Φu. The LMI optimiza-
tion problem has as decision variables a scalar γ > 0,
coefficients cm ≥ 0 (m = 1, ..., L), a matrix AL ∈ AL
and a matrix AkGfL ∈ AkGfL (see Definition 1) and
consists in determining the smallest value of γ for which
the LMI constraints (22) and (27) hold.

As mentioned in Section 3, if we denote the solution
of the above LMI optimization problem by γopt and

Φu,opt, γopt is an upper bound for the solution γorigopt of
the original robustified optimization problem (9)-(11)
i.e. the minimal value of the cost that is required to

guarantee the robust accuracy constraint (11). More-
over, γopt is an upper bound for supθ∈Uinit

J (θ,Φu,opt)
and, since we assume θ0 ∈ Uinit, we have the guarantees
1) that P−1

ρ (θ0,Φu,opt) + P−1
ρ,init ≥ Radm and 2) that

J (θ0,Φu,opt) ≤ γopt.

Remark. In this paper, we have considered the least
costly optimal experiment framework and we have sup-
posed that the desired accuracy is represented by a given
matrix Radm. As mentioned in the introduction, the re-
sults of this paper can also be used for other optimal
experiment design frameworks. For example, let us con-
sider the classical E-optimality framework that, when
robustified, consists in:

max
Φu, ε

ε

such that
1

2π

∫ π

−π
Φu(ω) dω ≤ γ

and P−1
ρ (θ,Φu) + P−1

ρ,init ≥ εIkG ∀ θ ∈ Uinit (29)

where ε is a scalar decision variable and γ is a given
bound on the power of the input signal. It is clear
that (29) can be tackled with the tools of Section 5.
Note that, here, Radm = εIkG is not fixed, but a de-
cision variable. This however does not pose a problem
since the constraint (27) is also linear in Radm.

7 Numerical illustration

In this section we present simulation results in or-
der to show the effectiveness of our approach. We con-
sider the following system y(t) = G0(z)u(t) + e(t) with

G0(z) = 1 z−1

1−0.7 z−1 and e(t) a white noise having vari-

ance σ2
e = 1. The true parameter vector θ0 is thus

θ0 = ρ0 = (1,−0.7)
T

. An initial estimate θ̂init of θ0 and
its covariance matrix Pθ,init have been obtained using
an experiment of duration N = 1000 with a white noise

input signal of variance 0.1: θ̂init = (0.904,−0.7161)
T

.
This allows to build the initial uncertainty Uinit (see (5))
that is a confidence region for θ0 with probability level
η = 95% (χ = 5.99). This initial estimate does not sat-
isfy the desired accuracy which is here that the standard
deviation of the two parameters is smaller than two per-
cents of their exact value. Based on this requirement,
Radm is chosen as the inverse of the following diagonal
matrix diag((0.02)2, (0.014)2) (see e.g., [8]).

We use the LMI formulation of Section 6 to deter-
mine the spectrum Φu of a second identification ex-
periment of duration N = 1000 that will minimize a
robustified version of the cost (10) under the robust
accuracy constraint (11). Note that we here choose
β = 1 in the expression of the cost (8). In (12), we
choose L = 9 with ωm (m = 1, ..., 9) covering the inter-
val [0.1 3]. With these settings, the LMI optimization
problem of Section 6 yields γopt = 5.4948 and an op-
timal multisine of spectrum Φu,opt for which all the
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amplitudes are negligible except the ones at ω = 0.5
and ω = 1. By construction, we know that, if an exci-
tation signal of spectrum Φu,opt is used in the second
identification experiment, the obtained accuracy will
be satisfactory (i.e. P−1

ρ (θ0,Φu,opt) + P−1
ρ,init ≥ Radm)

and the cost J (θ0,Φu,opt) of this second identification
experiment will be such that J (θ0,Φu,opt) ≤ γopt =
5.4948. The value γopt is indeed an upper bound for
supθ∈Uinit

J (θ,Φu,opt) as discussed in Section 3 and
thus also an upper bound for the a-priori unknown cost
J (θ0,Φu,opt) which is here equal to 4.7.

In order to check the conservatism linked to the pro-
posed LMI formulation, we will compare the above re-
sult with the one that is obtained using the gridding ap-
proach for robust optimal experiment design. This ap-
proach considers the following optimization problem:

min
Φu,g, γg

γg

such that J (θi,Φu,g) ≤ γg ∀ θi ∈ Θn

and P−1
ρ (θi,Φu,g) + P−1

ρ,init ≥ Radm ∀ θi ∈ Θn

where Θn is a set containing n grid points θi (i = 1, ..., n)
such that θi ∈ Uinit. We have solved the above opti-
mization problem for n = 25 using the same spectrum
parametrization as above (same number L of frequen-
cies and same frequencies ωm) and we have obtained
γg,opt = 5.4866 and a spectrum Φu,g,opt which has also
contributions at two frequencies ω = 0.5 and ω = 1, but
with (slightly) different amplitudes.

As mentioned in Sections 3 and 6, γopt (obtained with
the approach proposed in this paper) is an upper bound

for the solution γorigopt of the original robustified optimiza-
tion problem (9)-(11). It is also clear that the value γg,opt
obtained with the gridding approach is a lower bound
for the same quantity. We thus observe that, in this ex-
ample, the upper bound γopt = 5.4948 is almost equal
to the lower bound γg,opt = 5.4866. The conservatism is
thus very limited in this example. It is also important to
note that, unlike the gridding approach, the approach
proposed in this paper gives the guarantee that, with
Φu,opt, the robustified accuracy constraint (11) will be
respected and also gives a guaranteed upper bound (i.e.,
γopt) on both supθ∈Uinit

J (θ,Φu,opt) and the actual cost
J (θ0,Φu,opt) of the second experiment.

To verify this property, we have generated 1000 grid
points θi in Uinit and we have computed J (θi,Φu,opt)
and P−1

ρ (θi,Φu,opt) for these 1000 grid points. For
all these grid points, we have indeed observed that
P−1
ρ (θi,Φu,opt) + P−1

ρ,init ≥ Radm. We have also ob-

served that the smallest eigenvalue of P−1
ρ (θi,Φu,opt) +

P−1
ρ,init − Radm is, for one of these grid points θi,

equal to 0.0004 (and thus very close to zero) and that
the cost J (θi,Φu,opt) is equal to 5.4948 for one of
these grid points. This once again confirms that the
conservatism of our approach is very limited in this
example. Let us now compute, for these 1000 grid

points, P−1
ρ (θi,Φu,g,opt) with the spectrum Φu,g,opt

obtained with the gridding approach. Here, 82 of
the θi led to a matrix P−1

ρ (θi,Φu,g,opt) for which

P−1
ρ (θi,Φu,g,opt) + P−1

ρ,init ≥ Radm is not satisfied. This
shows the clear advantage of the approach of this paper
upon the gridding approach.

Finally, let us illustrate the discussion in Sec-
tion 4.1. For this purpose, we will compare the up-
per bound for supθ∈Uinit

J (θ,Φu) given by the left-
hand side of (17) and the one corresponding to the
LMI formulation proposed in this paper. We will do
that for Φu,opt. We know that the upper bound for
supθ∈Uinit

J (θ,Φu,opt) obtained using the tools pro-
posed in this paper is γopt = 5.4948. Let us now com-

pute the upper bound γα =
∑L
m=1 cm,opt (1 + αG(ωm))

for supθ∈Uinit
J (θ,Φu,opt) (see (17)). This yields

γα = 5.7408, which shows that the approach discussed
in Section 4.1 is more conservative.

8 Conclusion

In this paper, we have presented a convex relaxation
that allows to robustify the least costly optimal experi-
ment design problem using an initial uncertainty set for
the unknown true parameter vector θ0. This robustifica-
tion is obtained using tools from robustness analysis. In
this paper, we have restricted attention to multisine exci-
tation signals. In the future, we will investigate whether
the least costly optimal experiment design problem can
also be robustified when the to-be-determined excitation
spectrum is the one of a filtered white noise. This spec-
trum parametrization is indeed also a commonly used
parametrization in optimal experiment design [10]. We
will also investigate how the results presented in this
paper can be extended to tackle the robustification of
more complex accuracy constraints (such as the ones
presented in [5]).
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A LFT representation of Fu(z, θ)

The classical BJ paramatetrization is as follows:

G(z, θ) =
z−nk

(
b0 + b1z

−1 + ...+ bnb
z−nb

)
1 + f1z−1 + ...+ fnf

z−nf

H(z, θ) =
1 + c1z

−1 + ...+ cnc
z−nc

1 + d1z−1 + ...+ dnd
z−nd

with θ = (ρT , ζT )T ∈ Rk with ρ = (b0, ..., bnb
, f1, ..., fnf

)T

and ζ = (c1, ..., cnc
, d1, ..., dnd

)T (kG = nb + nf + 1,

Fig. A.1. Representation of the vector Fu(z, θ) given in (A.1)

kH = nc + nd, k = kG + kH). This parametrization
satisfies Assumption 1. As an example, if nk = nf =
nc = nd = 1 and nb = 0 (i.e., θ = (b0, f1, c1, d1)T ),
we have ZN (z) = (z−1 0 0 0), ZD(z) = (0 z−1 0 0),
ZN,H(z) = (0 0 z−1 0) and ZD,H(z) = (0 0 0 z−1).
Moreover, we have also that s(t) = Fu(z, θ)u(t) is given
by:

s(t) =



s1(t)

...

snb+1

snb+2

...

skG(t)


=



z−nk

1+ZD(z)θ

...

z−(nk+nb)

1+ZD(z)θ
−z−1ZN (z)θ
(1+ZD(z)θ)2

...
−z−nfZN (z)θ
(1+ZD(z)θ)2


1 + ZD,H(z)θ

1 + ZN,H(z)θ
u(t)

(A.1)
which is a rational function in θ. This rational function
can be expressed as in (25) with f = 3 (see Figure A.1):

p1

p2

p3


︸ ︷︷ ︸

=pF

= (I3 ⊗ θ)


q1

q2

q3


︸ ︷︷ ︸

=qF



q1

q2

q3

s1

...

skG


=



−ZN,H 0 0 1

Z∆ −ZD 0 1

0 −ZN −ZD 0

z−nkZ∆ −z−nkZD 0 z−nk

... ... .... ....

0 −z−nfZN −z−nfZD 0


︸ ︷︷ ︸

MF (z)


p1

p2

p3

u



with Z∆(z) = ZD,H(z) − ZN,H(z). When H(z, θ) = 1,
the above LFT can be simplified and f = 2.
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B Useful lemma for the proof of Proposition 2

Lemma 1 Consider an Hermitian matrix A = A∗ of
dimension n×n and a (complex) matrix B of dimension
n× ñ. Then, we have that

A ≥ 0 =⇒ B∗AB ≥ 0

Proof. B∗AB ≥ 0 is equivalent to the fact that, for all
complex vector x of dimension ñ,

x∗B∗ABx ≥ 0

Denoting y the complex vector Bx of dimension n, the
latter matrix inequality is equivalent to:

y∗Ay ≥ 0

which always holds since A ≥ 0.
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