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TRILINEAR COMPENSATED COMPACTNESS AND

BURNETT’S CONJECTURE IN GENERAL RELATIVITY

LA COMPACITÉ PAR COMPENSATION TRILINÉAIRE ET LA CONJECTURE DE

BURNETT EN RELATIVITÉ GÉNÉRALE

CÉCILE HUNEAU AND JONATHAN LUK

Résumé. Dans cet article, nous considérons une suite de métriques lorentziennes {hn}+∞n=1, de classe C4,
satisfaisant les équations d’Einstein dans le vide Ric(hn) = 0. Nous supposons qu’il existe une métrique

Lorentzienne h0 surM, de classe C∞, telle que hn → h0 uniformément sur tout compact. Nous supposons

aussi que sur un compact K ⊂M il existe une suite de nombre positifs λn → 0 tels que

‖∂α(hn − h0)‖L∞(K) . λ
1−|α|
n , |α| ≥ 4.

Il est bien connu que h0, qui représente une ”limite haute-fréquence”, n’est pas forcément solution des

équations d’Einstein dans le vide. Cependant, il a été conjecturé par Burnett que h0 devait être isométrique
à une solution des équations d’Einstein couplées à un champ de Vlasov sans masse.

Dans cet article, nous prouvons la conjecture de Burnett en supposant que {hn}+∞n=1 et h0 admettent

en plus une symétrie U(1) et satisfont une condition de jauge elliptique. La preuve utilise les mesures de
défaut microlocales — on identifie une mesure de défaut microlocale définie de manière ad hoc comme

étant la mesure de Vlasov dans l’espace-temps limite. Afin de montrer que cette mesure satisfait bien les

équations de Vlasov, nous avons besoin d’annulations particulières qui reposent sur la structure précise des
équations d’Einstein. Ces annulations sont liées un nouveau phénomène de ”compacité par compensation

trilinéaire” pour des solutions d’un système couplant des équations elliptiques semilinéaires à des équations
hyperboliques quasilinéaires.

Consider a sequence of C4 Lorentzian metrics {hn}+∞n=1 on a manifoldM satisfying the Einstein vacuum

equation Ric(hn) = 0. Suppose there exists a smooth Lorentzian metric h0 on M such that hn → h0
uniformly on compact sets. Assume also that on any compact set K ⊂ M, there is a decreasing sequence

of positive numbers λn → 0 such that

‖∂α(hn − h0)‖L∞(K) . λ
1−|α|
n , |α| ≥ 4.

It is well-known that h0, which represents a “high-frequency limit”, is not necessarily a solution to the

Einstein vacuum equation. Nevertheless, Burnett conjectured that h0 must be isometric to a solution to

the Einstein–massless Vlasov system.
In this paper, we prove Burnett’s conjecture assuming that {hn}+∞n=1 and h0 in addition admit a U(1)

symmetry and obey an elliptic gauge condition. The proof uses microlocal defect measures — we identify an

appropriately defined microlocal defect measure to be the Vlasov measure of the limit spacetime. In order
to show that this measure indeed obeys the Vlasov equation, we need some special cancellations which
rely on the precise structure of the Einstein equations. These cancellations are related to a new “trilinear

compensated compactness” phenomenon for solutions to (semilinear) elliptic and (quasilinear) hyperbolic
equations.

1. Introduction

It has been known in the context of classical general relativity that “backreaction of high frequency
gravitational waves mimics effective matter fields” (see for instance [1, 2, 7, 8, 11, 12]). One way to describe
this phenomenon mathematically (due to Burnett [1]) is to consider a sequence of (sufficiently regular)
Lorentzian metrics {hn}+∞n=1 on a smooth manifold M satisfying the Einstein vacuum equations

Ric(hn) = 0 (1.1)
1



2 CÉCILE HUNEAU AND JONATHAN LUK

such that (in some coordinate system) the metric components admit some limit h0 where hn → h0 uniformly
on compact sets and ∂hn → ∂h0 weakly. Assume moreover that for any compact set K, there is some
sequence of positive numbers λn → 0 such that the following holds on K :

|hn − h0| . λn, |∂hn| . 1, |∂khn| . λ−k+1
n for k = 2, 3, 4. (1.2)

Due to the nonlinearity of the Einstein equations, the limit h0 does not necessarily satisfy (1.1). Instead, in
general it is possible for h0 to satisfy

Ric(h0)− 1

2
h0R(h0) = T

(where R is the scalar curvature) for some non-trivial stress-energy-momentum tensor T . This tensor T that
arise in the limit can be interpreted as an effective matter field.

A question arises as to what type of effective matter field can arise in such a limiting process. In this
direction, Burnett made the following conjecture 1 :

Conjecture 1.1 (Burnett [1]). Given (M, hn) and (M, h0) above, the limit h0 is isometric to a solution to
the Einstein–massless Vlasov system, i.e. the effective stress-energy-momentum tensor corresponds to that
of massless Vlasov matter 2.

Conjecture 1.1 can be interpreted as stating that the effective matter field must be propagating with
the speed of light and that the matter propagating in different directions do not directly interact, but only
interact through their effect on the geometry ; see [1].

Our main result is a proof of Conjecture 1.1 under two additional assumptions :

(1) (U(1) symmetry.) The sequence {hn}+∞n=1 and the limit h0 all admit a U(1) symmetry (without
necessarily obeying a polarization condition).

(2) (Elliptic gauge.) All the metrics can be put in an elliptic gauge and the bounds (1.2) hold in this
gauge.

The following is our main theorem ; see Theorem 4.2 for a precise statement.

Theorem 1.2. Conjecture 1.1 is true under the above two additional assumptions.

Theorem 1.2 implies a fortiori that the effective stress-energy-momentum tensor is traceless, obeys the
dominant energy condition (i.e. for all future-directed causal vector X, −TµνXν is a future-directed causal
vector), and is non-negative in the sense that T (X,X) ≥ 0 pointwise for all vector field X (not necessarily
causal). In fact, we show that these statements continue to hold even if we relax the convergence assumption
to be significantly weaker than (1.2). We give an informal statement here but refer the reader to Theorem 4.1
for a precise statement.

Theorem 1.3. Suppose (1.2) is replaced by the conditions that hn → h0 uniformly on compact sets and
∂hn ⇀ ∂h0 weakly in Lp0loc for some p0 >

8
3 . Assume moreover that hn, h0 all admit a U(1) symmetry and

are put in an elliptic gauge.
Then the effective stress-energy-momentum tensor is traceless, obeys the dominant energy condition, and

is non-negative.

Theorem 1.3 can be compared with the following theorem of Green–Wald [7], which to our knowledge is
so far the best result towards Conjecture 1.1 :

Theorem 1.4 (Green–Wald [7]). Assume {hn}+∞n=1 and h0 are such that (1.1) and (1.2) hold. Then the
effective stress-energy-momentum tensor is traceless and obeys the weak energy condition (i.e. T (X,X) ≥ 0
pointwise for all timelike X).

Note that while its conclusion is weaker than Theorem 1.3, Theorem 1.4 is a general result which does
not require U(1) symmetry.

While our results are gauge-dependent, it should be mentioned that a large class of non-trivial examples
have been constructed under our gauge conditions. In our previous paper [9], we have constructed sequences
of solutions of Einstein vacuum equation with polarized U(1) symmetry, which can be put in an elliptic

1. We remark that in the original [1], (1.2) is only required to hold up to k = 2. We impose the slightly stronger assumption

that (1.2) holds up to k = 4 in view of the result that we prove in this paper.
2. We remark that in Conjecture 1.1, “Einstein–massless Vlasov system” has to be appropriately formulated to include

measure-valued Vlasov fields since there are known examples for which the limits are isometric to solutions to the Einstein–

null dust system.
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gauge, such that (1.2) are satisfied and the limit is a solution to Einstein equations coupled to N null dusts.
See further discussions in Section 1.2.1.

We now briefly discuss the proof ; for more details see Section 1.1. Under the U(1) symmetry assumptions,
the (3 + 1)-dimensional Einstein vacuum equations reduce to the (2 + 1)-dimensional Einstein–wave map
system. The rough strategy is the following :

— The first step of the proof is to show that only the two scalar fields corresponding to the wave map
part of the system are responsible for the failure of the limit to be vacuum. This can already be viewed
as a form of compensated compactness.

— To capture and describe the defect of convergence given by the scalar fields, we rely on microlocal
defect measures (introduced by Tartar [15] and Gérard [6]). It is well-known that microlocal defect
measures arising from linear wave equations satisfy a massless Vlasov equation 3 [4, 5, 15].

— We show that in our setting, despite the quasilinear nature of the problem, the microlocal defect
measure corresponding to the wave map part of the system still satisfies the massless Vlasov equation.

The most difficult part of the argument is to justify the massless Vlasov equation for the microlocal defect
measure. That this holds relies on some remarkable structures and cancellations of the system, which are
related to what we call a trilinear compensated compactness phenomenon.

The remainder of the introduction will be organized as follows : In Section 1.1, we explain the ideas of
the proof. In Section 1.2, we discuss some related problems. In Section 1.3, we outline the remainder of
the paper.

1.1. Ideas of the proof.

1.1.1. Microlocal defect measures. The microlocal defect measure (see Section 5 for further details) is a
measure on the cosphere bundle which identifies the “region in phase space” for which strong convergence
fails. One important property of microlocal defect measures, especially relevant for our problem, is that
microlocal defect measures arising from (approximate) solutions to hyperbolic equations themselves satisfy
some transport equations.

Let un be a sequence of functions Ω → R, where Ω ⊂ Rd is open, which converges weakly in L2(Ω) to
a function u. In general, after passing to a subsequence, |un|2 − |u|2 converges to a non-zero measure. The
failure of the convergence |un|2 → |u|2 can arise from concentrations or oscillations. The microlocal defect
measure is a tool which captures both the position and the frequency of this failure of strong convergence.

For instance, if un = n
d
2χ(n(x− x0)) (with χ ∈ C∞c ) so that |un|2 concentrates to a delta measure, then

the corresponding microlocal defect measure is given by δx0⊗ν, where δx0 is the spatial delta measure and ν
is a uniform measure on the cotangent space. On the other hand, suppose un(x) = χ(x) cos (n(x · ω)) so that
un oscillates in a particular frequency ω. Then the corresponding microlocal defect measure is |χ|2dx⊗ δ[ω],
where δ[ω] is the delta measure concentrated at the (equivalent class of the) frequency ω. See [15] for further
discussions.

An important fact is that microlocal defect measures arising from solutions to linear wave
equations on (Ω, g) satisfy the massless Vlasov equation on (Ω, g). Consider the special case where
Ω = Rd+1 and ∂αφn a sequence of functions such that ∂φn ⇀ ∂φ0 weakly in L2. In this case, there exists a
non-negative Radon measure dν on S∗Rd+1 — which is the microlocal defect measure — so that∫

Rd+1

∂α(φn − φ0)(A∂β(φn − φ0)) dx→
∫
S∗Rd+1

a(x, ξ)ξαξβ
|ξ|2

dν, (1.3)

If φn are approximate solutions to some wave equation, then dν is a (measure-valued) solution to the
massless Vlasov equation (1.5) and (1.7). More precisely,

(1) If
�gφn = fn, ‖fn‖L2(Ω) . 1. (1.4)

Then dν is supported on the zero mass shell in the sense that for all f ∈ Cc(M),∫
S∗R2+1

f(x)(g−1)αβξαξβ
dν

|ξ|2
= 0. (1.5)

(2) If, instead of (1.4), we also have the stronger assumption

�gφn = fn, ‖fn − f0‖L2(Ω) → 0. (1.6)

3. In [4, 5], a transport equation is derived only when the coefficients of the linear wave equation are time-independent. The

case of a general linear wave equation in fact follows in a similar manner, except for more complicated algebraic manipulations.
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Then for any C1 function ã : T ∗M→ R which is homogeneous of degree 1 in ξ,∫
S∗R2+1

((g−1)αβξβ∂xα ã−
1

2
(∂µg

−1)αβξαξβ∂ξµ ã)
dν

|ξ|2
= 0. (1.7)

1.1.2. Standard (bilinear) compensated compactness. We now explain how microlocal defect measures can
be applied to the Burnett conjecture. Recall that Einstein equation with U(1) symmetry reduced to a 2 + 1
dimensional system (see Section 2.1) �gψ + 1

2e
−4ψg−1(dω,dω) = 0,

�gω − 4g−1(dω,dψ) = 0,
Ricαβ(g) = 2∂αψ∂βψ + 1

2e
−4ψ∂αω∂βω.

(1.8)

Assuming we have a sequence of solutions {(ψn, ωn, gn)}+∞n=1 which satisfy (1.8), with gn in an elliptic
gauge, and moreover attains C0-limit (ψ0, ω0, g0) with estimates

‖∂k(ψn − ψ0, ωn − ω0, gn − g0)‖L2∩L∞(R2) . λ
1−k
n , k = 0, 1, . . . 4. (1.9)

The first step is to show that

�gnψn ⇀ �g0ψ0, �gnωn ⇀ �g0ω0; (1.10)

g−1
n (dωn,dωn) ⇀ g−1

0 (dω0,dω0), g−1
n (dωn,dψn) ⇀ g−1

0 (dω0,dψ0); (1.11)

Ricαβ(gn) ⇀ Ricαβ(g0). (1.12)

in the sense of distribution.
That (1.10) holds is due to the divergence structure of the terms. That (1.11) is true is slightly more subtle

but well-known, and is related to the standard compensated compactness : g−1
0 (dωn,dωn) and g−1

0 (dωn,dψn)
are null forms, so that when (1.9) holds and that �g0ωn and �g0ψn are bounded uniformly in L2 ∩L∞, the
convergence (1.11) holds.

Finally, (1.12) holds under our elliptic gauge condition. This is because
— the elliptic gauge gives strong compactness for spatial derivatives of the metric components ;
— in this gauge the nonlinear structure is such that there are no quadratic products of time derivatives

of the metric components.
Given (1.10)–(1.12), it follows that to capture how much the limit (ψ0, ω0, g0) deviates from solving (1.8),

we just need to understand the n→ +∞ limit of∫
M
{2(Y ψn)(Y ψn)+

1

2
e−4ψn(Y ωn)(Y ωn)} dVolgn−

∫
M
{2(Y ψ0)(Y ψ0)+

1

2
e−4ψ0(Y ω0)(Y ω0)}dVolg0 . (1.13)

The deviation of (1.13) from 0 is in particular captured by the microlocal defect measure. More precisely,
defining the non-negative Radon measure dν (cf. (1.3)) by 4

lim
n→+∞

∫
M
{2(∂α(ψn − ψ0))(A∂β(ψn − ψ0)) +

e−4ψ0

2
(∂α(ωn − ω0))(A∂β(ωn − ω0))} dVolg0

=

∫
S∗M

a(x, ξ) ξαξβ dν

|ξ|2
,

(1.14)

we have

lim
n→+∞

(1.13) =

∫
S∗M
〈Y, ξ〉2 dν

|ξ|2
. (1.15)

In particular, the limit (ψ0, ω0, g0) obeys the following system :
�g0ψ0 + 1

2e
−4ψ0g−1

0 (dω0,dω0) = 0,
�g0ω0 − 4g−1

0 (dω0,dψ0) = 0,∫
MRic(g0)(Y, Y ) dVolg0 =

∫
M{2(Y ψ0)2 + 1

2e
−4ψ0(Y ω0)2}dVolg0 +

∫
S∗M〈Y, ξ〉

2 dν
|ξ|2 ,

(1.16)

where the final equation in (1.16) is to be understood as holding for all vector fields Y ∈ C∞c . (1.16) is
exactly the form of the Einstein–massless Vlasov system, as long as the measure dν is indeed a measure-
valued (weak) solution to the massless Vlasov equation.

The main task of the paper is therefore to justify that in our quasilinear setting, dν still solves the
massless Vlasov equation (see also Sections 2.3–2.5), i.e. (analogs of) (1.5) and (1.7) still hold. Already
in Section 1.1.1, we saw that (1.5) only require weaker assumptions (cf. (1.4) and (1.6)) and is therefore

4. (1.14) and (1.15) only hold after passing to a subsequence. We assume that we have passed to such a subsequence without

relabeling the indices.
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relatively straightforward. However, as we discuss below, it is much harder to obtain the transport equation
(1.7).

1.1.3. Model problem. As we argued above, the key difficulty is to justify the transport equation for the
microlocal defect measure. Observe already that in (1.6), one needs that fn → f0 in the L2 norm in order to
justify the transport equation. However, in our setting, we only have weak convergence so that the derivation
of the transport equation must rely on some special compensation. Another issue is that the wave operator
�gn is now dependent on n. It is relatively straightforward to show that if gn tends to its limit g0 in C1, then
the transport equation remains valid. However, again because of weak convergence, we need compensation
in the relevant terms.

To elucidate some of the difficulties and the techniques to tackle them, consider the following simplified
semilinear model problem with n-dependent metrics :{

�gnφn = g−1
n (dφn,dφn),

gn = −N2
n(dt)2 + (dx1)2 + (dx2)2.

(1.17)

Assume also, for simplicity in this exposition, that φn → 0 and Nn → 1 pointwise with the following bounds :

‖∂kφn‖L2∩L∞(R2+1) + ‖∂k(Nn − 1)‖L2∩L∞(R2+1) . λ
1−k
n , (1.18)

and that the spatial derivatives of Nn (denoted by ∇) obey stronger estimates :

‖∇Nn‖L2∩L∞(R2+1) . λ
1
2
n . (1.19)

(Note that the assumptions that φn → 0 and Nn → 1 are slight over-simplifications. On the other hand,
(1.19) is a reasonable assumption in view of the elliptic gauge. See Section 1.1.5.)

Define the microlocal defect measure dν according to (1.3). Our goal will be to show that for any ã(x, ξ)
which is homogeneous of order +1 in ξ,

0 =

∫
S∗R2+1

(−ξt∂t + ξi∂i)ã
dν

|ξ|2
. (1.20)

We derive (1.20) using an energy identity. Let A be a pseudo-differential operator with principal symbol
a = ã

ξt
. A long (but unilluminating from the point of view of this discussion) computation yields 5

∫
R2+1

{∂tφn
Nn

[∂t, A]
∂tφn
Nn

+ δij(Nn∂jφn)[A, ∂i](
∂tφn
Nn

)}dx (1.21)

+

∫
R2+1

{δij(Nn∂jφn)[∂t, A](
1

Nn
∂iφn) + [A, ∂j ](Nn∂iφn)δij(

∂tφn
Nn

)}dx (1.22)

+

∫
R2+1

{(∂iφn)δij(∂tNn)A
∂jφn
Nn

− (∂iφn)δijNnA
(∂tNn)(∂jφn)

N2
n

} dx (1.23)

+

∫
R2+1

{(∂iφn)δijNnA
(∂jNn)(∂tφn)

N2
n

− (∂tφn)(∂jNn)δijA
(∂iφn)

Nn
}dx (1.24)

=

∫
R2+1

{∂tφn
Nn

A(Nng
−1
n (dφn,dφn)) +A(

∂tφn
Nn

)Nng
−1
n (dφn,dφn)} dx (1.25)

−
∫
R2+1

∂tφn
Nn

δij{(N2
n − 1)∂iA

∂jφn
Nn

− ∂iA((N2
n − 1)

∂jφn
Nn

)} dx. (1.26)

By (1.3), (after passing to a subsequence if necessary and using that ξ2
t = δijξiξj on the support of dν)

as n → +∞, (1.21)+(1.22) → 2 × RHS of (1.20). It therefore suffices to show that the other lines all tend
to 0 as n→ +∞.

That (1.23) and (1.24) tend to 0 are relatively straightforward : these rely respectively on the self-
adjointness (up to error) of A and (1.19).

However, that (1.25) and (1.26) both tend to 0 is more subtle. This requires trilinear compensated
compactness. We now turn to that.

5. While we omit the calculations in this introduction, the interested reader may look at Section 9 where a similar compu-

tation is carried out in complete detail.
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1.1.4. Trilinear compensated compactness. There are two types of trilinear compensated compactness that
we use. The first kind relates to term (1.25). We call this trilinear compensated compactness for three waves
as it is a trilinear term in the derivatives of φn, and the compensated compactness relies in particular on good
bounds for �gnφn. The second kind of trilinear compensated compactness relates to the term (1.26). We call
this elliptic-wave trilinear compensated compactness since it relies on both φn satisfying wave estimates and
Nn satisfying good spatial derivative estimate (1.19) (which in the actual problem is obtained via elliptic
estimates for Nn).

Trilinear compensated compactness for three waves. In fact each term in (1.25) tends to 0. We
discuss only a simpler statement, which captures already the main idea involved. We argue that for φn
satisfying (1.18),

(∂tφn)g−1
n (dφn,dφn) ⇀ 0 (1.27)

in the sense of distribution.
To this end, first observe that by (1.17) and (1.18),

‖�gnφn‖L1∩L∞(R2+1) . 1. (1.28)

Then notice that we can write

g−1
n (dφn,dφn) =

1

2
�gn(φ2

n)− φn(�gnφn).

It follows that for χ ∈ C∞c (R2+1),∫
R2+1

χ(∂tφn)g−1
n (dφn,dφn)Nn dx =

1

2

∫
R2+1

χ(x)(∂tφn)�gn(φ2
n)Nn dx−

∫
R2+1

χ(x)(∂tφn)φn�gn(φn)Nn dx.

The second term clearly → 0 by (1.18) and (1.28). After integrating by parts, the first term can be written
as a term taking the form of the second terms plus O(λn) error, which then implies (1.27).

Elliptic-wave trilinear compensated compactness. We now turn to the term (1.26). Using the
estimates in (1.18), it follows that (1.26) has the same limit as∫

R2+1

∂tφnδ
ij{(N2

n − 1)∂iA∂jφn − ∂iA[(N2
n − 1)∂jφn]} dx. (1.29)

If Nn → 1 in C1, then (1.29) can be easily handled using the Calderón commutator estimate (see
Lemma 5.2.6), which gives

|(1.29)| . ‖∂tφn‖L2(Rn+1)‖N2
n − 1‖C1(R2+1)‖∂jφn‖L2(R2+1) → 0.

The main issue is therefore that while Nn−1 and ∇(Nn−1) indeed converge uniformly, the term ∂tNn only
converges to 0 weakly. We therefore need the more precise structure in (1.29) and argue in Fourier space.

To illustrate the idea, assume that A is simply a Fourier multiplier, i.e. its symbol a(x, ξ) = m(ξ) is
independent of x. This indeed captures the main difficulty. In this case, since φn is real-valued, we can
assume also that m is even.

Under these assumptions, we can rewrite (1.29) up to terms tending to 0.∣∣∣∣(1.29)−
∫
R2+1

∂tφnδ
ij{(N2

n − 1)A∂2
ijφn −A[(N2

n − 1)∂2
ijφn]} dx

∣∣∣∣
=

∣∣∣∣∫
R2+1

∂tφnδ
ijA[∂i(N

2
n − 1)(∂jφn)] dx

∣∣∣∣ . ‖∂tφn‖L2(Rn+1)‖∇(N2
n − 1)‖C0(R2+1)‖∂jφn‖L2(R2+1) → 0.

Then we compute (cf. Proposition 11.5)∫
R2+1

∂tφnδ
ij{(N2

n − 1)A∂2
ijφn −A[(N2

n − 1)∂2
ijφn]} dx

=
i

2

∫
R2+1×R2+1

(ξt|ηi|2 + ηt|ξi|2) ̂(N2
n − 1)(η − ξ)φ̂n(−η)φ̂n(ξ)(m(ξ)−m(η)) dξ dη,

(1.30)

where we decomposed ξ and η into their time and spatial parts : ξ = (ξt, ξi), η = (ηt, ηi).
Roughly speaking (ξt|ηi|2 + ηt|ξi|2) corresponds to three derivatives, and hence contributes roughly to

O(λ−3
n ) in size (see (1.18)). This is just enough to show that the (1.30) is bounded using the estimates

(1.18). To deduce that (1.30) in fact tends to 0, observe
— our main enemy is when N2

n − 1 has high-frequency in t, i.e. |ηt − ξt| is large (since we have better
estimates for spatial derivatives of Nn ; see (1.19)) ;
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— we can gain with factors of ξi − ηi (corresponding to spatial derivatives of N2
n − 1) or ξ2

t − |ξi|2 or
η2
t − |ηi|2 (corresponding to �g0 acting on φn).

Now the Fourier multiplier in (1.30) can be written as

ξt|ηi|2 + ηt|ξi|2 = ηt(ξi + ηi)(ξi − ηi) + |ηi|2(ξt + ηt).

The first term contains a factor of (ξi− ηi) which as mentioned above corresponds to a spatial derivative of
Nn and behaves better. For the other term, we rewrite

|ηi|2(ξt + ηt) = |ηi|2
ξ2
t − η2

t

ξt − ηt
= |ηi|2

ξ2
t − |ξi|2

ξt − ηt
+ |ηi|2

|ηi|2 − η2
t

ξt − ηt
+ |ηi|2

(ξi + ηi) · (ξi − ηi)
ξt − ηt

.

When ξt − ηt is large, we can make use of the gain in ξ2
t − |ξi|2, |ηi|2 − η2

t or (ξi − ηi) to conclude that this
term behaves better than expected.

1.1.5. Further issues. We finally discuss a few additional issues that we encounter in the proof, but are not
captured by the simplified model problem above.

(1) (Spacetime cutoff) Our solution is a priori only defined in a subset of R2+1, with estimates that
hold only locally. We therefore need to introduce and control appropriate cutoff functions.

(2) (Estimates for metric components) The estimates for the metric coefficients has to be derived using
the elliptic equations that they satisfy.

(a) To show that (1.19) holds for the metric components, we use the fact that the metric components
satisfy (semilinear) elliptic equations due to our gauge condition.

(b) There is in fact further structure for the estimates for the metric components : while the spatial
derivatives of all metric components obey a better estimate of the form (1.19), the ∂t derivative
of the metric component of γ (see (2.4)) also obeys a better estimate due to the gauge condition.
This fact is crucially used.

(3) (Non-trivial limit for wave variables) In general φn does not tend to 0, but instead tends to a
non-trivial limit φ0 (with estimates ‖∂k(φn − φ0)‖L2∩L∞ . λ1−k

n ).

(a) The non-triviality of φ0 already means that (in addition to an analogue of (1.22)–(1.26)) we
need to derive an energy identity for the limit spacetime and take difference appropriately.

(b) More seriously, we need an additional ingredient, which is not captured by our model problem.
In general, when the limit φ0 is not identically 0, the corresponding trilinear compensated
compactness statement gives (see Proposition 12.3),

(∂tφn)g−1
0 (dφn,dφn)− 2(∂tφn)g−1

0 (dφn,dφ0) ⇀ −(∂tφ0)g−1
0 (dφ0,dφ0)

in the sense of distributions. In other words, in our model problem, if we assume φn → φ0 6≡ 0
(but still assuming Nn → 1), we get∫

R2+1

∂tφn
Nn

A(Nng
−1
n (dφn,dφn)) dx

→ 2

∫
S∗R2+1

a(x, ξ)(g−1
0 )αβξtξα(∂βφ0)

dν

|ξ|2
+

∫
R2+1

∂tφ0A(g−1
0 (dφ0,dφ0)) dx

6=
∫
R2+1

∂tφ0A(g−1
0 (dφ0,dφ0)) dx,

(1.31)

which does not cancel off the corresponding term in the energy identity for φ0.

The actual system, despite its complications, is in fact better in the sense that all the terms
involving the microlocal defect measure as in (1.31) cancel ! This cancellation is related to the
Lagrangian structure of the wave map system.

(4) (Freezing coefficients) Since the equation for φn is quasilinear, we can not take the Fourier transform
as in the model problems. To overcome this difficulty, we will introduce a partition of our domains
into ball of radius λε0n (with well-chosen ε0), and show that in each of these balls the metric coeffi-
cients can be well-approximated (in terms of λn) by constants so as to carry out our argument. See
Sections 8.2 and 11.

Finally, let us emphasize that in all the above discussions we have relied very heavily on the structure of
the terms involved. Indeed it is easy to slightly modify the terms so that the argument fails.
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1.2. Discussions.

1.2.1. The reverse Burnett conjecture. Already in [1], Burnett suggested that a reverse version of Conjec-
ture 1.1 may also hold, in the sense that any sufficiently regular solution to the Einstein–massless Vlasov
system can be approximated weakly by a sequence of high frequency vacuum spacetimes in the sense of
(1.2).

Like Conjecture 1.1, in full generality the reverse Burnett conjecture remains open. On the other hand,
some results have been achieved in the U(1)-symmetric polarized case in our previous [9]. More precisely,
given a generic small and regular polarized U(1)-symmetric solution to the Einstein–null dust system with
a finite number of families of null dust which are angularly separated in an appropriate sense, we proved
that it can arise as a weak limit 6 of solutions to the Einstein vacuum system.

Note that the Einstein–null dust system is indeed a special case of the Einstein–massless Vlasov system,
where at each spacetime point the Vlasov measure is given as a finite sum of delta measures in the cotangent
space ; see Section 2.6. In fact, since finite sums of delta measures form a weak-* dense subset of finite Radon
measures, one can even hope that the results in [9] can be extended to a larger class of solutions to the
Einstein–massless Vlasov system.

1.2.2. Trilinear compensated compactness. To the best of our knowledge, the phenomenon of trilinear com-
pensated compactness has previously only been studied in the classical work [13]. The work considers three
sequences of functions {φ1,i}+∞i=1 , {φ2,i}+∞i=1 and {φ3,i}+∞i=1 on R3, each of which has a weak-L2 limit and
moreover Xjφj,i is bounded in L2 uniformly in i for some smooth vector fields X1, X2 and X3. It is proven
that under suitable assumptions of Xj , the product φ1,iφ2,iφ3,i converges in the sense of distribution to the
product of the weak limits.

1.3. Outline of the paper. The remainder of the paper is structured as follows. In Section 2, we begin
with an introduction to various notions important for our setup, including the symmetry and gauge condi-
tions, and the notion of measure-valued solutions to the Einstein–massless Vlasov system. In Section 3, we
then introduce the notations used for the remainder of the paper. In Section 4, we give the precise state-
ments of the main results of the paper. In Section 5, we recall some standard facts about pseudo-differential
operators and microlocal defect measures.

Starting in Section 6, we begin with the proof of the main results. In Section 6, we apply derive some
simple facts about the microlocal defect measures in our setting. In Section 7, we prove our first main
theorem, Theorem 4.1 (cf. Theorem 1.3).

In the remaining sections, we prove our other main theorem, Theorem 4.2 (cf. Theorem 1.2). Section 8
gives some preliminary observations. In Section 9, we derive the main energy identities (cf. (1.22)–(1.26))
which will be used to derive the transport equation of the microlocal defect measures. In Section 10, we
first handle the easier terms in deriving the transport equation. In the next two sections we handle terms for
which we need trilinear compensated compactness : terms requiring elliptic-wave compensated compactness
will be treated in Section 11 ; and terms requiring three-waves compensated compactness will be treated
in Section 12. The proof is finally concluded in Section 13.

Acknowledgements. C. Huneau is supported by the ANR-16-CE40-0012-01. J. Luk is supported by a
Terman fellowship, a Sloan fellowship and the NSF grant DMS-1709458.

2. Setup and preliminaries

2.1. U(1) symmetry. For the remainder of the paper, fix a T > 0 and take as our ambient (3 + 1)-
dimensional manifold (4)M =M× R, where M = (0, T )× R2. Introduce coordinates (t, x1, x2) on M and
(t, x1, x2, x3) on (4)M in the obvious manner.

Consider a Lorentzian metric (4)g on (4)M with a U(1) symmetry, i.e. (4)g takes the form

(4)g = e−2ψg + e2ψ(dx3 + Aαdxα)2, (2.1)

where g is a Lorentzian metric on M, ψ is a real-valued function on M and Aα is a real-valued 1-form on
M.

6. Note however that the convergence we obtained was slightly weaker than (1.2) ; see [9] for precise convergence rates.
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Under these assumptions, it is well known that the Einstein vacuum equations for ((4)M, (4)g) reduces
to the following (2 + 1)-dimensional Einstein–wave map system for (M, g, ψ, ω) (see for instance [3]), �gψ + 1

2e
−4ψg−1(dω,dω) = 0,

�gω − 4g−1(dω,dψ) = 0,
Ricαβ(g) = 2∂αψ∂βψ + 1

2e
−4ψ∂αω∂βω,

(2.2)

where ω is a real-valued function which relates to Aα via the relation

(dA)αβ = ∂αAβ − ∂βAα =
1

2
e−4ψ(g−1)λδ ∈αβλ ∂δω, (2.3)

where ∈αβλ denotes the volume form corresponding to g.

2.2. Elliptic gauge. We will work in a particular elliptic gauge for the (2 + 1)-dimensional metric g onM
(cf. (2.1)). More precisely, we will assume that g takes the form

g = −N2dt2 + e2γδij(dx
i + βidt)(dxj + βjdt). (2.4)

such that the following relation is satisfied

∂tγ − βi∂iγ −
1

2
∂iβ

i = 0, (2.5)

where in (2.4) and (2.5) (and in the remainder of the paper), repeated lower case Latin indices are summed
over i, j = 1, 2.

We remark that the condition (2.5) ensures that the constant-t hypersurfaces have zero mean curvature
and the condition (2.4) ensures that the metric on a constant-t hypersurface induced by g is conformal to
the flat metric.

Assuming that a metric g on M obeys (2.4) and (2.5), the metric components N , γ and βi satisfy the
following elliptic equations ; see [9, Appendix B] :

δik∂kHij = −e
2γ

N
Ric0j , (2.6)

∆γ = −e
2γ

N2
G00 −

1

2
e−2γ |H|2, (2.7)

∆N = Ne−2γ |H|2 − 1

2
e2γNR+

e2γ

N
G00, (2.8)

(Lβ)ij = 2Ne−2γHij , (2.9)

where e0 = ∂t − βi∂i, Ricαβ is the Ricci tensor, R is the scalar curvature, Gαβ = Ricαβ − 1
2Rgαβ is the

Einstein tensor, and L is the conformal Killing operator given by

(Lβ)ij := δj`∂iβ
` + δi`∂jβ

` − δij∂kβk. (2.10)

Moreover, assuming (2.4) and (2.5), the spatial components of the Ricci tensor is given by (see [9, Proposi-
tion B2])

Ricij =δij

(
−∆γ − 1

2N
∆N

)
− 1

N
(∂t − βk∂k)Hij − 2e−2γHi

`Hj` (2.11)

+
1

N

(
∂jβ

kHki + ∂iβ
kHkj

)
− 1

N

(
∂i∂jN −

1

2
δij∆N −

(
δki ∂jγ + δkj ∂iγ − δijδ`k∂`γ

)
∂kN

)
.

In the particular case where the vacuum equations (2.2) are satisfied, (2.6)–(2.8) take the following form :

δik∂kHij = −e
2γ

N

(
2(e0ψ)(∂jψ) +

1

2
e−4ψ(e0ω)(∂jω)

)
, (2.12)

∆γ = −(|∇ψ|2 +
1

4
e−4ψ|∇ω|2)− e2γ

N2
((e0ψ)2 +

1

4
e−4ψ(e0ω)2)− 1

2
e−2γ |H|2, (2.13)

∆N = Ne−2γ |H|2 +
e2γ

N
(2(e0ψ)2 +

1

2
e−4ψ(e0ω)2). (2.14)

Combining (2.9) and (2.12), we also obtain the following second order elliptic equation for βj when (2.2)
are satisfied

∆βj = δikδj`∂k
(
log(Ne−2γ)

)
(Lβ)i` − 4δij(e0φ)(∂iφ) (2.15)
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Moreover, (2.11) takes the following form when (2.2) are satisfied :

2∂iψ∂jψ +
1

2
e−4ψ∂iω∂jω

= δij

(
−∆γ − 1

2N
∆N

)
− 1

N
(∂t − βk∂k)Hij − 2e−2γHi

`Hj`

+
1

N

(
∂jβ

kHki + ∂iβ
kHkj

)
− 1

N

(
∂i∂jN −

1

2
δij∆N −

(
δki ∂jγ + δkj ∂iγ − δijδ`k∂`γ

)
∂kN

)
.

(2.16)

2.3. Measure solutions to the Einstein–massless Vlasov system.

Definition 2.1 (Measure solutions to Vlasov equation). Let (M, g) be a C1 Lorentzian manifold. We say
that a non-negative finite Radon measure dµ on T ∗M with

∫
T∗M |ξ|

2 dµ < +∞ solves the massless Vlasov
equation if the following two conditions both hold :

(1) dµ is supported on the zero mass shell {(x, ξ) ∈ T ∗M : (g−1)αβξαξβ = 0}.
(2) For every function a(x, ξ) ∈ C∞c (T ∗M\ {0}), it holds that∫

T∗M\{0}
{(g−1)αβξαξβ , a}dµ

:= −
∫
T∗M\{0}

((g−1)αβξβ∂xαa−
1

2
(∂µg

−1)αβξαξβ∂ξµa) dµ = 0.

(2.17)

Definition 2.1 is indeed a generalization of the “usual” Vlasov equation, where dµ is absolutely continuous
with respect to the natural measure on the zero mass shell. More precisely,

Proposition 2.2. Let (x0, x1, . . . , xn) be a system of local coordinates on U ⊂ M. Introduce a local coor-
dinate system (x̄0, x̄1, . . . , x̄n, ξ̄1, . . . , ξ̄n) := (x0, x1, . . . , xn, ξ1, . . . , ξn) on the zero mass shell restricted to U
(which is a (2n+ 1)-dimensional sub-manifold of the cotangent bundle). Here, and in the proof, we use the
bar in ∂x̄α , etc. to indicate that the derivative is to be understood as the coordinate derivative with respect
to the coordinate system on the zero mass shell. On the zero mass shell, ξ0 will be understood as a function
of (x0, x1, . . . , xn, ξ1, . . . , ξn) defined implicitly by (g−1)αβξαξβ = 0.

Suppose f : {(x, ξ) ∈ T ∗M : (g−1)αβξαξβ = 0} → [0,+∞) is a C1 function 7 satisfying on U the equation

(g−1)αβξα∂x̄βf −
1

2
∂x̄i(g

−1)αβξαξβ∂ξ̄if = 0. (2.18)

Then, for dµ := f dx0 dx1 ··· dxn dξ1 ··· dξn
(g−1)α0ξα

, (2.17) holds for all a ∈ C∞c (T ∗U \ {0}).

Démonstration. We first compute the transformation 8

∂x̄α = ∂xα −
1

2

∂xα(g−1)βνξβξν
(g−1)0µξµ

∂ξ0 , ∂ξ̄i = ∂ξi −
(g−1)iβξβ
(g−1)0µξµ

∂ξ0 . (2.19)

It follows that

(g−1)αβξβ∂xα −
1

2
(∂µg

−1)αβξαξβ∂ξµ = (g−1)αβξα∂x̄β −
1

2
∂x̄i(g

−1)αβξαξβ∂ξ̄i .

Therefore, the LHS of (2.17) in the coordinate system we introduced reads∫
Rn

∫
U

[(g−1)αβξα∂x̄βa−
1

2
∂x̄i(g

−1)αβξαξβ∂ξ̄ia] f
dx0 dx1 · · · dxn dξ1 · · · dξn

(g−1)µ0ξµ
. (2.20)

Now a direct computation using (2.19) shows that

∂x̄β [
(g−1)αβξα
(g−1)µ0ξµ

]− 1

2
∂ξ̄i [

∂x̄i(g
−1)αβξαξβ

(g−1)µ0ξµ
] = 0.

Therefore, integrating by parts in (2.20) and using (2.18), we obtain that (2.20) = 0, as desired. �

Definition 2.3 (Measure solutions to the Einstein–massless Vlasov system). Let (M, g) be a C2 Lorentzian
manifold and dµ be a non-negative finite Radon measure on T ∗M. We say that (M, g,dµ) is a measure
solution to the Einstein–massless Vlasov system if the following both hold :

7. Here, C1 is to be understood with respect to the differential structure on the zero mass shell.

8. Here, Greek indices run through 0, 1, . . . , n and Latin indices run through 1, . . . , n.
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(1) For every smooth and compactly supported vector field Y ,∫
M

Ric(Y, Y ) dVolg =

∫
T∗M
〈ξ, Y 〉2 dµ.

(2) dµ is a measure solution to the massless Vlasov system in the sense of Definition 2.1.

2.4. Radially-averaged measure solutions to the Einstein–massless Vlasov system. It will be
convenient for us to define a notion of radially-averaged measure solution to the Einstein–massless Vlasov
system. Strictly speaking, this is related but is a distinct notion from that of a measure solution in De-
finition 2.3. It is however easy to see that any measure solution in the sense of Definition 2.3 naturally
induces a radially-averaged measure solution. Conversely, given a radially-averaged measure solution, one
can construct a measure solution in the sense of Definition 2.3 ; see Lemma 2.5. One reason for introducing
this notion is that this is the natural class of solutions that we construct using the microlocal defect measure.

Before we proceed to the definition of a radially-averaged measure solution, let us first define the cosphere
bundle

S∗M := ∪x∈MS∗xM := ∪x∈M
(
(T ∗xM\ {0})/∼

)
,

where we have quotiented out by the equivalence relation ξ ∼ η if ξ = λη for some λ > 0.
A continuous function on S∗M can be naturally identified with a continuous function on T ∗M which is

homogeneous of order 0 in ξ. Therefore a Radon measure on S∗M naturally acts on continuous function on
T ∗M which is homogeneous of order 0 in ξ.

We are now ready to define radially-averaged measure solutions to the Einstein–massless Vlasov system :

Definition 2.4 (Radially-averaged measure solutions to the Einstein–massless Vlasov system). Let (M, g)
be a C2 Lorentzian manifold and dν be a non-negative finite Radon measure on S∗M. We say that (M, g,dν)
is a radially-averaged measure solution to the Einstein–massless Vlasov system if the following both hold :

(1) For every smooth and compactly supported vector field Y ,∫
M

Ric(Y, Y ) dVolg =

∫
S∗M
〈ξ, Y 〉2 dν

|ξ|2
,

where |ξ|2 =
∑n
α=0 ξ

2
α.

(2) dν is supported on the zero mass shell in the sense that for all f ∈ Cc(M),∫
S∗M

f(x)(g−1)αβξαξβ
dν

|ξ|2
= 0.

(3) For any C1 function ã : T ∗M→ R which is homogeneous of degree 1 in ξ,∫
S∗M

((g−1)αβξβ∂xα ã−
1

2
(∂µg

−1)αβξαξβ∂ξµ ã)
dν

|ξ|2
= 0. (2.21)

The relation between a measure solution to the Einstein–massless Vlasov system (Definition 2.3) and a
radially-averaged measure solution to the Einstein–massless Vlasov system (Definition 2.4) is clarified in
the following lemma :

Lemma 2.5. Given a measure solution (M, g,dµ) to the Einstein–massless Vlasov system, there exists
a radially-averaged measure solution (M, g, dν) to the Einstein–massless Vlasov system (with the same
(M, g)). This is also true conversely if (M, g) is globally hyperbolic.

Démonstration. Forward direction. This is the easier direction, and can in some sense be viewed as taking
average in the radial direction in ξ. More precisely, given ϕ ∈ C0(S∗M) (thought of as a continuous function
homogeneous of order 0 in v), define a map I : C0(S∗M)→ R by

I(ϕ) :=

∫
T∗M

ϕ |ξ|2dµ.

Since dµ is non-negative, I is a non-negative map. By the Riesz–Markov representation theorem, it follows
that there exists non-negative dν such that

I(ϕ) =

∫
S∗M

ϕdν.

Since |ξ|2dµ is finite (by definition), it follows that dν is finite. The Einstein equation also follows by
definition.
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Converse direction. This is harder and there is some choice available in the construction.
Given a globally hyperbolic (M, g), pick a Cauchy hypersurface Σ0 and define the set 9 (with two connec-

ted components)

S := {(x, ξ) ∈ T ∗M : x ∈ Σ0, |ξ|2 = 1, g−1(x)(ξ, ξ) = 0}.
Define now the set S as the image of S under the geodesic flow. Note that S is a co-dimensional 2

submanifold of T ∗M\ {0}. Moreover, the vector field (g−1)αβξβ∂xα − 1
2 (∂µg

−1)αβξαξβ∂ξµ is by definition
tangential to S.

Given ϕ ∈ C0(T ∗M), define ϕ∗ ∈ C0(S∗M) as the function such that ϕ∗ �S= ϕ �S which is homogeneous
of order 0 in ξ. Define a map J : C0(T ∗M)→ R by

J(ϕ) :=

∫
S∗M

ϕ∗ dν.

This is non-negative by the non-negativity of dν. Hence, by the Riesz–Markov representation theorem, it
follows that there exists non-negative dµ such that

J(ϕ) =

∫
T∗M

ϕ |ξ|2dµ.

Note that |ξ|2dµ is finite since dν is finite. The Einstein equation also follows by definition.
To see that dµ is supported on the zero mass shell, it suffices to note that by definition, S, on which by

definition dµ is supported, is a subset of the zero mass shell by construction.
Finally we show that (2.17) holds. Take a(x, ξ) ∈ C∞c (T ∗M\ {0}). Define ã so that ã �S= a but such

that ã is homogeneous of order 1. Therefore, using (2.21), we know that (2.17) holds with ã in the place of
a. However, since dµ is supported on S (by construction), it follows that in fact (2.17) holds for a. �

Remark 2.6. (dν can be chosen to be even) In the “forward” direction of the above proof, we could have
instead defined

I(ϕ) :=

∫
T∗M

1

2
(ϕ(ξ) + ϕ(−ξ)) |ξ|2dµ(ξ),

so that I is even, i.e. I(ϕ) = 0 for all odd function ϕ. Consequently, dν is also even. In fact, the measure
solution to the Vlasov equation that we will eventually construct is even.

2.5. Restricted Einstein–massless Vlasov system in U(1) symmetry. The final notion that we in-
troduce in this section is that of the restricted Einstein–massless Vlasov system in U(1) symmetry. By
“restricted”, we mean that we are not considering general (3 + 1)-dimensional solutions to the Einstein–
massless Vlasov system for which the metric admits a U(1) symmetry, but instead we require that massless
Vlasov measure to be supported in the cotangent bundle corresponding to the (2 + 1)-dimensional (instead
of the (3 + 1)-dimensional) manifold.

Since we have already introduced and contrast both measure solutions and radially-averaged measure
solutions for the Einstein–massless Vlasov system (cf. Sections 2.3 and 2.4), we will directly define the notion
of radially-averaged measure solutions for the restricted Einstein–massless Vlasov system in U(1) symmetry.

Definition 2.7 (Radially-averaged measure solutions for the restricted Einstein–massless Vlasov system in
U(1) symmetry). Let ((4)M,(4) g) be a (4+1)-dimensional C2 Lorentzian manifold which is U(1) symmetric

as in (2.1), i.e. the metric takes the form

(4)g = e−2ψg + e2ψ(dx3 + Aαdxα)2,

for g, ψ, A independent of x3. Let dν be a non-negative finite Radon measure on S∗M.
We say that ((4)M,(4) g,dν) is a radially-averaged measure solution for the restricted Einstein–massless

Vlasov system in U(1) symmetry if

(1) the following equations are satisfied :
�gψ + 1

2e
−4ψg−1(dω,dω) = 0,

�gω − 4g−1(dω,dψ) = 0,∫
MRic(g)(Y, Y ) dVolg =

∫
M[2(Y ψ)2 + 1

2e
−4ψ(Y ω)2] dVolg +

∫
S∗M〈ξ, Y 〉

2 dν
|ξ|2 ,

(2.22)

for every C∞c vector field Y , where ω relates to Aα via (2.3) ;

(2) (2) and (3) in Definition 2.4 both hold.

9. We note explicitly that |ξ|2 = 1 is quite arbitrary. The same will work for any smooth choice of an (n− 2)-sphere.



TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 13

2.6. Null dust and massless Vlasov. In this subsection, we show that a solution to the null dust system
is a measure solution to the massless Vlasov system. In particular, this shows that solutions to Einstein–null
dust system considered in [10] can indeed be viewed within the framework of this paper.

For simplicity, let us just consider the case where FA is compactly supported.

Lemma 2.8. Let (M, g) be a C2 Lorentzian manifold. Suppose for a finite set A, {(FA, uA)}A∈A is a
compactly supported solution to the null dust system on (M, g), i.e. FA :M→ R is a compactly supported
C1 function and uA :M→ R is a C2 function satisfying

(1) g−1(duA,duA) = 0, duA 6= 0 for all A ∈ A,

(2) 2(g−1)αβ(∂βuA)∂αFA + (�guA)FA = 0 for all A ∈ A.

Then the measure dµ on T ∗M defined by

dµ :=
∑
A∈A

F 2
Aδv=duA

dVolg (2.23)

is a measure solution to the massless Vlasov equation on (M, g) (cf. Definition 2.1).

Démonstration. That dµ is supported on the zero mass shell follows immediately from (2.23) and g−1(duA, duA) =
0. It remains therefore to verify the transport equation in Definition 2.1.

For this we need a preliminary calculation. First, since (g−1)αβ∂αu∂βu = 0, we have

(∂σ(g−1)αβ)∂αu∂βu+ 2(g−1)αβ(∂βu)(∂α∂σu) = 0.

Therefore, given any a ∈ C∞c (T ∗M), viewing a(x, du(x)) as a function on M (and emphasizing this by
calling the coordinates x̄), we have

(g−1)αβ(∂βu)∂x̄α(a(x̄, du(x̄)))

= (g−1)αβ(∂βu)∂xαa+ (g−1)αβ(∂βu)(∂ξσa)(∂α∂σu)

= (g−1)αβ(∂βu)∂xαa−
1

2
(∂σ(g−1)αβ)(∂αu)(∂βu)(∂ξσa).

(2.24)

We now check that the transport equation in Definition 2.1 using (2.24) and integrating by parts :∫
T∗M

((g−1)αβξβ∂xαa−
1

2
(∂σ(g−1)αβ)ξαξβ(∂ξσa)) dµ

=
∑
A∈A

∫
M

((g−1)αβ(∂βuA)∂xαa−
1

2
(∂σ(g−1)αβ)(∂αuA)(∂βuA)(∂ξσa))F 2

A dVolg

=
∑
A∈A

∫
M

((g−1)αβ(x̄)(∂βuA)(x̄)∂x̄α(a(x̄, duA(x̄))))F 2
A(x̄) dVolg(x̄)

= −
∑
A∈A

∫
M

(2(g−1)αβ(∂βuA)∂αFA + (�guA)FA)(x̄)FA(x̄)a(x̄, duA(x̄)) dVolg(x̄) = 0,

where in the last line we used the equation satisfied by FA. This concludes the proof. �

3. Notations and function spaces

Ambient space and coordinates. In this paper, we will be working on the ambient manifold M :=
(0, T ) × R2 (although often we only restrict to subsets Ω ⊂ Ω′ ⊂ Ω′′, cf. Section 4.1) ; see Section 4. The
space will be equipped with a system of coordinates (t, x1, x2). We often write x = (t, x1, x2). We will use
xi with the lower case Latin index i, j = 1, 2. We will also sometimes denote xt = t.

Let T ∗M be the cotangent bundle. The standard coordinates on T ∗M will be given by (x, ξ) =
(xt, x1, x2, ξt, ξ1, ξ2).

When there is no risk of confusion, we write ∂i = ∂xi .
Indices. We will use the following conventions :
— Lower case Latin indices run through the spatial indices 1, 2, while lower case Greek indices run

through all t, 1, 2.
— Repeat indices are always summed over : where lower case Latin indices sum over the spatial indices

1, 2 and lower case Greek indices sum over all indices t, 1, 2.
Metrics.
— gn and g0 denote the metrics introduced in Section 4, which both take the form (2.4) and (2.5).



14 CÉCILE HUNEAU AND JONATHAN LUK

— We denote by gn ∈ {logNn, β
i
n, γn} and g0 ∈ {logN0, β

i
0, γ0} the metric coefficients of gn and g0

respectively.
— δij (and δij) denotes the Euclidean metric.
Norms for tensors and derivatives.
— Given a rank-r covariant tensor ηµ1···µr , define 10

|η|2 :=
∑

µ1,...,µr=t,1,2

|ηµ1···µr |2, |ηi1···ir |2 :=
∑

j1,...,jr=1,2

|ηj1···jr |2.

— This notation is in particular used for (x, ξ) ∈ T ∗M where we denote

|ξ|2 :=
∑

µ=t,1,2

|ξµ|2, |ξi|2 :=
∑
j=1,2

|ξj |2.

— Likewise, given a scalar function f : R2+1 → R, we define

|∂f |2 := |∂tf |2 +

2∑
i=1

|∂xif |2, |∂if |2 =

2∑
j=1

|∂xjf |2.

— A similar notation will be used for higher coordinate derivatives (even though they are not tensors),
i.e.

|∂kf |2 :=
∑

µ1,...,µk=t,1,2

|∂kµ1,...,µk
f |2.

Constants. Conventions for constants will be discussed in the beginning of Section 8.
Differential operators.
— ∆ denotes the spatial Laplacian on R2 with respect to the spatial Euclidean metric, i.e.

∆u =

2∑
i=1

∂2
i u.

— �g0 and �gn denote the Laplace–Beltrami operators with respect to g0 and gn respectively. (see also
(9.1) and (9.2)).

— �g0,A and �gn,A are operators to be defined respectively in (9.3) and (9.4).
— (e0)0 and (e0)n denote the vector fields (e0)0 = ∂t−βi0∂xi and (e0)n = ∂t−βin∂xi respectively (where

βn and β0 will be introduced in (2.4)).
— L denotes the Euclidean conformal Killing operator acting on vectors on R2 to give a symmetric

traceless (with respect to the Euclidean metric δ) covariant 2-tensor, i.e.,

(Lη)ij := δj`∂iη
` + δi`∂jη

` − δij∂kηk.
Fourier transforms. We will denote spacetime Fourier transform by ̂ and spatial Fourier transform

by Fspa. We will take the following normalizations :

f̂(ξ) :=
1

(2π)
3
2

∫
R2+1

e−ix
µξµf(x) dx,

Fspa(f)(t, ξk) :=
1

2π

∫
R2

e−ix
kξkf(t, xj) dx1 dx2.

Fourier multipliers will be denoted as follows for m : R2+1 → R :

(m(
1

i
∇)f)(x) :=

1

(2π)3

∫
R2+1

ei(x
µ−yµ)ξµm(ξ)f(y) dy.

Functions spaces. Unless otherwise stated, all function spaces will be understood on R2+1. Define the
following norms for a scalar function f : R2+1 → R :

‖f‖Lp := (

∫
R2+1

|f |p(x) dx)
1
p , p ∈ [1,+∞), ‖f‖L∞ := esssupx∈R2+1 |f |(x),

‖f‖Wm,p :=
∑
|α|≤m

‖∂αf‖Lp , m ∈ N ∪ {0}, p ∈ [1,+∞).

10. The second definition is a slight abuse of notation, by which we mean unless otherwise stated, we will also implicitly take

the sum. Similarly below.
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Define also the corresponding function spaces in the obvious way. We will denote Hm := Wm,2. Define also
the norm

‖f‖H−1 := (

∫
R2+1

(1 + |ξ|2)−1|f̂ |2(ξ) dξ)
1
2

and the corresponding function space.
We will also use the above function spaces for tensors on R2+1, where the norms in the case of tensors

are understood componentwise (with respect to the (t, x1, x2) coordinates).

4. Main results

Let M := (0, T ) × R2. Suppose {(ψn, ωn, gn)}+∞n=1 is a sequence such that ψn, ωn are C4 real-valued
function on M and gn is a C4 Lorentzian metric on M satisfying the following four conditions :

(1) (Solving the equations) (ψn, ωn, gn) satisfies (2.2) for all n ∈ N.

(2) (Gauge condition) The metric gn is put into a form satisfying (2.4) and (2.5) for all n ∈ N.

(3) (Local uniform convergence) There exists a limit (ψ0, ω0, g0) which is smooth and g0 satisfies (2.4)
and (2.5). Assume that the following convergences hold :

(a) ψn → ψ0, ωn → ω0 uniformly on (spacetime) compact sets.

(b) For g ∈ {logN, βi, γ} (being the metric components ; cf. (2.4)), gn → g0 uniformly on compact
sets.

(4) (Weak convergence of the derivatives) Let p0 ∈ ( 8
3 ,+∞). With (ψ0, ω0, g0) as above, the following

convergences hold :

(a) ∂ψn ⇀ ∂ψ0, ∂ωn ⇀ ∂ω0 weakly in Lp0loc.

(b) For g ∈ {logN, βi, γ}, ∂gn ⇀ ∂g0 weakly in Lp0loc.

Theorem 4.1. Given {(ψn, ωn, gn)}+∞n=1 and (ψ0, ω0, g0) such that the conditions (1)–(4) above hold. Then
there exists a non-negative Radon measure dν on S∗M such that (M, ψ0, ω0, g0,dν) satisfy the following
conditions :

(1) dν is supported on {(x, ξ) ∈ S∗M : g−1
0 (ξ, ξ) = 0} ;

(2) the following system of equations hold :
�g0ψ0 + 1

2e
−4ψ0g−1

0 (dω0,dω0) = 0,
�g0ω0 − 4g−1

0 (dω0,dψ0) = 0,∫
MRic(g0)(Y, Y ) dVolg0 =

∫
M[2(Y ψ0)2 + 1

2e
−4ψ0(Y ω0)2] dVolg0 +

∫
S∗M〈ξ, Y 〉

2 dν
|ξ|2 ,

(4.1)

for every C∞c vector field Y .

In particular, the effective stress-energy-momentum tensor Tµν is traceless, non-negative and obeys the
dominant energy condition.

The above theorem has the advantage that the assumptions are very weak. On the other hand, we also do
not get the full Burnett’s conjecture in that we do not show that the limit is isometric to a solution to the
Einstein–massless Vlasov system. In order to obtain the stronger result, we impose the following additional
assumption :

(5) (Estimates) For every compact subset K ⊂M, there exists a sequence {λn}∞n=1 ⊂ (0, 1] (depending
on K) with limn→+∞ λn = 0 such that for g ∈ {logN, βi, γ},

sup
n
λ−1
n ‖(ψn − ψ0, ωn − ω0, gn − g0)‖L∞(K) < +∞, (4.2)

sup
n
‖(∂ψn, ∂ωn, ∂gn)‖L∞(K) < +∞. (4.3)

sup
n
λk−1
n ‖(∂kψn, ∂kωn, ∂kgn)‖L∞(K) < +∞, for k = 2, 3, 4. (4.4)

Theorem 4.2. Given {(ψn, ωn, gn)}+∞n=1 and (ψ0, ω0, g0) such that the conditions (1)–(5) above hold. Then
there exists a non-negative Radon measure dν on S∗M such that (M, ψ0, ω0, g0,dν) is a radially-averaged
measure solution to the restricted Einstein–massless Vlasov equations in U(1) symmetry in the sense of
Definition 2.7.
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Remark 4.3. Even though it is most convenient for the proof to formulate Theorem 4.2 so that the Einstein
part of the system is satisfied in the weak sense (see (2.22)), it follows a posteriori that the Einstein part of
the system is also satisfied classically for an appropriately defined stress-energy-momentum tensor. (Indeed
since we have assumed the limiting metric g0 to be smooth, the limiting stress-energy-momentum tensor
must agree with a smooth tensor almost everywhere.)

This can be formulated as follows. Let π : S∗M → M be the natural projection map. It follows from
Theorem 4.2 that after defining

Tαβ(p) := lim inf
r→0

3

4πr3

∫
π−1(B(p,r))

ξαξβ
|ξ|2

dν

(where B(p, r) is the coordinate ball), Tαβ is continuous and that the Einstein equation

Ricαβ(g) = 2∂αψ∂βψ +
1

2
e−4ψ∂αω∂βω + Tαβ

holds classically.

4.1. Reduction to compact sets. It will be technically convenient to reduce our theorems to correspon-
ding cut-off versions.

Fix an open and precompact Ω ⊂ M. Let Ω′ ⊂ M be an open and precompact set containing Ω. Let χ
be a non-negative function in C∞c such that

χ = 1 on Ω, supp(χ) ⊂ Ω′. (4.5)

We will show that (cf. Section 6.1 below) for every such Ω, Ω′ and χ, there exists a non-negative Radon
measure dν on S∗R2+1 such that for some subsequence nk, the following holds for any 0-th order pseudo-
differential operator A with principal symbol a (cf. Section 5) :

lim
k→+∞

2

∫
R2+1

∂α(χ(ψnk − ψ0))[A∂β(χ(ψnk − ψ0))] dVolgnk

+ lim
k→+∞

1

2

∫
R2+1

e−4ψ0∂α(χ(ωnk − ω0))[A∂β(χ(ωnk − ω0))] dVolgnk =

∫
S∗R2+1

aξαξβ
dν

|ξ|2
.

(4.6)

We now claim that in order to prove Theorems 4.1 and 4.2, it suffices to show that for every Ω, Ω′ and
χ as above, (Ω, ψ0, ω0, g0,dν �Ω) verifies the conclusion of Theorems 4.1 and 4.2. More precisely,

Proposition 4.4. Let (Ω, ψ0, ω0, g0,dν) be as defined above.

(1) Suppose that under the assumptions of Theorem 4.1, for every Ω, Ω′ and χ above, dν is supported
in {(x, ξ) ∈ S∗M : g−1

0 (ξ, ξ) = 0} and (4.1) holds in Ω with any Y ∈ C∞c (Ω). Then Theorem 4.1
holds.

(2) Suppose that under the assumptions of Theorem 4.2, for every Ω, Ω′ and χ above, (Ω, ψ0, ω0, g0,dν �Ω
) is a radially-averaged measure solution to the restricted Einstein–massless Vlasov equations in U(1)
symmetry in the sense of Definition 2.7. Then Theorem 4.2 holds.

Démonstration. We will define a Radon measure on all of M under the assumptions.
Let {Ωi}+∞i=1 be an exhaustion of M, i.e. Ωi ⊂ Ωi+1 and ∪+∞

i=1 Ωi = M. Define χi by (4.5) with Ω = Ωi
and Ω′ = Ωi+1.

For each i ∈ N, define dνi as a Radon measure on Ωi as in the assumption of the proposition. By
considering a diagonal subsequence, we can assume without loss of generality that there is a fixed subsequence
nk such that the following holds for every i ∈ N :

lim
k→+∞

2

∫
R2+1

∂α(χi(ψnk − ψ0))[A∂β(χi(ψnk − ψ0))] dVolgnk

+ lim
k→+∞

1

2

∫
R2+1

e−4ψ0∂α(χi(ωnk − ω0))[A∂β(χi(ωnk − ω0))] dVolgnk =

∫
S∗R2+1

aξαξβ
dνi
|ξ|2

,

Define dν∞ as follows. Let ϕ ∈ Cc(S∗M). Then there exists Ωi such that suppϕ ⊂ S∗Ωi. Define

dν∞(ϕ) := dνi(ϕ).

Note that this is well-defined (and independent of the particular choice of i).
In each of the cases (1) and (2), it is then easy to verify that (M, ψ0, ω0, g0,dν∞) obeys the desired

conclusion. �
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In view of the above proposition, from now on we fix Ω, Ω′ and χ as above. It will suffice to prove
that the conditions in Proposition 4.4 hold.

It will be convenient to fix also two open, precompact sets Ω′′ ⊂ Ω′′′ ⊂ M such that Ω′ ⊂ Ω′′ and
Ω′′ ⊂ Ω′′′. Define

χ̃ = 1 on Ω′′, supp(χ̃) ⊂ Ω′′′. (4.7)

5. Preliminaries on pseudo-differential operators and microlocal defect measures

In this section, we recall useful notions on pseudo-differential operators and microlocal defect measures.
Everything in this section is standard and is mainly included to fix notations.

For the remainder of this section, fix k ∈ N (which will be taken as 3 = 2 + 1 in later sections). Denote
by T ∗Rk the cotangent bundle of Rk with coordinates (x, ξ) ∈ Rk × Rk.

Definition 5.1. (1) For m ∈ Z, define the symbol class

Sm := {a : T ∗Rk → C : a ∈ C∞, ∀α, β, ∃Cα,β > 0, |∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|}.

(2) Given a symbol a ∈ Sm, define the operator Op(a) : S(Rk)→ S(Rk) by

(Op(a)u)(x) :=
1

(2π)k

∫
Rk

∫
Rk
ei(x−y)·ξa(x, ξ)u(y) dy dξ.

For A, a above, we say that A is a pseudo-differential operator of order m with symbol a. If moreover
a(x, ξ) = aprin(x, ξ)χ(ξ) + aerror, where aprin(x, λξ) = λma(x, ξ) for all λ > 0, χ(ξ) is a cutoff ≡ 1
for large |ξ| and ≡ 0 near 0, and aerror ∈ Sm−1, we say that aprin is the principal symbol 11 of A.

We record for convenience some standard facts.

Lemma 5.2. (1) ([14, Theorem 2, p.237]) Let a1 ∈ Sm1 , a2 ∈ Sm2 . Then ∃c ∈ Sm1+m2 such that
Op(a1) ◦Op(a2) = Op(c), where

c(x, ξ)− a1(x, ξ)a2(x, ξ) ∈ Sm1+m2−1.

(2) ([14, Theorem 2, p.237]) Let a1 ∈ Sm1 , a2 ∈ Sm2 . Then ∃c ∈ Sm1+m2−1 such that Op(a1)◦Op(a2)−
Op(a2) ◦Op(a1) = Op(c), where

c(x, ξ) + i{a1, a2} ∈ Sm1+m2−2, {a1, a2} := ∂ξµa1∂xµa2 − ∂xµa1∂ξµa2.

(3) ([14, Proposition, p.259]) Let a ∈ Sm. Then Op(a)∗ (the L2-adjoint of Op(a)) satisfies

Op(a)∗ −Op(a) ∈ Sm−1.

(4) (Calderón–Zygmund theorem [14, Proposition 5, p.251]) A pseudo-differential operator A of order
m extends to a bounded map Wn+m,p(Rk)→Wn,p(Rk), ∀n ∈ N ∪ {0}, ∀m ∈ Z, ∀p ∈ (1,+∞).

(5) (Rellich–Kondrachov theorem) A pseudo-differential operator A of order −1 extends to a compact

map : L2(Rk)→ L2
loc(Rk).

(6) (Calderón commutator theorem [14, Corollary, p.309]) Let u : Rn → R be a Lipschitz function for
which there exists M > 0 so that |u(x) − u(y)| ≤ M |x − y| for all x, y ∈ Rn. Let T be a pseudo-
differential operator of order 1. Then [T, u] ∈ B(L2(Rn), L2(Rn)), i.e. that it is a bounded linear
map on L2(Rn). In fact 12, for every f ∈ S(Rn),

‖T (uf)− u(Tf)‖L2(Rn) .M‖f‖L2(Rn), (5.1)

where the implicit constant depends only on T .

11. Remark that the principal symbol is uniquely determined by a pseudo-differential operator.
12. The precise statement in [14] only asserts that [T, u] ∈ B(L2(Rn), L2(Rn)) (without explicitly saying that the operator

norm is proportional to M). Nevertheless, (5.1) follows from the closed graph theorem. Let (Lip, ‖ · ‖Lip) be the Banach space
of equivalence classes of Lipschitz functions, where two functions are equivalent if they differ by a constant, and ‖u‖Lip :=

supx6=y
|u(x)−u(y)|
|x−y| . The corollary on p.309 in [14] implies that there is a map Φ : Lip → B(L2(Rn), L2(Rn)) given by

[u] 7→ [T, u]. By the closed graph theorem, in order to obtain (5.1), it suffices to show that if limj→+∞ ‖[uj ]‖Lip = 0 and

limj→+∞ ‖[T, uj ]− S‖B(L2(Rn),L2(Rn)) = 0 for some S ∈ B(L2(Rn), L2(Rn)), then S = 0. To show this, pick a representative

uj such that uj(0) = 0. In particular it follows that ‖|x|−1uj‖L∞ → 0 as j → +∞. Now for any ϕ ∈ L2(Rn), T (ujϕ) and

ujT (ϕ) both tend to 0 in the sense of distribution as j → +∞. Therefore, S = 0 as required.
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We now turn to the discussion of microlocal defect measures, following [6] (see also [15]). We first need
some preliminary definitions.

Let S∗Rk be the cosphere bundle given by S∗Rk := (T ∗Rk \ {0})/ ∼, where (x, ξ) ∼ (y, η) if and only
if x = y and ξ = λη for some λ > 0. From now on, we identify a function on S∗Rk with a function on
T ∗Rk \ {0} which is homogeneous of order 0 in ξ, i.e. a(x, λξ) = a(x, ξ), ∀λ > 0.

Definition 5.3. We say that dµ is a non-negative (N×N)-complex-matrix-valued Radon measure on S∗Rk
if dµ is a map dµ : Cc(S

∗Rk)→ CN×N

(1) obeying the estimate ‖dµ(ϕ)‖ ≤ CK‖ϕ‖C(K) for every compact set K ⊂ S∗Rk (for some CK > 0
depending on K), and

(2) satisfying dµ(ϕ) is a positive semi-definite Hermitian matrix whenever ϕ is a non-negative function.

Definition 5.4. Let dµ be a non-negative (N × N)-complex-matrix-valued Radon measure on S∗Rk and
/a : S∗Rk → CN×N be a continuous matrix-valued function on S∗Rk.

Define tr (/a(x, ξ) dµ) to be the (scalar-valued) Radon measure on S∗Rk given by

(tr (/a(x, ξ) dµ))(ϕ) := tr [/a(x, ξ) · (dµ(ϕ))].

Theorem 5.5 (Existence of microlocal defect measures, Theorem 1 13 in [6]). Suppose {un}+∞n=1 ∈ L2(Rk;CN )
be a bounded sequence such that un ⇀ 0 weakly in L2(Rk;CN ).

Then there exists a subsequence {unk}
+∞
k=1 and a non-negative (N×N)-complex-matrix-valued Radon mea-

sure dµ on S∗Rk such that for every CN×N -valued pseudo-differential operator /A of order 0 with principal
symbol /a ∈ Cc(S∗Rk;CN×N ),

lim
k→+∞

∫
Rk
〈 /Aunk , unk〉CN dx =

∫
S∗Rk

tr (/a(x, ξ) dµ).

The measure dµ in Theorem 5.5 is called a microlocal defect measure. Following [6], if the conclusion of
Theorem 5.5 holds for {un}+∞n=1 (without passing to a subsequence), we say that {un}+∞n=1 is a pure sequence.

Theorem 5.6 (Localization of microlocal defect measures, Corollary 2.2 in [6]). Let {un} be a pure sequence
of L2(Rk,CN ), of microlocal defect measure dµ. Let P be an m-th order differential operator with principal
symbol p =

∑
|α|=m aα(iξ)α for some smooth (N × N)-matrices aα. If {Pun}n=1 is relatively compact in

H−mloc (Rk,CN ), then
p dµ = 0.

6. Microlocal defect measures for ψ and ω

We begin to prove Theorem 4.1 by studying the properties of the microlocal defect measures. For the
remainder of this section, we work under the assumption of Theorem 4.1.

6.1. Existence of the microlocal defect measures. Consider now the sequence of functions χ(ψn−ψ0)
and χ(ωn−ω0) (cf. (4.5)). We are now in a setting to apply the existence theorem (Theorem 5.5) to obtain
microlocal defect measures.

Proposition 6.1 (Existence of microlocal defect measures). There exist Radon measures dσψαβ, dσωαβ and

dσcross
αβ on S∗R2+1 such that for any zeroth order (scalar) pseudo-differential operators {Aαβ}α,β=t,1,2 with

principal symbols {aαβ}α,β=t,1,2, the following holds up to a subsequence (which we do not relabel) :

lim
n→∞

∫
R2+1

∂α(χ(ψn − ψ0))Aαβ∂β(χ(ψn − ψ0)) dVolg0 =

∫
S∗R2+1

aαβ dσψαβ ,

lim
n→∞

∫
R2+1

∂α(χ(ωn − ω0))Aαβ∂β(χ(ωn − ω0)) dVolg0 =

∫
S∗R2+1

aαβ dσωαβ ,

lim
n→∞

∫
R2+1

∂α(χ(ψn − ψ0))Aαβ∂β(χ(ωn − ω0)) dVolg0 =

∫
S∗R2+1

aαβ dσcross
αβ ,

lim
n→∞

∫
R2+1

∂α(χ(ωn − ω0))Aαβ∂β(χ(ψn − ψ0)) dVolg0 =

∫
S∗R2+1

aαβ (dσcross)∗αβ ,

where ∗ denotes the Hermitian conjugate.

Moreover, dσψαβ and dσωαβ are non-negative in the sense of Definition 5.3.

13. Note that this is a specialization of the original theorem of Gérard. In the original paper, the domain is any open set in

Rk and un may take value in any separable Hilbert space, instead of CN .
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Démonstration. Applying Theorem 5.5 with

un =


∂t(χ(ψn − ψ0))
∂x1(χ(ψn − ψ0))
∂x2(χ(ψn − ψ0))
∂t(χ(ωn − ω0))
∂x1(χ(ωn − ω0))
∂x2(χ(ωn − ω0))

 ,

we obtain a non-negative (6 × 6)-complex-matrix-valued Radon measure dµ. Since dµ is Hermitian by
Theorem 5.5, dµ takes a block diagonal form as follows

dµ =

[
dσψ dσcross

(dσcross)∗ dσω

]
.

It is then easy to check that the components dσψαβ , dσωαβ and dσcross
αβ of the corresponding measures have

the properties as claimed. (Note that we have in particular used ∂α(χ(ψn − ψ0)) = ∂α(χ(ψn − ψ0)), etc. in
the expressions in the proposition.) �

Without loss of generality (by passing to a subsequence if necessary), we will assume from now on
that the sequence is pure.

6.2. First properties of the microlocal defect measures. In this subsection, we prove some properties
of the microlocal defect measures.

Proposition 6.2. dσcross
αβ is symmetric, i.e.

dσcross
αβ = dσcross

βα .

Démonstration. This amounts to

lim
n→+∞

∫
R2+1

∂α(χ(ψn − ψ0))Aαβ∂β(χ(ωn − ω0)) dVolg0

= lim
n→+∞

∫
R2+1

∂β(χ(ψn − ψ0))Aαβ∂α(χ(ωn − ω0)) dVolg0 .

This can be seen by noting that [Aαβ , ∂α] : L2 → L2
loc is compact (by Lemmas 5.2.2 and 5.2.5), integrating

by parts and using assumptions (3) and (4) of Theorem 4.1. �

Proposition 6.3 (Microlocal defect measures are effectively given by dνψ and dνω). There exist non-
negative Radon measures dνψ, dνω on S∗R2+1 such that

dσψαβ =
ξαξβ
|ξ|2

dνψ, dσωαβ =
ξαξβ
|ξ|2

dνω,

where |ξ|2 :=
∑2
µ=0 |ξµ|2.

Démonstration. We will focus on dνψ in the exposition. dνω can be treated similarly.

Step 1 : Defining an auxiliary measure dρψβ . Using the identity ∂α∂µψn = ∂µ∂αψn and Theorem 5.6, it
follows that for every β,

ξµ
|ξ|

dσψαβ =
ξα
|ξ|

dσψµβ .

This implies that

(1)
dσψαβ
ξα

(to be understood without summing repeated indices) is a well-defined Radon measure for

every β. (To see this, note that at each point in T ∗M\ {0}, some component ξα 6= 0.)

(2)
dσψαβ
ξα

=
dσψ
α′β
ξα′

for every α, α′.

With the above observations, we can thus define the measure dρψβ :=
|ξ|dσψαβ
ξα

.

Step 2 : Defining dνψ. Since dσψαβ is Hermitian (by Proposition 6.1), for dρψβ defined as in Step 1,

ξαdρψβ = ξβdρψα . (6.1)



20 CÉCILE HUNEAU AND JONATHAN LUK

Arguing as in Step 1 above, we know that
dρψα
ξα

is well-defined. We define

dνψ :=
|ξ|dρψα
ξα

.

Step 3 : Non-negativity of dνψ. Finally, using Proposition 6.1, one sees that dνψ is non-negative. �

We record the following result, which follows from Propositions 6.1, 6.3 and simple algebraic manipula-
tions.

Corollary 6.4. For dνψ, dνω as in Proposition 6.3, it holds that for every zeroth pseudo-differential operator
A with principal symbol a which is real, homogeneous of order 0, and supported in S∗Ω,∫

R2+1

∂α(χψn)(A(∂β(χψn))) dVolg0 →
∫
R2+1

∂α(χψ0)(A(∂β(χψ0))) dVolg0 +

∫
S∗R2+1

aξαξβ
dνψ

|ξ|2
, (6.2)∫

R2+1

∂α(χωn)(A(∂β(χωn))) dVolg0 →
∫
R2+1

∂α(χω0)(A(∂β(χω0))) dVolg0 +

∫
S∗R2+1

aξαξβ
dνω

|ξ|2
. (6.3)

Moreover,∫
R2+1

∂α(χψn)(A(∂β(χωn))) dVolg0 →
∫
R2+1

∂α(χψ0)(A(∂β(χω0))) dVolg0 +

∫
S∗R2+1

a dσcross
αβ , (6.4)

and∫
R2+1

∂α(χωn)(A(∂β(χψn))) dVolg0 →
∫
R2+1

∂α(χω0)(A(∂β(χψ0))) dVolg0 +

∫
S∗R2+1

a (dσcross)∗αβ . (6.5)

6.3. Microlocal defect measures are supported on the light cones. Our goal in this subsection is
to use Theorem 5.6 to show that the microlocal defect measures are supported on the light cones.

Lemma 6.5. �g0(χ(ψn − ψ0)) and �g0(χ(ωn − ω0)) admit the following decomposition :

�g0(χ(ψn − ψ0)) = ∂α(ξ(ψ)
n )α + η(ψ)

n , �g0(χ(ωn − ω0)) = ∂α(ξ(ω)
n )α + η(ω)

n ,

where ξ
(ψ)
n , ξ

(ω)
n are vector fields compactly supported 14 in Ω′ which converges to 0 in the L2 norm ; and η

(ψ)
n ,

η
(ω)
n are functions compactly supported in Ω′ which are uniformly bounded in L

p0
2 (for p0 as in assumption

(4) of Theorem 4.1).

Démonstration. We will prove the decomposition for �g0(χ(ψn − ψ0)) ; �g0(χ(ωn − ω0)) can be treated
similarly.

First we write
�g0(χ(ψn − ψ0)) = (�g0 −�gn)(χψn)︸ ︷︷ ︸

=:In

+�gn(χψn)︸ ︷︷ ︸
=:IIn

−�g0(χψ0)︸ ︷︷ ︸
=:IIIn

. (6.6)

Clearly each term is compactly supported in Ω′.
Term In can be computed further as follows :

In = ∂α(((g−1
0 )αβ − (g−1

n )αβ)∂β(χψn))︸ ︷︷ ︸
=:Ia,n

−(∂α((g−1
0 )αβ − (g−1

n )αβ))∂β(χψn)︸ ︷︷ ︸
=:Ib,n

+ (
1√

−det g0

∂α((g−1
0 )αβ

√
−det g0)− 1√

−det gn
∂α((g−1

n )αβ
√
−det gn))∂β(χψn)︸ ︷︷ ︸

=:Ic,n

.

Under the assumptions of Theorem 4.1, Ib,n and Ic,n are both uniformly bounded in L
p0
2 .

For term Ia,n, note that by assumptions (3) and (4) of Theorem 4.1 (and Hölder’s inequality), ((g−1
0 )αβ−

(g−1
n )αβ)∂β(χψn)→ 0 in the L2 norm.
For the term IIn in (6.6), we note that by (2.2), assumptions (3), (4) of Theorem 4.1 and Hölder’s

inequality, it follows that IIn is uniformly bounded in L
p0
2 .

Finally, the term IIIn in (6.6) is smooth and independent of n. It is therefore uniformly bounded in L
p0
2 .

Combining the above results and letting

(ξ(ψ)
n )α := ((g−1

0 )αβ − (g−1
n )αβ)∂β(χψn), η(ψ)

n := �g0(χ(ψn − ψ0))− ∂α(ξ(ψ)
n )α,

14. Recall the definition of Ω′ in Section 4.1.
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we obtain the desired result. �

Proposition 6.6 (Support of microlocal defect measures). Let dνψ, dνω be as in Proposition 6.3. Then

(g−1
0 )αβξαξβ
|ξ|2

dνψ = 0 =
(g−1

0 )αβξαξβ
|ξ|2

dνω.

Démonstration. We will only prove the equality for dνψ. The equality for dνω can be treated in the same
manner.

Step 1 : Compactness of �g0(χ(ψn−ψ0)) in H−1
loc . We use the decomposition �g0(χ(ψn−ψ0)) = ∂α(ξ

(ψ)
n )α+

η
(ψ)
n given by Lemma 6.5.

Since (ξ
(ψ)
n )α → 0 in the L2 norm, ∂α(ξ

(ψ)
n )α converges to 0 in H−1

loc (and hence is compact).

On the other hand, we know that η
(ψ)
n is uniformly bounded in L

p0
2 , where p0 ∈ ( 8

3 ,+∞) (cf. assumption

(4)). In (2 + 1) dimensions, since p0
2 > 4

3 , L
p0
2 embeds compactly into H−1

loc . It follows that {η(ψ)
n }+∞n=1 is

compact in H−1
loc .

Putting all the above considerations together, it follows that �g0(χ(ψn − ψ0)) is compact in H−1
loc .

Step 2 : Application of Theorem 5.6. By Theorem 5.6 and the compactness obtained in Step 1, we obtain
that, for any index β,

(g−1
0 )ασξσ
|ξ|

dσψαβ = 0.

This implies, via Proposition 6.3, that for any index β,

(g−1
0 )ασξσξαξβ
|ξ|3

dνψ = 0.

For every (x, ξ) ∈ S∗R2+1, ξβ 6= 0 for some β. Hence, we obtain the desired conclusion. �

7. The proof of Theorem 4.1

In this section, we prove Theorem 4.1. We continue to work under the assumptions of Theorem 4.1. As
discussed in Section 4.1, with dν = 2dνψ + 1

2e
−4ψ0dνω, it suffices to show that (Ω, g0, ψ0, ω0,dν) obeys the

conclusion of Theorem 4.1.
We have already proven that dν is supported on the null cones by Proposition 6.6. We therefore only need

to prove (4.1). The two wave equations will be proven in Section 7.1 ; the equation for the geometry will be
proven in Section 7.2. These results can be viewed as consequences of (bilinear) compensated compactness.
We then put all these together in Section 7.3.

7.1. Wave equations for the limits ψ0 and ω0. We begin with a simple (bilinear) compensated com-
pactness type result related to the null forms.

Lemma 7.1. Let {φ(1)
n }+∞n=1 and {φ(2)

n }+∞n=1 be two sequences of real-valued smooth functions on M =

(0, T )× R3. Assume that there exist smooth functions φ
(1)
0 and φ

(2)
0 on M such that the following hold for

some p0 ∈ ( 8
3 ,+∞) :

(1) For any (spacetime) compact subset K of M,

‖φ(i)
n − φ

(i)
0 ‖

L
max{2, p0

p0−2
}
(K)
→ 0.

(2) For any (spacetime) compact subset K of M,

max
i

sup
n
‖∂φ(i)

n ‖L2(K) < +∞.

(3) �g0φ
(i)
n admits a decomposition �g0φ

(i)
n = ∂α(ξ

(i)
n )α + η

(i)
n for some vector field (ξ

(i)
n )α and some

function η
(i)
n such that for any (spacetime) compact subset K of M, (ξ

(i)
n )α → 0 in the L2(K) norm

and η
(i)
n is uniformly bounded in the L

p0
2 (K) norm.

Then as n→ +∞,

g−1
0 (dφ(1)

n , dφ(2)
n ) ⇀ g−1

0 (dφ
(1)
0 , dφ

(2)
0 ) in the sense of distribution.
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Démonstration. Let ϑ ∈ C∞c (M). We want to show that∫
R2+1

ϑg−1
0 (dφ(1)

n , dφ(2)
n ) dx→

∫
R2+1

ϑg−1
0 (dφ

(1)
0 , dφ

(2)
0 ) dx. (7.1)

We write

g−1
0 (dφ(1)

n , dφ(2)
n ) =

1

2
�g0(φ(1)

n φ(2)
n )︸ ︷︷ ︸

=:I

−1

2
(�g0φ

(1)
n )φ(2)

n︸ ︷︷ ︸
=:II

−1

2
φ(1)
n (�g0φ

(2)
n )︸ ︷︷ ︸

=:III

(and similarly for g−1
0 (dφ

(1)
0 , dφ

(2)
0 )). We handle each of these terms below.

Step 1 : Term I. To handle the term I, simply note that the assumptions and Hölder’s inequality implies

that φ
(1)
n φ

(2)
n → φ

(1)
0 φ

(2)
0 strongly in L1 (on any compact set). Since �g0 is a smooth differential operator, it

follows that 1
2�g0(φ

(1)
n φ

(2)
n ) converges to 1

2�g0(φ
(1)
0 φ

(2)
0 ) as distributions.

Step 2 : Terms II and III. We then consider the term II ; the term III is clearly similar.

Step 2(a) : Contribution from 1
2∂α(ξ

(1)
n )αφ

(2)
n . Using the L2 norm convergence of (ξ

(1)
n )α and the L2 norm

boundedness of ∂φ
(2)
n , a simple integration by parts and Hölder’s inequality imply that 1

2∂α(ξ
(1)
n )αφ

(2)
n ⇀ 0

in the sense of distribution.

Step 2(b) : Contribution from 1
2η

(1)
n φ

(2)
n . Since g0 is smooth, �g0φ

(1)
n ⇀ �g0φ

(1)
0 in the sense of distribu-

tions. The assumptions then imply that η
(1)
n ⇀ �g0φ

(1)
0 in the sense of distributions. Using now the L

p0
2

boundedness of η
(1)
n and the norm convergence of φ

(i)
n − φ(i)

0 in L
p0
p0−2 , it follows that for any ϑ ∈ C∞c (M),∫

R2+1

ϑη(1)
n φ(2)

n dx→
∫
R2+1

ϑ(�g0φ
(1)
0 )φ

(2)
0 dx.

Combining Steps 1 and 2, we have proven (7.1). �

Using Lemma 7.1, we obtain the following equation for χψ0 and χω0.

Proposition 7.2. χψ0 obeys (classically) the wave equation

�g0(χψ0)− 2g−1
0 (dχ,dψ0)− ψ0�g0χ+

1

2
χe−4ψ0g−1

0 (dω0,dω0) = 0. (7.2)

χω0 obeys (classically) the wave equation

�g0(χω0)− 2g−1
0 (dχ, dω0)− ω0�g0χ− 4χg−1

0 (dω0,dψ0) = 0. (7.3)

Démonstration. We will focus the exposition on (7.2). (7.3) can be treated similarly.
Since χψ0 is smooth, it suffices to show that (7.2) holds in the sense of distribution, i.e. we want to show

that for any η ∈ C∞c (R2+1),∫
R2+1

(�g0η)χψ0

√
−det g0 dx︸ ︷︷ ︸

=:I

+
1

2

∫
R2+1

ηe−4ψ0g−1
0 (dω0,dω0)

√
−det g0 dx︸ ︷︷ ︸

=:II

+

∫
R2+1

η
(
−2g−1

0 (dχ,dψ0)− ψ0�g0χ
)√
−det g0 dx︸ ︷︷ ︸

=:III

= 0.

(7.4)

We note that by assumption (4) of Theorem 4.1, ∂ψn and ∂gn converge respectively to ∂ψ0 and ∂g0 weakly in
Lp0loc. Therefore, using also the locally uniform convergence of ψn and gn (in assumption (3) of Theorem 4.1),
we obtain

I + III = lim
n→+∞

∫
R2+1

(
(�gnη)χψn − 2ηg−1

n (dχ,dψn)− ηψn�gnχ
)√
−det gn dx. (7.5)

For the term II in (7.4), we compute using the uniform convergence of ψn and gn (on compact sets)
and Lemma 7.1. Note that Lemma 7.1 indeed applied to g−1

0 (dωn,dωn) since by assumptions (3), (4) of
Theorem 4.1 and Lemma 6.5, ωn obeys the assumptions of Lemma 7.1. Hence, we obtain

II =
1

2
lim

n→+∞

∫
R2+1

ηe−4ψ0g−1
0 (dωn,dωn)

√
−det g0 dx

=
1

2
lim

n→+∞

∫
R2+1

ηe−4ψng−1
n (dωn,dωn)

√
−det gn dx.

(7.6)
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Combining (7.5) and (7.6), we obtain

I + II + III = lim
n→+∞

∫
R2+1

(
(�gnη)χψn − 2ηg−1

n (dχ, dψn)− ηψn�gnχ
)√
−det gn dx

+
1

2
lim

n→+∞

∫
R2+1

ηe−4ψng−1
n (dωn,dωn)

√
− det gn dx = 0,

(7.7)

where in the last line we have used the fact that for every n ∈ N, the wave equation

�gn(χψn)− 2g−1
n (dχ, dψn)− ψn�gnχ+

1

2
e−4ψng−1

n (dωn,dωn) = 0

holds. We have thus proven (7.4). �

7.2. The limiting stress-energy-momentum tensor.

Proposition 7.3. There is a subsequence nk such that for every vector field Y ∈ C∞c (Ω),∫
R2+1

Ric(g0)(Y, Y ) dVolg0 = lim
k→+∞

∫
R2+1

[2(Y ψnk)2 +
1

2
e−4ψnk (Y ωnk)2] dVolgnk .

Démonstration. Step 1 : ∂iγn and (Hn)ij have strong subsequential L2
loc limits. In this step, we show that

on any fixed compact set, after choosing a subsequence nk, ∂iγnk and (Hnk)ij have strong L2 limits. Since

p0 ∈ ( 8
3 ,+∞), W

1,
p0
2

loc embeds compactly into L2
loc (in (2 +1) dimensions). Therefore, it suffices to show that

for any fixed compact set, ∂iγn and (Hn)ij are uniformly bounded in W 1,
p0
2 . By assumptions, we already

know that ∂iγn and (Hn)ij are uniformly bounded in L
p0
2 (in fact also Lp0) on any compact set ; we therefore

need to show that the same holds true for all first derivatives of ∂iγn and (Hn)ij .

By (2.12), (2.13) and (2.14), ∆γn, ∆N and δik∂k(Hn)ij are all uniformly bounded in L
p0
2 in any fixed

compact set. Standard Lp elliptic theory 15 (applied for each fixed t) implies that

∂2
ijγn, ∂

2
ikN, ∂k(Hn)ij

are all uniformly bounded in L
p0
2 on any fixed compact set.

Using the above, and also (2.16), the assumptions of Theorem 4.1 and Hölder’s inequality, we also obtain
that

∂t(Hn)ij

is uniformly bounded in L
p0
2 on any fixed compact set.

It remains to bound ∂t∂iγn. For this, first note that by (2.15), the assumptions of Theorem 4.1 and the

above bounds, we see that ∆βin is uniformly bounded in L
p0
2 on any fixed compact set. Elliptic theory then

implies that

∂2
jkβ

i
n

is uniformly bounded in L
p0
2 on any fixed compact set.

Now we use (2.5), take a spatial derivative, and apply the above estimates. We see that

∂t∂iγn

is uniformly bounded in L
p0
2 on any fixed compact set.

The above discussions imply that indeed ∂iγn and (Hn)ij have strong subsequential L2
loc limits.

Step 2 : Weak convergence of the Ricci tensor. We now turn to the expressions for the Ricci tensor as given
in (2.6), (2.7), (2.8) and (2.11). Notice that in each of the terms which is quadratic in the first derivative
of metric, there is at least one factor of ∂iγnk or (Hnk)ij . By Step 1 and the Cauchy–Schwarz inequality, it
follows that Ric(gnk) converges to Ric(g0) in the sense of distribution (where nk is the subsequence as in
Step 1).

15. Note that Hn is traceless. In two (spatial) dimensions, this implies that a bound on the divergence of Hn also gives a
bound on the curl of Hn. Hence, we indeed have an elliptic estimate of the type∑

i,j,k

‖∂k(Hn)ij‖
L
p0
2 (U1)

.
∑
j

‖δik∂k(Hn)ij‖
L
p0
2 (U2)

+
∑
i,j

‖(Hn)ij‖
L
p0
2 (U2)

for U1 ⊂ U2 ⊂ R2, each set being an open and precompact subset of the next set.
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Step 3 : Putting everything together. By Step 2 and assumption (3) of Theorem 4.1, it follows that for any
smooth vector field Y supported in Ω, as k → +∞,∫

R2+1

Ric(gnk)(Y, Y ) dVolgnk →
∫
R2+1

Ric(g0)(Y, Y ) dVolg0 .

On the other hand, since (ψn, ωn, gn) satisfies (2.2) for all n ∈ N, we know that for every nk ∈ N,∫
R2+1

Ric(gnk)(Y, Y ) dVolgnk =

∫
R2+1

[2(Y ψnk)2 +
1

2
e−4ψnk (Y ωnk)2] dVolgnk .

The conclusion follows. �

Proposition 7.4. Let

dν := 2dνψ +
1

2
e−4ψ0 dνω. (7.8)

Then the limiting metric g0 satisfies∫
R2+1

Ric(g0)(Y, Y ) dVolg0 =

∫
R2+1

(
2(Y ψ0)2 +

1

2
e−4ψ0(Y ω0)2

)
dVolg0 +

∫
S∗R2+1

(Y αξα)2 dν

for every vector field Y ∈ C∞c (Ω).

Démonstration. Since ψk and gk converge uniformly on compact sets, they in particular converge uniformly
on Ω. Therefore, taking nk as the subsequence in Proposition 7.3,

lim
k→+∞

∫
R2+1

[2(Y ψnk)2 +
1

2
e−4ψnk (Y ωnk)2] dVolgnk = lim

k→+∞

∫
R2+1

[2(Y ψnk)2 +
1

2
e−4ψ0(Y ωnk)2] dVolg0 .

Now using the fact that χ ≡ 1 on the support of Y and Corollary 6.4, we obtain

lim
k→+∞

∫
R2+1

[2(Y ψnk)2 +
1

2
e−4ψ0(Y ωnk)2] dVolg0

=

∫
R2+1

[2(Y ψ0)2 +
1

2
e−4ψ0(Y ω0)2] dVolg0 +

∫
S∗R2+1

(Y αξα)2 dν.

The desired conclusion therefore follows from Proposition 7.3. �

7.3. Conclusion of the proof of Theorem 4.1. We now conclude the proof of Theorem 4.1 :

Proof of Theorem 4.1. First, dν is supported on {(x, ξ) ∈ S∗M : g−1
0 (ξ, ξ) = 0} in view of Proposition 6.6.

To check that the three equations in (4.1) are verified, note that the first two equations are verified due to
Proposition 7.2 (and the fact that χ = 1 on Ω), while the last equation is verified thanks to Proposition 7.4.

Finally, using Proposition 4.4, we have completed the proof of Theorem 4.1. �

8. Beginning of the proof of Theorem 4.2

From now on and for the remainder of the paper, we prove Theorem 4.2. We will therefore
work under the assumptions of Theorem 4.2. The main goal from now on will be to show that with the
additional assumption (5) of Theorem 4.2, we can show moreover that the measure dν satisfies a transport
equation on Ω (where we have used the reduction in Proposition 4.4).

From now on, unless otherwise stated, let A be a zeroth order pseudo-differential operator
with real symbol a(x, ξ). Assume moreover that a(x, ξ) is supported in S∗Ω.

We introduce now conventions that we will use for the remainder of the paper. We use the convention
that λn refers to the sequence of constants in assumption (5) of Theorem 4.2 with K = Ω′′′ (cf. Section 4.1).

From now on, we use the convention that for two non-negative quantities B1 and B2, B1 . B2 means
there exists C > 0 depending potentially on T , ψ0, ω0, g0, Ω, Ω′, Ω′′, Ω′′′ and A, but independent of n,
such that

B1 ≤ CB2.

We will also use the big-O and small-o conventions, i.e. for a non-negative quantity B (depending
on n) and a positive function f(n) of n, B = O(f(n)) means B . C · f(n), while B = o(f(n)) means
B
f(n) → 0 and n→ +∞.

In this section, we carry out various preliminary steps. In Section 8.1, we begin with some convergence
estimates for the derivatives of the metric which follow from the elliptic equations (and are stronger than
(4.3)). In Section 8.2, we discuss the freezing of coefficients, which will be used in various places later.
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Finally, in Section 8.3, we discuss a reduction allowing us to consider only a subclass of pseudo-differential
operators A later.

8.1. Convergence of the derivatives of the metric components.

Proposition 8.1. Let χ̃ be as in (4.7).

‖∂i(χ̃(γn − γ0))‖L∞ + ‖∂i(χ̃(βjn − β
j
0))‖L∞ + ‖∂i(χ̃(Nn −N0))‖L∞ . λ

1
2
n .

Démonstration. In view of the elliptic equations (2.13), (2.14) and (2.15) satisfied by γ, N and βj , it suffices
to show that for smooth un, u : R3+1 → R (n ∈ N) such that

‖χ̃(un − u0)‖L∞ . λn (8.1)

and

‖∆(χ̃(un − u0))‖L∞ . 1, (8.2)

we have ‖∂i(χ̃(un − u0))‖L∞ . λ
1
2
n .

Let Θ : [0,+∞)→ R be a non-negative smooth cutoff function such that

Θ ≥ 0, Θ(x) = 1 for x ∈ [0, 1], Θ(x) = 0 for x ≥ 2.

For every fixed 16 t ∈ R, we take the spatial Fourier transform Fspa and then decompose into a low-spatial-
frequency part and a high-spatial-frequency part as follows :

χ̃(un − u0)(t, ξi) = F−1
spaΘ(λ

1
2
n |ξi|)Fspa(χ̃(un − u0))(t, ξi)︸ ︷︷ ︸

=:I

+F−1
spa(1−Θ(λ

1
2
n |ξi|))Fspa(χ̃(un − u0))(t, ξi)︸ ︷︷ ︸

=:II

.

(8.3)
For the term I, we apply Bernstein’s inequality and (8.1) to obtain∥∥∥∂j (F−1

spa

(
Θ(λ

1
2
n |ξi|)Fspa(χ̃(un − u0))(t, ξi)

))∥∥∥
L∞x

(t) . λ
− 1

2
n ‖χ̃(un − u0)‖L∞x (t) . λ

− 1
2

n λn = λ
1
2
n .

Taking supremum over t implies the desired estimate for this term.
For the term II, define first Pspa,k the spatial standard Littlewood–Paley projection to spatial frequency

|ξi| ∼ 2k. Denote the corresponding Fourier multiplier by mLP (2−kξi) where mLP is a radial smooth spatial
function supported in an annulus.

Now note that for each fixed t ∈ R and for each Littlewood–Paley piece,∥∥∥∂j (F−1
spa

(
(1−Θ(λ

1
2
n |ξi|))FspaPspa,k(χ̃(un − u0))(t, ξi)

))∥∥∥
L∞x

(t)

.

∥∥∥∥F−1
spa

(
iξj
|ξ|2

(1−Θ(λ
1
2
n |ξi|))mLP (2−kξi)Fspa (∆(χ̃(un − u0))) (t, ξi)

)∥∥∥∥
L∞x

(t)

.

∥∥∥∥F−1
spa

(
iξj
|ξ|2

mLP (2−kξi)

)∥∥∥∥
L1
x

‖∆(χ̃(un − u0))‖L∞x (t)

+

∥∥∥∥F−1
spa

(
iξj
|ξ|2

mLP (2−kξi)

)∥∥∥∥
L1
x

∥∥∥F−1
spa

(
Θ(λ

1
2
n |ξi|)Fspa (∆(χ̃(un − u0))) (t, ξi)

)∥∥∥
L∞x

(t)

. 2−k
(

1 + ‖F−1
spaΘ(λ

1
2
n |ξi|)‖L1

x

)
‖∆(χ̃(un − u0))‖L∞x (t)

. 2−k ‖∆(χ̃(un − u0))‖L∞x (t). 2−k,

where in the last estimate we used (8.2).

Now, summing up all the Littlewood–Paley pieces with 2k & λ
− 1

2
n , we obtain that for every fixed t ∈ R,∥∥∥∂j (F−1

spa

(
(1−Θ(λ

1
2
n |ξi|))Fspa(χ̃(Nn −N0))(t, ξi)

))∥∥∥
L∞x

(t) .
∑

k:2k&λ
− 1

2
n

2−k . λ
1
2
n .

Taking supremum over t then implies the desired estimate. �

16. Note that in fact for t /∈ [0, T ], the term (8.3) vanishes.
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Proposition 8.2. Let χ̃ be as in (4.7).

‖∂t(χ̃(γn − γ0))‖L∞ . λ
1
2
n .

Démonstration. This is an immediate consequence of (2.5) and the estimates in (4.2) and Proposition 8.1.
�

8.2. Freezing coefficients. One trick that we will repeatedly use is to to freeze coefficients. This will
be used in Section 8.3, but will again be useful when we capture some trilinear cancellations ; see already
Section 11. In this subsection, we will introduce some relevant notations and prove some basic estimates.

Fix some ε0 ∈ ( 1
6 ,

1
2 ) (for the remainder of the paper). For each n ∈ N, choose finitely many (spacetime)

balls of radius 17 λε0n , labeled by {Bα}α so that Ω′ ⊂ ∪αBα ⊂ ∪αBα ⊂ Ω′′ (cf. Section 4.1). Note that this
gives O(λ−3ε0

n ) balls, each with volume 18 O(λ3ε0
n ). Introduce a partition of unity {ζ3

α}α adapted to these
balls so that supp(ζα) ⊂ Bα and ∑

α

ζ3
α = 1 on Ω′.

Due to the choice of Bα, ζα can be chosen so that for every r ∈ [1, 2],

‖∂kζrα‖L∞ . λ−kε0n , k = 0, 1, 2, 3. (8.4)

The following is an immediate consequence of mean value theorem :

Proposition 8.3. Let b : Ω′′ → R be a C1 function. Then for every fixed n ∈ N and fixed α as above, there
exist constants bc,α (depending on α) such that (with implicit constants depending on the C1 norm of b but
independent of n or α)

‖b− bc,α‖L∞(Bα) . λ
ε0
n .

Moreover, the constants satisfy

sup
α
|bc,α| . 1.

In particular, for every α, there exist uniformly bounded constants Nc,α, βic,α and γc,α (depending on α)
such that

‖ logN0 − logNc,α‖L∞(Bα) + ‖βi0 − βic,α‖L∞(Bα) + ‖γ0 − γc,α‖L∞(Bα) . λ
ε0
n .

Proposition 8.4. For every α, every r ∈ [1, 2] and every p ∈ [1,+∞],

‖∂k(ζrαχ(ψn − ψ0))‖Lp . λ
1−k+

3ε0
p

n , k = 0, 1, 2, 3, (8.5)

‖∂µ(ζrαχ(ψn − ψ0))− ζrα∂µ(χ(ψn − ψ0))‖Lp . λ
1+ε0(−1+ 3

p )
n , (8.6)

‖∂2
µν(ζrαχ(ψn − ψ0))− ζrα∂2

µν(χ(ψn − ψ0))‖Lp . λ
ε0(−1+ 3

p )
n . (8.7)

Similarly, for every α, every r ∈ [1, 2] and every p ∈ [1,+∞],

‖∂k(ζrαχ(ωn − ω0))‖Lp . λ
1−k+

3ε0
p

n , k = 0, 1, 2, 3,

‖∂µ(ζrαχ(ωn − ω0))− ζrα∂µ(χ(ωn − ω0))‖Lp . λ
1+ε0(−1+ 3

p )
n ,

‖∂2
µν(ζrαχ(ωn − ω0))− ζrα∂2

µν(χ(ωn − ω0))‖Lp . λ
ε0(−1+ 3

p )
n .

Démonstration. We will only discuss (8.5)–(8.7) ; the remaining bounds can be derived in an identical
manner.

Step 1 : Proof of (8.5). By (4.2), (4.3), (4.4) and (8.4), and using ε0 <
1
2 , we have, for k = 0, 1, 2, 3,

‖∂k(ζrαχ(ωn − ω0))‖L∞ . λ1−k
n .

Now since supp(∂k(ζrαχ(ωn−ω0))) ⊂ Bα, and Bα has volume O(λ3ε0
n ), we obtain the desired conclusion for

all p ∈ [1,+∞].

Step 2 : Proof of (8.6) and (8.7). The proof of (8.6) and (8.7) is similar to that of (8.5) except in this case we
are computing the commutator so at least one derivative hits on ζrα. This results in the better bounds. �

17. Here, radius is to be understood with respect to the (t, x1, x2) coordinates.

18. This is again to be understood with respect to the (t, x1, x2) coordinates.



TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 27

Proposition 8.5. For every α, for p ∈ [1,+∞] and for g ∈ {logN, βj , γ},

‖ζα(gn − g0)‖Lp . λ
1+

3ε0
p

n , ‖∂(ζα(gn − g0))‖Lp . λ
3ε0
p
n , ‖∂2(ζα(gn − g0)‖Lp . λ

−1+
3ε0
p

n ,

‖∂i(ζα(gn − g0))‖Lp . λ
1
2 +

3ε0
p

n , ‖∆(ζα(gn − g0))‖Lp . λ
3ε0
p
n .

Démonstration. The estimates for ∂k(ζα(gn − g0)) (k = 0, 1, 2) are similar to Proposition 8.4 ; we omit the
details.

The last two estimates assert that there is an improvement associated to spatial derivative. First, using 19

Proposition 8.1, (8.4), (4.2) and ε0 <
1
2 , we obtain

‖∂i(ζα(gn − g0))‖L∞ . max{λ1−ε0
n , λ

1
2
n} . λ

1
2
n .

Taking the Lp norm over Bα yields the desired claim for all p ∈ [1,+∞].
Finally, using the equations (2.13)–(2.15) (which together with (4.2) and (4.3) give an L∞ bound for

∆γn, ∆ logNn and ∆βjn), the estimates in (4.2), (4.3), Proposition 8.1, (8.4) and ε0 <
1
2 , we obtain

‖∆(ζα(gn − g0))‖L∞ . max{λ1−2ε0
n , λ

1
2−ε0
n , 1} . 1.

As before, taking the Lp norm over Bα yields the desired claim for all p ∈ [1,+∞]. �

One important consequence of freezing the coefficients is that in every Bα, the �g0 operator is comparable
to a constant coefficient operator :

Proposition 8.6. For every α, let �̃c,α be the constant coefficient second order differential operator defined
by

�̃c,α := − 1

N2
c,α

(∂t − βic,α∂i)(∂t − βjc,α∂j) + e−2γc,αδk`∂2
k`,

where the constants Nc,α, βic,α and γc,α are defined in Proposition 8.3.
Then, for every α, for every n ∈ N and for every p ∈ [1,+∞],

‖∂k�̃c,α(ζαχ(ψn − ψ0))‖Lp . λ−1−k+ε0
n · λ

3ε0
p
n , k = 0, 1, 2.

Similarly, for every α, for every n ∈ N and for every p ∈ [1,+∞],

‖∂k�̃c,α(ζαχ(ωn − ω0))‖Lp . λ−1−k+ε0
n · λ

3ε0
p
n , k = 0, 1, 2.

Démonstration. We will only prove the estimates for ψn − ψ0 ; the estimates for ωn − ω0 are similar and
will be omitted.

By the first two equations in (2.2) and the estimates in (4.2)–(4.4), we have for k = 0, 1, 2,

‖∂k�gnψn‖L∞ . λ−kn , ‖∂k�g0ψ0‖L∞ . 1. (8.8)

Since χ is smooth, using (8.8) together with (4.2)–(4.4), we obtain

‖∂k�gn(χψn)‖L∞ . λ−kn , ‖∂k�g0(χψ0)‖L∞ . 1. (8.9)

By the bounds (4.2)–(4.4), we obtain for k = 0, 1, 2,

‖∂k(�gn −�g0)(χψn)‖L∞ . λ−kn . (8.10)

Writing �g0(χ(ψn − ψ0)) = (�g0 −�gn)(χψn)−�g0(χψ0), it follows from (8.9) and (8.10) that

‖∂k�g0(χ(ψn − ψ0))‖L∞ . λ−kn , k = 0, 1, 2. (8.11)

Next, we compute

ζα(�g0 − �̃c,α)

= − ζα(
1

N2
0

− 1

N2
c,α

)∂2
t + 2ζα(

βi0
N2

0

−
βic,α
N2
c,α

)∂2
ti + ζα[(e−2γ − e−2γc,α)δij − (

βi0β
j
0

N2
0

−
βic,αβ

j
c,α

N2
c,α

)]∂2
ij

+
1√
− det g

[∂µ((g−1
0 )µν

√
−det g)]∂ν

19. To apply Proposition 8.1, we note in particular that ζα is supported in Ω′′.
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Therefore, it follows that by (8.11), Propositions 8.3 and 8.4 and (4.2)–(4.4), we have

‖ζα∂k�̃c,α(χ(ψn − ψ0))‖Lp . max{λ−k−1+ε0
n , λ−kn } × λ

3ε0
p
n . λ−k−1+ε0

n λ
3ε0
p
n , k = 0, 1, 2. (8.12)

Finally, since ε0 < 1, when k = 0, 1, 2, the following commutator can be estimated above by

‖∂k+2
µ1···µk+2

(ζαχ(ψn − ψ0))− ζα∂k+2
µ1···µk+2

(χ(ψn − ψ0))‖Lp

.
k+1∑
`=0

‖(∂k+2−`ζα)(∂`(χ(ψn − ψ0)))‖Lp .
k+1∑
`=0

λ−(k+2−`)ε0
n λ1−`

n λ
3ε0
p
n . λ−k−ε0n λ

3ε0
p
n .

(8.13)

Therefore, by (8.12) and (8.13), we obtain that for k = 0, 1, 2,

‖∂k�̃c,α(ζαχ(ψn − ψ0))‖Lp . λ−k−1+ε0
n λ

3ε0
p
n + λ−k−ε0λ

3ε0
p
n . λ−k−1+ε0

n λ
3ε0
p
n ,

where in the last estimate we used ε0 <
1
2 . �

8.3. Main preliminary reduction.

Proposition 8.7. Let a(x, ξ) = b(x)m(ξ). Suppose m(ξ) is homogeneous of order 0 and is odd, i.e. m(ξ) =
−m(−ξ) for all ξ ∈ R3. Then∫

S∗R2+1

((g−1
0 )αβξβ∂xα(

(ξt − βi0ξi)a
N0

)− 1

2
(∂µg

−1
0 )αβξαξβ∂ξµ(

(ξt − βi0ξi)a
N0

))
dνψ

|ξ|2
= 0

and ∫
S∗R2+1

e−4ψ0((g−1
0 )αβξβ∂xα(

(ξt − βi0ξi)a
N0

)− 1

2
(∂µg

−1
0 )αβξαξβ∂ξµ(

(ξt − βi0ξi)a
N0

))
dνω

|ξ|2
= 0.

Démonstration. We will only prove the first equality as the second one can be achieved in an identical
manner.

It is easy to check that 1
|ξ|2 (g−1

0 )αβξβ∂xα(
(ξt−βi0ξi)a

N0
) and 1

|ξ|2 (∂µg
−1
0 )αβξαξβ∂ξµ(

(ξt−βi0ξi)a
N0

) are both odd

in ξ.
It therefore suffices to show that for every f(x, ξ) = b(x)m(ξ), where m(ξ) is homogeneous of degree 0

and odd, ∫
S∗R2+1

f(x, ξ) dνψ = 0.

Equivalently, since ξt − βi0ξi 6= 0 on the support of dνψ (by Proposition 6.6 and the form of the metric), it
suffices to show that for f(x, ξ) = b(x)m(ξ) as above,∫

S∗R2+1

f(x, ξ)
(ξt − βi0ξi)2

|ξ|2
dνψ = 0. (8.14)

To proceed, given b as above, we freeze the coefficients as in Proposition 8.3 and find constants {bc,α}α
adapted to the partition of unity introduced in Section 8.2 so that the conclusion of Proposition 8.3 holds.

Then, using Corollary 6.4,
∑
α ζ

3
α = 1, Propositions 8.3, 8.4, (4.2) and (4.3), the LHS of (8.14) can be

expressed as follows :

LHS of (8.14) = lim
n→+∞

∫
R2+1

(∂t − βi0∂i)(χ(ψn − ψ0))bm(
1

i
∇)(∂t − βi0∂i)(χ(ψn − ψ0)) dx

=
∑
α

lim
n→+∞

∫
R2+1

ζ3
α(∂t − βi0∂i)(χ(ψn − ψ0))bm(

1

i
∇)(∂t − βi0∂i)(χ(ψn − ψ0)) dx

=
∑
α

bc,α lim
n→+∞

∫
R2+1

(∂t − βi0∂i)(ζ
3
2
αχ(ψn − ψ0))m(

1

i
∇)(∂t − βi0∂i)(ζ

3
2
αχ(ψn − ψ0)) dx.

(8.15)

Taking Fourier transform and using that m, ζα, χ(ψn − ψ) are real, we obtain

RHS of (8.15) =
∑
α

bc,α lim
n→+∞

∫
R2+1

(ξt − βi0ξi)2 ̂
(ζ

3
2
αχ(ψn − ψ0))(ξ)m(ξ)

̂
(ζ

3
2
αχ(ψn − ψ0))(ξ) dξ

=
∑
α

bc,α lim
n→+∞

∫
R2+1

(ξt − βi0ξi)2 ̂
(ζ

3
2
αχ(ψn − ψ0))(−ξ)m(ξ)

̂
(ζ

3
2
αχ(ψn − ψ0))(ξ) dξ.

(8.16)
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Since m is odd, a simple change of variable ξ 7→ −ξ shows that the last line in (8.16) also equals

−
∑
α

bc,α lim
n→+∞

∫
R2+1

(ξt − βi0ξi)2 ̂
(ζ

3
2
αχ(ψn − ψ0))(−ξ)m(ξ)

̂
(ζ

3
2
αχ(ψn − ψ0))(ξ) dξ.

This then implies that the term is identically zero as desired. �

Proposition 8.8. Let dν = 2dνψ + 1
2e
−4ψ0 dνω. Suppose the following holds for all a(x, ξ) = b(x)m(ξ) with

b, m smooth, real, m homogeneous of order 0 and m even :∫
S∗R2+1

((g−1
0 )αβξβ∂xα(

(ξt − βi0ξi)a
N0

)− 1

2
(∂µg

−1
0 )αβξαξβ∂ξµ(

(ξt − βi0ξi)a
N0

))
dν

|ξ|2
= 0. (8.17)

Then in fact (8.17) holds for all smooth real a(x, ξ) which are homogeneous of order 0.

Démonstration. By a standard density argument using the Stone–Weierstrass theorem we can reduce to
the case where a(x, ξ) takes the form a(x, ξ) =

∑
finite bk(x)mk(ξ). It therefore suffices to consider a(x, ξ) =

b(x)m(ξ). Decompose m into its odd and even parts. Proposition 8.7 shows that the odd part must give a
zero contribution to (8.17). The conclusion follows. �

From now on we assume that a(x, ξ) = b(x)m(ξ) and that b(x) is real and m(ξ) is real and
even. Moreover, we will take A to be a 0-th order pseudo-differential operator A = b(x)m̃( 1

i∇), where m̃(ξ)
is a smooth real-valued even function such that m̃(ξ) = m(ξ) for |ξ| ≥ 1.

One consequence of the evenness assumption is the following.

Proposition 8.9. Let A = b(x)m̃( 1
i∇), where b(x) is real, m̃(ξ) is real and even and agrees with a real,

even, homogeneous of order 0 m(ξ) for |ξ| ≥ 1. Then for any real function φ ∈ L2, we have Aφ ∈ L2 and
A∗φ ∈ L2 are both real (where A∗ = m̃( 1

i∇)b(x) denotes the L2-adjoint of A).

Démonstration. It suffices to show that m̃( 1
i∇)φ is real. First, since φ is real, we have φ̂(ξ) = φ̂(−ξ). Hence,

̂
[m̃(

1

i
∇)φ](ξ) = m̃(ξ)φ̂(ξ) = m̃(ξ)φ̂(−ξ) = m̃(−ξ)φ̂(−ξ) =

̂
[m̃(

1

i
∇)φ](−ξ).

This implies that m̃( 1
i∇)φ is real. �

9. Energy identities

We continue to work under the assumptions of Theorem 4.2 and the reductions in Sections 4.1 and 8.3.
Let A be a 0-th order pseudo-differential operator given by A = b(x)m̃( 1

i∇), where the principal symbol
a(x, ξ) = b(x)m(ξ) (with m(ξ) = m̃(ξ) for |ξ| ≥ 1) is real and supported in T ∗Ω, m(ξ) is homogeneous of
order 0, and m and m̃ are both even.

In this section, we derive the main energy identities that will be used to prove the transport equation
for the microlocal defect measure. We first introduce some notations in Section 9.1. In Section 9.2 and
Section 9.3, we will then derive respectively energy identities using the equations satisfied by (ψ0, ω0) and
(ψn, ωn).

9.1. Definitions of �g0,A and �gn,A. A simple computation shows that

�g0φ = −e
−2γ0

N0
∂t(

e2γ0

N0
(e0)0φ) +

e−2γ0

N0
∂i(

βi0e
2γ0

N0
(e0)0φ) +

e−2γ0

N0
δij∂i(N0∂jφ). (9.1)

Similarly,

�gnφ = −e
−2γn

Nn
∂t(

e2γn

Nn
(e0)nφ) +

e−2γn

Nn
∂i(

βine
2γn

Nn
(e0)nφ) +

e−2γn

Nn
δij∂i(Nn∂jφ). (9.2)

Define the operator �g0,A by

�g0,Aφ = −e
−2γ0

N0
∂t[e

2γ0A(
(e0)0φ

N0
)] +

e−2γ0

N0
∂i[β

i
0e

2γ0A(
(e0)0φ

N0
)] +

e−2γ0

N0
δij∂i[N

2
0A(

∂jφ

N0
)]. (9.3)

Similarly, for every n ∈ N, define the operator �gn,A by

�gn,Aφ = −e
−2γn

Nn
∂t[e

2γnA(
(e0)nφ

Nn
)] +

e−2γn

Nn
∂i[β

i
ne

2γnA(
(e0)nφ

Nn
)] +

e−2γn

Nn
δij∂i[N

2
nA(

∂jφ

Nn
)]. (9.4)
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9.2. Energy identities for (ψ0, ω0). We first derive some energy identities by directly integrating by parts.

Proposition 9.1. The following identities hold :∫
R2+1

(e0)0(χψ0)

N0
�g0,A(χψ0) dVolg0 +

∫
R2+1

A(
(e0)0(χψ0)

N0
)�g0(χψ0) dVolg0

= −
∫
R2+1

(e0)0(χψ0)

N0
(∂te

2γ0)A(
(e0)0(χψ0)

N0
) dx+

∫
R2+1

(e0)0(χψ0)

N0
(∂i(β

i
0e

2γ0))A(
(e0)0(χψ0)

N0
) dx

+

∫
R2+1

N0∂i(χψ0)δij{[A, ∂j ](
(e0)0(χψ0)

N0
)}dx+

∫
R2+1

[∂i(χψ0)]δijN0{[(e0)0, A](
∂j(χψ0)

N0
)} dx

−
∫
R2+1

[∂i(χψ0)]δij(∂kβ
k
0 )N0[A(

∂j(χψ0)

N0
)] dx+

∫
R2+1

[∂i(χψ0)]δij [(e0)0N0][A(
∂j(χψ0)

N0
)] dx

+

∫
R2+1

[∂i(χψ0)]δijN0[A(
((e0)0(χψ0))(∂jN0)

N2
0

+
(∂jβ

k
0 )∂k(χψ0)

N0
− ((e0)0N0)∂j(χψ0)

N2
0

)] dx

+

∫
R2+1

(∂iβ
k
0 )[∂k(χψ0)]δijN0[A(

∂j(χψ0)

N0
)] dx+

∫
R2+1

[(e0)0(χψ0)](∂iN0)δij [A(
∂j(χψ0)

N0
)] dx,

(9.5)

and

1

4

∫
R2+1

e−4ψ0
(e0)0(χω0)

N0
�g0,A(χω0) dVolg0 +

1

4

∫
R2+1

e−4ψ0A(
(e0)0(χω0)

N0
)�g0(χω0) dVolg0

=
1

4

∫
R2+1

e−4ψ0{− (e0)0(χω0)

N0
(∂te

2γ0)A(
(e0)0(χω0)

N0
) +

(e0)0(χω0)

N0
(∂i(β

i
0e

2γ0))A(
(e0)0(χω0)

N0
)} dx

+
1

4

∫
R2+1

e−4ψ0{N0∂i(χω0)δij{[A, ∂j ](
(e0)0(χω0)

N0
)}+ [∂i(χω0)]δijN0{[(e0)0, A](

∂j(χω0)

N0
)}}dx

− 1

4

∫
R2+1

e−4ψ0{[∂i(χω0)]δij(∂kβ
k
0 )N0[A(

∂j(χω0)

N0
)] + [∂i(χω0)]δij [(e0)0N0][A(

∂j(χω0)

N0
)]} dx

+
1

4

∫
R2+1

e−4ψ0 [∂i(χω0)]δijN0[A(
((e0)0(χω0))(∂jN0)

N2
0

+
(∂jβ

k
0 )∂k(χω0)

N0
− ((e0)0N0)∂j(χω0)

N2
0

)] dx

+
1

4

∫
R2+1

e−4ψ0{(∂iβk0 )[∂k(χω0)]δijN0[A(
∂j(χω0)

N0
)] + [(e0)0(χω0)](∂iN0)δij [A(

∂j(χω0)

N0
)]} dx

−
∫
R2+1

e−4ψ0e2γ0((e0)0ψ0)
(e0)0(χω0)

N0
A(

(e0)0(χω0)

N0
) dx

+

∫
R2+1

e−4ψ0δijN0(∂iψ0)[(e0)0(χω0)][A(
∂j(χω0)

N0
)] dx

−
∫
R2+1

e−4ψ0((e0)0ψ0)[∂i(χω0)]δijN0[A(
∂j(χω0)

N0
)] dx

+

∫
R2+1

e−4ψ0(∂jψ0)[∂i(χω0)]δijN0A(
(e0)0(χω0)

N0
) dx.

(9.6)

Here, we recall the definition of �g0,A in (9.3).

Démonstration. We first prove (9.5). Consider each term in (9.3) and integrate by parts to obtain the
following three identities.

−
∫
R2+1

(e0)0(χψ0)

N0
∂t(e

2γ0A(
(e0)0(χψ0)

N0
)) dx

= −
∫
R2+1

(e0)0(χψ0)

N0
e2γ0 [∂t(A(

(e0)0(χψ0)

N0
))] dx−

∫
R2+1

(e0)0(χψ0)

N0
(∂te

2γ0)A(
(e0)0(χψ0)

N0
) dx

=

∫
R2+1

∂t(e
2γ0

(e0)0(χψ0)

N0
)[A(

(e0)0(χψ0)

N0
)] dx−

∫
R2+1

(e0)0(χψ0)

N0
(∂te

2γ0)A(
(e0)0(χψ0)

N0
) dx.

(9.7)
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∫
R2+1

(e0)0(χψ0)

N0
∂i(β

i
0e

2γ0A(
(e0)0(χψ0)

N0
)) dx

=

∫
R2+1

(e0)0(χψ0)

N0
βi0e

2γ0 [∂i(A(
(e0)0(χψ0)

N0
))] dx+

∫
R2+1

(e0)0(χψ0)

N0
(∂i(β

i
0e

2γ0))A(
(e0)0(χψ0)

N0
) dx

= −
∫
R2+1

[∂i(β
i
0e

2γ0
(e0)0(χψ0)

N0
)][A(

(e0)0(χψ0)

N0
)] dx+

∫
R2+1

(e0)0(χψ0)

N0
(∂i(β

i
0e

2γ0))A(
(e0)0(χψ0)

N0
) dx.

(9.8)∫
R2+1

(e0)0(χψ0)

N0
δij∂i[N

2
0A(

∂j(χψ0)

N0
)] dx

= −
∫
R2+1

[(e0)0∂i(χψ0)]δijN0[A(
∂j(χψ0)

N0
)] dx+

∫
R2+1

(∂iβ
k
0 )[∂k(χψ0)]δijN0[A(

∂j(χψ0)

N0
)] dx

+

∫
R2+1

[(e0)0(χψ0)](∂iN0)δij [A(
∂j(χψ0)

N0
)] dx

=

∫
R2+1

[∂i(χψ0)]δij [(e0)0N0][A(
∂j(χψ0)

N0
)] dx+

∫
R2+1

[∂i(χψ0)]δijN0{[e0, A](
∂j(χψ0)

N0
)} dx

−
∫
R2+1

[∂i(χψ0)]δij(∂kβ
k
0 )N0[A(

∂j(χψ0)

N0
)] dx

+

∫
R2+1

[∂i(χψ0)]δijN0[A(∂j
(e0)0(χψ0)

N0
+

((e0)0(χψ0))(∂jN0)

N2
0

+
(∂jβ

k
0 )∂k(χψ0)

N0
− ((e0)0N0)∂j(χψ0)

N2
0

)] dx

+

∫
R2+1

(∂iβ
k
0 )[∂k(χψ0)]δijN0[A(

∂j(χψ0)

N0
)] dx+

∫
R2+1

[(e0)0(χψ0)](∂iN0)δij [A(
∂j(χψ0)

N0
)] dx

= −
∫
R2+1

∂j [N0∂i(χψ0)]δij [A(
(e0)0(χψ0)

N0
)] dx

+

∫
R2+1

N0∂i(χψ0)δij{[A, ∂j ](
(e0)0(χψ0)

N0
)} dx+

∫
R2+1

[∂i(χψ0)]δijN0{[(e0)0, A](
∂j(χψ0)

N0
)} dx

−
∫
R2+1

[∂i(χψ0)]δij(∂kβ
k
0 )N0[A(

∂j(χψ0)

N0
)] dx+

∫
R2+1

[∂i(χψ0)]δij [(e0)0N0][A(
∂j(χψ0)

N0
)] dx

+

∫
R2+1

[∂i(χψ0)]δijN0[A(
((e0)0(χψ0))(∂jN0)

N2
0

+
(∂jβ

k
0 )∂k(χψ0)

N0
− ((e0)0N0)∂j(χψ0)

N2
0

)] dx

+

∫
R2+1

(∂iβ
k
0 )[∂k(χψ0)]δijN0[A(

∂j(χψ0)

N0
)] dx+

∫
R2+1

[(e0)0(χψ0)](∂iN0)δij [A(
∂j(χψ0)

N0
)] dx.

(9.9)

Combining (9.7)–(9.9), and recalling (9.1) and (9.3), we obtain (9.5).
Now the proof of (9.6) is similar, except that since there is an e−4ψ0 weight, we need to handle the extra

(four) terms arising from differentiating e−4ψ0 . We omit the details. �

Using the equations derived in Proposition 7.2, we obtain the following energy identities, which give
different ways of expressing (9.5) and (9.6).

Proposition 9.2. Let

Fψ0 := 2g−1
0 (dχ, dψ0) + ψ0�g0χ−

1

2
χe−4ψ0g−1

0 (dω0,dω0).

Then ∫
R2+1

(e0)0(χψ0)

N0
�g0,A(χψ0) dVolg0 +

∫
R2+1

A(
(e0)0(χψ0)

N0
)�g0(χψ0) dVolg0

=

∫
R2+1

(e0)0(χψ0)

N0
(�g0,A(χψ0)− 1√

− det g0

A(
√
−det g0�g0(χψ0))) dVolg0

+

∫
R2+1

(e0)0(χψ0)

N0
A(
√
−det g0F

ψ
0 ) dx+

∫
R2+1

A(
(e0)0(χψ0)

N0
)Fψ0

√
−det g0 dx.

(9.10)
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Similarly, let

Fω0 = 2g−1
0 (dχ, dω0) + ω0�g0χ+ 4χg−1

0 (dω0,dψ0).

Then

1

4

∫
R2+1

e−4ψ0
(e0)0(χω0)

N0
�g0,A(χω0) dVolg0 +

1

4

∫
R2+1

e−4ψ0A(
(e0)0(χω0)

N0
)�g0(χω0) dVolg0

=
1

4

∫
R2+1

e−4ψ0
(e0)0(χω0)

N0
(�g0,A(χω0)− 1√

−det g0

A(
√
−det g0�g0(χω0))) dVolg0

+
1

4

∫
R2+1

e−4ψ0
(e0)0(χω0)

N0
A(
√
−det g0F

ω
0 ) dx+

1

4

∫
R2+1

e−4ψ0A(
(e0)0(χω0)

N0
)Fω0

√
−det g0 dx.

(9.11)

Démonstration. This is an obvious consequence of

�g0(χψ0) = Fψ0 , �g0(χω0) = Fω0

(which holds by Proposition 7.2). �

9.3. Energy identities of (ψn, ωn). We now derive analogues of Propositions 9.1 and 9.2 with (ψ0, ω0)
replaced by (ψn, ωn). The results are given in Proposition 9.3 and 9.4 below. Since the proofs are essentially
the same as those for Propositions 9.1 and 9.2, they are omitted.

Proposition 9.3.

∫
R2+1

(e0)n(χψn)

Nn
�gn,A(χψn) dVolgn +

∫
R2+1

A(
(e0)n(χψn)

Nn
)�g0(χψn) dVolgn

= −
∫
R2+1

(e0)n(χψn)

Nn
(∂te

2γn)A(
(e0)n(χψn)

Nn
) dx︸ ︷︷ ︸

=:easy1

+

∫
R2+1

(e0)n(χψn)

Nn
(∂i(β

i
ne

2γn))A(
(e0)n(χψn)

Nn
) dx︸ ︷︷ ︸

=:easy2

+

∫
R2+1

Nn∂i(χψn)δij{[A, ∂j ](
(e0)n(χψn)

Nn
)}dx︸ ︷︷ ︸

=:easy3

+

∫
R2+1

[∂i(χψn)]δijNn{[(e0)n, A](
∂j(χψn)

Nn
)}dx︸ ︷︷ ︸

=:hard

−
∫
R2+1

[∂i(χψn)]δij(∂kβ
k
n)Nn[A(

∂j(χψn)

Nn
)] dx︸ ︷︷ ︸

=:easy4

+

∫
R2+1

[∂i(χψn)]δij [(e0)nNn][A(
∂j(χψn)

Nn
)] dx︸ ︷︷ ︸

=:medium1

+

∫
R2+1

[∂i(χψn)]δijNnA(
((e0)n(χψn))(∂jNn)

N2
n

) dx︸ ︷︷ ︸
=:easy5

+

∫
R2+1

[∂i(χψn)]δijNnA(
(∂jβ

k
n)∂k(χψn)

Nn
) dx︸ ︷︷ ︸

=:easy6

−
∫
R2+1

[∂i(χψn)]δijNnA(
((e0)nNn)∂j(χψn)

N2
n

) dx︸ ︷︷ ︸
=:medium2

+

∫
R2+1

(∂iβ
k
n)[∂k(χψn)]δijNn[A(

∂j(χψn)

Nn
)] dx︸ ︷︷ ︸

=:easy7

+

∫
R2+1

[(e0)n(χψn)](∂iNn)δij [A(
∂j(χψn)

Nn
)] dx︸ ︷︷ ︸

=:easy8

,

(9.12)
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1

4

∫
R2+1

e−4ψ0
(e0)n(χωn)

Nn
�g0,A(χωn) dVolgn +

1

4

∫
R2+1

e−4ψ0A(
(e0)n(χωn)

Nn
)�gn(χωn) dVolg0

=
1

4

∫
R2+1

e−4ψ0{− (e0)n(χωn)

Nn
(∂te

2γn)A(
(e0)n(χωn)

Nn
) +

(e0)n(χωn)

Nn
(∂i(β

i
ne

2γn))A(
(e0)n(χωn)

Nn
)} dx

+
1

4

∫
R2+1

e−4ψ0{Nn∂i(χωn)δij{[A, ∂j ](
(e0)n(χωn)

Nn
)}+ [∂i(χωn)]δijNn{[(e0)n, A](

∂j(χωn)

Nn
)}}dx

− 1

4

∫
R2+1

e−4ψ0{[∂i(χωn)]δij(∂kβ
k
n)Nn[A(

∂j(χωn)

Nn
)] + [∂i(χωn)]δij [(e0)nNn][A(

∂j(χωn)

Nn
)]} dx

+
1

4

∫
R2+1

e−4ψ0 [∂i(χωn)]δijNn[A(
((e0)n(χωn))(∂jNn)

N2
n

+
(∂jβ

k
n)∂k(χωn)

Nn
− ((e0)nNn)∂j(χωn)

N2
n

)] dx

+
1

4

∫
R2+1

e−4ψ0{(∂iβkn)[∂k(χωn)]δijNn[A(
∂j(χωn)

Nn
)] + [(e0)n(χωn)](∂iNn)δij [A(

∂j(χωn)

Nn
)]}dx

−
∫
R2+1

e−4ψ0e2γn((e0)nψ0)
(e0)n(χωn)

Nn
A(

(e0)n(χωn)

Nn
) dx︸ ︷︷ ︸

=:extra1

+

∫
R2+1

e−4ψ0δijNn(∂iψ0)[(e0)0(χωn)][A(
∂j(χωn)

Nn
)] dx︸ ︷︷ ︸

=:extra2

−
∫
R2+1

e−4ψ0((e0)nψ0)[∂i(χωn)]δijNn[A(
∂j(χωn)

Nn
)] dx︸ ︷︷ ︸

=:extra3

+

∫
R2+1

e−4ψ0(∂jψ0)[∂i(χωn)]δijNnA(
(e0)n(χωn)

Nn
) dx︸ ︷︷ ︸

=:extra4

.

(9.13)

Proposition 9.4. Let

Fψn := 2g−1
n (dχ,dψn) + ψn�gnχ−

1

2
χe−4ψng−1

n (dωn,dωn).

Then ∫
R2+1

(e0)n(χψn)

Nn
�gn,A(χψn) dVolgn +

∫
R2+1

A(
(e0)n(χψn)

Nn
)�g0(χψn) dVolgn

=

∫
R2+1

(e0)n(χψn)

Nn
(�gn,A(χψn)− 1√

−det gn
A(
√
−det gn�gn(χψn))) dVolgn︸ ︷︷ ︸

=:maincommutator

+

∫
R2+1

(e0)n(χψn)

Nn
A(
√
−det gnF

ψ
n ) dx︸ ︷︷ ︸

=:trilinear1

+

∫
R2+1

A(
(e0)n(χψn)

Nn
)Fψn

√
−det gn dx︸ ︷︷ ︸

=:trilinear2

.

(9.14)

Similarly, let

Fωn = 2g−1
n (dχ,dωn) + ωn�gnχ+ 4χg−1

n (dωn,dψn).

Then

1

4

∫
R2+1

e−4ψ0
(e0)n(χωn)

Nn
�gn,A(χωn) dVolgn +

1

4

∫
R2+1

e−4ψ0A(
(e0)n(χωn)

Nn
)�gn(χωn) dVolgn

=
1

4

∫
R2+1

e−4ψ0
(e0)n(χωn)

Nn
(�gn,A(χωn)− 1√

− det gn
A(
√
− det gn�gn(χωn))) dVolgn

+
1

4

∫
R2+1

e−4ψ0
(e0)n(χωn)

Nn
A(
√
−det gnF

ω
n ) dx︸ ︷︷ ︸

=:trilinear3

+
1

4

∫
R2+1

e−4ψ0A(
(e0)n(χωn)

Nn
)Fωn

√
−det gn dx︸ ︷︷ ︸

=:trilinear4

.

(9.15)
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Our goal now is to compute the limit of the RHS of (9.12), (9.13), (9.14) and (9.15) as n→ +∞
(allowing possibly passing to a subsequence). We then compare the resulting expression with the RHS of
(9.5), (9.6), (9.10) and (9.11) to derive an equation for dν. This task will be the goal of Sections 10–13
below.

10. Terms in Proposition 9.3

We continue to work under the assumptions of Theorem 4.2 and the reductions in Sections 4.1 and
8.3. As above, let A be a 0-th order pseudo-differential operator given by A = b(x)m̃( 1

i∇), where the
principal symbol a(x, ξ) = b(x)m(ξ) (with m(ξ) = m̃(ξ) for |ξ| ≥ 1) is real and supported in T ∗Ω, m(ξ) is
homogeneous of order 0, and m and m̃ are both even.

Our goal in this section is to compute the limit (as n → +∞) of the terms on the RHSs of (9.12) and
(9.13) in Proposition 9.3. We will focus mainly on (9.12). The terms in (9.13) can be treated mostly in a
similar manner ; we will explain the additional details in Proposition 10.5.

The terms on the RHS of (9.12) labeled as “easy” will be treated in Section 10.1. The terms on RHS of
(9.12) labeled as “medium” will then be treated in Section 10.2. Note that the “hard” terms will not be
dealt with but need to be combined with other terms later. We then conclude the section in Section 10.3.

10.1. The easier terms.

Proposition 10.1. As n→ +∞, for easyi being the terms in (9.12),

8∑
i=1

easyi → corresponding terms on the RHS of (9.5)

− 2

∫
S∗R2+1

((g−1
0 )αβ(∂βX

γ)ξαξγ −
1

2
Xµ∂µ(g−1

0 )αγξαξγ)a
dνψ

|ξ|2

+

∫
S∗R2+1

[−δijξi(ξt − βk0 ξk)∂xja]
e−2γ0

N0

dνψ

|ξ|2
,

where X = 1
N0

(∂t − βi0∂i).

Démonstration. Step 1 : Taking limits for the metric quantities. In all the “easyi” terms for i 6= 3, note
that we have the appearance of the metric components γn, logNn, βjn and the following derivatives ∂iγn,
∂i logNn, ∂iβ

j
n and ∂tγn. In other words, there are no appearances of ∂tβ

j
n and ∂t logNn.

Therefore, by the estimates in (4.2) and (4.3) and the convergence statements for ∂iγn, ∂i logNn, ∂iβ
j
n

and ∂tγn in Propositions 8.1 and 8.2, all the easyi terms have the same limit (as n→ +∞) if we replace all

the (γn, logNn, β
j
n) by (γ0, logN0, β

j
0). For instance,

−
∫
R2+1

(e0)n(χψn)

Nn
(∂te

2γn)A(
(e0)n(χψn)

Nn
) dx+

∫
R2+1

(e0)0(χψn)

N0
(∂te

2γ0)A(
(e0)0(χψn)

N0
) dx→ 0.

Similarly for other “easyi” terms with i 6= 3.
The i = 3 term is also similar. We only need to note additionally by Lemmas 5.2.2 and 5.2.4 [A, ∂j ] is a

bounded L2 → L2 operator independent of n. Hence,∫
R2+1

Nn∂i(χψn)δij{[A, ∂j ](
(e0)n(χψn)

Nn
)}dx−

∫
R2+1

N0∂i(χψn)δij{[A, ∂j ](
(e0)0(χψn)

N0
)} dx→ 0.

Step 2 : Using the microlocal defect measures. After the reduction in Step 1, we now use Corollary 6.4 to
take the n→ +∞ limits. We treat the i 6= 3 (Step 2(a)) and i = 3 cases (Step 2(b)) separately.

Step 2(a) : All terms except for easy3. Consider now the sum
∑

1≤i≤8
i 6=3

easyi. Using Step 1, Corollary 6.4, and

recalling that dx = 1√
− det g0

dVolg0 = e−2γ0

N0
dVolg0 , we see that

∑
1≤i≤8
i 6=3

easyi converges to the corresponding
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terms on the RHS of (9.5) plus the following :∫
S∗R2+1

(ξt − βk0 ξk)2 e
−2γ0 [−(∂te

2γ0) + ∂i(β
i
0e

2γ0)]

N3
0

a
dνψ

|ξ|2
−
∫
S∗R2+1

δijξiξj
e−2γ0(∂kβ

k
0 )

N0
a
dνψ

|ξ|2

+

∫
S∗R2+1

δijξi(ξt − βk0 ξk)(
e−2γ0(∂jN0)

N2
0

)a
dνψ

|ξ|2
+

∫
S∗R2+1

δijξiξk
e−2γ0(∂jβ

k
n)

N0
a
dνψ

|ξ|2

+

∫
S∗R2+1

δijξjξk
e−2γ0(∂iβ

k
0 )

N0
a
dνψ

|ξ|2
+

∫
S∗R2+1

δijξj(ξt − βk0 ξk)
e−2γ0∂iN0

N2
0

a
dνψ

|ξ|2
.

(10.1)

We now use the fact that 1
N2

0
(ξt−βk0 ξk)2 = e−2γ0δijξiξj on the support of dνψ (by Proposition 6.6) to derive

(10.1) = −
∫
S∗R2+1

(ξt − βk0 ξk)2 e
−2γ0(∂t − βi0∂i)e2γ0

N3
0

a
dνψ

|ξ|2
+ 2

∫
S∗R2+1

δijξi(ξt − βk0 ξk)
e−2γ0(∂jN0)

N2
0

a
dνψ

|ξ|2

+ 2

∫
S∗R2+1

δijξiξk
e−2γ0(∂jβ

k
0 )

N0
a
dνψ

|ξ|2
.

(10.2)

For X = 1
N0

(∂t − βi0∂i), let us also compute that

(g−1
0 )αβ∂βX

γξαξγ

= − 1

N2
0

(∂t − βj0∂j)(
1

N0
)ξt(ξt − βk0 ξk) +

1

N2
0

(∂t − βj0∂j)(
βi0
N0

)ξi(ξt − βk0 ξk)

+ e−2γ0δij∂i(
1

N0
)ξjξt − e−2γ0δij∂i(

βk0
N0

)ξjξk

= +
1

N4
0

((∂t − βj0∂j)N0)(ξt − βk0 ξk)2 +
1

N3
0

((∂t − βj0∂j)βi0)ξi(ξt − βk0 ξk)

− 1

N2
0

e−2γ0δij(∂iN0)ξj(ξt − βk0 ξk)− 1

N0
e−2γ0δij(∂iβ

k
0 )ξjξk,

(10.3)

and

1

2
Xµ∂µ(g−1

0 )αγξαξγ

= − 1

2

1

N0
((∂t − βk0∂k)

1

N2
0

)ξ2
t +

1

N0
((∂t − βk0∂k)

βi0
N2

0

)ξtξi

+
1

2

1

N0
((∂t − βk0∂k)e−2γ0)δijξiξj −

1

2

1

N0
((∂t − βk0∂k)(

βi0β
j
0

N2
0

))ξiξj

=
1

N4
0

((∂t − βk0∂k)N0)(ξt − βi0ξi)2 +
1

N3
0

((∂t − βk0∂k)βi0)(ξt − βj0ξj)ξi +
1

2

1

N0
((∂t − βk0∂k)e−2γ0)δijξiξj

=
1

N4
0

((∂t − βk0∂k)N0)(ξt − βi0ξi)2 +
1

N3
0

((∂t − βk0∂k)βi0)(ξt − βj0ξj)ξi −
1

2

e−4γ0

N0
((∂t − βk0∂k)e2γ0)δijξiξj .

(10.4)

Subtracting (10.4) from (10.3), it follows that

(g−1
0 )αβ(∂βX

γ)ξαξγ −
1

2
Xµ∂µ(g−1

0 )αγξαξγ

= − 1

N2
0

e−2γ0δij(∂iN0)ξj(ξt − βk0 ξk)− 1

N0
e−2γ0δij(∂iβ

k
0 )ξjξk +

1

2

e−4γ0

N0
((∂t − βk0∂k)e2γ0)δijξiξj .

By inspection, we have proven that

(10.2) = −2

∫
S∗R2+1

((g−1
0 )αβ(∂βX

γ)ξαξγ −
1

2
Xµ∂µ(g−1

0 )αγξαξγ)a
dνψ

|ξ|2
.

Step 2(b) : The term easy3. By Lemma 5.2.2, [A, ∂j ] is a 0-th order pseudo-differential symbol with principal
symbol

−i{a, iξj} = −∂xja.
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Therefore, using Corollary 6.4,∫
R2+1

Nn∂i(χψn)δij{[A, ∂j ](
(e0)n(χψn)

Nn
)} dx

→
∫
R2+1

N0∂i(χψ0)δij{[A, ∂j ](
(e0)0(χψ0)

N0
)}dx+

∫
S∗R2+1

[−δijξi(ξt − βk0 ξk)∂xja]
e−2γ0

N0

dνψ

|ξ|2
.

Together with Step 1, this gives the desired limit. �

10.2. The not-so-easy terms.

Proposition 10.2. The following holds after passing to a subsequence (which we do not relabel) :∫
R2+1

[∂i(χψn)]δij [(e0)nNn][A(
∂j(χψn)

Nn
)] dx−

∫
R2+1

[∂i(χψn)]δijN0A(
((e0)nNn)∂j(χψn)

N2
n

) dx

−
∫
R2+1

[∂i(χψn)]δij [(e0)0N0][A(
∂j(χψn)

N0
)] dx+

∫
R2+1

[∂i(χψn)]δijN0A(
((e0)0N0)∂j(χψn)

N2
0

) dx→ 0.

(10.5)

Démonstration. Using (4.2) and (4.3), it is easy to see that the two first two terms in (10.5) have the same
limit as∫

R2+1

[∂i(χψn)]δij [(e0)0Nn][A(
∂j(χψn)

N0
)] dx−

∫
R2+1

[∂i(χψn)]δijN0A(
((e0)0Nn)∂j(χψn)

N2
0

) dx.

It therefore suffices to show that∫
R2+1

[∂i(χψn)]δij [(e0)0(Nn −N0)][A(
∂j(χψn)

N0
)] dx

−
∫
R2+1

[∂i(χψn)]δijN0A(
((e0)0(Nn −N0))∂j(χψn)

N2
0

) dx→ 0.

(10.6)

To prove (10.6), we need to rely further on the structure of the terms. We begin with the following
algebraic manipulation.

LHS of (10.6) =

∫
R2+1

[∂i(χψn)]δij [(e0)0(Nn −N0)][A(
∂j(χ(ψn − ψ0))

N0
)] dx︸ ︷︷ ︸

=:I

−
∫
R2+1

[∂i(χ(ψn − ψ0))]δijN0A(
((e0)0(Nn −N0))∂j(χψn)

N2
0

) dx︸ ︷︷ ︸
=:II

+

∫
R2+1

[∂i(χ(ψn − ψ0))]δij [(e0)0(Nn −N0)][A(
∂j(χψ0)

N0
)] dx︸ ︷︷ ︸

=:III

−
∫
R2+1

[∂i(χψ0)]δijN0A(
((e0)0(Nn −N0))∂j(χ(ψn − ψ0))

N2
0

) dx︸ ︷︷ ︸
=:IV

+

∫
R2+1

[∂i(χψ0)]δij [(e0)0(Nn −N0)][A(
∂j(χψ0)

N0
)] dx︸ ︷︷ ︸

=:V

−
∫
R2+1

[∂i(χψ0)]δijN0A(
((e0)0(Nn −N0))∂j(χψ0)

N2
0

) dx︸ ︷︷ ︸
=:VI

.
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We first consider I + II. Note that by Proposition 8.9, A∗([∂i(χ(ψn − ψ0))]N0) is real. Therefore,

I + II

=

∫
R2+1

[∂i(χψn)]δij [(e0)0(Nn −N0)][A(
∂j(χ(ψn − ψ0))

N0
)] dx

−
∫
R2+1

A∗([∂i(χ(ψn − ψ0))]N0)δij(
((e0)0(Nn −N0))∂j(χψn)

N2
0

) dx

= −
∫
R2+1

{(A∗ −A)([∂i(χ(ψn − ψ0))]N0) + [A,N2
0 ](

∂i(χ(ψn − ψ0))

N0
)}δij( ((e0)0(Nn −N0))∂j(χψn)

N2
0

) dx.

Now both A∗ − A and [A,N2
0 ] are pseudo-differential operator of orders −1 by Lemmas 5.2.2 and 5.2.3

(and the fact that a is real). Lemma 5.2.5 then implies that after passing to a subsequence, both (A∗ −
A)([∂i(χ(ψn − ψ0))]N0) and [A,N2

0 ](∂i(χ(ψn−ψ0))
N0

) converge strongly in the L2 norm to 0. The Cauchy–

Schwartz inequality then implies that (up to passing to a subsequence) I + II→ 0.
For the terms III and IV, we show that they separately tend to 0. To show each of these convergences, it

suffices to show that ((e0)0(Nn−N0))∂j(χ(ψn−ψ0)) converges to 0 weakly in L2, i.e. the weak limit of the
product coincide with the product of the weak limits. This can be viewed as a compensated compactness
result : the key is that even though (e0)0(Nn − N0) does not have a strong limit, we can integrate by
parts to take advantage of the fact that ∂i(Nn −N0) converges locally uniformly to 0. More precisely, take
ϑ ∈ C∞c (R2+1) (which we can do by a density argument). We then compute∫

R2+1

ϑ((e0)0(Nn −N0))∂j(χ(ψn − ψ0)) dx

= −
∫
R2+1

ϑ(Nn −N0)(e0)0∂j(χ(ψn − ψ0)) dx+

∫
R2+1

[−(e0)0ϑ+ ϑ(∂iβ
i
0)](Nn −N0)∂j(χ(ψn − ψ0)) dx

=

∫
R2+1

[(∂jϑ)(Nn −N0) + ϑ∂j(Nn −N0)](e0)0(χ(ψn − ψ0)) dx−
∫
R2+1

ϑ(Nn −N0)(∂jβ
i
0)∂i(χ(ψn − ψ0)) dx

+

∫
R2+1

[−(e0)0ϑ+ ϑ(∂iβ
i
0)](Nn −N0)∂j(χ(ψn − ψ0)) dx.

By virtue of (4.2), (4.3) and Proposition 8.1, this → 0.
Finally, V and VI both → 0 by virtue of the fact that ((e0)0(Nn −N0)) converges weakly in L2 to 0. We

thus conclude the proof of (10.6). �

Proposition 10.3.∫
R2+1

[∂i(χψn)]δij [(e0)nNn][A(
∂j(χψn)

Nn
)] dx−

∫
R2+1

[∂i(χψn)]δijN0A(
((e0)nNn)∂j(χψn)

N2
n

) dx

→
∫
R2+1

[∂i(χψ0)]δij [(e0)0N0][A(
∂j(χψ0)

N0
)] dx−

∫
R2+1

[∂i(χψ0)]δijN0A(
((e0)0N0)∂j(χψ0)

N2
0

) dx.

Démonstration. By Corollary 6.4,

−
∫
R2+1

[∂i(χψn)]δij [(e0)0N0][A(
∂j(χψn)

N0
)] dx+

∫
R2+1

[∂i(χψn)]δijN0A(
((e0)0N0)∂j(χψn)

N2
0

) dx

→ −
∫
S∗R2+1

e−2γ0((e0)0N0)

N2
0

aδijξiξj
dνψ

|ξ|2
+

∫
S∗R2+1

e−2γ0((e0)0N0)

N2
0

aδijξiξj
dνψ

|ξ|2
= 0.

The result therefore follows from Proposition 10.2. �

10.3. Putting everything together. We summarize what we have obtained in this section.
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Proposition 10.4. Suppose A = b(x)m̃( 1
i∇), where the principal symbol is real and supported in T ∗Ω, and

m(ξ) is homogeneous of order 0 and is even. After passing to a subsequence (which we do not relabel),

RHS of (9.12)−
∫
R2+1

[∂i(χψn)]δijNn{[(e0)n, A](
∂j(χψn)

Nn
)} dx

→ RHS of (9.5)−
∫
R2+1

[∂i(χψ0)]δijN0{[(e0)0, A](
∂j(χψ0)

N0
)} dx

− 2

∫
S∗R2+1

((g−1
0 )αβ(∂βX

γ)ξαξγ −
1

2
Xµ∂µ(g−1

0 )αγξαξγ)a
dνψ

|ξ|2

+

∫
S∗R2+1

[−δijξi(ξt − βk0 ξk)∂xja]
e−2γ0

N0

dνψ

|ξ|2
,

where X = 1
N0

(∂t − βi0∂i).

We have a similar result regarding the limit of the RHS of (9.13).

Proposition 10.5. Suppose A = b(x)m( 1
i∇), where the principal symbol is real and supported in T ∗Ω, and

m(ξ) is homogeneous of order 0 and is even. After passing to a subsequence (which we do not relabel),

RHS of (9.13)− 1

4

∫
R2+1

e−4ψ0 [∂i(χωn)]δijNn{[(e0)n, A](
∂j(χωn)

Nn
)}dx

→ RHS of (9.6)− 1

4

∫
R2+1

e−4ψ0 [∂i(χω0)]δijN0{[(e0)0, A](
∂j(χω0)

N0
)} dx

− 1

2

∫
S∗R2+1

e−4ψ0((g−1
0 )αβ(∂βX

γ)ξαξγ −
1

2
Xµ∂µ(g−1

0 )αγξαξγ)a
dνω

|ξ|2

+
1

4

∫
S∗R2+1

e−4ψ0 [−δijξi(ξt − βk0 ξk)∂xja]
e−2γ0

N0

dνω

|ξ|2

+ 2

∫
S∗R2+1

e−4ψ0

N0
(g−1

0 )αβ(∂αψ0)ξβ(ξt − βk0 ξk)a
dνω

|ξ|2
,

where X = 1
N0

(∂t − βi0∂i).

Démonstration. Except for the terms labeled “extra1”–“extra4”, all the other terms in (9.13) have their
obvious analogues in (9.12). We thus only focus on the terms “extra1”–“extra4”.

Using (4.2) and Corollary 6.4, it immediately follows that

4∑
i=1

extrai → corresponding terms on RHS of (9.6)

−
∫
S∗R2+1

e−4ψ0 [
((e0)0ψ0)

N3
0

(ξt − βk0 ξk)2 +
e−2γ0((e0)0ψ0)

N0
δijξiξj ]a

dνω

|ξ|2

+ 2

∫
S∗R2+1

e−4ψ0 [
e−2γ0(∂iψ0)

N0
δij(ξt − βk0 ξk)ξj ]a

dνω

|ξ|2
.

(10.7)

Note that by Proposition 6.6, on the support of dνω,

1

N2
0

(ξt − βk0 ξk)2 = e−2γ0δijξiξj . (10.8)

Hence, a direct computation shows that on the support of dνω,

2

N0
(g−1

0 )αβ(∂αψ0)ξβ(ξt − βk0 ξk)

= − 2

N3
0

((e0)0ψ0)(ξt − βk0 ξk)2 +
2e−2γ0

N0
δij(∂iψ0)(ξt − βk0 ξk)ξj

= − 1

N3
0

((e0)0ψ0)(ξt − βk0 ξk)2 − e−2γ0

N0
((e0)0ψ0)δijξiξj +

2e−2γ0

N0
δij(∂iψ0)(ξt − βk0 ξk)ξj .

(10.9)

Therefore, using the computations leading to Proposition 10.4 and also (10.7) and (10.9), we obtain the
desired conclusion. �
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Let us again emphasize that we have not handled the terms
∫
R2+1 [∂i(χψn)]δijNn{[(e0)n, A](

∂j(χψn)
Nn

)} dx

and 1
4

∫
R2+1 e

−4ψ0 [∂i(χωn)]δijNn{[(e0)n, A](
∂j(χωn)
Nn

)} dx. They are considerably more difficult : not only do
we need to use a version of trilinear compensated compactness, but we will also need to combine this with
appropriate terms on the RHS of (9.14) and (9.15) to obtain extra cancellations.

11. The main commutator terms in Proposition 9.4 and the elliptic-wave trilinear
compensated compactness

We continue to work under the assumptions of Theorem 4.2 and the reductions in Sections 4.1 and
8.3. As above, let A be a 0-th order pseudo-differential operator given by A = b(x)m̃( 1

i∇), where the
principal symbol a(x, ξ) = b(x)m(ξ) (with m(ξ) = m̃(ξ) for |ξ| ≥ 1) is real and supported in T ∗Ω, m(ξ) is
homogeneous of order 0, and m and m̃ are both even.

Our goal in this section is to compute the limit of the term labeled “maincommutator” in (9.14) (and
the corresponding term in (9.15)). To handle this term, we will in particular need various forms of trili-
near compensated compactness for special combinations of functions satisfying nonlinear elliptic and wave
equations.

To proceed, let us compute using (9.2) and (9.4) that

√
−det gn

(
�gn,A(χψn)− 1√

−det gn
A(
√
−det gn�gn(χψn))

)
(11.1)

= − ∂t[e2γnA(
(e0)n(χψn)

Nn
)] +A∂t[e

2γn(
(e0)n(χψn)

Nn
)] (11.2)

+ δij∂i[N
2
nA(

∂j(χψn)

Nn
)]−A∂i[Nn∂j(χψn)] (11.3)

+ ∂i[β
i
ne

2γnA(
(e0)n(χψn)

Nn
)]−A∂i[e2γnβin(

(e0)n(χψn)

Nn
)]. (11.4)

We will consider the contribution to the “maincommutator” term from (11.2), (11.3) and (11.4) in
Section 11.1, Section 11.2 and Section 11.3 respectively. We then put together the computations and
obtain our conclusion in Section 11.4 and Section 11.5.

11.1. The term (11.2).

Proposition 11.1.∫
R2+1

(e0)n(χψn)

Nn
{∂t[e2γnA(

(e0)n(χψn)

Nn
)]−A∂t[e2γn(

(e0)n(χψn)

Nn
)]} dx

−
∫
R2+1

(e0)0(χψn)

N0
{∂t[e2γ0A(

(e0)0(χψn)

N0
)]−A∂t[e2γ0(

(e0)0(χψn)

N0
)]} dx→ 0.

A similar statement holds after replacing ψn 7→ ωn, ψ0 7→ ω0 and dx 7→ 1
4e
−4ψ0dx.

Démonstration. We first note that

(e0)n(χψn)

Nn
{∂t[e2γnA(

(e0)n(χψn)

Nn
)]−A∂t[e2γn(

(e0)n(χψn)

Nn
)]}

− (e0)0(χψn)

N0
{∂t[e2γ0A(

(e0)0(χψn)

N0
)]−A∂t[e2γ0(

(e0)0(χψn)

N0
)]}

= (
(e0)n(χψn)

Nn
− (e0)0(χψn)

N0
){∂t[e2γnA(

(e0)n(χψn)

Nn
)]−A∂t[e2γn(

(e0)n(χψn)

Nn
)]} (11.5)

+
(e0)0(χψn)

N0
{∂t[e2γnA(

(e0)n(χψn)

Nn
)]−A∂t[e2γn(

(e0)n(χψn)

Nn
)]} (11.6)

− (e0)0(χψn)

N0
{∂t[e2γ0A(

(e0)0(χψn)

N0
)]−A∂t[e2γ0(

(e0)0(χψn)

N0
)]}. (11.7)
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Step 1 : Estimating (11.5). We bound (11.5) in L1. First, it is easy to check that by (4.2) and Hölder’s
inequality that

‖ (e0)n(χψn)

Nn
− (e0)0(χψn)

N0
‖L2

. ‖βin − βi0‖L∞‖
∂i(χψn)

Nn
‖L2 + ‖(e0)0(χψn)‖L2‖ 1

Nn
− 1

N0
‖L∞ . λn.

On the other hand,

∂t[e
2γnA(

(e0)n(χψn)

Nn
)]−A∂t[e2γn(

(e0)n(χψn)

Nn
)]}

= e2γn(∂tb)m̃(
1

i
∇)(

(e0)n(χψn)

Nn
)︸ ︷︷ ︸

=:I1

+ be2γn∂tm̃(
1

i
∇)(

(e0)n(χψn)

Nn
)− bm̃(

1

i
∇)∂t[e

2γn(
(e0)n(χψn)

Nn
)]︸ ︷︷ ︸

=:I2

+ (∂te
2γn)[A(

(e0)n(χψn)

Nn
)]︸ ︷︷ ︸

=:I3

,

where we have used that m̃( 1
i∇) commutes with ∂t and ∂i. Each of I1, I2 and I3 can easily be seen to be

bounded in L2 uniformly in n. For I1, this simply follows from the assumptions (4.2) and (4.3) and the
fact that m̃( 1

i∇) is bounded on L2. For I2, this is a consequence of the Calderón commutator theorem
(Lemma 5.2.6) and (4.2) and (4.3). Finally, for I3, this is an immediate consequence of (4.2) and (4.3).

Therefore, by the Cauchy–Schwarz inequality,

‖(11.5)‖L1 . λn → 0. (11.8)

Step 2 : Estimating (11.6) and (11.7). The term ((11.6) + (11.7)) is more subtle. First,

∂t[e
2γnA(

(e0)n(χψn)

Nn
)]−A∂t[e2γn(

(e0)n(χψn)

Nn
)]− {∂t[e2γ0A(

(e0)0(χψn)

N0
)]−A∂t[e2γ0(

(e0)0(χψn)

N0
)]}

= b(e2γn − e2γ0)[∂tm̃(
1

i
∇)(

(e0)n(χψn)

Nn
)]− b∂tm̃(

1

i
∇)[(e2γn − e2γ0)(

(e0)n(χψn)

Nn
)]) (11.9)

+ be2γ0 [∂tm̃(
1

i
∇)(

(e0)n(χψn)

Nn
− (e0)0(χψn)

N0
)]− b∂tm̃(

1

i
∇)[e2γ0(

(e0)n(χψn)

Nn
− (e0)0(χψn)

N0
)] (11.10)

+ b(∂t(e
2γn − e2γ0))[m̃(

1

i
∇)(

(e0)n(χψn)

Nn
)] + b(∂te

2γ0))[m̃(
1

i
∇)(

(e0)n(χψn)

Nn
− (e0)0(χψn)

N0
)] (11.11)

+ (∂tb){(e2γn − e2γ0)[m̃(
1

i
∇)(

(e0)n(χψn)

Nn
)] + e2γ0 [m̃(

1

i
∇)(

(e0)n(χψn)

Nn
− (e0)0(χψn)

N0
)]}. (11.12)

By the Calderón commutation theorem (Lemma 5.2.6), the fact that m̃( 1
i∇) is bounded on L2 (Lemma 5.2.4),

and the estimates in (4.2), (4.3) and Proposition 8.1 and 8.2,

‖(11.9) + (11.10)‖L2

. ‖χ̃(e2γn − e2γ0)‖W 1,∞‖ (e0)n(χψn)

Nn
‖L2 + ‖χ̃e2γ0‖W 1,∞‖ (e0)n(χψn)

Nn
− (e0)0(χψn)

N0
‖L2 . λ

1
2
n .

(11.13)

Using again the fact that m̃( 1
i∇) is bounded on L2, and the estimates in (4.2), (4.3) and Proposition 8.1

and 8.2, the remaining terms can be bounded directly as follows :

‖(11.11) + (11.12)‖L2

. ‖χ̃(e2γn − e2γ0)‖W 1,∞‖ (e0)n(χψn)

Nn
‖L2 + ‖χ̃e2γ0‖W 1,∞‖ (e0)n(χψn)

Nn
− (e0)0(χψn)

N0
‖L2 . λ

1
2
n .

(11.14)

Using (11.13), (11.14) and also (4.2) and (4.3), and the Cauchy–Schwarz inequality, we thus obtain

‖(11.6) + (11.7)‖L1 . ‖ (e0)0(χψn)

N0
‖L2(‖(11.9) + (11.10)‖L2 + ‖(11.11) + (11.12)‖L2) . λ

1
2
n . (11.15)

Combining (11.8) and (11.15) yields the conclusion. �
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11.2. The term (11.3). We first argue as in Section 11.1 to control most of the terms. We will identify,
however, in Proposition 11.2 that there is one difficult term that cannot be handled just with techniques in
Section 11.2. In the rest of this subsection, we will then handle the difficult term that is identified in this
proposition.

Proposition 11.2.∫
R2+1

(e0)n(χψn)

Nn
δij{∂i[N2

nA(
∂j(χψn)

Nn
)]−A∂i[Nn∂j(χψn)]} dx

−
∫
R2+1

(e0)0(χψn)

N0
δij{∂i[N2

0A(
∂j(χψn)

N0
)]−A∂i[N0∂j(χψn)]} dx

−
∫
R2+1

(e0)0(χψn)

N0
δijb{(N2

n −N2
0 )m̃(

1

i
∇)(

∂2
ij(χψn)

N0
)− m̃(

1

i
∇)[(N2

n −N2
0 )
∂2
ij(χψn)

N0
]}dx︸ ︷︷ ︸

=:I

→ 0.

Démonstration. The idea is to argue as in the proof of Proposition 11.1 until we face a term that does not
obviously → 0.

In analogy with (11.5)–(11.7), we have

(e0)n(χψn)

Nn
δij{∂i[N2

nA(
∂j(χψn)

Nn
)]−A∂i[Nn∂j(χψn)]}

− (e0)0(χψn)

N0
δij{∂i[N2

0A(
∂j(χψn)

N0
)]−A∂i[N0∂j(χψn)]}

= (
(e0)n(χψn)

Nn
− (e0)0(χψn)

N0
)δij{∂i[N2

nA(
∂j(χψn)

Nn
)]−A∂i[Nn∂j(χψn)]} (11.16)

+
(e0)0(χψn)

N0
δij
(
{∂i[N2

nA(
∂j(χψn)

Nn
)]−A∂i[Nn∂j(χψn)]} (11.17)

−{∂i[N2
0A(

∂j(χψn)

N0
)]−A∂i[N0∂j(χψn)]}

)
. (11.18)

First, note that (11.16) can be handled completely analogously as in Step 1 in the proof of Proposition 11.1

using that ‖ (e0)n(χψn)
Nn

− (e0)0(χψn)
N0

‖L2 → 0 and that ‖∂i[N2
nA(

∂j(χψn)
Nn

)] − A∂i[Nn∂j(χψn)]‖L2 is uniformly
bounded.

To control (11.17) + (11.18), we first compute as in Step 2 in the proof of Proposition 11.1.

{∂i[N2
nA(

∂j(χψn)

Nn
)]−A∂i[Nn∂j(χψn)]} − {∂i[N2

0A(
∂j(χψn)

N0
)]−A∂i[N0∂j(χψn)]}

= b∂i[N
2
nm̃(

1

i
∇)(

∂j(χψn)

Nn
− ∂j(χψn)

N0
)]− b∂im̃(

1

i
∇)[N2

n(
∂j(χψn)

Nn
− ∂j(χψn)

N0
)] (11.19)

+ (∂ib)N
2
nm̃(

1

i
∇)(

∂j(χψn)

Nn
− ∂j(χψn)

N0
) + (∂ib)(N

2
n −N2

0 )m̃(
1

i
∇)(

∂j(χψn)

N0
) (11.20)

+ b[∂i(N
2
n −N2

0 )]m̃(
1

i
∇)(

∂j(χψn)

N0
)− bm̃(

1

i
∇)[(∂i(N

2
n −N2

0 ))
∂j(χψn)

N0
] (11.21)

− b(N2
n −N2

0 )[m̃(
1

i
∇)(

(∂iN0)∂j(χψn)

N2
0

)] + bm̃(
1

i
∇)[(N2

n −N2
0 )(

(∂iN0)∂j(χψn)

N2
0

)] (11.22)

+ b(N2
n −N2

0 )m̃(
1

i
∇)(

∂2
ij(χψn)

N0
)− bm̃(

1

i
∇)[(N2

n −N2
0 )
∂2
ij(χψn)

N0
]. (11.23)

Using the Calderón commutator theorem (Lemma 5.2.6), L2 boundedness of m̃( 1
i∇) (Lemma 5.2.4),

Hölder’s inequality, and the estimates in (4.2), (4.3) and Proposition 8.1, we obtain (in a similar manner as
(11.13) and (11.14))

‖(11.19)‖L2 + ‖(11.20)‖L2 + ‖(11.21)‖L2 + ‖(11.22)‖L2

. ‖χ̃N2
n‖W 1,∞‖∂j(χψn)

Nn
− ∂j(χψn)

N0
‖L2 + ‖χ̃(N2

n −N2
0 )‖L∞‖

∂j(χψn)

N0
‖L2

+ ‖∂i(χ̃(N2
n −N2

0 ))‖L∞‖
∂j(χψn)

N0
‖L2 . λ

1
2
n .
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Therefore, the contribution of (11.19)–(11.22) to (11.17) + (11.18) → 0 in analogy with (11.15).
However, in contrast to Proposition 11.1, it is not clear whether the term (11.23) converges to 0 in L2.

This therefore gives rise to the additional term I in the statement of the proposition. �

The remaining task of this subsection is therefore to show that I in Proposition 11.2→ 0 as n→ +∞. (This
requires a use of the full trilinear structure.) We first perform a series of reductions ; see Propositions 11.3
and 11.4 below.

Our first reduction is to show that I in Proposition 11.2 has the same limit after the replacement ψn 7→
ψn − ψ0.

Proposition 11.3.∫
R2+1

(e0)0(χψn)

N0
δijb{(N2

n −N2
0 )m̃(

1

i
∇)(

∂2
ij(χψn)

N0
)− m̃(

1

i
∇)[(N2

n −N2
0 )
∂2
ij(χψn)

N0
]} dx

−
∫
R2+1

(e0)0(χ(ψn − ψ0))

N0
δijb{(N2

n −N2
0 )m̃(

1

i
∇)(

∂2
ij(χ(ψn − ψ0))

N0
)

− m̃(
1

i
∇)[(N2

n −N2
0 )
∂2
ij(χ(ψn − ψ0))

N0
]} dx→ 0.

Démonstration. It clearly suffices to prove the following three convergences as n→ +∞ :∫
R2+1

(e0)0(χψ0)

N0
δijb{(N2

n −N2
0 )m̃(

1

i
∇)(

∂2
ij(χψ0)

N0
)− m̃(

1

i
∇)[(N2

n −N2
0 )
∂2
ij(χψ0)

N0
]}dx→ 0, (11.24)

∫
R2+1

(e0)0(χψn)

N0
δijb{(N2

n −N2
0 )m̃(

1

i
∇)(

∂2
ij(χψ0)

N0
)− m̃(

1

i
∇)[(N2

n −N2
0 )
∂2
ij(χψ0)

N0
]}dx→ 0, (11.25)

and∫
R2+1

(e0)0(χψ0)

N0
δijb{(N2

n −N2
0 )m̃(

1

i
∇)(

∂2
ij(χψn)

N0
)− m̃(

1

i
∇)[(N2

n −N2
0 )
∂2
ij(χψn)

N0
]} dx→ 0. (11.26)

We will in fact not need to take advantage of the commutator [(N2
n − N2

0 ), m̃( 1
i∇)] in the expressions

above. We will simply control the first term in each of (11.24)–(11.26) ; the second term in each line can be
handled in exactly the same way.

Step 1 : Proof of (11.24) and (11.25). The terms (11.24) and (11.25) are easier because ψ0 is smooth and
we can directly bound its second derivatives. More precisely, using Hölder’s inequality, the boundedness of
m̃( 1

i∇) on L2, and the estimate (4.2), we obtain

|First term in (11.24)| . ‖(e0)0(χψ0)‖L2‖χ̃(N2
n −N2

0 )‖L∞‖δij∂2
ij(χψ0)‖L2 . 1 · λn · 1 . λn → 0.

Similarly, but using in addition (4.3), we obtain

|First term in (11.25)| . ‖(e0)0(χψn)‖L2‖χ̃(N2
n −N2

0 )‖L∞‖δij∂2
ij(χψ0)‖L2 . 1 · λn · 1 . λn → 0.

Step 2 : Proof of (11.26). The key is an integration by parts to throw the derivatives on the smooth ψ0.
More precisely, after integrating by parts, applying Hölder’s inequality and the boundedness of m̃( 1

i∇) in

L2, and using the estimates in (4.2), (4.3) and Proposition 8.1, we obtain

|First term in (11.26)| .
∣∣∣∣∫

R2+1

∂i
(e0)0(χψ0)

N0
δij(N2

n −N2
0 )m̃(

1

i
∇)

∂j(χψn)

N0
dx

∣∣∣∣
+

∣∣∣∣∫
R2+1

(e0)0(χψ0)

N0
δij∂i(N

2
n −N2

0 )m̃(
1

i
∇)

∂j(χψn)

N0
dx

∣∣∣∣
+

∣∣∣∣∫
R2+1

(e0)0(χψ0)

N0
δij(N2

n −N2
0 )m̃(

1

i
∇)

(∂iN0)∂j(χψn)

N2
0

dx

∣∣∣∣
. ‖∂i(e0)0(χψ0)‖L2‖N2

n −N2
0 ‖L∞‖∂j(χψn)‖L2

+ ‖(e0)0(χψ0)‖L2(‖∂i(N2
n −N2

0 )‖L∞ + ‖N2
n −N2

0 ‖L∞)‖∂j(χψ0)‖L2

. λn + λ
1
2
n . λ

1
2
n → 0.

�
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Our next reduction is to freeze the coefficients (cf. Section 8.2). We show that the difficult term is
essentially the same as a “frozen coefficient” version up to error terms which are o(1).

Proposition 11.4. Let bc,α, Nc,α, βic,α be as in Proposition 8.3. Denote moreover (e0)c,α := ∂t − βic,α∂i.
Then∫

R2+1

(e0)0(χ(ψn − ψ0))

N0
δijb{(N2

n −N2
0 )m̃(

1

i
∇)(

∂2
ij(χ(ψn − ψ0))

N0
)− m̃(

1

i
∇)[(N2

n −N2
0 )
∂2
ij(χ(ψn − ψ0))

N0
]} dx

−
∑
α

bc,α
N2
c,α

∫
R2+1

(e0)c,α(ζαχ(ψn − ψ0))δij{ζα(N2
n −N2

0 )m̃(
1

i
∇)(∂2

ij(ζαχ(ψn − ψ0)))

− m̃(
1

i
∇)[ζα(N2

n −N2
0 )∂2

ij(ζαχ(ψn − ψ0))]} dx→ 0.

Démonstration. We write 1 =
∑
α ζ

3
α. Then for every α, we apply the estimates in Proposition 8.3 and 8.4

together with Hölder’s inequality and the L2 boundedness of m̃( 1
i∇) to obtain the desired result. �

After the series of reductions above, we now finally estimate the term with frozen coefficients. As we
have indicated earlier, the frozen coefficients allow us to employ Fourier techniques and exploit crucial
cancellations.

Proposition 11.5. Let bc,α, Nc,α, βic,α and (e0)c,α be as in Proposition 11.4. Then∑
α

bc,α
N2
c,α

∫
R2+1

(e0)c,α(ζαχ(ψn − ψ0))δij{ζα(N2
n −N2

0 )m̃(
1

i
∇)(∂2

ij(ζαχ(ψn − ψ0)))

− m̃(
1

i
∇)[ζα(N2

n −N2
0 )∂2

ij(ζαχ(ψn − ψ0))]}dx→ 0.

Démonstration. We will bound each term in the sum. Since there are O(λ−3ε0
n ) terms in the sum (cf. be-

ginning of Section 8.2), it suffices to show that each term is o(λ3ε0
n ). This is what we will show.

From now on fix α.

Step 1 : Frequency space decomposition. Decompose ζα(N2
n −N2

0 ) into three pieces in frequency space. For
this purpose, define a smooth cutoff function Θ : [0,+∞)→ R such that

Θ ≥ 0, Θ(x) = 1 for x ∈ [0, 1], Θ(x) = 0 for x ≥ 2. (11.27)

Define now the decomposition of ζα(N2
n −N2

0 ) as follows

ζα(N2
n −N2

0 ) = (Ndiff)n,1 + (Ndiff)n,2 + (Ndiff)n,3,

where
̂(Ndiff)n,1(ξ) := Θ(λ

5
6
n |ξ|)

(
ζ̂αN2

n(ξ)− ζ̂αN2
0 (ξ)

)
, (11.28)

̂(Ndiff)n,2(ξ) := (1−Θ(λ
5
6
n |ξ|))(1−Θ(

|ξi|
|ξ| 58

))
(
ζ̂αN2

n(ξ)− ζ̂αN2
0 (ξ)

)
, (11.29)

̂(Ndiff)n,3(ξ) := (1−Θ(λ
5
6
n |ξ|))Θ(

|ξi|
|ξ| 58

)
(
ζ̂αN2

n(ξ)− ζ̂αN2
0 (ξ)

)
. (11.30)

Step 2 : Handling (Ndiff)n,1. We first deal with the terms involving (Ndiff)n,1.
By Bernstein’s inequality and Proposition 8.5,

‖(Ndiff)n,1‖W 1,∞ . λ
− 5

6
n ‖ζα(N2

n −N2
0 )‖L∞ . λ

1
6
n . (11.31)

By Lemma 5.2.4, m̃( 1
i∇) is a bounded operator in L2. Therefore, by the Cauchy–Schwartz inequality,

the Calderón commutator theorem (Lemma 5.2.6), (11.31) and Proposition 8.4, we have∣∣∣∣ bc,αN2
c,α

∫
R2+1

(e0)c,α(ζαχ(ψn − ψ0))δij(Ndiff)n,1m̃(
1

i
∇)(∂2

ij(ζαχ(ψn − ψ0)))

−m̃(
1

i
∇)[(Ndiff)n,1∂

2
ij(ζαχ(ψn − ψ0))] dx

∣∣∣∣
. ‖∂(ζαχ(ψn − ψ0))‖L2‖(Ndiff)n,1‖W 1,∞‖∂(ζαχ(ψn − ψ0))‖L2 . λ

3ε0
2
n · λ

1
6
n · λ

3ε0
2
n = λ

1
6 +3ε0
n = o(λ3ε0

n ),

as desired.
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Step 3 : Handling (Ndiff)n,2. For this, we make use of the large spatial frequency to obtain a good L2 bound.

More precisely, since on the support of (1−Θ(λ
5
6
n |ξ|))(1−Θ( |ξi|

|ξ|
5
8

)), |ξi|2 & |ξ|
5
4 & λ

− 25
24

n , by the Plancherel

theorem and Proposition 8.5,

‖(Ndiff)n,2‖L2 . ‖∆−1∆(Ndiff)n,2‖L2 . λ
25
24
n ‖∆(ζα(N2

n −N2
0 ))‖L2 . λ

25
24 +

3ε0
2

n . (11.32)

By Lemma 5.2.4, m̃( 1
i∇) is a bounded operator in L4. Therefore, using Hölder’s inequality and the

estimates in (11.32) and in Proposition 8.4, we obtain∣∣∣∣ bc,αN2
c,α

∫
R2+1

(∂t − βkc,α∂k)(ζαχ(ψn − ψ0))δij{(Ndiff)n,2m̃(
1

i
∇)(∂2

ij(ζαχ(ψn − ψ0))) dx

∣∣∣∣
+

∣∣∣∣ bc,αN2
c,α

∫
R2+1

(∂t − βkc,α∂k)(ζαχ(ψn − ψ0))δijm̃(
1

i
∇)[(Ndiff)n,2∂

2
ij(ζαχ(ψn − ψ0))]} dx

∣∣∣∣
. ‖(∂t − βkc,α∂k)(ζαχ(ψn − ψ0))‖L4‖δij∂2

ij(ζαχ(ψn − ψ0))‖L4‖(Ndiff)n,2‖L2

. λ
3ε0
4
n · λ−1+

3ε0
4

n · λ
25
24 +

3ε0
2

n = λ
1
24 +3ε0
n = o(λ3ε0

n ),

(11.33)

as desired.

Step 4 : Handling (Ndiff)n,3. To handle (Ndiff)n,3, we need to compute in Fourier space. Here, we take full
advantage of having frozen the coefficients. In order to simplify the formulae, we will denote (ψdiff)n :=
ζαχ(ψn − ψ0).

bc,α
N2
c,α

∫
R2+1

(∂t − βkc,α∂k)(ψdiff)nδ
ij{(Ndiff)n,3m̃(

1

i
∇)(∂2

ij(ψdiff)n)− m̃(
1

i
∇)[(Ndiff)n,3∂

2
ij(ψdiff)n]} dx

=
−ibc,α
N2
c,α

∫∫
(ξt − βkc,αξk)ηiηjδ

ij ̂(ψdiff)n(ξ) ̂(Ndiff)n,3(ξ − η) ̂(ψdiff)n(η)[m̃(η)− m̃(ξ)] dη dξ

=
−ibc,α
N2
c,α

∫∫
(ξt − βkc,αξk)ηiηjδ

ij ̂(ψdiff)n(ξ) ̂(Ndiff)n,3(η − ξ) ̂(ψdiff)n(−η)[m̃(η)− m̃(ξ)] dη dξ.

(11.34)

Exchanging ξ and η,(11.34) can be given equivalently as

(11.34) =
−ibc,α
N2
c,α

∫∫
(ηt − βkc,αηk)ξiξjδ

ij ̂(ψdiff)n(η) ̂(Ndiff)n,3(ξ − η) ̂(ψdiff)n(−ξ)[m̃(ξ)− m̃(η)] dη dξ.

(11.35)

Changing variables ξ 7→ −ξ and η 7→ −η, and using the evenness of m,

(11.35) =
−ibc,α
N2
c,α

∫∫
(ηt − βkc,αηk)ξiξjδ

ij ̂(ψdiff)n(ξ) ̂(Ndiff)n,3(η − ξ) ̂(ψdiff)n(−η)[m̃(η)− m̃(ξ)] dη dξ.

(11.36)

Therefore, averaging between (11.34) and (11.36), we obtain

bc,α
N2
c,α

∫
R2+1

(∂t − βkc,α∂k)(ψdiff)nδ
ij{(Ndiff)n,3m̃(

1

i
∇)(∂2

ij(ψdiff)n)− m̃(
1

i
∇)[(Ndiff)n,3∂

2
ij(ψdiff)n]} dx

=
−ibc,α
2N2

c,α

∫∫ (
(ξt − βkc,αξk)|ηi|2 + (ηt − βkc,αηk)|ξi|2

)
× ̂(ψdiff)n(ξ) ̂(Ndiff)n,3(η − ξ) ̂(ψdiff)n(−η)[m̃(η)− m̃(ξ)] dη dξ.

(11.37)

Step 4(a) : Some manipulation of the Fourier multiplier. Note that on the support of (1 − Θ(λ
5
6
n |ξ −

η|))Θ( |ξi−ηi|
|ξ−η|

5
8

), we easily have |ξt − ηt| & |ξ − η| − |ξj − ηj | & |ξ − η|. It follows that

|(ξt − ηt)− βjc,α(ξj − ηj)|(1−Θ(λ
5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

) & λ
− 5

6
n . (11.38)
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In particular, (ξt−ηt)−βjc,α(ξj−ηj) is bounded away from 0. Therefore, we can divide by (ξt−ηt)−βjc,α(ξj−ηj)
and a direct computation shows that

(ηt − βjc,αηj) + (ξt − βjc,αξj)

=
(ηt − βjc,αηj)2 − e−2γc,αN2

c,α|ηi|2

(ηt − βjc,αηj)− (ξt − βjc,αξj)
−

(ξt − βjc,αξj)2 − e−2γc,αN2
c,α|ξi|2

(ηt − βjc,αηj)− (ξt − βjc,αξj)
+

e−2γc,αN2
c,α(|ηi|2 − |ξi|2)

(ηt − βjc,αηj)− (ξt − βjc,αξj)
.

(11.39)

Using (11.39), we can therefore write the Fourier multiplier in (11.37) as follows :(
|ξi|2(ηt − βjc,αηj) + |ηi|2(ξt − βjc,αξj)

)
(1−Θ(λ

5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

)

=
((
|ξi|2 − |ηi|2

)
(ηt − βjc,αηj) + |ηi|2

(
(ηt − βjc,αηj) + (ξt − βjc,αξj)

))
(1−Θ(λ

5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

)

= δik(ξi − ηi)(ξk + ηk)(ηt − βjc,αηj)(1−Θ(λ
5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

) (11.40)

+ |ηi|2
(ηt − βjc,αηj)2 − e−2γc,αN2

c,α|ηi|2

(ηt − βjc,αηj)− (ξt − βjc,αξj)
(1−Θ(λ

5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

) (11.41)

− |ηi|2
(ξt − βjc,αξj)2 − e−2γc,αN2

c,α|ξi|2

(ηt − βjc,αηj)− (ξt − βjc,αξj)
(1−Θ(λ

5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

) (11.42)

+ |ηi|2
e−2γc,αN2

c,αδ
k`(ηk − ξk)(η` + ξ`)

(ηt − βjc,αηj)− (ξt − βjc,αξj)
(1−Θ(λ

5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

). (11.43)

Step 4(b) : Estimating each term. Define now the term I, II, III and IV respectively by inserting (11.40),
(11.41), (11.42) and (11.43) into (*) below

−ibc,α
2N2

c,α

∫∫
(∗) ̂(ψdiff)n(ξ)(ζ̂αN2

n − ζ̂αN2
0 )(η − ξ) ̂(ψdiff)n(−η)[m̃(η)− m̃(ξ)] dη dξ. (11.44)

For the term I, by first applying Fourier inversion and then Hölder’s inequality, we obtain

|I| .
(
‖ζαχ(ψn − ψ0)‖L4‖m̃(

1

i
∇)∂i(∂t − βjc,α∂j)(ζαχ(ψn − ψ0))‖L4

+‖∂i(ζαχ(ψn − ψ0))‖L4‖m̃(
1

i
∇)(∂t − βjc,α∂j)(ζαχ(ψn − ψ0))‖L4

+‖m̃(
1

i
∇)∂i(ζαχ(ψn − ψ0))‖L4‖(∂t − βjc,α∂j)(ζαχ(ψn − ψ0))‖L4

+‖m̃(
1

i
∇)(ζαχ(ψn − ψ0))‖L4‖∂i(∂t − βjc,α∂j)(ζαχ(ψn − ψ0))‖L4

)
× ‖(1−Θ(λ

5
6
n |∇|))Θ(

|∇i|
|∇| 58

)∂i(ζα(N2
n −N2

0 ))‖L2 .

(11.45)

With the estimates in (4.2), (4.3) and Proposition 8.5, Plancherel’s theorem and Hölder’s inequality, we
obtain

‖(1−Θ(λ
5
6
n |∇|))Θ(

|∇i|
|∇| 58

)∂i(ζα(N2
n −N2

0 ))‖L2

. ‖∂i(ζα(Nn −N0))‖L2‖Nn +N0‖L∞ + ‖ζα(Nn −N0)‖L2‖∂i(Nn +N0)‖L∞

. λ
1
2 +

3ε0
2

n + λ
1+

3ε0
2

n . λ
1
2 +

3ε0
2

n .

(11.46)

Plugging (11.46) into (11.45) and using using the estimates in Proposition 8.4 together with Lemma 5.2.4,
we obtain

|I| . (λ
1+

3ε0
4

n · λ−1+
3ε0
4

n + λ
3ε0
4

n · λ
3ε0
4

n )λ
1
2 +

3ε0
2

n = λ
1
2 +3ε0
n = o(λ3ε0

n ). (11.47)
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To handle the term II, we likewise apply the inverse Fourier transform and then use Hölder’s inequality
to obtain

|II| .
(
‖m̃(

1

i
∇)∂2

i �̃c,α(ζαχ(ψn − ψ0))‖L4‖ζαχ(ψn − ψ0)‖L4

+‖∂2
i �̃c,α(ζαχ(ψn − ψ0))‖L4‖m̃(

1

i
∇)(ζαχ(ψn − ψ0))‖L4

)
× ‖(1−Θ(λ

5
6
n |∇|))Θ(

|∇i|
|∇| 58

)
i

∇t − βj∇j
(ζα(N2

n −N2
0 ))‖L2 .

(11.48)

By Plancherel’s theorem, (11.38), Hölder’s inequality, (4.3) and Proposition 8.5, we obtain

‖(1−Θ(λ
5
6
n |∇|))Θ(

|∇i|
|∇| 58

)
i

∇t − βj∇j
(ζα(N2

n −N2
0 ))‖L2

. λ
5
6
n‖ζα(N2

n −N2
0 )‖L2 . λ

5
6
n‖ζα(Nn −N0)‖L2‖Nn +N0‖L∞ . λ

11
6 +

3ε0
2

n .

(11.49)

Plugging (11.49) into (11.48) and using the estimates in Propositions 8.4 and 8.6 together with Lemma 5.2.4,
we obtain

|II| . λ−3+ε0+
3ε0
4

n · λ1+
3ε0
4

n · λ
11
6 +

3ε0
2

n = λ
− 1

6 +4ε0
n = o(λ3ε0

n ), (11.50)

since ε0 >
1
6 (cf. Section 8.2).

III can be controlled in an entirely analogous manner as II ; we omit the details :

|III| . λ−
1
6 +4ε0

n = o(λ3ε0
n ). (11.51)

Finally, we handle the term IV. As before, we apply the inverse Fourier transform and then use Hölder’s
inequality. We then obtain

|IV| .
(
‖m̃(

1

i
∇)∂k∂

2
i (ζαχ(ψn − ψ0))‖L4‖ζαχ(ψn − ψ0)‖L4

+‖m̃(
1

i
∇)∂2

i (ζαχ(ψn − ψ0))‖L4‖∂k(ζαχ(ψn − ψ0))‖L4

)
× ‖(1−Θ(λ

5
6
n |∇|))Θ(

|∇i|
|∇| 58

)∂i
i

∇t − βj∇j
(ζα(N2

n −N2
0 ))‖L2

(11.52)

By Plancherel’s theorem, (11.38), Hölder’s inequality, (4.3) and Proposition 8.5, we obtain

‖(1−Θ(λ
5
6
n |∇|))Θ(

|∇i|
|∇| 58

)∂i
i

∇t − βj∇j
(ζα(N2

n −N2
0 ))‖L2

. ‖(1−Θ(λ
5
6
n |ξ|))Θ(

|ξi|
|ξ| 58

)|ξ| 58−1(ζ̂αN2
n − ζ̂αN2

0 )‖L2

. λ
( 5
8−1)(− 5

6 )
n ‖ζα(N2

n −N2
0 )‖L2 . λ

5
16
n ‖ζα(Nn −N0)‖L2‖Nn +N0‖L∞ . λ

21
16 +

3ε0
2

n .

(11.53)

Plugging (11.53) into (11.52) and using the estimates in Propositions 8.4 together with Lemma 5.2.4, we
obtain

|IV| . λ−2+
3ε0
4

n · λ1+
3ε0
4

n · λ
21
16 +

3ε0
2

n = λ
5
16 +3ε0
n = o(λ3ε0

n ). (11.54)

By (11.47), (11.50), (11.51) and (11.54), we have thus shown that each of the terms obey the desired
estimate. This concludes the proof. �

Let us summarize what we have achieved in this subsection. At this point, let us also note that while
the computations in this subsection concerns the commutator term involving ψn, they apply in an identical
manner to the commutator term involving ωn.

Proposition 11.6.∫
R2+1

(e0)n(χψn)

Nn
δij{∂i[N2

nA(
∂j(χψn)

Nn
)]−A∂i[Nn∂j(χψn)]} dx

−
∫
R2+1

(e0)0(χψn)

N0
δij{∂i[N2

0A(
∂j(χψn)

N0
)]−A∂i[N0∂j(χψn)]} dx→ 0.
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A similar statement holds after replacing ψn 7→ ωn, ψ0 7→ ω0 and dx 7→ 1
4e
−4ψ0dx.

11.3. The term (11.4). We now look at the term (11.4). Unlike the terms (11.2) and (11.3) (cf. Sections 11.1
and 11.2), we will not be able to just compute the limit of (11.4). Instead we will need to combine this term
with the “hard” term in (9.12).

For this reason, we first consider some reduction of (11.4) and the “hard” term in (9.12) in Section 11.3.1
and Section 11.3.2 respectively. We then consider the limit of the combination in Section 11.3.3.

11.3.1. Reduction for the term (11.4). We first argue as in Proposition 11.2 and identify the main term in
the limit. The proof is essentially the same as Proposition 11.2 and is omitted.

Proposition 11.7.∫
R2+1

(e0)n(χψn)

Nn
{∂k[e2γnβknA(

(e0)n(χψn)

Nn
)]−A∂k[e2γnβkn(

(e0)n(χψn)

Nn
)]} dx

−
∫
R2+1

(e0)0(χψn)

N0
{∂k[e2γ0βk0A(

(e0)0(χψn)

N0
)]−A∂k[e2γ0βk0 (

(e0)0(χψn)

N0
)]}dx

−
∫
R2+1

(e0)0(χψn)

N0
b{(e2γnβkn − e2γ0βk0 )m̃(

1

i
∇)(

∂k(e0)0(χψn)

N0
)

− m̃(
1

i
∇)[(e2γnβkn − e2γ0βk0 )(

∂k(e0)0(χψn)

N0
)]}dx→ 0.

Proposition 11.8.∫
R2+1

(e0)0(χψn)

N0
b{(e2γnβkn − e2γ0βk0 )m̃(

1

i
∇)(

∂k(e0)0(χψn)

N0
)

− m̃(
1

i
∇)[(e2γnβkn − e2γ0βk0 )(

∂k(e0)0(χψn)

N0
)]} dx

−
∫
R2+1

(e0)0(χψn)

N0
b{e2γ0(βkn − βk0 )m̃(

1

i
∇)(

∂k(e0)0(χψn)

N0
)

− m̃(
1

i
∇)[e2γ0(βkn − βk0 )(

∂k(e0)0(χψn)

N0
)]} dx→ 0.

Démonstration. In view of

e2γnβkn − e2γ0βk0 = e2γ0(βkn − βk0 ) + βkn(e2γn − e2γ0),

it suffices to show that∫
R2+1

(e0)0(χψn)

N0
b{βkn(e2γn − e2γ0)m̃(

1

i
∇)(

∂k(e0)0(χψn)

N0
)

− m̃(
1

i
∇)[βkn(e2γn − e2γ0)(

∂k(e0)0(χψn)

N0
)]}dx→ 0.

(11.55)

We compute

βkn(e2γn − e2γ0)m̃(
1

i
∇)(

∂k(e0)0(χψn)

N0
)− m̃(

1

i
∇)[βkn(e2γn − e2γ0)(

∂k(e0)0(χψn)

N0
)]

= βkn(e2γn − e2γ0)m̃(
1

i
∇)∂k(

(e0)0(χψn)

N0
)− m̃(

1

i
∇)∂k[βkn(e2γn − e2γ0)

(e0)0(χψn)

N0
] (11.56)

+ βkn(e2γn − e2γ0)m̃(
1

i
∇)[

((e0)0(χψn))(∂kN0)

N2
0

] + m̃(
1

i
∇)[((e0)0(χψn))∂k

βkn(e2γn − e2γ0)

N0
]. (11.57)

(11.56) can be controlled using Calderón’s commutator theorem (Lemma 5.2.6) with T = m̃( 1
i∇)∂k and

using the estimates in (4.2), (4.3), Propositions 8.1 and 8.2, we obtain

‖(11.56)‖L2 . ‖χ̃βkn(e2γn − e2γ0)‖C1‖ (e0)0(χψn)

N0
‖L2 . λ

1
2
n .

On the other hand, (11.57) can be bounded using estimates in (4.2), (4.3) and Proposition 8.1 as follows :

‖(11.57)‖L2 . ‖χ̃βkn(e2γn − e2γ0)‖L∞‖
((e0)0(χψn))(∂kN0)

N2
0

‖L2

+ ‖(e0)0(χψn)‖L2‖χ̃∂k
βkn(e2γn − e2γ0)

N0
‖L∞ . λn + λ

1
2
n . λ

1
2
n .
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It therefore follows that as n→ +∞,

‖βkn(e2γn − e2γ0)m̃(
1

i
∇)(

∂k(e0)0(χψn)

N0
)− m̃(

1

i
∇)[βkn(e2γn − e2γ0)(

∂k(e0)0(χψn)

N0
)]‖L2 → 0.

Hence, our goal (11.55) follows from the Cauchy–Schwarz inequality and the estimates in (4.3). �

We now take the main term in Proposition 11.8 (i.e. the term on the last two lines) and show that the
limit remains the same after (1) replacing ψn 7→ ψn − ψ0 and (2) freezing the coefficients. The proof is
entirely analogous to Propositions 11.3 and 11.4 and is omitted.

Proposition 11.9. Let bc,α, Nc,α, γc,α and βic,α be as in Proposition 8.3. Then∫
R2+1

(e0)0(χψn)

N0
b{e2γ0(βkn − βk0 )m̃(

1

i
∇)(

∂k(e0)0(χψn)

N0
)

− m̃(
1

i
∇)[e2γ0(βkn − βk0 )(

∂k(e0)0(χψn)

N0
)]} dx

−
∑
α

bc,αe
2γc,α

N2
c,α

∫
R2+1

(∂t − β`c,α∂`)(ζαχ(ψn − ψ0)){(βkn − βk0 )m̃(
1

i
∇)(∂k(∂t − βmc,α∂m)(ζαχ(ψn − ψ0)))

− m̃(
1

i
∇)[(βkn − βk0 )(∂k(∂t − βmc,α∂m)(ζαχ(ψn − ψ0))]} dx→ 0.

11.3.2. Reduction for the “hard” term in (9.12). Note that

[(e0)n, A](
∂j(χψn)

Nn
) = −βkn∂kA(

∂j(χψn)

Nn
) +A[βkn∂k(

∂j(χψn)

Nn
)] + [∂t, A](

∂j(χψn)

Nn
).

Hence, the “hard” term in (9.12) has a similar form as the previous commutator terms, can also be treated
in a similar manner.

First, we identify one main term for which the limit is difficult to compute. This is similar to Proposi-
tion 11.7 ; we omit the details.

Proposition 11.10.

−
∫
R2+1

[∂i(χψn)]δijNn{[(e0)n, A](
∂j(χψn)

Nn
)} dx+

∫
R2+1

[∂i(χψn)]δijN0{[(e0)0, A](
∂j(χψn)

N0
)}dx

−
∫
R2+1

[∂i(χψn)]δijN0b{(βkn − βk0 )m̃(
1

i
∇)(

∂2
jk(χψn)

N0
)− m̃(

1

i
∇)[(βkn − βk0 )

∂2
jk(χψn)

N0
]} dx→ 0

Next, we show that the limit remains unchanged after replacing ψn 7→ ψn−ψ0 and freezing the coefficients.
This is similar to Proposition 11.9.

Proposition 11.11. Let bc,α be as in Proposition 8.3. Then∫
R2+1

[∂i(χψn)]δijN0b{(βkn − βk0 )m̃(
1

i
∇)(

∂2
jk(χψn)

N0
)− m̃(

1

i
∇)[(βkn − βk0 )

∂2
jk(χψn)

N0
]} dx

−
∑
α

bc,α

∫
R2+1

[∂i(ζαχ(ψn − ψ0))]δij{(βkn − βk0 )m̃(
1

i
∇)(∂2

jk(ζαχ(ψn − ψ0)))

− m̃(
1

i
∇)[(βkn − βk0 )∂2

jk(ζαχ(ψn − ψ0))]}dx→ 0.

11.3.3. Computation of the limit. We now combine the terms in Propositions 11.9 and 11.11 and compute
the limit.

Proposition 11.12. Let bc,α, Nc,α, γc,α and βic,α be as in Proposition 8.3. Then∑
α

bc,αe
2γc,α

N2
c,α

∫
R2+1

(∂t − β`c,α∂`)(ζαχ(ψn − ψ0)){(βkn − βk0 )m̃(
1

i
∇)(∂k(∂t − βmc,α∂m)(ζαχ(ψn − ψ0)))

− m̃(
1

i
∇)[(βkn − βk0 )(∂k(∂t − βmc,α∂m)(ζαχ(ψn − ψ0))]} dx

+
∑
α

bc,α

∫
R2+1

[∂i(ζαχ(ψn − ψ0))]δij{(βkn − βk0 )m̃(
1

i
∇)(∂2

jk(ζαχ(ψn − ψ0)))

− m̃(
1

i
∇)[(βkn − βk0 )∂2

jk(ζαχ(ψn − ψ0))]} dx→ 0.
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Démonstration. Step 1 : Fourier decomposition. Let Θ be as in (11.27). Define now the decomposition of
βin − βi0 as follows (compare (11.28)–(11.30)) :

χ̃(βin − βi0) = (βdiff)in,1 + (βdiff)in,2 + (βdiff)in,3,

where

̂(βdiff)in,1(ξ) := Θ(λ
5
6
n |ξ|)

(̂̃χβin(ξ)− ̂̃χβi0(ξ)
)
,

̂(βdiff)in,2(ξ) := (1−Θ(λ
5
6
n |ξ|))(1−Θ(

|ξi|
|ξ| 58

))
(̂̃χβin(ξ)− ̂̃χβi0(ξ)

)
,

̂(βdiff)in,3(ξ) := (1−Θ(λ
5
6
n |ξ|))Θ(

|ξi|
|ξ| 58

)
(̂̃χβin(ξ)− ̂̃χβi0(ξ)

)
.

We need to estimate the contributions from (βdiff)in,1, (βdiff)in,2 and (βdiff)in,3. The contributions from

the terms (βdiff)in,1 and (βdiff)in,2 can be handled as in Steps 2 and 3 in the proof of Proposition 11.5, where
analogous terms were estimated. We note in particular that in Steps 2 and 3 in the proof of Proposition 11.5,
the argument relies only on the frequency support of the corresponding terms and we did not use the precise
structure of the nonlinear. We therefore omit the details about bounding these terms.

On the other hand, the contribution from (βdiff)in,3 requires a more careful treatment. (This is analogous
to the term in Step 4 in the proof of Proposition 11.5, where we fully exploit the precise structure of the
term.) We will thus focus on this term in the remainder of the proof.

Step 2 : Estimating the main term. Denote (ψdiff)n = ζα(ψn − ψ0). We compute

bc,αe
2γc,α

N2
c,α

∫
R2+1

(∂t − β`c,α∂`)(ψdiff)n(βdiff)kn,3[m̃(
1

i
∇)((∂t − βmc,α∂m)∂k(ψdiff)n)] dx

− bc,αe
2γc,α

N2
c,α

∫
R2+1

(∂t − βjc,α∂j)(ψdiff)nm̃(
1

i
∇)[(βdiff)kn,3((∂t − βmc,α∂m)∂k(ψdiff)n))] dx

=
−ie2γc,αbc,α

N2
c,α

∫
R2+1

(ξt − βjc,αξj)(ηt − βmc,αηm)ηk ̂(ψdiff)n(ξ) ̂(βdiff)kn,3(ξ − η) ̂(ψdiff)n(η)[m̃(η)− m̃(ξ)] dη dξ

=
−ie2γc,αbc,α

N2
c,α

∫
R2+1

(ξt − βjc,αξj)(ηt − βmc,αηm)ηk ̂(ψdiff)n(ξ) ̂(βdiff)kn,3(η − ξ) ̂(ψdiff)n(−η)[m̃(η)− m̃(ξ)] dη dξ.

(11.58)

Similarly,

bc,α

∫
R2+1

∂i(ψdiff)nδ
ij{(βdiff)kn,3[m̃(

1

i
∇)(∂2

jk(ψdiff)n)]− m̃(
1

i
∇)[(βdiff)kn,3(∂2

jk(ψdiff)n))]}dx

= − ibc,α
∫
R2+1

δijξiηjηk ̂(ψdiff)n(ξ) ̂(βdiff)kn,3(η − ξ) ̂(ψdiff)n(−η)[m̃(η)− m̃(ξ)] dη dξ.

(11.59)

We now analyze the Fourier multiplier corresponding to (11.58) + (11.59). First, we compute

e2γc,α

N2
c,α

(ξt − βjc,αξj)(ηt − βmc,αηm)ηk + δijξiηjηk

=
e2γc,α

N2
c,α

(ξt − βjc,αξj)((ξt − βjc,αξj) + (ηt − βmc,αηm))ηk + δijξi(ηj − ξj)ηk

+ [−e
2γc,α

N2
c,α

(ξt − βjc,αξj)2 + δijξiξj ]ηk

(11.60)
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From (11.60) and (11.39) it follows that(
e2γc,α

N2
c,α

(ξt − βjc,αξj)(ηt − βmc,αηm)ηk + δijξiηjηk

)
(1−Θ(λ

5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

)

= +
e2γc,α

N2
c,α

(ξt − βjc,αξj)ηk
(ηt − βjc,αηj)2 − e−2γc,αN2

c,α|ηi|2

(ηt − βjc,αηj)− (ξt − βjc,αξj)
(1−Θ(λ

5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

) (11.61)

− e2γc,α

N2
c,α

(ξt − βjc,αξj)ηk
(ξt − βjc,αξj)2 − e−2γc,αN2

c,α|ξi|2

(ηt − βjc,αηj)− (ξt − βjc,αξj)
(1−Θ(λ

5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

) (11.62)

+
e2γc,α

N2
c,α

(ξt − βjc,αξj)ηk
e−2γc,αN2

c,αδ
k`(ηk − ξk)(η` + ξ`)

(ηt − βjc,αηj)− (ξt − βjc,αξj)
(1−Θ(λ

5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

) (11.63)

+ δijξi(ηj − ξj)ηk(1−Θ(λ
5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

) (11.64)

+ [−e
2γc,α

N2
c,α

(ξt − βjc,αξj)2 + δijξiξj ]ηk(1−Θ(λ
5
6
n |ξ − η|))Θ(

|ξi − ηi|
|ξ − η| 58

). (11.65)

Define now the term I, II, III, IV and V respectively by inserting (11.61), (11.62), (11.63), (11.64) and
(11.65) into (*) below

−ibc,α
∫∫

(∗) ̂(ψdiff)n(ξ)(ζ̂αβkn − ζ̂αβk0 )(η − ξ) ̂(ψdiff)n(−η)[m̃(η)− m̃(ξ)] dη dξ. (11.66)

We note that the term I and II here can be handled in a similar way as the terms II and III in Step 4(b)
of the proof of Proposition 11.5. Also, the term III here can be handled in a similar way as the terms IV in
Step 4(b) of the proof of Proposition 11.5. In particular, we have

|I|+ |II|+ |III| = o(λ3ε0). (11.67)

Inverting the Fourier transform, using Hölder’s inequality, Lemma 5.2.4, and applying the estimates in
Propositions 8.4 and 8.5, we obtain

|IV| .
(
‖∂i(ζαχ(ψn − ψ0))‖L4‖m̃(

1

i
∇)∂k(ζαχ(ψn − ψ0))‖L4

)
× ‖(1−Θ(λ

5
6
n |∇|))Θ(

|∇i|
|∇| 58

)∂i(ζα(βn − β0))‖L2

. λ
3ε0
4
n · λ

3ε0
4
n · λ

1
2 +

3ε0
2

n = λ
1
2 +3ε0
n = o(λ3ε0

n ).

(11.68)

Lemma 5.2.4 Inverting the Fourier transform, using Hölder’s inequality, Lemma 5.2.4, and applying the
estimates in Propositions 8.4, 8.5 and 8.6, we obtain

|V| .
(
‖∂i(ζαχ(ψn − ψ0))‖L4‖m̃(

1

i
∇)�̃c,α(ζαχ(ψn − ψ0))‖L4

+‖�̃c,α(ζαχ(ψn − ψ0))‖L4‖m̃(
1

i
∇)∂i(ζαχ(ψn − ψ0))‖L4

)
× ‖(1−Θ(λ

5
6
n |∇|))Θ(

|∇i|
|∇| 58

)ζα(βn − β0)‖L2

. λ
3ε0
4
n · λ−1+ε0

n λ
3ε0
4
n · λnλ

3ε0
2
n = λ4ε0

n = o(λ3ε0
n ).

(11.69)

Noticing that the sum
∑
α has O(λ−3ε0

n ) terms (cf. beginning of Section 8.2), it follows from (11.58),
(11.59), (11.61), (11.62), (11.63), (11.64), (11.65), (11.66), (11.67), (11.68) and (11.69) that∑

α

bc,αe
2γc,α

N2
c,α

∫
R2+1

(∂t − β`c,α∂`)(ψdiff)n(βdiff)kn,3[m̃(
1

i
∇)((∂t − βmc,α∂m)∂k(ψdiff)n)] dx

+
∑
α

bc,α

∫
R2+1

∂i(ψdiff)nδ
ij{(βdiff)kn,3[m̃(

1

i
∇)(∂2

jk(ψdiff)n)]− m̃(
1

i
∇)[(βdiff)kn,3(∂2

jk(ψdiff)n))]}dx→ 0.

Combining this with the discussions in Step 1, we have thus concluded the proof. �
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We summarize below what we have obtained in this subsection. As in Proposition 11.6, we note that the
computation for the commutator applies equally well to the term involving ωn.

Proposition 11.13.∫
R2+1

(e0)n(χψn)

Nn
{∂i[e2γnβinA(

(e0)n(χψn)

Nn
)]−A∂i[e2γnβin(

(e0)n(χψn)

Nn
)]} dx

−
∫
R2+1

[∂i(χψn)]δijNn{[(e0)n, A](
∂j(χψn)

Nn
)} dx

−
∫
R2+1

(e0)0(χψn)

N0
{∂i[e2γ0βi0A(

(e0)0(χψn)

N0
)]−A∂i[e2γ0βi0(

(e0)0(χψn)

N0
)]} dx

+

∫
R2+1

[∂i(χψn)]δijN0{[(e0)0, A](
∂j(χψn)

N0
)} dx→ 0.

A similar statement holds after replacing ψn 7→ ωn, ψ0 7→ ω0 and dx 7→ 1
4e
−4ψ0dx.

11.4. Taking limits using the microlocal defect measures. Let us summarize what we have obtained
so far. The following is an immediate consequence of Propositions 11.1, 11.6 and 11.13 :

Proposition 11.14.∫
R2+1

(e0)n(χψn)

Nn
(�gn,A(χψn)− 1√

−det gn
A(
√
−det gn�gn(χψn))) dVolgn

−
∫
R2+1

[∂i(χψn)]δijNn{[(e0)n, A](
∂j(χψn)

Nn
)} dx

−
∫
R2+1

(e0)0(χψn)

N0
(�g0,A(χψn)− 1√

−det g0

A(
√
−det g0�g0(χψn))) dVolg0

+

∫
R2+1

[∂i(χψn)]δijN0{[(e0)0, A](
∂j(χψn)

N0
)} dx→ 0.

A similar statement holds after replacing ψ 7→ ω and dx 7→ 1
4e
−4ψ0dx.

In other words, we have reduced the computation of the limit of the first two lines to that of the limit of
the last two lines. To proceed, we use Corollary 6.4 to compute the limit of the last two lines on the LHS
as n→ +∞. This will be achieved in the next two propositions.

Proposition 11.15.∫
R2+1

[∂i(χψn)]δijN0{[(e0)0, A](
∂j(χψn)

N0
)} dx

→
∫
R2+1

[∂i(χψ0)]δijN0{[(e0)0, A](
∂j(χψ0)

N0
)}dx

+

∫
S∗R2+1

[δijξiξj(∂xta− βk0∂xka) + δijξiξj(∂µβ
k
0 )ξk∂ξµa]

e−2γ0

N0

dνψ

|ξ|2
.

A similar statement holds after changing ψ 7→ ω and dνψ 7→ e−4ψ0 dνω.

Démonstration. By Lemma 5.2.2, [(e0)0, A] is a 0-th order pseudo-differential symbol with principal symbol

−i{i(ξt − βk0 ξk), a} = ∂xta− βk0∂xka+ (∂µβ
k
0 )ξk∂ξµa.

The conclusion therefore follows from Corollary 6.4. �

Proposition 11.16.∫
R2+1

(e0)0(χψn)

N0
(�g0,A(χψn)− 1√

−det g0
A(
√
−det g0�g0(χψn))) dVolg0

→
∫
R2+1

(e0)0(χψ0)

N0
(�g0,A(χψ0)− 1√

− det g0
A(
√
−det g0�g0(χψ0))) dVolg0

+

∫
S∗R2+1

1

N0
(ξt − βk0 ξk)[(g−1

0 )µνξµ(∂xνa)− ∂µ(g−1
0 )αβξαξβ(∂ξµa)]

dνψ

|ξ|2

+

∫
S∗R2+1

e−2γ0(∂µβ
k
0 )

N0
δijξiξjξk

dνψ

|ξ|2
.
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A similar statement holds after changing ψ 7→ ω and dνψ 7→ e−4ψ0 dνω.

Démonstration. Step 1 : Computing the limit using Corollary 6.4. We compare each of the terms in �g0,A
and �g0 (cf. definitions in Section 9.1).

By Lemma 5.2.2, [−∂te2γ0 , A] is a 0-th order pseudo-differential symbol with principal symbol

−i{−iξte2γ0 , a} = −e2γ0∂xta+ ξt(∂xµe
2γ0)(∂ξµa).

It follows from Corollary 6.4 that∫
R2+1

(e0)0(χψn)

N0
{−∂t[e2γ0A(

(e0)0(χψn)

N0
)] +A∂t[e

2γ0(
(e0)0(χψn)

N0
)] dx

→
∫
R2+1

(e0)0(χψ0)

N0
{−∂t[e2γ0A(

(e0)0(χψ0)

N0
)] +A∂t[e

2γ0(
(e0)0(χψ0)

N0
)] dx

+

∫
S∗R2+1

[− 1

N3
0

(ξt − βk0 ξk)2(∂xta)︸ ︷︷ ︸
=:I

+
e−2γ0

N3
0

ξt(ξt − βk0 ξk)2(∂xµe
2γ0)(∂ξµa)︸ ︷︷ ︸

=:II

]
dνψ

|ξ|2
.

By Lemma 5.2.2, [∂iN0, A] is a 0-th order pseudo-differential symbol with principal symbol

−i{iξiN2
0 , a} = N2

0∂xia− ξi(∂xµN2
0 )(∂ξµa).

It follows from Corollary 6.4 that∫
R2+1

(e0)0(χψn)

N0
δij{∂i[N2

0A(
∂j(χψn)

N0
)]−A∂i[N0∂j(χψn)] dx

→
∫
R2+1

(e0)0(χψ0)

N0
δij{∂i[N2

0A(
∂j(χψ0)

N0
)]−A∂i[N0∂j(χψ0)] dx

+

∫
S∗R2+1

[
e−2γ0

N0
δij(ξt − βk0 ξk)ξj(∂xia)︸ ︷︷ ︸

=:III

−e
−2γ0

N3
0

δij(ξt − βk0 ξk)ξiξj(∂xµN
2
0 )(∂ξµa)︸ ︷︷ ︸

=:IV

]
dνψ

|ξ|2
.

Finally, by Lemma 5.2.2, [∂ie
2γ0βi0, A] is a 0-th order pseudo-differential symbol with principal symbol

−i{iξie2γ0βi0, a} = e2γ0βi0(∂xia)−ξi(∂xµ(e2γ0βi0))(∂ξµa) = e2γ0βi0(∂xia)−ξi((∂xµe2γ0)βi0+e2γ0(∂xµβ
i
0))(∂ξµa).

Therefore, by Corollary 6.4,∫
R2+1

(e0)0(χψn)

N0
{∂i[e2γ0βi0A(

(e0)0(χψn)

N0
)]−A∂i[e2γ0βi0(e0)0(χψn)] dx

→
∫
R2+1

(e0)0(χψ0)

N0
{∂i[e2γ0βi0A(

(e0)0(χψ0)

N0
)]−A∂i[e2γ0βi0(e0)0(χψ0)] dx

+

∫
S∗R2+1

[
βi0
N3

0

(ξt − βk0 ξk)2(∂xia)︸ ︷︷ ︸
=:V

−e
−2γ0

N3
0

(ξt − βk0 ξk)2ξi((∂xµe
2γ0)βi0 + e2γ0(∂xµβ

i
0))(∂ξµa)︸ ︷︷ ︸

=:VI

]
dνψ

|ξ|2
.

Step 2 : Computing (g−1
0 )µνξµ(∂xνa).

(g−1
0 )µνξµ(∂xνa) = − 1

N2
0

(ξt − βk0 ξk)(∂xta− βi0∂xia) + e−2γ0δijξi∂xja. (11.70)

Therefore,

1

N0
(ξt − βk0 ξk)(g−1

0 )µνξµ(∂ξνa)

= − 1

N3
0

(ξt − βk0 ξk)2(∂xta− βi0∂xia) +
e−2γ0

N0
(ξt − βk0 ξk)δijξi(∂xja) = I + III + V.
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Step 3 : Computing ∂µ(g−1
0 )αβξαξβ(∂ξµa).

∂µ(g−1
0 )αβξαξβ(∂ξµa)

=

(
−∂µ(

1

N2
0

)ξtξt + 2∂µ(
βi0
N2

0

)ξtξi + ∂µ(e−2γ0δij − βi0β
j
0

N2
0

)ξiξj

)
(∂ξµa)

=

(
∂µN

2
0

N4
0

(ξt − βk0 ξk)2 + 2
(∂µβ

i
0)

N2
0

(ξt − βk0 ξk)ξi + (∂µe
−2γ0)δijξiξj

)
(∂ξµa)

=

(
∂µN

2
0

N4
0

(ξt − βk0 ξk)2 + 2
(∂µβ

i
0)

N2
0

(ξt − βk0 ξk)ξi − e−4γ0(∂µe
2γ0)δijξiξj

)
(∂ξµa).

(11.71)

Recall that on the support of dνψ, (10.8) holds. Hence, by (11.71) and (10.8), on the support of dνψ,

1

N0
(ξt − βk0 ξk)∂µ(g−1

0 )αβξαξβ(∂ξµa)

=

(
∂µN

2
0

N5
0

(ξt − βk0 ξk)3 + 2
(∂µβ

i
0)

N3
0

(ξt − βk0 ξk)2ξi −
e−4γ0(∂µe

2γ0)

N0
(ξt − βk0 ξk)δijξiξj

)
(∂ξµa)

=

(
e−2γ0(∂µN

2
0 )

N3
0

(ξt − βk0 ξk)δijξiξj + 2
(∂µβ

i
0)

N3
0

(ξt − βk0 ξk)2ξi −
e−2γ0(∂µe

2γ0)

N3
0

(ξt − βk0 ξk)3

)
(∂ξµa)

= − II− IV −VI +
(∂µβ

i
0)

N3
0

(ξt − βk0 ξk)2ξi = −II− IV −VI +
e−2γ0(∂µβ

k
0 )

N0
δijξiξjξk.

Combining Steps 1,2 and 3 yields the conclusion. �

11.5. Putting everything together. We summarize what we have obtained so far. Combining Proposi-
tions 11.14, 11.15 and 11.16, we immediately obtain 20

Proposition 11.17. Suppose A = b(x)m̃( 1
i∇), where the principal symbol a(x, ξ) = b(x)m(ξ) (with m(ξ) =

m̃(ξ) for |ξ| ≥ 1) is real and supported in T ∗Ω, m(ξ) is homogeneous of order 0, and m and m̃ are both
even. Then ∫

R2+1

(e0)n(χψn)

Nn
(�gn,A(χψn)− 1√

−det gn
A(
√
−det gn�gn(χψn))) dVolgn

−
∫
R2+1

[∂i(χψn)]δijNn{[(e0)n, A](
∂j(χψn)

Nn
)} dx

→ +

∫
R2+1

(e0)0(χψ0)

N0
(�g0,A(χψ0)− 1√

−det g0

A(
√
−det g0�g0(χψ0))) dVolg0

−
∫
R2+1

[∂i(χψ0)]δijN0{[(e0)0, A](
∂j(χψ0)

N0
)}dx

−
∫
S∗R2+1

δijξiξj(∂xta− βk0∂xka)
e−2γ0

N0

dνψ

|ξ|2

+

∫
S∗R2+1

1

N0
(ξt − βk0 ξk)[(g−1

0 )µνξµ(∂xνa)− ∂µ(g−1
0 )αβξαξβ(∂ξµa)]

dνψ

|ξ|2
.

A similar statement holds after replacing ψ 7→ ω and dx 7→ 1
4e
−4ψ0dx.

12. The wave equation terms in Proposition 9.4 and trilinear compensated compactness
for three waves

We continue to work under the assumptions of Theorem 4.2 and the reductions in Sections 4.1 and
8.3. As above, let A be a 0-th order pseudo-differential operator given by A = b(x)m̃( 1

i∇), where the
principal symbol a(x, ξ) = b(x)m(ξ) (with m(ξ) = m̃(ξ) for |ξ| ≥ 1) is real and supported in T ∗Ω, m(ξ) is
homogeneous of order 0, and m and m̃ are both even.

In this section, we handle the terms trilinear1 and trilinear2 in (9.14) (and the analogous terms in (9.15).
There are two types of terms coming from two types of contribution from Fψn and Fωn . First, there are
terms which are linear in the wave variables ψn and ωn — these terms are easier and will be handled in

20. Note that the two terms of
∫
S∗R2+1

e−2γ0 (∂µβ
k
0 )

N0
δijξiξjξk

dνψ

|ξ|2 cancel.
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Section 12.1. The remaining terms are nonlinear and will be treated in Section 12.3. In order to deal
with the nonlinear terms, we will need a trilinear compensated compactness result for three waves, which
will be established in Section 12.2.

12.1. The linear terms in the wave equation.

Proposition 12.1. The following holds after passing to a subsequence (which we do not relabel) :

−
∫
R2+1

(e0)n(χψn)

Nn
{A[
√
−det gn(2g−1

n (dχ,dψn) + ψn�gnχ)]}dx

−
∫
R2+1

A(
(e0)n(χψn)

Nn
)(2g−1

n (dχ,dψn) + ψn�gnχ) dVolgn

− 1

4

∫
R2+1

e−4ψ0
(e0)n(χωn)

Nn
{A[
√
−det gn(2(g−1

n )αβ∂αχ∂βωn + ωn�gnχ)]} dx

− 1

4

∫
R2+1

e−4ψ0A(
(e0)n(χωn)

Nn
)(2g−1

n (dχ, dωn) + ωn�gnχ) dVolgn

→ −
∫
R2+1

(e0)0(χψ0)

N0
{A[
√
−det g0(2g−1

0 (dχ,dψ0) + ψ0�g0χ)]} dx

−
∫
R2+1

A(
(e0)0(χψ0)

N0
)(2g−1

0 (dχ,dψ0) + ψ0�g0χ) dVolg0

− 1

4

∫
R2+1

e−4ψ0
(e0)0(χω0)

N0
{A[
√
−det g0(2g−1

0 (dχ,dω0) + ω0�g0χ)]} dx

− 1

4

∫
R2+1

e−4ψ0A(
(e0)0(χω0)

N0
)(2g−1

0 (dχ,dω0) + ω0�g0χ) dVolg0 .

Démonstration. We will only indicate how to obtain the limit of the terms on the first line ; all the other
terms can be treated similarly.

Step 1 : First term on first line. Since a (the symbol of A) and ∂βχ have disjoint support, by Lemma 5.2,
A∂βχ : L2 → L2

loc is compact. Therefore, using (4.2) and (4.3), we see that after passing to a subsequence
(not relabeled)

‖A[g−1
n (dχ, dψn)

√
−det gn]−A[g−1

0 (dχ, dψ0)
√
− det g0]‖L2(Ω′) → 0.

On the other hand, by (4.2) and (4.3), we know that (e0)n(χψn)
Nn

⇀ (e0)0(χψ0)
N0

weakly in L2. Therefore,

−
∫
R2+1

(e0)n(χψn)

Nn
A[
√
−det gng

−1
n (dχ, dψn)] dx

→ −
∫
R2+1

(e0)0(χψ0)

N0
A[
√
−det g0g

−1
0 (dχ,dψ0)] dx.

Step 2 : Second term on first line. By (4.2) and (4.3),
√
−det gnψn�gnχ→

√
−det g0ψ0�g0χ in the L2 norm.

The fact that A is a 0-th order operator then implies that A[
√
−det gnψn�gnχ]→ A[

√
− det g0ψ0�g0χ] in

the L2 norm. Using also that (e0)n(χψn)
Nn

⇀ (e0)0(χψ0)
N0

weakly in L2 (by (4.2) and (4.3)), it thus follows that

−
∫
R2+1

(e0)n(χψn)

Nn
{A[
√
−det gnψn�gnχ]} dx→ −

∫
R2+1

(e0)0(χψ0)

N0
{A[
√
−det g0ψ0�g0χ]} dx.

The other terms can be treated similarly ; we omit the details. �

12.2. A general trilinear compensated compactness result.

Proposition 12.2. Let {φ(1)
n }+∞n=1, {φ(2)

n }+∞n=1 and {φ(3)
n }+∞n=1 be three sequences of smooth functions with

φ
(i)
n : R2+1 → R. Assume that for any (spacetime) compact set K ⊂ R2+1,

(1) maxi supn(‖∂φ(i)
n ‖L3(K) + ‖�g0φ

(i)
n ‖L3(K)) < +∞,

(2) maxi ‖φ(i)
n ‖L3(K) → 0 as n→ +∞.
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Then for any smooth vector field X,

(Xφ(1)
n )g−1

0 (dφ(2)
n ,dφ(3)

n ) ⇀ 0

in the sense of distributions.

Démonstration. We write

g−1
0 (dφ(2)

n ,dφ(3)
n ) =

1

2
�g0(φ(2)

n φ(3)
n )︸ ︷︷ ︸

=:I

− 1

2
(�g0φ

(2)
n )φ(3)

n︸ ︷︷ ︸
=:II

− 1

2
φ(2)
n (�g0φ

(3)
n )︸ ︷︷ ︸

=:III

.

By assumptions of the proposition and Hölder’s inequality, II and III both converge to 0 in the L
3
2 norm

as n→ +∞. Together with the assumed uniform L3-boundedness of Xφ
(1)
n , Hölder’s inequality implies that

Xφ
(1)
n (II + III) in fact converges to 0 in the L1 norm on any compact set.

It therefore remains to check the contribution from the term I. Let ϑ ∈ C∞c (R2+1) be a smooth function
with support K. We then compute∫

R2+1

ϑ(Xφ(1)
n )�g0(φ(2)

n φ(3)
n ) dVolg0

=

∫
R2+1

[(�g0ϑ)(Xφ(1)
n ) + ϑ(X�g0φ

(1)
n ) + ϑ([�g0 , X]φ(1)

n ) + 2(g−1
0 )αβ(∂αϑ)(∂βXφ

(1)
n )]φ(2)

n φ(3)
n dVolg0

=: Ia + Ib + Ic + Id.

To control Ia we note that ϑ is smooth and thus �g0ϑ is pointwise bounded on K. Thus using Hölder’s
inequality and the bounds in the assumptions of the proposition, we obtain

|Ia| . ‖Xφ(1)
n ‖L3(K)‖φ(2)

n ‖L3(K)‖φ(3)
n ‖L3(K) → 0.

For Ib, we integrate by parts to obtain

Ib =

∫
K

[−(Xϑ)(�g0φ
(1)
n )φ(2)

n φ(3)
n − ϑ(�g0φ

(1)
n )(Xφ(2)

n )φ(3)
n ]

−
∫
K

[ϑ(�g0φ
(1)
n )φ(2)

n (Xφ(3)
n ) + ϑ(divg0X)(�g0φ

(1)
n )φ(2)

n φ(3)
n ] dVolg0 .

Since g0, X and ϑ are smooth, by Hölder’s inequality and the bounds in the assumptions of the proposition,
we obtain

|Ib| . ‖�g0φ(1)
n ‖L3(K)(‖φ(2)

n ‖L3(K)‖φ(3)
n ‖L3(K) + ‖Xφ(2)

n ‖L3(K)‖φ(3)
n ‖L3(K) + ‖φ(2)

n ‖L3(K)‖Xφ(3)
n ‖L3(K))→ 0.

Note that [�g0 , X] is a smooth second order differential operator that can be written as a finite sum
∑
j YjZj

for some smooth vector fields Yj and Zj . Therefore we can treat Ic and Id simultaneously by bounding a
term of the form ∫

K

ς(Y Zφ(1)
n )φ(2)

n φ(3)
n dVolg0

for some smooth function ς and smooth vector fields Y and Z. We integrate by parts and then use Hölder’s
inequality and the smoothness of ς and Y to show that∣∣∣∣∫

K

ς(Y Zφ(1)
n )φ(2)

n φ(3)
n dVolg0

∣∣∣∣
. ‖Zφ(1)

n ‖L3(K)(‖φ(2)
n ‖L3(K)‖φ(3)

n ‖L3(K) + ‖Y φ(2)
n ‖L3(K)‖φ(3)

n ‖L3(K) + ‖φ(2)
n ‖L3(K)‖Y φ(3)

n ‖L3)→ 0.

This shows that Ic, Id → 0 and finishes the proof. �

We next compute the limits in a similar setting but instead with φ
(i)
n converging to a potentially non-zero

φ
(i)
0 .

Proposition 12.3. Let {φ(1)
n }+∞n=1, {φ(2)

n }+∞n=1 and {φ(3)
n }+∞n=1 be three sequences of smooth functions. Assume

that there exist smooth φ
(i)
0 : R2+1 → R so that for every compact subset K ⊂ R2+1,

(1) maxi supn(‖∂(φ
(i)
n − φ(i)

0 )‖L3(K) + ‖�g0(φ
(i)
n − φ(i)

0 )‖L3(K)) < +∞,

(2) maxi ‖φ(i)
n − φ(i)

0 ‖L3(K) → 0 as n→ +∞.
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Let ϑ ∈ C∞c (R2+1). Then∫
R2+1

ϑ(Xφ(1)
n )g−1

0 (dφ(2)
n ,dφ(3)

n ) dVolg0 −
∫
R2+1

ϑ(Xφ(1)
n )g−1

0 (dφ
(2)
0 ,dφ(3)

n ) dVolg0

−
∫
R2+1

ϑ(Xφ(1)
n )g−1

0 (dφ(2)
n ,dφ

(3)
0 ) dVolg0

→ −
∫
R2+1

ϑ(Xφ
(1)
0 )g−1

0 (dφ
(2)
0 ,dφ

(3)
0 ) dVolg0 .

Démonstration. Using Proposition 12.2 (with φ
(i)
n − φ(i)

0 in place of φ
(i)
n ) and then expanding the terms,

0 =

∫
R2+1

ϑ(X(φ(1)
n − φ

(1)
0 ))g−1

0 (d(φ(2)
n − φ

(2)
0 ),d(φ(3)

n − φ
(3)
0 )) dVolg0

=

∫
R2+1

ϑ(Xφ(1)
n )g−1

0 (dφ(2)
n ,dφ(3)

n ) dVolg0 −
∫
R2+1

ϑ(Xφ
(1)
0 )g−1

0 (dφ
(2)
0 ,dφ

(3)
0 ) dVolg0

+

∫
R2+1

ϑ(Xφ(1)
n )g−1

0 (dφ
(2)
0 ,dφ

(3)
0 ) dVolg0︸ ︷︷ ︸

=:I

+

∫
R2+1

ϑ(Xφ
(1)
0 )g−1

0 (dφ(2)
n ,dφ

(3)
0 ) dVolg0︸ ︷︷ ︸

=:II

+

∫
R2+1

ϑ(Xφ
(1)
0 )g−1

0 (dφ
(2)
0 ,dφ(3)

n ) dVolg0︸ ︷︷ ︸
=:III

−
∫
R2+1

ϑ(Xφ
(1)
0 )g−1

0 (dφ(2)
n ,dφ(3)

n ) dVolg0︸ ︷︷ ︸
=:IV

−
∫
R2+1

ϑ(Xφ(1)
n )g−1

0 (dφ
(2)
0 ,dφ(3)

n ) dVolg0 −
∫
R2+1

ϑ(Xφ(1)
n )g−1

0 (dφ(2)
n ,dφ

(3)
0 ) dVolg0 .

Note that each of I, II and III has at most one factor depending on n. Since our assumptions easily imply

that ∂φ
(i)
n converges weakly to ∂φ

(i)
0 in L3 (for each i), we have

I + II + III→ 3

∫
R2+1

ϑ(Xφ
(1)
0 )g−1

0 (dφ
(2)
0 ,dφ

(3)
0 ) dVolg0 .

Next, we apply Lemma 7.1 with p0 = 3. Noting that since L3(K) ⊂ L2(K) and L3(K) ⊂ L 3
2 (K) (for any

compact set K), by Lemma 7.1, g−1
0 (dφ

(2)
n ,dφ

(3)
n ) converges to g−1

0 (dφ
(2)
0 ,dφ

(3)
0 ) in the sense of distribution.

Hence,

IV→ −
∫
R2+1

ϑ(Xφ
(1)
0 )g−1

0 (dφ
(2)
0 ,dφ

(3)
0 ) dVolg0 .

Finally, rearranging yields the conclusion. �

12.3. Computation of the remaining terms using trilinear compensated compactness. We now
look at the contributions in Fψn and Fωn which are nonlinear in the derivatives of ψn and ωn. There are four
relevant terms. For these terms, we need the trilinear compensated compactness in Section 12.2.

Proposition 12.4. The following holds after passing to a subsequence (which we do not relabel) :

1

2

∫
R2+1

A(
(e0)n(χψn)

Nn
)χe−4ψng−1

n (dωn,dωn) dVolgn

−
∫
R2+1

e−4ψ0A(
(e0)n(χωn)

Nn
)χg−1

n (dωn,dψn) dVolgn

+
1

2

∫
R2+1

(e0)n(χψn)

Nn
A[
√
−det gnχe

−4ψng−1
n (dωn,dωn)] dx

−
∫
R2+1

e−4ψ0
(e0)n(χωn)

Nn
A[
√
−det gnχg

−1
n (dωn,dψn)] dx

→ corresponding terms on the RHS of (9.10) and (9.11)

− 2

∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂βψ0)

N0
(ξt − βk0 ξk)ξαa

dνω

|ξ|2
.

Démonstration. We will compute the limit of each term. Since the computation is largely similar, we will
give the details for the first term (Step 1) and only give the results for the remaining terms (Step 2).
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Step 1 : Detailed computation for the first term. Notice that on the support of a, χ ≡ 1. In particular, by
Lemma 5.2, A(1 − χ)(1 + χ) and (1 − χ)(1 + χ)A are both pseudo-differential operators of order −1 and
hence compact on L2. We write 1 = (1− χ)(1 + χ) + χ2 and compute each contribution.

1

2

∫
R2+1

A(
(e0)n(χψn)

Nn
)χe−4ψng−1

n (dωn,dωn) dVolgn

=
1

2

∫
R2+1

A(
(e0)n(χψn)

Nn
)(1− χ)(1 + χ)χe−4ψng−1

n (dωn,dωn) dVolgn︸ ︷︷ ︸
=:I

+
1

2

∫
R2+1

A(
(e0)n(χψn)

Nn
)χ3e−4ψng−1

n (dωn,dωn) dVolgn︸ ︷︷ ︸
=:II

.

(12.1)

To handle I, we use the following two facts :

— (1− χ)(1 + χ)A( (e0)n(χψn)
Nn

) converges in the L2 norm to (1− χ)(1 + χ)A( (e0)0(χψ0)
N0

) after passing to

a subsequence (by Lemmas 5.2.1 and 5.2.5).
— By the pointwise convergence in (4.2), the bound in (4.3) and Lemma 7.1, χe−4ψng−1

n (dωn,dωn)
converges to χe−4ψ0g−1

0 (dω0,dω0) in the sense of distributions. Using (4.2) and (4.3) again then
implies that the said convergence holds weakly in L2.

Then, we obtain that, up to a subsequence (which we do not relabel),

I→ 1

2

∫
R2+1

A(
(e0)0(χψ0)

N0
)(1− χ)(1 + χ)χe−4ψ0g−1

0 (dω0,dω0) dVolg0 . (12.2)

For II, we further compute

II =
1

2

∫
R2+1

A(
(e0)n(χψn)

Nn
)χe−4ψng−1

n (d(χωn),d(χωn)) dVolgn︸ ︷︷ ︸
=:IIa

+
1

2

∫
R2+1

A(
(e0)n(χψn)

Nn
)χe−4ψnωn[g−1

n (dχ,d(χωn)) + χg−1
n (dχ, dωn)] dVolgn︸ ︷︷ ︸

=:IIb

(12.3)

First, using the fact that gn and ψn converges in C0 to their limits (see (4.2)), IIa has the same limit as

II′a :=
1

2

∫
R2+1

A(
(e0)0(χψn)

N0
)χe−4ψ0g−1

0 (d(χωn),d(χωn)) dVolg0 . (12.4)

We now apply the result on trilinear compensated compactness (Proposition 12.3).

II′a =
1

2

∫
R2+1

(e0)0(A(χψn))

N0
χe−4ψ0g−1

0 (d(χωn),d(χωn)) dVolg0︸ ︷︷ ︸
=:II′a,1

+
1

2

∫
R2+1

[A(
(e0)0(χψn)

N0
)− (e0)0(A(χψn))

N0
]χe−4ψ0g−1

0 (d(χωn),d(χωn)) dVolg0︸ ︷︷ ︸
=:II′a,2

.

(12.5)

Note that by Lemmas 5.2.2 and 5.2.4, A, [∂α, A] are both bounded : L3 → L3 and [�g0 , A] is bounded

: W 1,3 → L3. Therefore, φ
(1)
n = A(χψn), φ

(2)
n = φ

(3)
n = χωn satisfy the estimates of Proposition 12.3. Hence,

by Proposition 12.3, and the fact that χ ≡ 1 on the support of a,

II′a,1 →
1

2

∫
R2+1

(e0)0(A(χψ0))

N0
χe−4ψ0g−1

0 (d(χω0),d(χω0)) dVolg0

+

∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂βω0)

N0
a ((dσcross)∗αt − βk0 (dσcross)∗αk).

(12.6)

For IIa,2, we note the following :
— By Lemma 5.2, [A, 1

N0
] : L2 → L2

loc and [A, (e0)0] : H1 → L2
loc are compact so that (after passing to a

subsequence) [A( (e0)0(χψn)
N0

)− (e0)0(A(χψn))
N0

] converges in the L2 norm to [A( (e0)0(χψ0)
N0

)− (e0)0(A(χψ0))
N0

].
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— By Lemma 7.1, (4.2) and (4.3), g−1
0 (d(χωn),d(χωn)) converges weakly in L2 to g−1

0 (d(χω0),d(χω0)).
It follows that

II′a,2 →
1

2

∫
R2+1

[A(
(e0)0(χψ0)

N0
)− (e0)0(A(χψ0))

N0
]χe−4ψ0g−1

0 (d(χω0),d(χω0)) dVolg0
. (12.7)

We now return to the term IIb in (12.3). Notice now that ∂χ and a have disjoint support. Therefore by
Lemmas 5.2.1 and 5.2.5, ∂χA : L2 → L2 is compact. As a result, using also (4.2) and (4.3), we obtain

IIb →
1

2

∫
R2+1

A(
(e0)0(χψ0)

N0
)χe−4ψ0ω0[g−1

0 (dχ, d(χω0)) + χg−1
0 (dχ, dω0)] dVolg0 . (12.8)

Combining (12.3)–(12.8), we obtain

II→ 1

2

∫
R2+1

A(
(e0)0(χψ0)

N0
)χ3e−4ψ0g−1

0 (dω0,dω0) dVolg0

+

∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂βω0)

N0
a ((dσcross)∗αt − βk0 (dσcross)∗αk).

(12.9)

Combining (12.1), (12.2) and (12.9), we obtain

1

2

∫
R2+1

A(
(e0)n(χψn)

Nn
)χe−4ψng−1

n (dωn,dωn) dVolgn

→ 1

2

∫
R2+1

A(
(e0)0(χψ0)

N0
)χe−4ψ0g−1

0 (dω0,dω0) dVolg0

+

∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂βω0)

N0
a ((dσcross)∗αt − βk0 (dσcross)∗αk).

(12.10)

Step 2 : Computing the second to fourth terms. Arguing as in the derivation of (12.10) in Step 1, we obtain

−
∫
R2+1

e−4ψ0A(
(e0)n(χωn)

Nn
)χg−1

n (dωn,dψn) dVolgn

→ −
∫
R2+1

e−4ψ0A(
(e0)0(χω0)

N0
)χg−1

0 (dω0,dψ0) dVolg0

−
∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂βψ0)

N0
(ξt − βk0 ξk)ξαa

dνω

|ξ|2

−
∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂αω0)

N0
a (dσcross

βt − βk0 dσcross
βk ).

(12.11)

Similarly, we also obtain

1

2

∫
R2+1

(e0)n(χψn)

Nn
A[
√
− det gnχe

−4ψng−1
n (dωn,dωn)] dx

→ 1

2

∫
R2+1

(e0)0(χψ0)

N0
A[
√
−det g0χe

−4ψ0g−1
0 (dω0,dω0)] dx

+

∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂αω0)

N0
a (dσcross

tβ − βk0 dσcross
kβ ),

(12.12)

and

−
∫
R2+1

e−4ψ0
(e0)n(χωn)

Nn
A[
√
−det gnχg

−1
n (dωn,dψn)] dx

→ −
∫
R2+1

e−4ψ0
(e0)0(χω0)

N0
A[
√
−det gnχg

−1
0 (dω0,dψ0)] dx

−
∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂βψ0)

N0
(ξt − βk0 ξk)ξαa

dνω

|ξ|2

−
∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂αω0)

N0
a ((dσcross)∗tβ − βk0 (dσcross)∗kβ).

(12.13)

Step 3 : Putting everything together. Adding (12.10), (12.11), (12.12) and (12.13), and noticing a cancellation
using Proposition 6.2, we finish the proof. �
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12.4. Putting everything together. We now combining the results in Section 11 and this section. More
precisely, subtracting the expression in Proposition 12.4 from the sum of the expressions for ψ and ω in
Proposition 11.17, we obtain the following :

Proposition 12.5. Let dν be defined as in (7.8). Suppose A = b(x)m̃( 1
i∇), where the principal symbol

a(x, ξ) = b(x)m(ξ) (with m(ξ) = m̃(ξ) for |ξ| ≥ 1) is real and supported in T ∗Ω, m(ξ) is homogeneous of
order 0, and m and m̃ are both even. Then, after passing to a subsequence (which we do not relabel),

(RHS of (9.14)) + (RHS of (9.15))

−
∫
R2+1

[∂i(χψn)]δijNn{[(e0)n, A](
∂j(χψn)

Nn
)}dx− 1

4

∫
R2+1

e−4ψ0 [∂i(χωn)]δijNn{[(e0)n, A](
∂j(χωn)

Nn
)} dx

→ (RHS of (9.10)) + (RHS of (9.11))

−
∫
R2+1

[∂i(χψ0)]δijN0{[(e0)0, A](
∂j(χψ0)

N0
)} dx− 1

4

∫
R2+1

e−4ψ0 [∂i(χω0)]δijN0{[(e0)0, A](
∂j(χω0)

N0
)} dx

− 1

2

∫
S∗R2+1

δijξiξj(∂xta− βk0∂xka)
e−2γ0

N0

dν

|ξ|2

+
1

2

∫
S∗R2+1

1

N0
(ξt − βk0 ξk)[(g−1

0 )µνξµ(∂xνa)− ∂µ(g−1
0 )αβξαξβ(∂ξµa)]

dν

|ξ|2

+ 2

∫
S∗R2+1

e−4ψ0
(g−1

0 )αβ(∂βψ0)

N0
(ξt − βk0 ξk)ξαa

dνω

|ξ|2
.

where X = 1
N0

(∂t − βi0∂i).

13. Transport equation for the microlocal defect measure and conclusion of the proof
of Theorem 4.2

Our goal in this section is to combine Propositions 10.4, 10.5 and 12.5 to prove that the measure dν
indeed satisfies a transport equation as in (2.21). This will allow us to conclude the proof of Theorem 4.2.

Proposition 13.1. Let dν be defined as in (7.8).
Suppose a : T ∗R2+1 → R be a smooth function which is homogeneous of order 0 in ξ and is supported in

T ∗Ω. Then∫
S∗R2+1

(2(g−1
0 )αβξα∂xβ (

(ξt − βk0 ξk)a

N0
)− (∂µ(g−1

0 )αβ)ξαξβ∂ξµ(
(ξt − βk0 ξk)a

N0
))

dν

|ξ|2
= 0.

Démonstration. By Proposition 8.8, it suffices to consider the case where a(x, ξ) = b(x)m(ξ), where m is
homogeneous of order 0 and even. We make this assumption for the remainder of the proof (so that we can
apply results in earlier sections).

Note that RHS of (9.12) = RHS of (9.14), RHS of (9.13) = RHS of (9.15), RHS of (9.5) = RHS of (9.10)
and RHS of (9.6) = RHS of (9.11) (because the LHSs all agree). Therefore, combining Propositions 10.4,
10.5 and 12.5, we obtain

0 = −
∫
S∗R2+1

((g−1
0 )αβ(∂βX

γ)ξαξγ −
1

2
Xµ∂µ(g−1

0 )αγξαξγ)a
dν

|ξ|2

+
1

2

∫
S∗R2+1

[−δijξi(ξt − βk0 ξk)∂xja]
e−2γ0

N0

dν

|ξ|2

+
1

2

∫
S∗R2+1

δijξiξj(∂xta− βk0∂xka)
e−2γ0

N0

dν

|ξ|2

− 1

2

∫
S∗R2+1

1

N0
(ξt − βk0 ξk)[(g−1

0 )αβξα(∂xβa)− ∂µ(g−1
0 )αβξαξβ(∂ξµa)]

dν

|ξ|2
,

(13.1)

where X = 1
N0

(∂t − βi0∂i) as before. (Note that the two terms of 2
∫
S∗R2+1

e−4ψ0

N0
(g−1

0 )αβ(∂αψ0)ξβ(ξt −
βk0 ξk)a dνω

|ξ|2 cancel.)
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Since 1
N2

0
(ξt − βk0 ξk)2 = e−2γ0δijξiξj on the support of dν (by Proposition 6.6),

1

2

∫
S∗R2+1

[−δijξi(ξt − βk0 ξk)∂xja]
e−2γ0

N0

dν

|ξ|2
+

1

2

∫
S∗R2+1

δijξiξj(∂xta− βk0∂xka)
e−2γ0

N0

dν

|ξ|2

=
1

2

∫
S∗R2+1

[−δijξi(ξt − βk0 ξk)∂xja]
e−2γ0

N0

dν

|ξ|2
+

1

2

∫
S∗R2+1

(ξt − βi0ξi)2(∂xta− βk0∂xka)
1

N3
0

dν

|ξ|2

=
1

2

∫
S∗R2+1

(ξt − βk0 ξk)[−e−2γ0δijξi∂xja+
(ξt − βi0ξi)

N2
0

(∂xta− βk0∂xka)]
1

N0

dν

|ξ|2
.

(13.2)

By (11.70), it then follows that

(13.2) = −1

2

∫
S∗R2+1

(ξt − βk0 ξk)(g−1
0 )αβξα(∂xβa)

1

N0

dν

|ξ|2
. (13.3)

Plugging (13.3) into (13.1), we then obtain

0 = −
∫
S∗R2+1

(
−(g−1

0 )αµ
∂µβ

j
0

N0
ξjξα + (ξt − βi0ξi)((g−1

0 )αβ(∂β
1

N0
)ξα −

1

2

1

N0
((e0)0(g−1

0 )αγ)ξαξγ)a

)
dν

|ξ|2

−
∫
S∗R2+1

1

N0
(ξt − βk0 ξk)[(g−1

0 )αβξα(∂xβa)− 1

2
∂µ(g−1

0 )αβξαξβ(∂ξµa)]
dν

|ξ|2

= −
∫
S∗R2+1

[(g−1
0 )αβξα∂xβ (

(ξt − βk0 ξk)a

N0
)− 1

2
(∂µ(g−1

0 )αβ)ξαξβ∂ξµ(
(ξt − βk0 ξk)a

N0
)]

dν

|ξ|2
,

(13.4)

as desired. �

Proposition 13.2. Let dν be defined as in (7.8).
Suppose ã : T ∗R2+1 → R be a smooth function which is homogeneous of order 1 in ξ and is supported in

T ∗Ω. Then ∫
S∗R2+1

(2(g−1
0 )αβξα∂xβ ã− (∂µ(g−1

0 )αβ)ξαξβ∂ξµ ã)
dν

|ξ|2
= 0.

Démonstration. Suppose ã is homogeneous of order +1 in ξ with support in S∗Ω. Since dν is supported on
{(x, ξ) : g−1

0 (ξ, ξ) = 0}, ξt−βk0 ξk 6= 0 on the support of dν. It follows that we can define a to be homogeneous

of order 0 in ξ supported in S∗Ω so that
(ξt−βk0 ξk)a

N0
≡ ã in a neighborhood of the support of dν. Applying

Proposition 13.1 to this a then yields∫
S∗R2+1

(2(g−1
0 )αβξα∂xβ ã− (∂µ(g−1

0 )αβ)ξαξβ∂ξµ ã)
dν

|ξ|2
,

which is what we want to prove. �

Proof of Theorem 4.2. In view of Theorem 4.1 and Proposition 4.4, it suffices to prove is that under the
additional assumption of Theorem 4.2, the transport equation (2.21) holds in Ω. This is exactly provided
by Proposition 13.2. �
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