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TRILINEAR COMPENSATED COMPACTNESS AND
BURNETT’S CONJECTURE IN GENERAL RELATIVITY

LA COMPACITE PAR COMPENSATION TRILINEAIRE ET LA CONJECTURE DE
BURNETT EN RELATIVITE GENERALE

CECILE HUNEAU AND JONATHAN LUK

RESUME. Dans cet article, nous considérons une suite de métriques lorentziennes {hn}:{g, de classe C4,
satisfaisant les équations d’Einstein dans le vide Ric(hy) = 0. Nous supposons qu'il existe une métrique
Lorentzienne hg sur M, de classe C°, telle que hy, — ho uniformément sur tout compact. Nous supposons

aussi que sur un compact K C M il existe une suite de nombre positifs A, — 0 tels que
1—
16° (hn = ho)l o (1) S An~ ', lad > 4.

Il est bien connu que hg, qui représente une ”limite haute-fréquence”, n’est pas forcément solution des
équations d’Einstein dans le vide. Cependant, il a été conjecturé par Burnett que hg devait étre isométrique
a une solution des équations d’Einstein couplées & un champ de Vlasov sans masse.

Dans cet article, nous prouvons la conjecture de Burnett en supposant que {hn}zi‘i et ho admettent
en plus une symétrie U(1) et satisfont une condition de jauge elliptique. La preuve utilise les mesures de
défaut microlocales — on identifie une mesure de défaut microlocale définie de maniére ad hoc comme
étant la mesure de Vlasov dans ’espace-temps limite. Afin de montrer que cette mesure satisfait bien les
équations de Vlasov, nous avons besoin d’annulations particuliéres qui reposent sur la structure précise des
équations d’Einstein. Ces annulations sont liées un nouveau phénomene de ”compacité par compensation
trilinéaire” pour des solutions d’un systéme couplant des équations elliptiques semilinéaires & des équations
hyperboliques quasilinéaires.

Consider a sequence of C** Lorentzian metrics {hn}:g on a manifold M satisfying the Einstein vacuum

equation Ric(hn) = 0. Suppose there exists a smooth Lorentzian metric hg on M such that h, — hg
uniformly on compact sets. Assume also that on any compact set K C M, there is a decreasing sequence
of positive numbers A\, — 0 such that

[0%(hn — ho)llLoe (x) S A '@, Jal > 4.

It is well-known that hg, which represents a “high-frequency limit”, is not necessarily a solution to the
Einstein vacuum equation. Nevertheless, Burnett conjectured that ho must be isometric to a solution to
the Einstein—massless Vlasov system.

In this paper, we prove Burnett’s conjecture assuming that {hn}:;g and ho in addition admit a U(1)
symmetry and obey an elliptic gauge condition. The proof uses microlocal defect measures — we identify an
appropriately defined microlocal defect measure to be the Vlasov measure of the limit spacetime. In order
to show that this measure indeed obeys the Vlasov equation, we need some special cancellations which
rely on the precise structure of the Einstein equations. These cancellations are related to a new “trilinear
compensated compactness” phenomenon for solutions to (semilinear) elliptic and (quasilinear) hyperbolic
equations.

1. INTRODUCTION

It has been known in the context of classical general relativity that “backreaction of high frequency
gravitational waves mimics effective matter fields” (see for instance [1, 2, 7, 8, 11, 12]). One way to describe
this phenomenon mathematically (due to Burnett [1]) is to consider a sequence of (sufficiently regular)
Lorentzian metrics {h,} > on a smooth manifold M satisfying the Einstein vacuum equations

Ric(hy) =0 (1.1)
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such that (in some coordinate system) the metric components admit some limit kg where h,, — hq uniformly
on compact sets and Oh,, — Ohy weakly. Assume moreover that for any compact set K, there is some
sequence of positive numbers \,, — 0 such that the following holds on K :

P — hol S Any  [0hn] S 1, |0%hy| SAFT for k=2,3,4. (1.2)

Due to the nonlinearity of the Einstein equations, the limit hy does not necessarily satisfy (1.1). Instead, in
general it is possible for Ay to satisfy

1
Ric(ho) — §h0R(h0) =T

(where R is the scalar curvature) for some non-trivial stress-energy-momentum tensor 7'. This tensor T that
arise in the limit can be interpreted as an effective matter field.

A question arises as to what type of effective matter field can arise in such a limiting process. In this
direction, Burnett made the following conjecture ! :

Conjecture 1.1 (Burnett [1]). Given (M, hy,,) and (M, hy) above, the limit hg is isometric to a solution to
the Einstein—massless Vlasov system, i.e. the effective stress-energy-momentum tensor corresponds to that
of massless Vlasov matter?.

Conjecture 1.1 can be interpreted as stating that the effective matter field must be propagating with
the speed of light and that the matter propagating in different directions do not directly interact, but only
interact through their effect on the geometry ; see [1].

Our main result is a proof of Conjecture 1.1 under two additional assumptions :

(1) (U(1) symmetry.) The sequence {h,},; > and the limit ho all admit a U(1) symmetry (without
necessarily obeying a polarization condition).

(2) (Elliptic gauge.) All the metrics can be put in an elliptic gauge and the bounds (1.2) hold in this
gauge.

The following is our main theorem ; see Theorem 4.2 for a precise statement.

Theorem 1.2. Conjecture 1.1 is true under the above two additional assumptions.

Theorem 1.2 implies a fortiori that the effective stress-energy-momentum tensor is traceless, obeys the
dominant energy condition (i.e. for all future-directed causal vector X, —T),, X" is a future-directed causal
vector), and is non-negative in the sense that T'(X, X) > 0 pointwise for all vector field X (not necessarily
causal). In fact, we show that these statements continue to hold even if we relax the convergence assumption
to be significantly weaker than (1.2). We give an informal statement here but refer the reader to Theorem 4.1
for a precise statement.

Theorem 1.3. Suppose (1.2) is replaced by the conditions that h,, — ho uniformly on compact sets and
Oh,, — Ohy weakly in LY. for some py > %. Assume moreover that hy, hy all admit a U(1) symmetry and
are put in an elliptic gauge.

Then the effective stress-energy-momentum tensor is traceless, obeys the dominant energy condition, and

18 mon-negative.

Theorem 1.3 can be compared with the following theorem of Green—Wald [7], which to our knowledge is
so far the best result towards Conjecture 1.1 :

Theorem 1.4 (Green-Wald [7]). Assume {h,} > and ho are such that (1.1) and (1.2) hold. Then the
effective stress-energy-momentum tensor is traceless and obeys the weak energy condition (i.e. T(X,X) >0
pointwise for all timelike X ).

Note that while its conclusion is weaker than Theorem 1.3, Theorem 1.4 is a general result which does
not require U(1) symmetry.

While our results are gauge-dependent, it should be mentioned that a large class of non-trivial examples
have been constructed under our gauge conditions. In our previous paper [9], we have constructed sequences
of solutions of Einstein vacuum equation with polarized U(1) symmetry, which can be put in an elliptic

1. We remark that in the original [1], (1.2) is only required to hold up to k = 2. We impose the slightly stronger assumption
that (1.2) holds up to k = 4 in view of the result that we prove in this paper.

2. We remark that in Conjecture 1.1, “Einstein—massless Vlasov system” has to be appropriately formulated to include
measure-valued Vlasov fields since there are known examples for which the limits are isometric to solutions to the Einstein—
null dust system.
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gauge, such that (1.2) are satisfied and the limit is a solution to Einstein equations coupled to N null dusts.
See further discussions in Section 1.2.1.

We now briefly discuss the proof; for more details see Section 1.1. Under the U(1) symmetry assumptions,
the (3 + 1)-dimensional Einstein vacuum equations reduce to the (2 + 1)-dimensional Einstein-wave map
system. The rough strategy is the following :

— The first step of the proof is to show that only the two scalar fields corresponding to the wave map
part of the system are responsible for the failure of the limit to be vacuum. This can already be viewed
as a form of compensated compactness.

— To capture and describe the defect of convergence given by the scalar fields, we rely on microlocal
defect measures (introduced by Tartar [15] and Gérard [6]). It is well-known that microlocal defect
measures arising from linear wave equations satisfy a massless Vlasov equation? [4, 5, 15].

— We show that in our setting, despite the quasilinear nature of the problem, the microlocal defect
measure corresponding to the wave map part of the system still satisfies the massless Vlasov equation.

The most difficult part of the argument is to justify the massless Vlasov equation for the microlocal defect
measure. That this holds relies on some remarkable structures and cancellations of the system, which are
related to what we call a trilinear compensated compactness phenomenon.

The remainder of the introduction will be organized as follows : In Section 1.1, we explain the ideas of
the proof. In Section 1.2, we discuss some related problems. In Section 1.3, we outline the remainder of
the paper.

1.1. Ideas of the proof.

1.1.1. Microlocal defect measures. The microlocal defect measure (see Section 5 for further details) is a
measure on the cosphere bundle which identifies the “region in phase space” for which strong convergence
fails. One important property of microlocal defect measures, especially relevant for our problem, is that
microlocal defect measures arising from (approximate) solutions to hyperbolic equations themselves satisfy
some transport equations.

Let u, be a sequence of functions Q — R, where  C R? is open, which converges weakly in L2(2) to
a function u. In general, after passing to a subsequence, |u,|? — |u|? converges to a non-zero measure. The
failure of the convergence |u,|?> — |u|? can arise from concentrations or oscillations. The microlocal defect
measure is a tool which captures both the position and the frequency of this failure of strong convergence.

For instance, if u, = n%x(n(z — 20)) (with x € C2°) so that |u,|? concentrates to a delta measure, then
the corresponding microlocal defect measure is given by d,, @ v, where §,, is the spatial delta measure and v
is a uniform measure on the cotangent space. On the other hand, suppose u,(z) = x(z) cos (n(z - w)) so that
uy, oscillates in a particular frequency w. Then the corresponding microlocal defect measure is |y|?dz ® O]
where 0p,) is the delta measure concentrated at the (equivalent class of the) frequency w. See [15] for further
discussions.

An important fact is that microlocal defect measures arising from solutions to linear wave
equations on ({2, g) satisfy the massless Vlasov equation on (€2, g). Consider the special case where
Q = R4 and 0,6, a sequence of functions such that d¢,, — d¢pg weakly in L2. In this case, there exists a
non-negative Radon measure dv on S*R*! — which is the microlocal defect measure — so that

[, 2060 = 60)(A0s(0n — buyda > [ MBS g, (1)

seratt  [€]?
If ¢, are approximate solutions to some wave equation, then dv is a (measure-valued) solution to the
massless Vlasov equation (1.5) and (1.7). More precisely,

(1) 1If
ngsn = fm ||anL2(Q) ,S 1. (1'4)
Then dv is supported on the zero mass shell in the sense that for all f € C.(M),
1o dv
| f@e )t s =0 (15)
S R2+1 13

(2) If, instead of (1.4), we also have the stronger assumption

Dg¢n = fn, ||fn_f0HL2(Q) — 0. (16)

3. In [4, 5], a transport equation is derived only when the coefficients of the linear wave equation are time-independent. The
case of a general linear wave equation in fact follows in a similar manner, except for more complicated algebraic manipulations.
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Then for any C* function a : T*M — R which is homogeneous of degree 1 in &,
e 1 1o -, dv
/ (9717 €p000a — (89" ) €atp06,a) 173 = 0. (1.7)
§eR2+1 2 ¢

1.1.2. Standard (bilinear) compensated compactness. We now explain how microlocal defect measures can
be applied to the Burnett conjecture. Recall that Einstein equation with U(1) symmetry reduced to a 2+ 1
dimensional system (see Section 2.1)
Og¢ + se g7 (dw, dw) = 0,
Oyw — 49~ (dw, dy) = 0, (1.8)
Ricas(g) = 2001050 + e 0 wipsw.
Assuming we have a sequence of solutions {(vn,wn, gn)}, > which satisfy (1.8), with g, in an elliptic
gauge, and moreover attains C°-limit (1o, wo, go) with estimates

||6k(1/1n — g, Wn — Wo, gn—go)HLszoo(Rz) 5)\;_12 k=0,1,...4. (1.9)
The first step is to show that

Dgnwn — DgowOa Dgnwn — DgOWO; (110)
ggl(dwnadwn) 4goﬁl(d"‘)()?d"L}O)7 ggl(dwn’(hﬁn) 4g[)il(d"u()?dlpo)» (111)
Ricag(gn) — Ricap(g0)- (1.12)

in the sense of distribution.

That (1.10) holds is due to the divergence structure of the terms. That (1.11) is true is slightly more subtle
but well-known, and is related to the standard compensated compactness : g5 *(dw,, dw, ) and g * (dw,,, di,,)
are null forms, so that when (1.9) holds and that Oyyw, and gy, are bounded uniformly in L? N L, the
convergence (1.11) holds.

Finally, (1.12) holds under our elliptic gauge condition. This is because

— the elliptic gauge gives strong compactness for spatial derivatives of the metric components;

— in this gauge the nonlinear structure is such that there are no quadratic products of time derivatives

of the metric components.

Given (1.10)—(1.12), it follows that to capture how much the limit (g, wo, go) deviates from solving (1.8),
we just need to understand the n — +oo limit of

[ 2 ) e (Vi) (Yo dVoly, = | {2060)(Y o)+ e (Vo) (Ywn)} Vol (1.13)
M M

The deviation of (1.13) from 0 is in particular captured by the microlocal defect measure. More precisely,
defining the non-negative Radon measure dv (cf. (1.3)) by 4

—44o
lim / {200a(¥n — 10))(AD5 (¥ — Y0)) + —5— (9o (wn — w0))(ADp(wn — wo))} dVoly,
e 2 (1.14)
:/ a(z,§) alp dv
M €17 ’
we have d
. v
ngrfw(l.m) = /S*M<Y, g)QW. (1.15)

In particular, the limit (g, wo, go) obeys the following system :

Oy, %0 + %e_wogo_l(dwo, dwp) =0,
Ogotwo — 49q ' (dwo, dibo) = 0, (1.16)
Ja Ric(go) (Y, Y) dVoly, = [, {2(Y)” + Fe™(Ywo)?} dVoly, + [5. 0 (Y. €)* ds,

where the final equation in (1.16) is to be understood as holding for all vector fields Y € C°. (1.16) is
exactly the form of the Einstein—massless Vlasov system, as long as the measure dv is indeed a measure-
valued (weak) solution to the massless Vlasov equation.

The main task of the paper is therefore to justify that in our quasilinear setting, dv still solves the
massless Vlasov equation (see also Sections 2.3-2.5), i.e. (analogs of) (1.5) and (1.7) still hold. Already
in Section 1.1.1, we saw that (1.5) only require weaker assumptions (cf. (1.4) and (1.6)) and is therefore

4. (1.14) and (1.15) only hold after passing to a subsequence. We assume that we have passed to such a subsequence without
relabeling the indices.
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relatively straightforward. However, as we discuss below, it is much harder to obtain the transport equation
(1.7).

1.1.3. Model problem. As we argued above, the key difficulty is to justify the transport equation for the
microlocal defect measure. Observe already that in (1.6), one needs that f,, — fo in the L? norm in order to
justify the transport equation. However, in our setting, we only have weak convergence so that the derivation
of the transport equation must rely on some special compensation. Another issue is that the wave operator
Oy, is now dependent on n. It is relatively straightforward to show that if g,, tends to its limit go in C"!, then
the transport equation remains valid. However, again because of weak convergence, we need compensation
in the relevant terms.

To elucidate some of the difficulties and the techniques to tackle them, consider the following simplified
semilinear model problem with n-dependent metrics :

{Dgn% = g7 (A, dbn),

gn = —N2(dt)? + (dx')? + (dz?)%. (1.17)

Assume also, for simplicity in this exposition, that ¢,, — 0 and N,, — 1 pointwise with the following bounds :
10* pnllL2rpee ey + 107 (No = 1)l z2npe ety S An” (1.18)

and that the spatial derivatives of N,, (denoted by V) obey stronger estimates :

(IVN, HLZQLOO(]R2+1) )\ (1.19)

(Note that the assumptions that ¢, — 0 and N,, — 1 are slight over-simplifications. On the other hand,
(1.19) is a reasonable assumption in view of the elliptic gauge. See Section 1.1.5.)
Define the microlocal defect measure dv according to (1.3). Our goal will be to show that for any a(x, &)
which is homogeneous of order +1 in &,
0= / (—&0r + &0)a dv (1.20)
S R2+1 [

We derive (1.20) using an energy identity. Let A be a pseudo-differential operator with principal symbol
a= 5% A long (but unilluminating from the point of view of this discussion) computation yields®

[ 00 AL 4 57 (V2500 0 da (1.21)
+ /]R R (Nnamn)[c?t,A](m@mn) + [A, 0] (N, 0;) 0 (%)}dx (1.22)
+/Rﬂl{(ﬁmn)aij(ath)Aajj\in _ (@%)yanA(atM}\)]M}dx (1.23)
+AQ+1{(8i¢n)6ianAW (9162)(9;N,0)519 4 0i%n) z¢")}dx (1.24)
=Az+1{a£”A( g (ddn, don)) + (;\2") w9 L (g, dey, )} dz (1.25)
- /Rm a]t\f" §9{(N] — 1)aiAa]J$L" — D A((N? — 1)8£")}dx_ (1.26)

By (1.3), (after passing to a subsequence if necessary and using that & = §¢;€; on the support of dv)
as n — +oo, (1.21)+(1.22) — 2 x RHS of (1.20). It therefore suffices to show that the other lines all tend
to 0 as n — +oo.

That (1.23) and (1.24) tend to O are relatively straightforward : these rely respectively on the self-
adjointness (up to error) of A and (1.19).

However, that (1.25) and (1.26) both tend to 0 is more subtle. This requires trilinear compensated
compactness. We now turn to that.

5. While we omit the calculations in this introduction, the interested reader may look at Section 9 where a similar compu-
tation is carried out in complete detail.
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1.1.4. Trilinear compensated compactness. There are two types of trilinear compensated compactness that
we use. The first kind relates to term (1.25). We call this trilinear compensated compactness for three waves
as it is a trilinear term in the derivatives of ¢,,, and the compensated compactness relies in particular on good
bounds for O, ¢,,. The second kind of trilinear compensated compactness relates to the term (1.26). We call
this elliptic-wave trilinear compensated compactness since it relies on both ¢,, satisfying wave estimates and
N, satisfying good spatial derivative estimate (1.19) (which in the actual problem is obtained via elliptic
estimates for IV,,).

Trilinear compensated compactness for three waves. In fact each term in (1.25) tends to 0. We
discuss only a simpler statement, which captures already the main idea involved. We argue that for ¢,
satisfying (1.18),

(0:6n) 9 ' (A, dpy) — 0 (1.27)
in the sense of distribution.

To this end, first observe that by (1.17) and (1.18),

10g, &nllzrane @1y S 1. (1.28)

Then notice that we can write

- 1
In 1(d¢nvd¢n) = §Dgn(¢i) - ¢n(|:|gn¢n)~
It follows that for x € C°(R?**T1),

[ X000 @00 Ny =5 [ 3016000, (62) N [ (@)(00)00y, (60) N

2 R2+1

The second term clearly — 0 by (1.18) and (1.28). After integrating by parts, the first term can be written
as a term taking the form of the second terms plus O(\,) error, which then implies (1.27).

Elliptic-wave trilinear compensated compactness. We now turn to the term (1.26). Using the
estimates in (1.18), it follows that (1.26) has the same limit as

/ Dm0 {(N? — 1)0, A0y — D A[(N? — 1)D;b0]} dar. (1.29)
R2+l

If N, — 1 in C!, then (1.29) can be easily handled using the Calderén commutator estimate (see
Lemma 5.2.6), which gives

1(1.29)] < H8t¢n||L2(Rn+1)||N2 — 1”01(]1{2*1)||8j¢n||L2(]R2+1) — 0.

The main issue is therefore that while N, —1 and V(V,, — 1) indeed converge uniformly, the term 0, N,, only
converges to 0 weakly. We therefore need the more precise structure in (1.29) and argue in Fourier space.
To illustrate the idea, assume that A is simply a Fourier multiplier, i.e. its symbol a(x,&) = m(&) is
independent of x. This indeed captures the main difficulty. In this case, since ¢, is real-valued, we can
assume also that m is even.
Under these assumptions, we can rewrite (1.29) up to terms tending to 0.

120) = [ 910,07 (82 - 1)AT 0, - AN - )Fi6]) o

/2+1 967 A[0; (N7 — 1)(9;0n)] dz| < [|01n || p2@n+1) [V (NF = 1)||core+1)]|0; 6| p2(me+1) — 0.
R
Then we compute (cf. Proposition 11.5)

/ Db {(N2 — 1) A% 6, — A[(NZ — 1)0%6,]} da
IR (1.30)
i ?_\1

=5 / (Eelmil? + e &) (NZ = 1) (0 = E)Pn (1) (€)(m(&) — m(n)) d dn,
R2+1 xR2+1

where we decomposed ¢ and 7 into their time and spatial parts : £ = (&,&),m1 = (9, 7).

Roughly speaking (&;|n:|? + n¢|&:|?) corresponds to three derivatives, and hence contributes roughly to
O(A,;3) in size (see (1.18)). This is just enough to show that the (1.30) is bounded using the estimates
(1.18). To deduce that (1.30) in fact tends to 0, observe

— our main enemy is when N2 — 1 has high-frequency in ¢, i.e. |n; — &/ is large (since we have better

estimates for spatial derivatives of N, ; see (1.19));
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— we can gain with factors of & — n; (corresponding to spatial derivatives of N2 — 1) or &2 — |&]? or
n? — |ni|? (corresponding to Oy, acting on ¢y,).
Now the Fourier multiplier in (1.30) can be written as

&lmil® + el &l = me(& + m) (& — mi) + [mil* (& + me)-

The first term contains a factor of (§; —n;) which as mentioned above corresponds to a spatial derivative of
N,, and behaves better. For the other term, we rewrite

S —m & — & — M S —m
When &, — n; is large, we can make use of the gain in &2 — |&|?, |[n:|?> — n? or (& — n;) to conclude that this
term behaves better than expected.

73> (& + ) = |ms

1.1.5. Further issues. We finally discuss a few additional issues that we encounter in the proof, but are not
captured by the simplified model problem above.

(1) (Spacetime cutoff) Our solution is a priori only defined in a subset of R>*!, with estimates that
hold only locally. We therefore need to introduce and control appropriate cutoff functions.

(2) (Estimates for metric components) The estimates for the metric coefficients has to be derived using
the elliptic equations that they satisfy.

(a) Toshow that (1.19) holds for the metric components, we use the fact that the metric components
satisfy (semilinear) elliptic equations due to our gauge condition.

(b) There is in fact further structure for the estimates for the metric components : while the spatial
derivatives of all metric components obey a better estimate of the form (1.19), the 9; derivative
of the metric component of -y (see (2.4)) also obeys a better estimate due to the gauge condition.
This fact is crucially used.

(3) (Non-trivial limit for wave variables) In general ¢, does not tend to 0, but instead tends to a
non-trivial limit ¢y (with estimates [|0% (¢, — d0)|lz2nn=~ S AL7F).
(a) The non-triviality of ¢g already means that (in addition to an analogue of (1.22)—(1.26)) we
need to derive an energy identity for the limit spacetime and take difference appropriately.

(b) More seriously, we need an additional ingredient, which is not captured by our model problem.
In general, when the limit ¢ is not identically 0, the corresponding trilinear compensated
compactness statement gives (see Proposition 12.3),

(at¢n)gal(d¢na d¢n) - 2(6t¢n)90_1(d¢n7 d¢0) - _(8t¢0)90_1(d¢0a d¢0)

in the sense of distributions. In other words, in our model problem, if we assume ¢,, — ¢g Z 0
(but still assuming N,, — 1), we get

[ AN, (400,06,)) o
R2+1 n

dv
%2[5*%1 a(z,€)(go 1) €ka(9p00) GH +/ B Do A(gy *(do, dep)) dz (1.31)

R2
+ / Drdo Ay (ddo, dy)) da,
R2+1

which does not cancel off the corresponding term in the energy identity for ¢q.

The actual system, despite its complications, is in fact better in the sense that all the terms
involving the microlocal defect measure as in (1.31) cancel! This cancellation is related to the
Lagrangian structure of the wave map system.

(4) (Freezing coeflicients) Since the equation for ¢,, is quasilinear, we can not take the Fourier transform
as in the model problems. To overcome this difficulty, we will introduce a partition of our domains
into ball of radius A5° (with well-chosen ¢q), and show that in each of these balls the metric coeffi-
cients can be well-approximated (in terms of A,,) by constants so as to carry out our argument. See
Sections 8.2 and 11.

Finally, let us emphasize that in all the above discussions we have relied very heavily on the structure of
the terms involved. Indeed it is easy to slightly modify the terms so that the argument fails.
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1.2. Discussions.

1.2.1. The reverse Burnett conjecture. Already in [1], Burnett suggested that a reverse version of Conjec-
ture 1.1 may also hold, in the sense that any sufficiently regular solution to the Einstein—massless Vlasov
system can be approximated weakly by a sequence of high frequency vacuum spacetimes in the sense of
(1.2).

Like Conjecture 1.1, in full generality the reverse Burnett conjecture remains open. On the other hand,
some results have been achieved in the U(1)-symmetric polarized case in our previous [9]. More precisely,
given a generic small and regular polarized U(1)-symmetric solution to the Einstein—null dust system with
a finite number of families of null dust which are angularly separated in an appropriate sense, we proved
that it can arise as a weak limit ® of solutions to the Einstein vacuum system.

Note that the Einstein—null dust system is indeed a special case of the Einstein—massless Vlasov system,
where at each spacetime point the Vlasov measure is given as a finite sum of delta measures in the cotangent
space ; see Section 2.6. In fact, since finite sums of delta measures form a weak-* dense subset of finite Radon
measures, one can even hope that the results in [9] can be extended to a larger class of solutions to the
Einstein—massless Vlasov system.

1.2.2. Trilinear compensated compactness. To the best of our knowledge, the phenomenon of trilinear com-
pensated compactness has previously only been studied in the classical work [13]. The work considers three
sequences of functions {¢1,;}:2, {¢2,}:£F and {¢3.:}; 7 on R3, each of which has a weak-L? limit and
moreover X;¢;; is bounded in L? uniformly in i for some smooth vector fields X, X5 and X3. It is proven
that under suitable assumptions of X, the product ¢, ;¢2 ;43 converges in the sense of distribution to the

product of the weak limits.

1.3. Outline of the paper. The remainder of the paper is structured as follows. In Section 2, we begin
with an introduction to various notions important for our setup, including the symmetry and gauge condi-
tions, and the notion of measure-valued solutions to the Einstein—massless Vlasov system. In Section 3, we
then introduce the notations used for the remainder of the paper. In Section 4, we give the precise state-
ments of the main results of the paper. In Section 5, we recall some standard facts about pseudo-differential
operators and microlocal defect measures.

Starting in Section 6, we begin with the proof of the main results. In Section 6, we apply derive some
simple facts about the microlocal defect measures in our setting. In Section 7, we prove our first main
theorem, Theorem 4.1 (cf. Theorem 1.3).

In the remaining sections, we prove our other main theorem, Theorem 4.2 (cf. Theorem 1.2). Section 8
gives some preliminary observations. In Section 9, we derive the main energy identities (cf. (1.22)—(1.26))
which will be used to derive the transport equation of the microlocal defect measures. In Section 10, we
first handle the easier terms in deriving the transport equation. In the next two sections we handle terms for
which we need trilinear compensated compactness : terms requiring elliptic-wave compensated compactness
will be treated in Section 11; and terms requiring three-waves compensated compactness will be treated
in Section 12. The proof is finally concluded in Section 13.

Acknowledgements. C. Huneau is supported by the ANR-16-CE40-0012-01. J. Luk is supported by a
Terman fellowship, a Sloan fellowship and the NSF grant DMS-1709458.

2. SETUP AND PRELIMINARIES

2.1. U(1) symmetry. For the remainder of the paper, fix a T > 0 and take as our ambient (3 + 1)-
dimensional manifold (Y M = M x R, where M = (0,T) x R2. Introduce coordinates (t,z',z?) on M and
(t,x', 22, 2%) on WM in the obvious manner.

Consider a Lorentzian metric (¥'g on (‘Y M with a U(1) symmetry, i.e. (Vg takes the form

Wy =e g4 e2¥(da® 4 Aydaz®)?, (2.1)

where g is a Lorentzian metric on M, 1 is a real-valued function on M and 2, is a real-valued 1-form on

M.

6. Note however that the convergence we obtained was slightly weaker than (1.2); see [9] for precise convergence rates.
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Under these assumptions, it is well known that the Einstein vacuum equations for ((4)./\/1, ) g) reduces
to the following (2 + 1)-dimensional Einstein—wave map system for (M, g,1,w) (see for instance [3]),
Oy + %e“"wg_l(dw, dw) =0,
Oyw — 49~ (dw, dy) = 0, (2.2)
Ricas(g) = 2000050 + e~ 9 wipw,
where w is a real-valued function which relates to 2., via the relation
1
(dW)ap = 0aAp — IpUq = 56*4’#@*1)” Eapr Osw, (2.3)
where €,3) denotes the volume form corresponding to g.

2.2. Elliptic gauge. We will work in a particular elliptic gauge for the (2 + 1)-dimensional metric g on M
(cf. (2.1)). More precisely, we will assume that g takes the form

g =—N2dt* + e*5;;(dz" + B'dt)(dx? + 57 dt). (2.4)
such that the following relation is satisfied
. 1 .
Oy — B0y — 581-51 =0, (2.5)

where in (2.4) and (2.5) (and in the remainder of the paper), repeated lower case Latin indices are summed
over ¢,7 =1,2.

We remark that the condition (2.5) ensures that the constant-¢ hypersurfaces have zero mean curvature
and the condition (2.4) ensures that the metric on a constant-t hypersurface induced by g is conformal to
the flat metric.

Assuming that a metric g on M obeys (2.4) and (2.5), the metric components N, v and 3 satisfy the
following elliptic equations ; see [9, Appendix B] :

2y

. e .
6’k8kH,-j = _WRICOj’ (26)
A 62’y 1 —2y 2
Y= *ﬁGoo — 3¢ [H7, (2.7)
1 2
AN = Ne ™ |H|? — ZVNR + —Goo, (2.8)
(£8)i; = 2Ne*27HU, (2.9)

where eg = 0; — 8%0;, Ric,g is the Ricci tensor, R is the scalar curvature, G,g = Ricap — Rga5 is the
Einstein tensor, and £ is the conformal Killing operator given by

(£8)ij 1= 0;00:8" + 6100; 8° — 6:;01.8". (2.10)

Moreover, assuming (2.4) and (2.5), the spatial components of the Ricci tensor is given by (see [9, Proposi-
tion B2])

1 1
RiCij :5ij <—A’}/ — 2NAN) - N(Bt — 5k8k)H” — 26_27H7;ZHJ'2 (211)
1 1 1
+ N (8]ﬂkal + alﬂka]) — N <6163N — 551]AN — (558{7 + 5;6(9[}/ — (5ij5€kag’}/) 8kN> .

In the particular case where the vacuum equations (2.2) are satisfied, (2.6)—(2.8) take the following form :

Foutty =~ (2ean)(0,0) + 16_4w(€0w)(8jw)> , (219
Ay = ~( V9P + e |Vul?) - <<eow> e eqw)?) — 5o HP, (213)
AN = Ne_27|H|2 + —( (eoh)* + —4¢(eow) ). (2.14)

Combining (2.9) and (2.12), we also obtain the follovvlng second order elliptic equation for 37 when (2.2)
are satisfied

ABI = 5574y, (log(Ne™)) (LB)ie — 46" (e¢) (Di) (2.15)
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Moreover, (2.11) takes the following form when (2.2) are satisfied :

2(9Z¢8]¢ + %6747’& &w@jw

1 1
= dij (—A’Y - QNAN) - N@t — B*0k)Hij — 2¢ 7> H,"H,y (2.16)
1 1 1
+ (0;8"Hyi + 0;8" Hyj) — ¥ (aiajN = 505 AN — (07 0;v + 650y — 6:56™ Opy) 8kN> :

2.3. Measure solutions to the Einstein—massless Vlasov system.

Definition 2.1 (Measure solutions to Vlasov equation). Let (M,g) be a C* Lorentzian manifold. We say
that a non-negative finite Radon measure dp on T* M with fT*M |€]2dp < +oo solves the massless Viasov
equation if the following two conditions both hold :

(1) dpu is supported on the zero mass shell {(x,&) € T*M : (¢g71)*P¢,&5 = 0},
(2) For every function a(x,&) € C(T*M \ {0}), it holds that

/ (g )*%euts,a) du
T*M\{0}

(2.17)
—1\af 1 —1\apB
= - ((97)*€s000a — 5(8u9™") " €abpOg, a) dpu = 0.
T+ M\{0}
Definition 2.1 is indeed a generalization of the “usual” Vlasov equation, where du is absolutely continuous
with respect to the natural measure on the zero mass shell. More precisely,

Proposition 2.2. Let (gc xt.

x™) be a system of local coordinates on U C M. Introduce a local coor-
dinate system (z°,z1,..., % ,51, .. ,§n) = (29, 2! &, &1, .., &) on the zero mass shell restricted to U
(which is a (2n + 1)- dzmenswnal sub-manifold of the cotangent bundle). Here, and in the proof, we use the
bar in Oza, etc. to indicate that the derivative is to be understood as the coordinate derivative with respect

to the coordmate system on the zero mass shell. On the zero mass shell, & will be understood as a function

of (20, 2t,... 2" &, ..., &) defined implicitly by (g71)*P€,85 = 0.
Suppose f A(2,8) € T*M : (g71)*B¢LE5 = 0} — [0, +00) is a O function” satisfying on U the equation
-1\« 1 -1\
(971 €0z | = 502 (97 1) 6als0g, f = 0. (2.18)
Then, for du = f d’? dxl(;;‘li?:o‘éil = den (2.17) holds for all a € C(T*U \ {0}).
Démonstration. We first compute the transformation ®
1 9,a (g7 1) €56 (971"
Opa = Opa — =222V Op = 0, — 0, . 2.19
2 (g nong, e ST T (T, o (2.19)

It follows that
1 1
(g_l)aﬁfﬁaw" - E(aug_l)aBgafﬂafp = (g_l)aﬁfaaa‘cﬁ - §8i‘ (g_l)aﬁgafﬁafi-

Therefore, the LHS of (2.17) in the coordinate system we introduced reads

dzfdz! --- dz™dé - de
-1 a[} —1\apB 1 n
[ 166000 = Jouta ) a0l e @20)
Now a direct computation using (2.19) shows that
—1\apB o 1 aiL —1\apB o
f%ﬂ[(g,l) Oé |- Lo (971) 05 £ﬂ] _o
(97108 2 (g=1)H08,
Therefore, integrating by parts in (2.20) and using (2.18), we obtain that (2.20) = 0, as desired. O

Definition 2.3 (Measure solutions to the Einstein—massless Vlasov system). Let (M, g) be a C? Lorentzian
manifold and dp be a non-negative finite Radon measure on T* M. We say that (M, g,dp) is a measure
solution to the Finstein—massless Vlasov system if the following both hold :

7. Here, C! is to be understood with respect to the differential structure on the zero mass shell.
8. Here, Greek indices run through 0,1,...,n and Latin indices run through 1,... n.
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(1) For every smooth and compactly supported vector field Y,
/ Ric(Y,Y)dVol, = / (€, V)2 dp.
M *M

(2) dp is a measure solution to the massless Vlasov system in the sense of Definition 2.1.

2.4. Radially-averaged measure solutions to the Einstein—massless Vlasov system. It will be
convenient for us to define a notion of radially-averaged measure solution to the Einstein—massless Vlasov
system. Strictly speaking, this is related but is a distinct notion from that of a measure solution in De-
finition 2.3. It is however easy to see that any measure solution in the sense of Definition 2.3 naturally
induces a radially-averaged measure solution. Conversely, given a radially-averaged measure solution, one
can construct a measure solution in the sense of Definition 2.3 ; see Lemma 2.5. One reason for introducing
this notion is that this is the natural class of solutions that we construct using the microlocal defect measure.

Before we proceed to the definition of a radially-averaged measure solution, let us first define the cosphere
bundle

S*M = UIEMS;M = U:I:EM((T;M \ {0})/N)7
where we have quotiented out by the equivalence relation & ~ n if £ = An for some A > 0.

A continuous function on S* M can be naturally identified with a continuous function on T* M which is
homogeneous of order 0 in £. Therefore a Radon measure on S* M naturally acts on continuous function on
T* M which is homogeneous of order 0 in £.

We are now ready to define radially-averaged measure solutions to the Einstein—massless Vlasov system :

Definition 2.4 (Radially-averaged measure solutions to the Einstein—massless Vlasov system). Let (M, g)
be a C? Lorentzian manifold and dv be a non-negative finite Radon measure on S* M. We say that (M, g, dv)
is a radially-averaged measure solution to the Einstein—massless Vlasov system if the following both hold :

(1) For every smooth and compactly supported vector field Y,

5 dv

/ Ric(Y,Y) dVol, = / (€, Y) e’
M *M
where €[> = 320_o &4

(2) dv is supported on the zero mass shell in the sense that for all f € C.(M),

1o dv
/S*M F@) (g7 €ats Gl 0
(3) For any C* function a : T* M — R which is homogeneous of degree 1 in &,
HETON .1 o - dv
/*M((g 1) Bf@({)xaa - 5(8u9 1) ﬁéaﬁﬂafua) @ =0. (2.21)

The relation between a measure solution to the Einstein—massless Vlasov system (Definition 2.3) and a
radially-averaged measure solution to the Einstein—massless Vlasov system (Definition 2.4) is clarified in
the following lemma, :

Lemma 2.5. Given a measure solution (M, g,du) to the Einstein-massless Vlasov system, there exists
a radially-averaged measure solution (M, g,dv) to the Einstein—massless Vlasov system (with the same
(M, g)). This is also true conversely if (M, g) is globally hyperbolic.

Démonstration. Forward direction. This is the easier direction, and can in some sense be viewed as taking
average in the radial direction in £. More precisely, given ¢ € Cy(S* M) (thought of as a continuous function
homogeneous of order 0 in v), define a map I : Co(S* M) — R by

I(p) == /*M o |¢Pdp.

Since du is non-negative, I is a non-negative map. By the Riesz—Markov representation theorem, it follows
that there exists non-negative dv such that

I(p) = /S*MMV'

Since [£|?dp is finite (by definition), it follows that dv is finite. The Einstein equation also follows by
definition.



12 CECILE HUNEAU AND JONATHAN LUK

Converse direction. This is harder and there is some choice available in the construction.

Given a globally hyperbolic (M, g), pick a Cauchy hypersurface ¥y and define the set ? (with two connec-
ted components)

S ={(x,8) eT*M :z € Xy, |£> =1, g~ (x)(€,€) =0}

Define now the set S as the image of S under the geodesic flow. Note that S is a co-dimensional 2
submanifold of T*M \ {0}. Moreover, the vector field (g71)*? €300 — 5(0,971)*P€a€s0, is by definition
tangential to S.

Given ¢ € Cy(T* M), define o* € Cy(S* M) as the function such that ¢* [s= ¢ [s which is homogeneous
of order 0 in &. Define a map J : Cy(T*M) — R by

J(p) = / p*dv.
S*M

This is non-negative by the non-negativity of dv. Hence, by the Riesz—Markov representation theorem, it
follows that there exists non-negative du such that

)= [ ellan

Note that |£|2du is finite since dv is finite. The Einstein equation also follows by definition.

To see that du is supported on the zero mass shell, it suffices to note that by definition, S, on which by
definition dyu is supported, is a subset of the zero mass shell by construction.

Finally we show that (2.17) holds. Take a(x,&) € C°(T*M \ {0}). Define a so that a [¢= a but such
that @ is homogeneous of order 1. Therefore, using (2.21), we know that (2.17) holds with @ in the place of
a. However, since du is supported on S (by construction), it follows that in fact (2.17) holds for a. O

Remark 2.6. (dv can be chosen to be even) In the “forward” direction of the above proof, we could have
instead defined
19)i= [ S06(0)+ p(-€) € aue),
T*M
so that I is even, i.e. I(¢) = 0 for all odd function p. Consequently, dv is also even. In fact, the measure
solution to the Viasov equation that we will eventually construct is even.

2.5. Restricted Einstein—massless Vlasov system in U(1) symmetry. The final notion that we in-
troduce in this section is that of the restricted Einstein—massless Vlasov system in U(1) symmetry. By
“restricted”, we mean that we are not considering general (3 + 1)-dimensional solutions to the Einstein—
massless Vlasov system for which the metric admits a U(1) symmetry, but instead we require that massless
Vlasov measure to be supported in the cotangent bundle corresponding to the (2 + 1)-dimensional (instead
of the (3 + 1)-dimensional) manifold.

Since we have already introduced and contrast both measure solutions and radially-averaged measure
solutions for the Einstein-massless Vlasov system (cf. Sections 2.3 and 2.4), we will directly define the notion
of radially-averaged measure solutions for the restricted Einstein—massless Vlasov system in U(1) symmetry.

Definition 2.7 (Radially-averaged measure solutions for the restricted Einstein—massless Vlasov system in
U(1) symmetry). Let (DM, g) be a (4+1)-dimensional C? Lorentzian manifold which is U(1) symmetric
as in (2.1), i.e. the metric takes the form

Wy = e 2g 4 e (da® + Apda™)?,

for g, ¥, A independent of x3. Let dv be a non-negative finite Radon measure on S* M.
We say that (Y M, g, dv) is a radially-averaged measure solution for the restricted Einstein-massless
Vlasov system in U(1) symmetry if

(1) the following equations are satisfied :
Oyt + 3¢ 1Y g7 1 (dw, dw) = 0,
Oyw — 49~ (dw, dp) = 0, (2.22)
S Ric(g) (YY) dVoly = [, [2(Y4h)? + Je=*(Yw)? dVol, + [5. (6 V) &,
for every CS° vector field Y, where w relates to Ay, via (2.3) ;
(2) (2) and (3) in Definition 2.4 both hold.

9. We note explicitly that |¢|? = 1 is quite arbitrary. The same will work for any smooth choice of an (n — 2)-sphere.
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2.6. Null dust and massless Vlasov. In this subsection, we show that a solution to the null dust system
is a measure solution to the massless Vlasov system. In particular, this shows that solutions to Einstein—null
dust system considered in [10] can indeed be viewed within the framework of this paper.

For simplicity, let us just consider the case where Fa is compactly supported.

Lemma 2.8. Let (M,g) be a C? Lorentzian manifold. Suppose for a finite set A, {(Fa,ua)}aca is a
compactly supported solution to the null dust system on (M,g), i.e. Fa : M — R is a compactly supported
C! function and up : M — R is a C? function satisfying

(1) g7 (dua,dua) =0, dua #0 for all A € A,
(2) 2(g71)*?(9pun)0aFa + (Oyua)Fa =0 for all A € A.
Then the measure du on T* M defined by

=) Fiby—auadVol, (2.23)
AcA

is a measure solution to the massless Vlasov equation on (M, g) (cf. Definition 2.1).

Démonstration. That dyu is supported on the zero mass shell follows immediately from (2.23) and g~ (dua , dua) =
0. It remains therefore to verify the transport equation in Definition 2.1.
For this we need a preliminary calculation. First, since (g—!)*? Oaudgu = 0, we have

(05 (9700 udpu + 2(g~ 1) (D) (D0dsu) = 0.

Therefore, given any a € C°(T*M), viewing a(xz,du(z)) as a function on M (and emphasizing this by
calling the coordinates ), we have

(971 (9pu)Dze (a(Z, du(E)))
= (g—l)aﬁ(aﬁu)axaa + (g~ ) ﬂ(aﬁu)(aéaa)(aaaau) (2.24)
=(97")*(9pu)Opaa — %(ao(gfl)aﬁ)(aau)(%U)(agﬁa)-

We now check that the transport equation in Definition 2.1 using (2.24) and integrating by parts :

[ (a7 50mma = 5 0nlg™ (B, 0)) di
T M

> / (97" (@sun)ea — 5 (Dog™")")(Datun)Os1un) (D, a)) FR dVol,

AcA’M
=, / (g7 1) (2)(9pun)(Z)Dze (a(T, dua(T)))) F5 () dVoly(Z)
AcA
. / 0P (05un)0aFa + (Dyua)Fa) (@) Fa(2)a(z, dua (z)) dVol, (&) = 0,
AcA
where in the last line we used the equation satisfied by Fa. This concludes the proof. O

3. NOTATIONS AND FUNCTION SPACES

Ambient space and coordinates. In this paper, we will be working on the ambient manifold M :=
(0,T) x R? (although often we only restrict to subsets Q C Q' C Q”, cf. Section 4.1); see Section 4. The
space will be equipped with a system of coordinates (¢, 2!, 2?). We often write x = (¢, 2!, 22). We will use
2 with the lower case Latin index i, = 1,2. We will also sometimes denote x = ¢.
Let T*M be the cotangent bundle. The standard coordinates on T*M will be given by (z,£) =
(', 2, 2%, &, &1, &)
When there is no risk of confusion, we write 0; = 0.
Indices. We will use the following conventions :
— Lower case Latin indices run through the spatial indices 1,2, while lower case Greek indices run
through all ¢, 1,2

— Repeat indices are always summed over : where lower case Latin indices sum over the spatial indices
1,2 and lower case Greek indices sum over all indices ¢, 1, 2.

Metrics.

— g and go denote the metrics introduced in Section 4, which both take the form (2.4) and (2.5).
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— We denote by g, € {log Ny, %, 7.} and go € {log No, 35,70} the metric coefficients of g, and go
respectively.

— &;; (and ) denotes the Euclidean metric.

Norms for tensors and derivatives.

— Given a rank-r covariant tensor 7,,....,,, define *°

VR I AN LR L S I

e por=t,1,2 Jisedr=1,2

— This notation is in particular used for (x,¢) € T* M where we denote

€= 0 el gl = >0 g

p=t,1,2 j=1,2

— Likewise, given a scalar function f : R?*! — R, we define
2 2
02 = 100 /1P + D10 S P, 101 =D 100 [T,
i=1 j=1

— A similar notation will be used for higher coordinate derivatives (even though they are not tensors),

ie.
IR SR /i
M1y e =t,1,2
Constants. Conventions for constants will be discussed in the beginning of Section 8.
Differential operators.
— A denotes the spatial Laplacian on R? with respect to the spatial Euclidean metric, i.e.

2
Au = Z 31-2u.
i=1

— Oy, and Oy, denote the Laplace-Beltrami operators with respect to go and g, respectively. (see also
(9.1) and (9.2)).

— Oy,,4 and O, 4 are operators to be defined respectively in (9.3) and (9.4).

— (eo)o and (eg), denote the vector fields (eg)o = 0y — 850, and (eg),, = Oy — 8% 0, respectively (where
B, and By will be introduced in (2.4)).

— £ denotes the Euclidean conformal Killing operator acting on vectors on R? to give a symmetric
traceless (with respect to the Euclidean metric §) covariant 2-tensor, i.e.,

(£n)ij == 8500in" + 60y’ — 6:50kn"
Fourier transforms. We will denote spacetime Fourier transform by ~ and spatial Fourier transform
by Fspa. We will take the following normalizations :
~ 1

o izt
FO = g [ e s e

1 ok )

FanD6.6) 1= 5o [ 7% .07 do da”
2T R2

Fourier multipliers will be denoted as follows for m : R2t! — R :

(m(V)f)(x) = ﬁ / ! (€) fy) dy.

7

Functions spaces. Unless otherwise stated, all function spaces will be understood on R?*!. Define the
following norms for a scalar function f:R*t! - R :

s = ([ 1P @) pelliroc)  flim = esssupyegan (o).

[ fllwms = > 10 flles, meNU{0}, p € [1,400).

lo|<m

10. The second definition is a slight abuse of notation, by which we mean unless otherwise stated, we will also implicitly take
the sum. Similarly below.
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Define also the corresponding function spaces in the obvious way. We will denote H™ := W™2, Define also
the norm

= (i) ae)?

and the corresponding function space.
We will also use the above function spaces for tensors on R?*!, where the norms in the case of tensors
are understood componentwise (with respect to the (¢, 2!, 22) coordinates).

4. MAIN RESULTS

Let M := (0,7) x R2. Suppose {(¥n,wn,gn)}, 25 is a sequence such that 1, w, are C* real-valued
function on M and g, is a C* Lorentzian metric on M satisfying the following four conditions :

(1)

(
(2) (Gauge condition) The metric g, is put into a form satisfying (2.4) and (2.5) for all n € N.
(

3)

Solving the equations) (¢, wy, g, ) satisfies (2.2) for all n € N.

Local uniform convergence) There exists a limit (¢g,wo, go) which is smooth and gy satisfies (2.4)
and (2.5). Assume that the following convergences hold :

(a) ¥n — o, wy, — wo uniformly on (spacetime) compact sets.

(b) For g € {log N, B¢, v} (being the metric components; cf. (2.4)), g, — go uniformly on compact
sets.

(4) (Weak convergence of the derivatives) Let py € (§,400). With (¢g,w0, go) as above, the following
convergences hold :

(a) OYn — Oy, Ow, — Owo weakly in LI .
(b) For g € {log N, 3%, v}, Og,, — Ogo weakly in L°

loc*

Theorem 4.1. Given {({y,wn, gn) }125 and (Yo, wo, go) such that the conditions (1)—(4) above hold. Then
there exists a non-negative Radon measure dv on S* M such that (M, g, wo, go,dv) satisfy the following
conditions :

(1) dv is supported on {(x,&) € S*M : g5 (£,€) = 0} ;
(2) the following system of equations hold :
Ogotho + 6_4”’0 o H(dwg, dwg) = 0,
Ogowo — 4g0 (dwo,dd)o) =0, (4.1)
S Ric(go)(Y,Y) dVoly, = fM (Yapo)? + e~ (Ywy)?] dVoly, + Js a6 (£,V)?2 ‘g—‘
for every Cg° wvector field Y.

In particular, the effective stress-energy-momentum tensor 1), is traceless, non-negative and obeys the
dominant energy condition.

The above theorem has the advantage that the assumptions are very weak. On the other hand, we also do
not get the full Burnett’s conjecture in that we do not show that the limit is isometric to a solution to the
FEinstein—massless Vlasov system. In order to obtain the stronger result, we impose the following additional
assumption :

(5) (Estimates) For every compact subset K C M, there exists a sequence {A,}52; C (0,1] (depending
on K) with lim,, , . A, = 0 such that for g € {log N, 8%, v},

Sup A | (Y = o, wn = o, 8n = 80) (1) < +00, (4.2)
sup |[(O¢n, Own, Ogn) || Lo (k) < +00. (4.3)
sup A 1[04, 0Fwy, 0F g || Lo () < 00,  for k = 2,3,4. (4.4)

Theorem 4.2. Given {({n,wn, gn) 125 and (o,wo, go) such that the conditions (1)-(5) above hold. Then
there exists a non-negative Radon measure dv on S* M such that (M, g, wo, go,dv) is a radially-averaged
measure solution to the restricted Einstein—massless Viasov equations in U(1) symmetry in the sense of
Definition 2.7.
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Remark 4.3. Even though it is most convenient for the proof to formulate Theorem 4.2 so that the Einstein
part of the system is satisfied in the weak sense (see (2.22)), it follows a posteriori that the Einstein part of
the system is also satisfied classically for an appropriately defined stress-energy-momentum tensor. (Indeed
since we have assumed the limiting metric gy to be smooth, the limiting stress-energy-momentum tensor
must agree with a smooth tensor almost everywhere.)

This can be formulated as follows. Let w : S*M — M be the natural projection map. It follows from
Theorem 4.2 that after defining

) ) 3 fafﬁ
Top(p) »= liminf -— !
5(p) = limin 413 /,rl(B(p,r)) g™

(where B(p,r) is the coordinate ball), Top is continuous and that the Einstein equation

1
Ricag(g) = 20,90y + 56_4¢8aw85w + Twp
holds classically.

4.1. Reduction to compact sets. It will be technically convenient to reduce our theorems to correspon-
ding cut-off versions.

Fix an open and precompact  C M. Let ' C M be an open and precompact set containing Q. Let
be a non-negative function in C2° such that

x=1onQ, supp(x)C . (4.5)
We will show that (cf. Section 6.1 below) for every such 2, Q' and Y, there exists a non-negative Radon

measure dv on S*R?*! such that for some subsequence ny, the following holds for any 0-th order pseudo-
differential operator A with principal symbol a (cf. Section 5) :

lim 2 / - 0u (b, = 0))[A05 (X(, = v0))] dVOl,,,

k—+oco

. 1 _4 dv
+ kgr-&r-loo 5 /]Rz+1 ¢ woaa(X(wnk B wo))[Aaﬁ(X(wm“ B wo))] dVOlg"k - /S*]R2+1 afngﬁ@'

(4.6)

We now claim that in order to prove Theorems 4.1 and 4.2, it suffices to show that for every 2, ' and
X as above, (92,1, wo, go,dv [q) verifies the conclusion of Theorems 4.1 and 4.2. More precisely,

Proposition 4.4. Let (Q,g,wo, go,dv) be as defined above.

(1) Suppose that under the assumptions of Theorem 4.1, for every Q, Q' and x above, dv is supported
in {(x,6) € S*M : gy ' (£,€) = 0} and (4.1) holds in Q with any Y € C2(Q). Then Theorem 4.1
holds.

(2) Suppose that under the assumptions of Theorem 4.2, for every Q, Q' and x above, (Q, 1o, wo, go, dv [q
) is a radially-averaged measure solution to the restricted Finstein-massless Viasov equations in U(1)
symmetry in the sense of Definition 2.7. Then Theorem 4.2 holds.

Démonstration. We will define a Radon measure on all of M under the assumptions.

Let {;};°° be an exhaustion of M, i.e. Q; C Q;41 and UL5Q; = M. Define x; by (4.5) with Q = €,
and Q' = Qi+1.

For each ¢ € N, define dv; as a Radon measure on €); as in the assumption of the proposition. By
considering a diagonal subsequence, we can assume without loss of generality that there is a fized subsequence
ny such that the following holds for every i € N :

tim 2 [ 00, = 0)AD5 0, — w0))] AV,

k—+oo

1
+ lim - / e 1095 (xi(wny, — w0))[A0(Xi(wn, —wo))] dVoly,, = /
R2+1 S

dVi
k—+o0 2 a€atp €12

Define dvy, as follows. Let ¢ € C.(S*M). Then there exists §2; such that suppy C S*Q;. Define

dveo () == dv; ().

Note that this is well-defined (and independent of the particular choice of 7).
In each of the cases (1) and (2), it is then easy to verify that (M, g, wo, go, dVs) obeys the desired
conclusion. g

*R2+1
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In view of the above proposition, from now on we fix 2, ' and y as above. It will suffice to prove
that the conditions in Proposition 4.4 hold.
It will be convenient to fix also two open, precompact sets Q” C Q" C M such that € C Q" and
Q7 C Q. Define
X=1on Q" supp(x)cC Q. (4.7)

5. PRELIMINARIES ON PSEUDO-DIFFERENTIAL OPERATORS AND MICROLOCAL DEFECT MEASURES

In this section, we recall useful notions on pseudo-differential operators and microlocal defect measures.
Everything in this section is standard and is mainly included to fix notations.

For the remainder of this section, fix & € N (which will be taken as 3 = 24 1 in later sections). Denote
by T*R¥ the cotangent bundle of R* with coordinates (z,¢) € RF x Rk,

Definition 5.1. (1) For m € Z, define the symbol class
S™i={a: T"RF 5 C:a € C™®, Va,B, ICap >0, 0507 a(x,)| < Cap(1+ €)™ 171}

(2) Given a symbol a € S™, define the operator Op(a) : S(R¥) — S(RF) by

a)u)(x ':L Tz, E)u
Op(apn)e) = e [ ] (¢, uly) dy de.

For A, a above, we say that A is a pseudo-differential operator of order m with symbol a. If moreover
a(z,§) = aprin(2, §)X(§) + error; where aprin(z, A) = Xa(z, ) for all X > 0, x(§) is a cutoff = 1
for large |£] and = 0 near 0, and derror € S™ Y, we say that apyin is the principal symbolt of A.

We record for convenience some standard facts.

Lemma 5.2. (1) (114, Theorem 2, p.237]) Let ay € S™!, ay € S™2. Then ¢ € S™ ™2 such that
Op(a1) o Op(az) = Op(c), where

C(.’I,‘,g) - a1($7£)a2($7£) c Sm1+m2_1_

(2) (114, Theorem 2, p.237]) Let a; € S™, az € S™2. Then Jc € S™+m2=1 gych that Op(a;)oOp(as)—
Op(az) o Op(a1) = Op(c), where

c(z, &) +i{ay,az} € ™V 72 {ay, a0} = 0¢,a10pnar — pnar O, as.
(3) (14, Proposition, p.259]) Let a € S™. Then Op(a)* (the L%*-adjoint of Op(a)) satisfies
Op(a)* — Op(@) € S 1.

(4) (Calderén—Zygmund theorem [14, Proposition 5, p.251]) A pseudo-differential operator A of order
m extends to a bounded map WnH™P(RF) — WnP(RF), vn € NU {0}, Vm € Z, ¥p € (1, +00).

(5) (Rellich—Kondrachov theorem) A pseudo-differential operator A of order —1 extends to a compact
map : L>(R*) — L2 (R).

(6) (Calderén commutator theorem [14, Corollary, p.309]) Let u : R™ — R be a Lipschitz function for
which there exists M > 0 so that |u(x) — u(y)| < M|z —y| for all x, y € R™. Let T be a pseudo-
differential operator of order 1. Then [T,u] € B(L*(R"™),L?(R™)), i.e. that it is a bounded linear

map on L*(R™). In fact'?, for every f € S(R™),
1T (uf) = w(TH)llL2@ny S M| fllL2@ny, (5.1)

where the implicit constant depends only on T'.

11. Remark that the principal symbol is uniquely determined by a pseudo-differential operator.

12. The precise statement in [14] only asserts that [T,u] € B(L?(R™), L2(R™)) (without explicitly saying that the operator
norm is proportional to M). Nevertheless, (5.1) follows from the closed graph theorem. Let (Lip, | - ||Lip) be the Banach space
of equivalence classes of Lipschitz functions, where two functions are equivalent if they differ by a constant, and ||ul|pLip :=

SUP gty % The corollary on p.309 in [14] implies that there is a map ® : Lip — B(L2?(R™), L?(R")) given by
[u] = [T,u]. By the closed graph theorem, in order to obtain (5.1), it suffices to show that if lim;_, o ||[u;]/|lLip = O and
im0 [T 5] — Sllg(n2rny,L2(Rn)) = 0 for some S € B(L?(R™), L2(R™)), then S = 0. To show this, pick a representative
u; such that u;(0) = 0. In particular it follows that |||z| = u;||pee — 0 as j — +o0o. Now for any ¢ € L%(R"), T(u;p) and
u;T () both tend to 0 in the sense of distribution as j — 4o0. Therefore, S = 0 as required.
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We now turn to the discussion of microlocal defect measures, following [6] (see also [15]). We first need
some preliminary definitions.

Let S*R* be the cosphere bundle given by S*R* := (T*RF \ {0})/ ~, where (z,£) ~ (y,n) if and only
if z = y and £& = Ay for some A > 0. From now on, we identify a function on S*R* with a function on
T*R* \ {0} which is homogeneous of order 0 in ¢, i.e. a(z, \¢) = a(z, &), VA > 0.

Definition 5.3. We say that du is a non-negative (N x N)-complez-matriz-valued Radon measure on S*R¥
if dp is @ map dp : Co(S*RF) — CNXN
(1) obeying the estimate ||du(p)|| < Ck|l¢llcx) for every compact set K C S*R* (for some Cx > 0
depending on K ), and

(2) satisfying du(p) is a positive semi-definite Hermitian matriz whenever ¢ is a non-negative function.

Definition 5.4. Let du be a non-negative (N x N)-complez-matriz-valued Radon measure on S*RF and
¢ : S*RE — CN*N be a continuous matriz-valued function on S*RF.
Define tr (d(z,€) du) to be the (scalar-valued) Radon measure on S*R¥* given by

(tr (d(, &) du)) () = tr[d(x, ) - (du(p))]-

Theorem 5.5 (Existence of microlocal defect measures, Theorem 113 in [6]). Suppose {u,} 12 € L?(R*;CN)
be a bounded sequence such that u, — 0 weakly in L?(R*;CN).
Then there exists a subsequence {u,, }{>5 and a non-negative (N x N)-complez-matriz-valued Radon mea-

sure dp on S*R* such that for every CN*N -valued pseudo-differential operator A of order O with principal
symbol ¢ € C.(S*RF; CNXN),

lim (A, up, Yon do = / tr (d(z, &) du).

k—+oo Jpk S*RE
The measure du in Theorem 5.5 is called a microlocal defect measure. Following [6], if the conclusion of

Theorem 5.5 holds for {u, },;}>} (without passing to a subsequence), we say that {u,} > is a pure sequence.

Theorem 5.6 (Localization of microlocal defect measures, Corollary 2.2 in [6]). Let {u,} be a pure sequence
of L*(R¥,CN), of microlocal defect measure du. Let P be an m-th order differential operator with principal
symbol p = 3, _,, aa(i&)* for some smooth (N x N)-matrices aq. If {Pun}n=1 is relatively compact in
H,; "™ (RF,CN), then

pdu = 0.
6. MICROLOCAL DEFECT MEASURES FOR %) AND w

We begin to prove Theorem 4.1 by studying the properties of the microlocal defect measures. For the
remainder of this section, we work under the assumption of Theorem 4.1.

6.1. Existence of the microlocal defect measures. Consider now the sequence of functions x (1, — o)
and x(wp, —wp) (cf. (4.5)). We are now in a setting to apply the existence theorem (Theorem 5.5) to obtain
microlocal defect measures.

Proposition 6.1 (Existence of microlocal defect measures). There exist Radon measures dazﬁ, doy s and
dogg™ on S*R2+L such that for any zeroth order (scalar) pseudo-differential operators { A%}, s—i 1.2 with
principal symbols {aaﬂ}a’g:tyl’g, the following holds up to a subsequence (which we do not relabel) :

lim B (X — 10)) A 95 (x (1 — o)) dVoly, = / a* do?,,
n—00 [Jpat1 GeR241
lim Do (X (wWn — w0)) AP 5 (x(wn, — wo)) dVol,, = / a®? dogs,
n—o0 [pa41 GeR2+1
lm [t ~ ) A0 — o)) Vol = [0 o
n—00 Jpot1 GeR241
lim O (X (wn — w0)) A D5 (X (n — 1)) dVoly, = / a®? (do %)},
nTroo JR2+1 S*R2+1

where * denotes the Hermitian conjugate.
Moreover, da;bﬂ and dog g are non-negative in the sense of Definition 5.3.

13. Note that this is a specialization of the original theorem of Gérard. In the original paper, the domain is any open set in
R* and u, may take value in any separable Hilbert space, instead of CV.
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Démonstration. Applying Theorem 5.5 with

awl EX(wn - wo )
= 9w — wo)

812 (X(wn - WO))
we obtain a non-negative (6 X 6)-complex-matrix-valued Radon measure du. Since dp is Hermitian by
Theorem 5.5, du takes a block diagonal form as follows
daw ‘ dgeross
(do.cross)* ‘ dov

dp =

It is then easy to check that the components dazﬁ, dog s and dogg™ of the corresponding measures have
the properties as claimed. (Note that we have in particular used On (X (¥rn, — ¥0)) = Oa(X (¥ — %0)), etc. in
the expressions in the proposition.) O

Without loss of generality (by passing to a subsequence if necessary), we will assume from now on
that the sequence is pure.

6.2. First properties of the microlocal defect measures. In this subsection, we prove some properties
of the microlocal defect measures.
Proposition 6.2. dogg™ is symmetric, i.e.

O_CI'OSS — do,l%ro(é)ss.

af

Démonstration. This amounts to

Hm . Do (X (¥n — 10)) A*P 9 (x(wn — wo)) dVoly,
= lim 95 (X (¥n — 10)) AP (X (wn — wo)) dVoly, .

n—+00 Jpot1

This can be seen by noting that [A%#,9,] : L? — leoc is compact (by Lemmas 5.2.2 and 5.2.5), integrating

by parts and using assumptions (3) and (4) of Theorem 4.1. O

Proposition 6.3 (Microlocal defect measures are effectively given by dv¥ and dv®). There exist non-
negative Radon measures dv?¥, dv* on S*R?t1 such that

£alp 3 w _ $aép v,

do¥, = Oug =
el SR

where €2 == 300 €12

Démonstration. We will focus on dv¥ in the exposition. dv* can be treated similarly.

Step 1 : Defining an auxiliary measure dpg. Using the identity 0,0,¢n = 0,044, and Theorem 5.6, it
follows that for every f,

ugov _ Say v

tdo’, = ==do,.

e[ el me
This implies that

do?
(1) Z“ﬂ (to be understood without summing repeated indices) is a well-defined Radon measure for
every 3. (To see this, note that at each point in 7*M \ {0}, some component &, # 0.)

da’w do’rd)/
aB a’B /
(2) &&= g~ for every a, o

. . do?
With the above observations, we can thus define the measure dpg = Il ;C‘ﬂ .

Step 2 : Defining dv¥. Since dafﬁ is Hermitian (by Proposition 6.1), for dpfg defined as in Step 1,

€adpy = Eadpl. (6.1)
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»
Arguing as in Step 1 above, we know that % is well-defined. We define

€a
Step 3 : Non-negativity of dv¥. Finally, using Proposition 6.1, one sees that dv¥ is non-negative. O

We record the following result, which follows from Propositions 6.1, 6.3 and simple algebraic manipula-
tions.

Corollary 6.4. Fordv¥, dv¥ as in Proposition 6.3, it holds that for every zeroth pseudo-differential operator
A with principal symbol a which is real, homogeneous of order 0, and supported in S*€,

¥
/ Do (X¥n)(A(95(x¥n))) dVoly, — / 9o (Xx¥0)(A(95(x¢0))) dVoly, +/ agagﬁd 3 (6.2)
R2+1 R2+1 S |£|

*R2+1
d w

/ Da(xwn) (A(D5 (xwn))) AVolgy = | Ba(xwo) (A(Ds(xwo))) dVoly, + / abals s (6.3)
R2+1 R2+1 S*]R2+l |€
Moreover,

/ D (i) (A(D5(xwn))) dVoly, — / Do (x0) (A(95 (xw0))) dVoly, + / adoS$, (6.4)
R2+1 R2+1 S*R2+1
and

[ 2o (A0s ) aVoly, = [ 0 (cn)(A@s(x0) Vol + [ ada™)z (65)
R2+1 R2+1 S*R2+1

6.3. Microlocal defect measures are supported on the light cones. Our goal in this subsection is
to use Theorem 5.6 to show that the microlocal defect measures are supported on the light cones.

Lemma 6.5. Oy (x(¢n — ¢0)) and Ogy (X (wn — wo)) admit the following decomposition :

Ogo (X (¥n = %0)) = Ba(€5)* + 0P, Oy (x(wn — wo)) = BalE5)* + i,

Sb) (w) ()

where &7, €47 are vector fields compactly supported'® in Q' which converges to 0 in the L? norm ; and ny’”,

7)7({”) are functions compactly supported in ' which are uniformly bounded in Ls (for po as in assumption

(4) of Theorem 4.1).

Démonstration. We will prove the decomposition for Og, (x(¥n — %0)); Ogo (X (wn — wo)) can be treated
similarly.

First we write

Dgo (X(wn - 1!’0)) = (Dgo - Dgn)(x¢n) + Dgn (Xwn) *Dgo (X’tl)o) . (6'6)
—_——— ———
=:1, =:11,, =:111,,
Clearly each term is compactly supported in €.
Term I,, can be computed further as follows :

Ly = 8a(((99 )™ — (9, 1)*)05(xtn)) —(9a((g5 )™ = (9,)*")) 05 (x¥n)

:3Ia,n ::Ib,n

ﬁaa«gal)“ﬂ — det g) — 9a((g1)P /= det gn))3s (xn) -

1
+ v/ —det g,

=lcn

Under the assumptions of Theorem 4.1, I ,, and I, are both uniformly bounded in L%,

For term I, ,,, note that by assumptions (3) and (4) of Theorem 4.1 (and Holder’s inequality), ((gy *)®® —
(g7 1)%)05(x%n) — 0 in the L? norm.

For the term II, in (6.6), we note that by (2.2), assumptions (3), (4) of Theorem 4.1 and Holder’s
inequality, it follows that II,, is uniformly bounded in L's.

Finally, the term III,, in (6.6) is smooth and independent of n. It is therefore uniformly bounded in L.

Combining the above results and letting

€D = (g5 = (g2 1)) s (xthn), 1Y) = Oy (X (¥n — o)) — Da(ESD),

14. Recall the definition of €’ in Section 4.1.
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we obtain the desired result. O

Proposition 6.6 (Support of microlocal defect measures). Let dv¥, dv* be as in Proposition 6.3. Then

(90 )*%atp o w0 _ (991)*Pats
g v FE

Démonstration. We will only prove the equality for dv¥. The equality for dv* can be treated in the same
manner.

Step 1 : Compactness of Oy (x(¥n — o)) in Hy,+. We use the decomposition Oy, (x(¢n — o)) = Oa (55;”)“ +
(w) given by Lemma 6.5.

Since ( (¢)) — 0 in the L? norm, 9, ( (w))a converges to 0 in H,,! (and hence is compact).

On the other hand, we know that n(¢) is uniformly bounded in L%, where pg € (g , +00) (cf. assumption

(4)). In (2 + 1) dimensions, since £ > , L'?" embeds compactly into H ol Tt follows that {n(w) oo is

compact in H l;cl
Putting all the above considerations together, it follows that Oy, (x(¥n — %0)) is compact in H, !

loc*

Step 2 : Application of Theorem 5.6. By Theorem 5.6 and the compactness obtained in Step 1, we obtain
that, for any index g,

(90176
iy
This implies, via Proposition 6.3, that for any index g,

(90 1)*7€0bals o o _
T

For every (z,£) € S*R?*1, &5 # 0 for some 3. Hence, we obtain the desired conclusion. O

Yo _
daaﬂ =0.

7. THE PROOF OF THEOREM 4.1

In this section, we prove Theorem 4.1. We continue to work under the assumptions of Theorem 4.1. As
discussed in Section 4.1, with dv = 2dv¥ + %e"w’odu“’, it suffices to show that (€, go, %0, wo,dr) obeys the
conclusion of Theorem 4.1.

We have already proven that dv is supported on the null cones by Proposition 6.6. We therefore only need
to prove (4.1). The two wave equations will be proven in Section 7.1 ; the equation for the geometry will be
proven in Section 7.2. These results can be viewed as consequences of (bilinear) compensated compactness.
We then put all these together in Section 7.3.

7.1. Wave equations for the limits 1y and wg. We begin with a simple (bilinear) compensated com-
pactness type result related to the null forms.

Lemma 7.1. Let {gb(l) oo and {¢(2)}n 1 be two sequences of real-valued smooth functions on M =

0,7) x R3. Assume that there exist smooth functions (b(l) and ¢(2) on M such that the following hold for
0 0
some pg € (%,Jroo) :

(1) For any (spacetime) compact subset K of M,
16 = 68”1 maste.

2205 — 0.
P2 (K)

(2) For any (spacetime) compact subset K of M,

max sup |96 || 12 (i) < +oo.

(8) Oy, ) admits a decomposition Ogo ¢ = Oa( %i)) (l) for some fuector field ( ,(f))o‘ and some
functwn 77( D such that for any (spacetime) compact subset K of M, (fn ) — 0 in the L?(K) norm

and nn is uniformly bounded in the L' (K) norm.

Then as n — 400,

9o H(doM), dpP) — gal(dqbél),qugQ)) in the sense of distribution.
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Démonstration. Let ¥ € C2°(M). We want to show that

/ Dggt (dplD, dp@) dx—>/ Dg5  (doS, dpl?) da. (7.1)
R2+1
‘We write

95 H(dpV, dp®) = S0y, (962 — ( 0P — ¢£3)(Dgo¢$3>)

=1 =11 =11

(and similarly for g, l(dgb(()l), dgbéQ))). We handle each of these terms below.

Step 1 : Term 1. To handle the term I, simply note that the assumptions and Holder’s inequality implies
that ¢£}) %2) — qbél)gbéz) strongly in L' (on any compact set). Since [, is a smooth differential operator, it
follows that 30, ( ') converges to 504, (¢81)¢62)) as distributions.

Step 2 : Terms 11 and 111. We then consider the term II; the term III is clearly similar.

Step 2(a) : Contribution from +9,( 7(11))0‘ @, Using the L? norm convergence of (5,(11))“ and the L? norm
boundedness of 3(;5%2), a simple integration by parts and Holder’s inequality imply that %6(1( ﬁ}’)%ﬁf) —0
in the sense of distribution.

Step 2(b) : Contribution from %775} (bs?). Since gg is smooth, Dgocﬁg) — Oy, gl) in the sense of distribu-
tions. The assumptions then imply that 777(}) — Dgoqﬁgl) in the sense of distributions. Using now the L%

(" and the norm convergence of ¢5§> — (()i) in L%, it follows that for any ¢ € C>°(M),

/ InMVo@ da / 900057 da.
R2+1 R2+1

Combining Steps 1 and 2, we have proven (7.1). O

boundedness of 7y,

Using Lemma 7.1, we obtain the following equation for yy and xwy.

Proposition 7.2. xty obeys (classically) the wave equation

Dy, (xt0) = 295 ' (dx: dvpo) — oLy, x +
Xwo obeys (classically) the wave equation
gy (xwo) — 295 ' (dx, dwo) — wollgo X — 4x9y ' (dwo, i) = 0. (7.3)

Démonstration. We will focus the exposition on (7.2). (7.3) can be treated similarly.
Since X1 is smooth, it suffices to show that (7.2) holds in the sense of distribution, i.e. we want to show
that for any n € C2°(R**1),

1
/Hl(Dgon)X?/}O\/TthdI+ 5/ 4% dwo,dwo \/Ttgodz
R

]R"”rl

2xe o g (dwp, dwg) = 0. (7.2)

=1 =:11
+ /2+1 n (—anl(dx7dwo) — z/JODgox) v/ —det godx = 0.
R

=111

(7.4)

We note that by assumption (4) of Theorem 4.1, 9v,, and 9g,, converge respectively to ¢y and dgg weakly in
LY . Therefore, using also the locally uniform convergence of ¢, and g,, (in assumption (3) of Theorem 4.1),
we obtain

I[+1III= lim (( gl )Xwn - 2779n (dX7 dwn) - m/anan) vV~ det 9n dz. (75)

n—+00 Jpat1

For the term II in (7.4), we compute using the uniform convergence of 1, and g, (on compact sets)
and Lemma 7.1. Note that Lemma 7.1 indeed applied to gy *(dw,,dw,) since by assumptions (3), (4) of
Theorem 4.1 and Lemma 6.5, w, obeys the assumptions of Lemma 7.1. Hence, we obtain

1
II=- lim ne 4% dwn, dwy, )/ —det go dz

2 n—+oo R2+1
1

=— lim ne~ g1 (dwy,, dw,)\/— det g, dz.

T 2 n5Fco R2+1

(7.6)
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Combining (7.5) and (7.6), we obtain

T+TI+1T = Tim (@g.m)xn — 209, (dx, dpn) — mPa0y, x) / — det g, d
n o0 JR2+1
(7.7)
1
+ = lim 4”" dwn, dwy, )/ —det g, dx = 0,
2 n—+oo R2+1
where in the last line we have used the fact that for every n € N, the wave equation
_ 1 _
Dgn (X'@Z}n) - 29, l(an d@bn) (N g X T 56 4¢n (dwm dwn) =0
holds. We have thus proven (7.4). O

7.2. The limiting stress-energy-momentum tensor.

Proposition 7.3. There is a subsequence ny such that for every vector field Y € C°(Q),

Gny, *

/ Ric(go)(Y,Y)dVol,, = lim [2(Y 9, )% 4+ e ¥ (Yw,, )] dVol
R2+1

k—+oo Jr241 2

Démonstration. Step 1 : 0;vn and (Hy):; have strong subsequential leoc limits. In this step, we show that
on any fixed compact set, after choosing a subsequence ng, 9;vn, and (H,, );; have strong L? limits. Since

po € (8, 400), Wllo’cp% embeds compactly into L? . (in (2+ 1) dimensions). Therefore, it suffices to show that
for any fixed compact set, 0;v, and (Hy);; are uniformly bounded in Wi By assumptions, we already
know that 0;,, and (H,,);; are uniformly bounded in L% (in fact also LP°) on any compact set ; we therefore
need to show that the same holds true for all first derivatives of 07, and (H,,);;.

By (2.12), (2.13) and (2.14), Ay, AN and §*0y(H,,);; are all uniformly bounded in L% in any fixed

compact set. Standard LP elliptic theory '® (applied for each fixed t) implies that
0%, O N, Ok (Hn)ij

are all uniformly bounded in L% on any fixed compact set.

Using the above, and also (2.16), the assumptions of Theorem 4.1 and Holder’s inequality, we also obtain

that
at (Hn)z]
is uniformly bounded in L% on any fixed compact set.

It remains to bound 0,0;7,. For this, first note that by (2.15), the assumptions of Theorem 4.1 and the
above bounds, we see that AS¢ is uniformly bounded in L% on any fixed compact set. Elliptic theory then
implies that

05y,
is uniformly bounded in L% on any fixed compact set.
Now we use (2.5), take a spatial derivative, and apply the above estimates. We see that

ataz’Yn

is uniformly bounded in L% on any fixed compact set.
The above discussions imply that indeed 0,7, and (H,,);; have strong subsequential Lloc limits.

Step 2 : Weak convergence of the Ricci tensor. We now turn to the expressions for the Ricci tensor as given
n (2.6), (2.7), (2.8) and (2.11). Notice that in each of the terms which is quadratic in the first derivative
of metric, there is at least one factor of 9;yy, or (Hy,):;. By Step 1 and the Cauchy-Schwarz inequality, it
follows that Ric(gp, ) converges to Ric(go) in the sense of distribution (where ny is the subsequence as in
Step 1).

15. Note that H,, is traceless. In two (spatial) dimensions, this implies that a bound on the divergence of H, also gives a
bound on the curl of H,. Hence, we indeed have an elliptic estimate of the type

S0k (Ha )il . < D 16% 0k (Ha)is ), . +ZH niill o
J

5,k

for Uy C Us C R?, each set being an open and precompact subset of the next set.
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Step 8 : Putting everything together. By Step 2 and assumption (3) of Theorem 4.1, it follows that for any
smooth vector field Y supported in €2, as k — 400,

/ Ric(gn,)(Y;Y)dVoly, — | Ric(go)(¥,Y) dVoly,.
R2+1

R2+1

On the other hand, since (¢, wn, gn) satisfies (2.2) for all n € N, we know that for every ni € N,

. 1 _
/R » Ric(gn, )(Y,Y) dVoly, = / [2(Yhn, )? + 3¢ i (Ywp, )% dVolg,

R2+1

The conclusion follows. g

Proposition 7.4. Let
1
dv :=2dv¥ + 5674% dv®. (7.8)

Then the limiting metric go satisfies

Ric(go)(Y,Y) dVoly, = /

R2+1

(2(1/%)2 + ;e_4w°(Yw0)2> dVoly, + / (Y€,)? dv
S

R2+1 *R2+1

for every vector field Y € C(2).
Démonstration. Since v and gy converge uniformly on compact sets, they in particular converge uniformly
on . Therefore, taking ny as the subsequence in Proposition 7.3,

1 1
lim 2V, )% + 56—4% (Ywn,)?]dVoly, = lim [2(Y),, )% + 5e—‘*% (Ywy, )?] dVoly,.

k—+oo Jp2+1 k—+oo Jr241

Now using the fact that x = 1 on the support of Y and Corollary 6.4, we obtain

1
lim [2(Yhn, )? + 56—4% (Yw,, )?] dVol,,

k—+oo Jp2+1

1
- / [2(Y4ho)? + —e ¥ (Ywy)?] dVoly, + / (Y€,)? dv.
R2+1 2 S*R2+1

The desired conclusion therefore follows from Proposition 7.3. d
7.3. Conclusion of the proof of Theorem 4.1. We now conclude the proof of Theorem 4.1 :

Proof of Theorem 4.1. First, dv is supported on {(z,&) € S*M : go_l(ﬁ,g) = 0} in view of Proposition 6.6.
To check that the three equations in (4.1) are verified, note that the first two equations are verified due to
Proposition 7.2 (and the fact that x = 1 on Q), while the last equation is verified thanks to Proposition 7.4.
Finally, using Proposition 4.4, we have completed the proof of Theorem 4.1. O

8. BEGINNING OF THE PROOF OF THEOREM 4.2

From now on and for the remainder of the paper, we prove Theorem 4.2. We will therefore
work under the assumptions of Theorem 4.2. The main goal from now on will be to show that with the
additional assumption (5) of Theorem 4.2, we can show moreover that the measure dv satisfies a transport
equation on Q (where we have used the reduction in Proposition 4.4).

From now on, unless otherwise stated, let A be a zeroth order pseudo-differential operator
with real symbol a(x,£). Assume moreover that a(z,£) is supported in S*Q.

We introduce now conventions that we will use for the remainder of the paper. We use the convention
that A, refers to the sequence of constants in assumption (5) of Theorem 4.2 with K = Q" (cf. Section 4.1).

From now on, we use the convention that for two non-negative quantities B; and Bs, By < Bs means
there exists C' > 0 depending potentially on T, 19, wo, g0, £, ', Q”’, Q" and A, but independent of n,
such that

By < CBs.

‘We will also use the big-O and small-o conventions, i.e. for a non-negative quantity B (depending
on n) and a positive function f(n) of n, B = O(f(n)) means B < C - f(n), while B = o(f(n)) means
% — 0 and n — 4o0.

In this section, we carry out various preliminary steps. In Section 8.1, we begin with some convergence
estimates for the derivatives of the metric which follow from the elliptic equations (and are stronger than

(4.3)). In Section 8.2, we discuss the freezing of coefficients, which will be used in various places later.
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Finally, in Section 8.3, we discuss a reduction allowing us to consider only a subclass of pseudo-differential
operators A later.

8.1. Convergence of the derivatives of the metric components.

Proposition 8.1. Let X be as in (4.7).

10X = 30Dz + 103 (R85 — Bl + [0:(X(No — No))l|z= < Ak

Démonstration. In view of the elliptic equations (2.13), (2.14) and (2.15) satisfied by v, N and 7, it suffices
to show that for smooth u,, u : R3*! — R (n € N) such that

[IX(wn —uo)llL= < An (8.1)
and
[ANX(un —uo))l[L~ S 1, (82)

1
we have ||0;(X(un — ©0))|lzee S A3
Let © : [0,4+00) = R be a non-negative smooth cutoff function such that

©>0, O(x)=1forzel0,1], O(z)=0forz>2.

For every fixed !¢ ¢ € R, we take the spatial Fourier transform Fspa and then decompose into a low-spatial-
frequency part and a high-spatial-frequency part as follows :

Rt — 0) (1, €) = Fiph ORI Fapa (Xt — 10))(t €0) + Fiph(1 — O IE11)) Fopa (1t — w0))(t,£5)

=1 =:1I

(8.3)
For the term I, we apply Bernstein’s inequality and (8.1) to obtain

|03 (Fook (OO Fupa (Rlatn — o)) 1:6)) )|, () S A7 IR Cun — w0l (1) S An

Taking supremum over ¢ implies the desired estimate for this term.
For the term II, define first Py, i the spatial standard Littlewood-Paley projection to spatial frequency

o
Sl

An = Aq.

|&i| ~ 2F. Denote the corresponding Fourier multiplier by mzp(27%¢;) where mpp is a radial smooth spatial
function supported in an annulus.
Now note that for each fixed t € R and for each Littlewood—Paley piece,

0 (Foph (1= OOFIE) Fapa Pap (Kl ~ w0)) 1,69 ) |, _ (1)
< |7t (0 - Ol mLe (26 o (AT ~ wo)) (60 )| (0
€ .
< |7t (fgmaree)) | 1 —wli @

o (omare)

<ot (14 1 ERh e 6N ) AR — a0

‘ H Spa( /\ |§z|) spa( (X(un—U()))) (t’&))HL;" (t)

S27M AR (un = u0)) - (DS 275,

where in the last estimate we used (8.2).

_1
Now, summing up all the Littlewood-Paley pieces with 2¥ > X, 2, we obtain that for every fixed t € R,

o (72t (0 - ORI Fan RN, - No)(.60)) |, (DS S 2 Sk

k:2k >N 2

Lg

Taking supremum over ¢ then implies the desired estimate. O

16. Note that in fact for ¢ ¢ [0, T], the term (8.3) vanishes.
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Proposition 8.2. Let X be as in (4.7).

10:(X (Y = Y0) |l 2o S Ad-

Démonstration. This is an immediate consequence of (2.5) and the estimates in (4.2) and Proposition 8.1.
U

8.2. Freezing coefficients. One trick that we will repeatedly use is to to freeze coefficients. This will
be used in Section 8.3, but will again be useful when we capture some trilinear cancellations; see already
Section 11. In this subsection, we will introduce some relevant notations and prove some basic estimates.

Fix some ¢ € (¢, 3) (for the remainder of the paper). For each n € N, choose finitely many (spacetime)
balls of radius !” A0, labeled by {Bg}4 so that ' C Uy,Bs C UgBs C Q" (cf. Section 4.1). Note that this
gives O(\,,3€9) balls, each with volume '® O(A%%0). Introduce a partition of unity {3}, adapted to these

balls so that supp((.) C B, and
Z G =1 on.

Due to the choice of B,, (, can be chosen so that for every r € [1, 2],

”6’64;1”[/"0 5 )\;kso’ k=0,1,2,3. (84)

The following is an immediate consequence of mean value theorem :
Proposition 8.3. Letb: Q" — R be a C' function. Then for every fited n € N and fized o as above, there
exist constants b..., (depending on «) such that (with implicit constants depending on the C' norm of b but
independent of n or a)
[b—=beallL=(B.) <A
Moreover, the constants satisfy
sup |be.o| S 1.
«

In particular, for every a, there exist uniformly bounded constants N, q, 5};’0‘ and Ye,o (depending on o)
such that

[[log No —10g Ne,o ||z (5.) + 1185 — Bi.allL=(B.) + 10 = VeallLe(l) S AR

Proposition 8.4. For every «, every r € [1,2] and every p € [1,+0o0],

1—k+ 220

10 (Cx(n — v e SAn TP, k=0,1,2,3, (8.5)
10, (Cox(tn — 0)) — o (x(tbm — o) lw S A, (8.6)
102, (o (W — o)) — Co02, (X (Y — o)) ll1w S AP, (87)
Similarly, for every a, every r € [1,2] and every p € [1, +00],
105 (Cx(wn —wo)) e S A k=0,1,2,3,

" r I4eo(—1+2)
10 (Cax(wn = wo)) = (o0 (X (wn — wo))llLr < An :

r r (_1+%)
102, (Cax(wn — wo)) — CAA2, (X(wn — wo))|lLe S An :

Démonstration. We will only discuss (8.5)—(8.7); the remaining bounds can be derived in an identical
manner.

Step 1 : Proof of (8.5). By (4.2), (4.3), (4.4) and (8.4), and using & < 3, we have, for k =0,1,2,3,
10%(Cox(wn — wo))llz= S A7 .

Now since supp(9* (¢ x(wn —wo))) C Ba, and B, has volume O(A3¥9), we obtain the desired conclusion for
all p € [1, 4+00].

Step 2 : Proof of (8.6) and (8.7). The proof of (8.6) and (8.7) is similar to that of (8.5) except in this case we
are computing the commutator so at least one derivative hits on (7. This results in the better bounds. [

17. Here, radius is to be understood with respect to the (t,z!,z2) coordinates.
18. This is again to be understood with respect to the (t,xl,x2) coordinates.
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Proposition 8.5. For every «, for p € [1,+00] and for g € {log N, 87, v},

1+3%0 30 —1420
I6a(gn = 0)lr SAn” 75 [10(Calgn — g0))llze S An" 5 110%(Calon — g0)llze SAn 7,

3eq

i+ 2
0:(Calgn —g0)llee SAn 7, [[ACa(gn — 80))llr S A" -

Démonstration. The estimates for 9% (¢, (gn — go)) (k = 0, 1,2) are similar to Proposition 8.4 ; we omit the
details.

The last two estimates assert that there is an improvement associated to spatial derivative. First, using **
Proposition 8.1, (8.4), (4.2) and o < 3, we obtain

1 1
19 (Ca(gn — 80) ||z S max{A, "%, AT} < A3

Taking the LP norm over B, yields the desired claim for all p € [1,4o0].

Finally, using the equations (2.13)—(2.15) (which together with (4.2) and (4.3) give an L* bound for
A7, Alog N,, and ABJ), the estimates in (4.2), (4.3), Proposition 8.1, (8.4) and &g < %, we obtain

1_
1ACa(gn = g0))llze S max{A, 2, A5, 1} S 1.

As before, taking the LP norm over B, yields the desired claim for all p € [1, +00]. O

One important consequence of freezing the coeflicients is that in every By, the [y, operator is comparable
to a constant coefficient operator :

Proposition 8.6. For every a, let Elc,a be the constant coefficient second order differential operator defined
by
5 (00 = BL.a00) (0 — BL o 0;) + e 6™},

where the constants N, q, ﬂéya and 7¢,o are defined in Proposition 8.3.
Then, for every «, for every n € N and for every p € [1,+00],

~ 3eg.
1000 (Cax(¥n = o))llze S AT A, k=0,1,2.
Similarly, for every «, for every n € N and for every p € [1,+00],

~ 3eq
10 0c,a(Cax(@n —wo)lle S ATFF A2, k=0,1,2.

~

Démonstration. We will only prove the estimates for v,, — 1g ; the estimates for w, — wy are similar and
will be omitted.
By the first two equations in (2.2) and the estimates in (4.2)—(4.4), we have for £ =0,1,2,

10" 0, tnllzee S AZF, 10°0geth0llz> < 1. (8.8)
Since x is smooth, using (8.8) together with (4.2)—(4.4), we obtain
10" 8, Oxton) o S AL", 10 0g, (xtbo)llze < 1. (8.9)
By the bounds (4.2)—(4.4), we obtain for k =0,1,2,
10" (B, — Ogo) (X)L S AL (8.10)
Writing g, (x (¥ — %0)) = (g — Oy, ) (X%¥n) — Ogo (X%0), it follows from (8.9) and (8.10) that
||8k|:|go (X(¥n = Yo))llze S )\’I’_Lk7 k=0,1,2. (8.11)

Next, we compute

Coz(Dgo - EJC,O()

1 1
= —Ca(ﬁg—@)

o2 +2¢ (ﬁ _ 270‘ )32‘ +¢ [(6—2"/ _ €—2vc,a)5ij _ (%ﬁg _ M)]y
¢ NG ON2,H e Ng N2, ‘

¢,

e ARG Y

19. To apply Proposition 8.1, we note in particular that (, is supported in Q.
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Therefore, it follows that by (8.11), Propositions 8.3 and 8.4 and (4.2)—(4.4), we have

~ 3eq 3eq.
€00 O (xX(Wn — Vo))l r < max{A #7100 Ak s N7 SNSRI 7 0 g =0,1,2. (8.12)
Finally, since g < 1, when k£ = 0, 1, 2, the following commutator can be estimated above by

10721, 2 (Cax(¥n = t0)) = G0y 2 L, (X(¥n — t0)) ||

s ay 32 (8.13)
S D @)@ ((Won = o)) lle S DA, FFE0%0N D S ATEENT
£=0 £=0

Therefore, by (8.12) and (8.13), we obtain that for k = 0,1, 2,

~ L 30 3eg
1000 (Cax(¥n —o))llLe S ALETHHEONT +ATETONT S AR
where in the last estimate we used g < % O
8.3. Main preliminary reduction.

Proposition 8.7. Let a(x, &) = b(z)m(§). Suppose m(&) is homogeneous of order 0 and is odd, i.e. m(§) =
—m(=€) for all £ € R3. Then
(& — Bii)a (& — By&i)a dv¥

—1\apB _1 —1\apB D
[ 0 (B8 — 2,650, (R 050) T2 <0

and
—dvo ((o=1Be g (& — Bo&i)a 1 9 g=hos 9 (& — Bo&i)a dv® -0
Lo e a0 (S — 200,05 50, () T

Démonstration. We will only prove the first equality as the second one can be achieved in an identical
manner. . .

It is easy to check that #(ggl)aﬁgﬁaﬂ(W) and %(8 9o )aﬁgaggagu(W) are both odd
in &.

It therefore suffices to show that for every f(z,£) = b(x)m(), where m(€) is homogeneous of degree 0
and odd,

/ f(x,&)dv¥ = 0.
S*R2+1

Equivalently, since & — B3¢; # 0 on the support of dv¥ (by Proposition 6.6 and the form of the metric), it
suffices to show that for f(z, &) = b(x)m(§) as above,

i¢\2
/ flz, g)M dv¥ = 0. (8.14)
SeR2+1 €17
To proceed, given b as above, we freeze the coefficients as in Proposition 8.3 and find constants {b. , }a
adapted to the partition of unity introduced in Section 8.2 so that the conclusion of Proposition 8.3 holds.
Then, using Corollary 6.4, Y~ (3 = 1, Propositions 8.3, 8.4, (4.2) and (4.3), the LHS of (8.14) can be
expressed as follows :

LHS of (8.14) = lim (8 — BL0:) (X (¥ — Wo))bm(~ ! V(0 — B50i) (X (¥ — o)) da

Nn—+00 Jpat1
1

lim Ca (9% = B505) Ox(Whn — 0))bm(5 V) (@ — B3i) (X (¥n = ¥)) da

’ﬂ*>+00 R2+1

Z,c o im0 B0 (G — o)) (5 V)0 — B0 X — o) d

Nn—+00 Jp2t1

(8.15)
Taking Fourier transform and using that m, (., x(¢n — 1) are real, we obtain
RHS of (315) = b Jim [ (6= 356 (€0 = o) (Em(E) Gxtn — 1)) d€
. . (8.16)

=D beo lim (& — BH*(CE X6 — $0))(—E)m(€)(CE x(thn — 1)) (€) dE.

n—+00 Jpot1
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Since m is odd, a simple change of variable £ — —¢& shows that the last line in (8.16) also equals

— —

“Dbea im [ - A xn — v0) (~Om(E) (Gl v0))€) de,

This then implies that the term is identically zero as desired. O

Proposition 8.8. Let dv = 2dv¥ + %6’4% dv¥. Suppose the following holds for all a(x,&) = b(x)m(&) with
b, m smooth, real, m homogeneous of order 0 and m even :
(&t - ﬁé{l)a 1 (ft - ﬁ(z)fl)a’)) dv

—1\apB \st ™ FPose)%y —1\apB dv
/;*R2+1(<90) §p0se (=) — 5 (Ouso )" sl (C— =0 (8.17)

Then in fact (8.17) holds for all smooth real a(x,&) which are homogeneous of order 0.

Démonstration. By a standard density argument using the Stone—Weierstrass theorem we can reduce to
the case where a(z, §) takes the form a(z,§) = >4 10 Ok (2)mi(§). It therefore suffices to consider a(z,§) =
b(x)m(&). Decompose m into its odd and even parts. Proposition 8.7 shows that the odd part must give a
zero contribution to (8.17). The conclusion follows. O

From now on we assume that a(z,&) = b(z)m(£) and that b(x) is real and m(§) is real and
even. Moreover, we will take A to be a 0-th order pseudo-differential operator A = b(z)m(1V), where m(€)
is a smooth real-valued even function such that m(§) = m(€) for €| > 1.

One consequence of the evenness assumption is the following.

Proposition 8.9. Let A = b(2)m(1V), where b(x) is real, m(£) is real and even and agrees with a real,

even, homogeneous of order 0 m(&) for |€] > 1. Then for any real function ¢ € L?, we have A¢ € L? and
A*¢ € L? are both real (where A* = m(1V)b(z) denotes the L?-adjoint of A).

i
ESTN

Démonstration. It suffices to show that m(3 V)¢ is real. First, since ¢ is real, we have ¢(¢) = ngS(—f). Hence,

i

(V)G = QD) = O ) = A(-OF-E) = [7(5 V)6l(~€).

This implies that m(=V)¢ is real. O

i
9. ENERGY IDENTITIES

We continue to work under the assumptions of Theorem 4.2 and the reductions in Sections 4.1 and 8.3.
Let A be a 0-th order pseudo-differential operator given by A = b(z)m(1V), where the principal symbol
a(z,§) = b(x)m(&) (with m(&) = m(§) for || > 1) is real and supported in T*$, m(£) is homogeneous of
order 0, and m and m are both even.

In this section, we derive the main energy identities that will be used to prove the transport equation
for the microlocal defect measure. We first introduce some notations in Section 9.1. In Section 9.2 and
Section 9.3, we will then derive respectively energy identities using the equations satisfied by (g, wp) and

(dm,wn)-

9.1. Definitions of Oy, 4 and O, 4. A simple computation shows that

—270 e2v0 e 27 586270 —270

__¢& er . € i, , 9.1
U, ¢ Ny 8t(NO (e0)o9) + A 9i( N (e0)o®) + N 6" 0;(No0;¢). (9.1)
Similarly,
6727" 62'Yn 6727" 5:‘162’% 672’Y7l i
05,6 = = O G (ea)ud) + OB (e)ud) + 0 0(Ns0). (92)
Define the operator [y 4 by
e o (0o €PN o (e0)ody €T iy 050
- _ 8L iy, L. 9.3
Oya = = Sl AR + S 03 A + S saNEACEDL (09
Similarly, for every n € N, define the operator [y, 4 by
—2vn —2vn i —2vn . 0
O, a6 = -y APy L € 5 g 2 L0y € i 2 4 D00y (0.

N, N, N, N, Ny N,
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9.2. Energy identities for (¢, wp). We first derive some energy identities by directly integrating by parts.

Proposition 9.1. The following identities hold :

/ (e0)o(X%o)

R2+1 No

Ogo,a (xtho) dVoly, + / A((GO)O(XwO))DgO(XwO)dVolgo

o No
(60)0(X¢0)( 210) A( (60)0(90/}0)) (e0)o(xtho) (e0)o(x0)

ANYVJUANA YT AFUJOMNTFYT (R 270
|, Lok g, 02X00)) d + /R | ) o ge A do

241 Noai (X¢O)5ij{[‘4’ 3]}( (60)(])\(7;(1)[}0) )} dz + /]Rz+1 [81 (Xwo)](sijNO{[(eO)Oa A](aj (_Zicf(:[}()) )} dz

/
/
B / f [@(xwo)wﬂ‘(awé)No[A(aj(ﬁ%)ﬂ do + / | [81-()«/)0)}5”[(eo)oNo][A(M)} de
R 0 R2+1
/
/

(9.5)

[8¢(x¢0)]§ijN0[A(((eo)o(xwo))(ajNo) + (ajﬁg)ak(X%) ((6 Jo Vi ) (X"/J()) )] dz

21 NZ No N2

)

@O Nl o 4 [ eaalaml@N)o AR s

0

and

1
/ _4% Xwo Ogo, 4 (xwo) dVolg, + — / 6_4%14(M)Dg0 (xwo) dVolg,
2+1 4 R2+1 NO

[ e N

R X“’O) {Colxen) ) ag Lkl (O o, g a0

%

00, )0 14, 51 19 ] No oo, AN )

1

&)

4

=1 [ e w8 0w [<Mn+[@(xwo)w”[(eo)ofvo}[A(Mn}dx
1

i

1

4y

=

=

+

=

2+1 NO

[ D R T o B G U
9, (xwo) 95 (xwo) v

[ B0k ) Nol A + [feo)o o)) (05N0) 69 (A ) o

_|_

d
i NZ No NZ )] de
0

/ 1 41#06270 0)( )f])\(fij)A( (60)(])\([Z<w0))dx

2

=
+

+/ =405 No @)l (eolo(xn AL

R2+1 NO
—4vo (( ij 95 (xwo)
((€0)0%0)[9i (xwo)]6" No[A( N )] da
2+1 0

i /R €40 (9;10) [ (xwo ) |6 No A (60)})\?%) ) da.

Here, we recall the definition of Ogy 4 in (9.3).

Démonstration. We first prove (9.5). Consider each term in (9.3) and integrate by parts to obtain the
following three identities.

_/ (60)0(X1/}0)8t(6270A( (SO)O(XwO))) dx
R2+1

NO N()
[ (do0t) gy 0oty T (€0Do0c) oy g (e0dolt)
- /RM - (A= )d /RM N, O ACT)de (9)

_ 246 (€0)o (X¥0) (e0)o(Xx%0) _ (e0)o(x%0) 270 (e0)o(Xx%0)
= [ (e R g [0y gy [ LX) ) 4((DIEXE g
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7,270 ( ) (X'(/JO) "
/]1§2+1 B A( Ny ))
- [ X% g gemia AR s [ S @ sic A g
— - [ ot ool (0D [ LODI0) gy L0, g

(9.8)

(e0)o(x%0) 5 9. (N2 95 (xo) r
/R X0) gy g A 4

[(eo)o&'(Xwo)]éijNo[A(%j’O))]dx+/ (9:8%) [0 (xtb0 )15 No [ A( (Xl/)o))]

/Rz+1 R2+1 Ny
+ [ Teonbaml@nn)a a0 0;
R2+1 0
= [ ol oMl A0+ [ oianls Nofleo, 41 220 s
R2+1 0 R2+1 0

95 (x%o)
No

(e0)o(xtbo) | ((e0)o(xto))(9;No) Jr(ajﬁg)ak(xwo) _ ((e0)oNo); (X%)” du

[9: (xt0)16" (9185 ) No[ A(

)} dz

N
+
p

+

[9: (x0)18" No[A(9; +

/

/RZH No NG No NZ
v [ @bl N 2 ae 1 [ felomosia O,

= - [, im0 (o a2ty g,

[ NodnGer) (14,01 i [ oo NoflGenlo, AN o
- [ e @ Nl ar 1 [ Gl oo Nolla 2
s [ 0S| A(<<eo>o<x]z/%>><ajwo> . <ajﬁ5>£§<xwo> ) <<e0>0N]0V>2 o)
+ [ @eoam N ar s [ feaami@nn 4 a0

(9.9)

Combining (9.7)-(9.9), and recalling (9.1) and (9.3), we obtain (9.5).
Now the proof of (9.6) is similar, except that since there is an e~4¥° weight, we need to handle the extra
(four) terms arising from differentiating e ~#¥°. We omit the details. O

Using the equations derived in Proposition 7.2, we obtain the following energy identities, which give
different ways of expressing (9.5) and (9.6).

Proposition 9.2. Let

1
Fy = 2g5" (dx, dio) + o0 g0 X — 5Xe”"7gg ' (dwo, dwo).

Then

/ {eo)oloctn) Ogo,a(xt0) dVoly, + / A((eO)%XwO))Dgo(xwo)dVolgo
R2+1 R2+1 0

No
- /R ()(ﬁv#@go alxvo) = \/%A(\/Ttgomgo(x%))) dvol,, (9.10)
/ (e0)o(xtho) X¢0 A(y/—det goFV) dx+/ A(M)Fgﬁ /= det go dz.

R2+1 N R NO

+

241
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Similarly, let

Fy = 2gy  (dx, dwo) + wolgyx + 4x9p ' (dwo, deo).

—41/’0 0)o(xwo) ——>—"0y,.a(xwo) dVoly, + i / 6_4w0A(M)Dgo (xwo) dVol,
Ny R2+1

il
4 No
1 —411;0 (Xwo) 1
4 H BRVAT - . 1 11
4/R 0 (O (xw0) = === A/~ det golly, (x40))) dVoly, (9.11)
Z/ —41!10( XWO \/Ttg()FO dz + = / e_4w0A((eO)(J)VM)F5J \/md%
R2+1 o .

Démonstration. This is an obvious consequence of

Ugo (x¥o) = Fépv Uy, (xwo) = Iy’

(which holds by Proposition 7.2). O

9.3. Energy identities of (¢,,,w,). We now derive analogues of Propositions 9.1 and 9.2 with (¢g,wo)
replaced by (¢, wy). The results are given in Proposition 9.3 and 9.4 below. Since the proofs are essentially
the same as those for Propositions 9.1 and 9.2, they are omitted.

Proposition 9.3.

[, ke, aaven, + [ s, o) avl,,

N R2+1 N,
= _/R2+1 (60)7]1\/% XVn) (04 627")A((6())TZLV(3LCM)(1$+/R2+1 (60)7]1,\/(2(71%)( (ﬁz 2'yn)) ((eo)rj\gjwn))dx
o N0 DI s [ 08 e A
::Casys ::llard
— 42+1 [az(X¢n)]5U(akﬂE)Nn[A(aj(zé:f}n))] dx + /RQ-*—1 [8Z(X¢n)]6”[(GO)nNnHA(aj(Ji?fn) )] da
T =:medium; (912)
+ /RZJrl[ai(Xip")]aijN”A( ((eo)n(X;{/%))(aan))dx—&—/RzH[at.(Xq/) )}y]N A(%n(xi/}n))

~ [ o, a LR, g [ 8y 30015 N4

=:mediums =:easy

+ [ leomOuwa@n)a a2y as,

=:easyg
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i/ e~ 4o %MDgO,A(XWH) dVOlgn’ + i/ e*&boA(%M)Dgn (Xwn) dVOlgO
R2+1 n R2+1 n
=5 [ et o) g e (ol (0] g, g1 ey g (0N
1 [ e a0 4,0 3,3 I8N e, A1 S ) 0
E/RM e~ {[0s (xwn)18" (OkBy) N [A(aj (]>V<:n))] £ [0: (xwn)]59 [(€0)n Non] [A(%Z’"))]} dz
+i/Rz+l *41110 )]57,]]\/' [A( ((eo)n(X‘;;LZ))(a]Nn) + (ajﬁ];)]sz(Xwn) _ ((eo)nN;])fj(Xcun) )] dz
! —4apo Rk ij aj(Xwn) . ij (')j(an)
+3 /R e Yo {(9i1) 10k (xwn )16 Nal A9 + [(e0)n (o)) (OiNn) 87 [A(Z—)]} da
—4apg ,2Vn (e0)n(xwn) , (€0)n(xwWn)
7/I[£2+1 o ((e0)nto) 2 N, A( 0 N, ) dx
+ [ N, @) (oo AL
— [ e o) oiten 1o N A
R2+1 n

—=:extrag

+ /]R . e~ 4o (8j¢0)[8i(an)]6ianA((eo)?VM)dx.

n

=:extraq
(9.13)
Proposition 9.4. Let
_ 1 _ _
Fy = 2g; 1 (A, dyn) + ¥y, X = 5 xe™ g (dwn, duwy).
Then
/ M gn (X¢n) dVOlgn + A(M)Dgo (Xwn) dVO]gn
R2+1 N, R2+1 N,
(GO)n(Xwn)
_ (€0)n(X¥n) n) = ———— A(\/= det gu0,. (xtm))) dVol
/]R?-Fl Nn ( gn,A(XV’ ) \/m et g gn Xﬁf Ogn
(9.14)
=:maincommutator
(e() Xwn b (e())n(X"/}n) "
+ 2T A(y/—det g, FY)dx + A(——"")FY \/—det g, dz.
R2+1 N R2+1 Nn
=:trilinear; =:trilinearsy
Similarly, let
Fy =29, (dx, dwn) +wn0g, x + 4xg,, " (dwn, dy).
Then
1 —41/;0( 0)n(Xwn) 1/ — 4 (e0)n(Xxwn)
- ASOVAY St O n) dVol - CA(————)O n) dVol
4 \/]RQ"'l Nn gn,A (XW ) VO 9n + 4 ]R2+1€ ( Nn ) 9n (XOJ ) VO 9n
1 —41/0( 0)n(Xwn) 1
_ ! po LE0)n\XWn) 1y ) — ———— A(+/—det g, 00 .))) dVol
1 O, ) — e A/ et Ty, () AV,
1 n n — n
—|—7/ 6741&0& A(y/ —det g, F)dz + = / e 41&@1(% “\/—detg,dx.
4 R2+1 Nn R2+1 N’n,
—:trilinears =:trilineary

(9.15)
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Our goal now is to compute the limit of the RHS of (9.12), (9.13), (9.14) and (9.15) as n — +00
(allowing possibly passing to a subsequence). We then compare the resulting expression with the RHS of
(9.5), (9.6), (9.10) and (9.11) to derive an equation for dv. This task will be the goal of Sections 10-13
below.

10. TERMS IN PROPOSITION 9.3

We continue to work under the assumptions of Theorem 4.2 and the reductions in Sections 4.1 and
8.3. As above, let A be a 0-th order pseudo-differential operator given by A = b(z)m(+V), where the
principal symbol a(z, &) = b(x)m(§) (with m(&) = m(€) for |£] > 1) is real and supported in T*Q, m(§) is
homogeneous of order 0, and m and m are both even.

Our goal in this section is to compute the limit (as n — 400) of the terms on the RHSs of (9.12) and
(9.13) in Proposition 9.3. We will focus mainly on (9.12). The terms in (9.13) can be treated mostly in a
similar manner ; we will explain the additional details in Proposition 10.5.

The terms on the RHS of (9.12) labeled as “easy” will be treated in Section 10.1. The terms on RHS of
(9.12) labeled as “medium” will then be treated in Section 10.2. Note that the “hard” terms will not be

dealt with but need to be combined with other terms later. We then conclude the section in Section 10.3.

10.1. The easier terms.

Proposition 10.1. As n — +oo, for easy, being the terms in (9.12),

8
Z easy; — corresponding terms on the RHS of (9.5)
i=1

0 )" 1 1a dv?
,Q/S*Rﬂl((go 1) ﬁ(aﬁXv)éag’Y*gXﬂau(go 1) ygaé.’y)a#
ijg. k ' e=27 qp¥
+ [ e Ao i

where X = N%)((’?t — Bi0;).

Démonstration. Step 1 : Taking limits for the metric quantities. In all the “easy,” terms for ¢ # 3, note
that we have the appearance of the metric components 7, log N,,, 3% and the following derivatives 9;yy,
9;1log Ny, 0;3) and 0y, In other words, there are no appearances of 9,3/ and 9; log N,,.

Therefore, by the estimates in (4.2) and (4.3) and the convergence statements for 9;v,, 9;log N,,, 9;/3)
and 9y, in Propositions 8.1 and 8.2, all the easy, terms have the same limit (as n — +00) if we replace all
the (v, log Ny, 32) by (70,1og No, 58)~ For instance,

_/]R2+1 %(jw”)(ate?w)/l(%)dx + /]Rz_*—1 %(&5627’0)14(%(W)d$ 0.

Similarly for other “easy,” terms with ¢ # 3.
The ¢ = 3 term is also similar. We only need to note additionally by Lemmas 5.2.2 and 5.2.4 [A, ;] is a
bounded L? — L? operator independent of n. Hence,

e | L N YOOI (RYEA

R2+1 n

(e0)o(X¥n)

Ny )} dz — 0.

Step 2 : Using the microlocal defect measures. After the reduction in Step 1, we now use Corollary 6.4 to
take the n — 400 limits. We treat the ¢ # 3 (Step 2(a)) and ¢ = 3 cases (Step 2(b)) separately.

Step 2(a) : All terms except for easys;. Consider now the sum Z easy,. Using Step 1, Corollary 6.4, and

1<i<8
i#3
recalling that dz = \/%tgo dVoly, = % dVol,,, we see that Z easy, converges to the corresponding
1<i<8

i£3
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terms on the RHS of (9.5) plus the following :
e~ 200[—(0;e270) + 9;(Bie® )] dv¥ / SUEE, e~ 20 (0 BE) dv¥
iSj
S*R2+1

akge N2 v’
ot~ NG " ler N TeP

ij —20(9;Ng), dv¥ iy e=20(9;8%) dv¥

OYE (& — k M §ig e, %) AV 101
JF/S*RZJrl (& Bofk)( Ng )a |§|2 +/S*R2+1 &k No a |£‘2 ( )

ij _2 O( lﬁo) dV i k 6_27081'NO dl/w

0E & ——- e (g — ¢ " Oillo dv
+/S*R2+1 €j§]€ No |£|2 +/ & (& — Boér) NZ a €2

We now use the fact that N%’;‘(ft —BkE)? = 6’2705”'51@- on the support of dv¥ (by Proposition 6.6) to derive

“20(9 — BEO;)e*  dv¥ y e=29(9;Ng) dv¥
10.1) = — — B2 LA e 72/ 5e; (& — BE J
(10.1) /S*R2+1(§t Bo&k) N HE + S §i(& — Bok) N2 a’|£‘2
. e~ 270 (0 Bk ) dv?
o eSO,
oo TN, TR
(10.2)

For X = N%)(@t — Bi0;), let us also compute that
(90 ) 05X €0ty

= — (0~ B0 )66 — 856) + 10 - O (R )ele - e
k
+ e 2059, ( )fgft — e 2105 9,( O])fgfk (10.3)
= g (00— B0, )N0) 6 — B + 3 (00— B30,)8)Eu(E — BbEe)
0 0
- A%e‘“é”(&%)fj (& — 58 — Nioe—%a”(aiﬁéﬁjgk,
and
lxua —1yay
5 (90 )7 ady
- - 3 (0= A I8 + (0 B0 e
by (0= Ald)e )86 - 5 (01 - /358@(5050 DES)
]\%((af, — ﬂgﬁk)No)(ft - 5651)2 + ]\%’((8,5 — 55@)5@)(@ — 5051.)& + }io((at _ 555@672%)5“&@
1 1 1e %0 .
= (0~ BEONO)E — B + (00— BB & — BYE)E: — 5 o (01— Bt
(10.4)
Subtracting (10.4) from (10.3), it follows that
(95 (03X )6ats — 5 X 0ul05 ) 6t
= = e TTIONE 6 — ) — e TS @B + T (0~ AO)E) e

0
By inspection, we have proven that

dv?
102 =2 [ (5" O0X ot~ 5X 0l )76

|£|2

Step 2(b) : The term easys. By Lemma 5.2.2, [A, 0;] is a 0-th order pseudo-differential symbol with principal
symbol

_i{a7i§j} = —0gia.
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Therefore, using Corollary 6.4,

i 7 €0)n n
[ Noditan)aiiqia, 02Xy gy
R2+1 N’I’L
. e e 2% qu¥
o [ Nedsto)d{a, ;Lo g / [~07€i(& — AlER)Duia) o
R2+1 N() S*R2+1 NO |£|
Together with Step 1, this gives the desired limit. O

10.2. The not-so-easy terms.

Proposition 10.2. The following holds after passing to a subsequence (which we do not relabel) :

aj(j\;:fn) )] do — ‘/]RQJr1 [61()(1/1”)]5”1\[014(((eo)nNX])Qaj(Xwn))dl‘

0 (xtn) v (€0)oNo)s(x)
T TR IE

[ I8 o) N LA

= [ a5 ool A dz 0.

(10.5)

Démonstration. Using (4.2) and (4.3), it is easy to see that the two first two terms in (10.5) have the same
limit as

ij 8](X¢n) ) ij ((6 ) Nn)a](Xwn)
L bl oo Nl AR — [ (o)) Ny AL 0 g
It therefore suffices to show that
[ 0.0l ool — Nl 2220
(10.6)
_ [RPFI [5’1(X¢n)]5”N0A( ((60)0(Nn N?O))aj(xqpn) ) dz — 0.

To prove (10.6), we need to rely further on the structure of the terms. We begin with the following
algebraic manipulation.

LHS of (10.6) = [ 01(x)J57 feo)o(V, — N[ e = t0)

)] dz

=:1
- [ 0w — vl NoA(

=:1I

((e0)o(Nyn — No))9;(xtn)

Nz ) dx

+ [ B = )5V o) (N, — Nl 4

—T11
((e0)o(Nn — No))0;j(x(n — 10))
Ng

- [ s oA )da

IV
+ /RQH[@‘(Xlﬁo)]éij[(eo)o(Nn — No)JJA(

((e0)o(Nn — No))0j(x2bo)
N§

- [ astu0a A )da

=:VI
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We first consider I + II. Note that by Proposition 8.9, A*([0;(x(%n — %0))]No) is real. Therefore,

1411
= [ sl eodo (N — Nl =)y g
R2+1 0
= [ A0 — o Ll B0
R2+1 0 0

Now both A* — A and [A, N§] are pseudo-differential operator of orders —1 by Lemmas 5.2.2 and 5.2.3
(and the fact that a is real). Lemma 5.2.5 then implies that after passing to a subsequence, both (A* —
A)([0:(x(¥n — 10))]No) and [A,Ng](%’;_%))) converge strongly in the L? norm to 0. The Cauchy—
Schwartz inequality then implies that (up to passing to a subsequence) I+ IT — 0.

For the terms III and IV, we show that they separately tend to 0. To show each of these convergences, it
suffices to show that ((eg)o(Nn — No))d;(x(1n — 1b0)) converges to 0 weakly in L2, i.e. the weak limit of the
product coincide with the product of the weak limits. This can be viewed as a compensated compactness
result : the key is that even though (eg)o(N, — Np) does not have a strong limit, we can integrate by
parts to take advantage of the fact that 9;(N,, — Ny) converges locally uniformly to 0. More precisely, take
¥ € C°(R**!) (which we can do by a density argument). We then compute

/R 0((e0)o(Na ~ N0yt — ) da

= - /}Rz+1 I(Nn — No)(€0)o0j (x(¥n — 10)) dz + [—(e0)o9 + D8 B (N, — No); (x(1hn — o)) dz:

R2+1

[, 000 = No) 00,0, = Nol(ealo(x(tn =) da = [ | 9N, = Na)(@,8)0:(x(0, — o)) do

R2+1

t /RM [~ (e0)o? + D035 (N — No)3; (x(vbn — tho)) da.

By virtue of (4.2), (4.3) and Proposition 8.1, this — 0.
Finally, V and VI both — 0 by virtue of the fact that ((eg)o(N, — No)) converges weakly in L? to 0. We
thus conclude the proof of (10.6). O

Proposition 10.3.

[t leonmlia @ - [ owsrnpa i, o,
R2+1 n R2+1 n
e I AT B R e L
R2+1 0 R2+1 0
Démonstration. By Corollary 6.4,
= [ i o NollaHE e+ [ s ls N T O
R2+1 0 R2+1 0
_ e ((0)oNo)  sis o d2* e ((e)oNo) sije o V¥ _
. NZ 0L TeE Tt /S*RM Ng O g =0
The result therefore follows from Proposition 10.2. g

10.3. Putting everything together. We summarize what we have obtained in this section.
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Proposition 10.4. Suppose A = b(:c)ﬁl(%V), where the principal symbol is real and supported in T*Q), and
m(&) is homogeneous of order 0 and is even. After passing to a subsequence (which we do not relabel),

RHS of (9'12) - /]1§2+1 [ai(X"/}n)]éian{[(eO)n’ A](aj (;\?:Lpn) )} dx
— RHS of (9.5) — /R2+1 [3i(X¢o)}5ijNo{[(€o)o’A](aj%fO) )} dz

1 v
f2/S*Rw((gal)aﬁ(agxngagyf R Heve e )a |£|2

e 27 Jy¥

+ —89¢;(& — BrE) i 0] ——— )
R LR R
where X = N%)(@t — Bi0;).

We have a similar result regarding the limit of the RHS of (9.13).

Proposition 10.5. Suppose A = b(x)m(%V), where the principal symbol is real and supported in T*Q), and
m(&) is homogeneous of order 0 and is even. After passing to a subsequence (which we do not relabel),

RS of (913)= 1 [ e aiun)lo N lealns A 2D o

RS of (00) 1 [ e ()0 N lfeo)o Al (_,’5;"0) ))ds

1 UJ
=5 [ O X )0, — 5X0 0" ) T
1 4ot sije (e ak v e~ 270 dyv
3 [~ A0 e

6_41% —1\apB
+2/S R2+1 No (gO ) (aa¢0)§ﬁ(§ ﬁofk) ‘§|27

where X = Nio(at — B50;).

Démonstration. Except for the terms labeled “extra;”—“extra,”, all the other terms in (9.13) have their

obvious analogues in (9.12). We thus only focus on the terms “extra;”—“extra,”.

Using (4.2) and Corollary 6.4, it immediately follows that

4
Z extra; — corresponding terms on RHS of (9.6)
i=1
e e 27 ((e
_/ 6—4¢v0[(( 0)01;[}0) (gt ﬂgfk)Q + (( 0)01/}0)6”5151] 5 (107)
S*R2+1 NO ‘§|
- ( ditho) <ij v
+ 2/ dpo 1€ &4 .
o € [ No (f Bofk)gy] |£|2
Note that by Proposition 6.6, on the support of dv*,
1 _ I
w2 (&~ Boér)? = e 21069¢,¢;. (10.8)
0

Hence, a direct computation shows that on the support of dv*,

(0 Gato)és (6 — i)
0

—27

= 23 ((e0)oto) (& — Bi&k)* + 57 (0i0) (& — BEER)E; (10.9)

N
1 e~ - 26’2

= Ng((%)f)%)(ft Bke)? — N ((e0)ot0)d" &5 +

5”( 0ito) (& — Bgfk)fj

Therefore, using the computations leading to Proposition 10.4 and also (10.7) and (10.9), we obtain the
desired conclusion. g
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Let us again emphasize that we have not handled the terms [5,.: [0 (x¥n)]6" Np{[(€0)n, A](a (an )} dx

and % [oor1 €71Y0[0; (xwn )69 N {[(€0)n, A](%:J))} dz. They are considerably more difficult : not only do
we need to use a version of trilinear compensated compactness, but we will also need to combine this with
appropriate terms on the RHS of (9.14) and (9.15) to obtain extra cancellations.

11. THE MAIN COMMUTATOR TERMS IN PROPOSITION 9.4 AND THE ELLIPTIC-WAVE TRILINEAR
COMPENSATED COMPACTNESS

We continue to work under the assumptions of Theorem 4.2 and the reductions in Sections 4.1 and
8.3. As above, let A be a 0-th order pseudo-differential operator given by A = b(z)m(+V), where the
principal symbol a(z, &) = b(x)m(§) (with m(&) = m(€) for |£] > 1) is real and supported in T*Q, m(&) is
homogeneous of order 0, and m and m are both even.

Our goal in this section is to compute the limit of the term labeled “maincommutator” in (9.14) (and
the corresponding term in (9.15)). To handle this term, we will in particular need various forms of trili-
near compensated compactness for special combinations of functions satisfying nonlinear elliptic and wave
equations.

To proceed, let us compute using (9.2) and (9.4) that

V/—det g, (ngA(wn)— A(y/—det g,0g, (X)) ) (11.1)

Ve
e e R EE ) (1.2)
N aijai[N,%A(%n — AD,[ND, (x5 (113)
o A gy an gy (DOt (114

We will consider the contribution to the “maincommutator” term from (11.2), (11.3) and (11.4) in
Section 11.1, Section 11.2 and Section 11.3 respectively. We then put together the computations and
obtain our conclusion in Section 11.4 and Section 11.5.

11.1. The term (11.2).

Proposition 11.1.

/R2+1 (eo)n(XT/fn){a[ 29n (M)} —Aat[eh”(w)]}dx

_ (e0)o(x¥n) o270 (e0)o(x¥n) \; o270 (e0)o(x¥n) .
/R Ny e ATl = Adem ()l de = 0.

A similar statement holds after replacing 1, — wy, Yo — wo and dx — ie“w“dx.
Démonstration. We first note that

(eo)n(Xwn) {a [ 27n, ((eO)n(X'(/}n) )] _ Aat[ezfyn((eo)n(an))”

N, N, Ny,
- {colulxti) g o g LOlUXT)yy g (0ol

_ (<eo>?v<i<wn> B (60)(}\([:%)) (B, <(€°)?v(fw”)” _ Aat[ez%(%m (11.5)
N (60)3\%%){ e z%A(( )J\EX%))] —Aat[e“"(%)]} (11.6)
_ (C0)o0¥n) 1m0 4 (€00 0) 45 1oy (Cdoln) (11.7)

Ny Ny No
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Step 1 : Estimating (11.5). We bound (11.5) in L'. First, it is easy to check that by (4.2) and Holder’s
inequality that

(eo)n(XﬂJn) o (60)0(X¢n)
ok Xy

% i 81(X1/Jn 1 1
185 = Aol 12 o+ eadoOvmla g = o S e
On the other hand,

Yn (e0)n (X¥n) Yn (e0)n(X¥n)
;le? A(OT)] — Ad[e? (OT)]}
— 2n (atb)ﬁl(%V)( (60)7]1\5z(wn) )+ be””c’)tﬁz(%V)( (eO)T]L\gi(wn) ) — bm(%v)at[e%yn ( (60)7;\2(1/)71) )]
=1 =1

+ (@l

=:1I3

where we have used that T?L(%V) commutes with d; and 9;. Each of I;, Is and I3 can easily be seen to be

bounded in L? uniformly in n. For Iy, this simply follows from the assumptions (4.2) and (4.3) and the

fact that m(+V) is bounded on L2. For I, this is a consequence of the Calderén commutator theorem

(Lemma 5.2.6) and (4.2) and (4.3). Finally, for I3, this is an immediate consequence of (4.2) and (4.3).
Therefore, by the Cauchy—Schwarz inequality,

1(11.5)] 11 < An — O. (11.8)

Step 2 : Estimating (11.6) and (11.7). The term ((11.6) + (11.7)) is more subtle. First,

615[627"14( (eo)n(Xiﬁn))] _Aat[eQ—yn((eO)n(Xl/Jn) )] _ {8[ QWOA(( ) (Xwn) )] _Aat[eQ'yo((eO)O(X'(/)n) )]}

N, N, No
= e — eV ooy - e%(( ),;é:%))]) (119)
4 b2 [athV)((eO)’;V(Z‘M - (60)‘}%%))] b+ V) )’;V(jw”) - (60)3@2‘%) ) (11.10)
(e — o)) V) (LX) g, o ke L0lsbtnly gy
Fon (e — ) (Dny | Ly llnliin) by, g )

By the Calderén commutation theorem (Lemma 5.2.6), the fact that m (V) is bounded on L? (Lemma 5.2.4),
and the estimates in (4.2), (4.3) and Proposition 8.1 and 8.2,

1(11.9) + (11.10)|| .2
(11.13)

(€0)n(X¥n) (eo)n(x¥n) _ (€0)o <an)
| N, N,

Using again the fact that m(+V) is bounded on L?, and the estimates in (4.2), (4.3) and Proposition 8.1
and 8.2, the remaining terms can be bounded directly as follows :

1(11.11) + (11.12)]| .2

1
SIx(e™ =€)l 22 + [1Xe*™ o< | [FER~PEE

- €0)n (X¥n N eo)n(xtn) (e B L (11.14)
G e [ R P I KL L L e
Nn Nn NO
Using (11.13), (11.14) and also (4.2) and (4.3), and the Cauchy—Schwarz inequality, we thus obtain
< (eadoltn) o
1(11.6) + (11.7)||zr S ||——— No [lz2([[(11.9) + (11.10)|| L2 + [|(11.11) 4+ (11.12) ]| 2) S A3 (11.15)

Combining (11.8) and (11.15) yields the conclusion. O
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11.2. The term (11.3). We first argue as in Section 11.1 to control most of the terms. We will identify,
however, in Proposition 11.2 that there is one difficult term that cannot be handled just with techniques in
Section 11.2. In the rest of this subsection, we will then handle the difficult term that is identified in this
proposition.

Proposition 11.2.

/ %W{&W&M@W n))] — ABNLB; (xhn)]} d
(€0)o(X¥n) sij g 12 4( % (X¥n)
_/]R2+1 705 {BNg A= Ny

(x
N,
(€0)o0x¥n) sijy ron2 _ N2y Loy FOn) 1 s O3 ()
_/RQH OOT(S b{(N;; — No)m(gVKTO) - m({V)[(Nn — NO)TO]}dx 0.

=:1

)] = ABi[Nod; (x¥n)]} dz

Démonstration. The idea is to argue as in the proof of Proposition 11.1 until we face a term that does not
obviously — 0.
In analogy with (11.5)—(11.7), we have

()nOX¥n) 5ij g 12 (2. (Xz/’”))] A0, [N, 0; (xtn)]}

Ny
R I (j;ff") )|~ ABL[Nod; (xtbn)]}
G )r]zéicwn) _ (30)(}\([2<wn))5ij{ai[N2A(aj(;\§:’f”))] — AB[NW; ()]} (11.16)
(OB i (2 A 2] - 40, 0,000, (11.17)
~@N3 AL - 00, (v ) (11.18)

First, note that (11.16) can be handled completely analogously as in Step 1 in the proof of Proposition 11.1
using that || (60)7}'\;’@”) — (60)3\(,(’)“[’") lzz — 0 and that ||81[N3A(W)] — A0;[N,0j(xn)]|| L2 is uniformly
bounded. ! !

To control (11.17) + (11.18), we first compute as in Step 2 in the proof of Proposition 11.1.

(0.2 AN — 40,1, (o — (0B AN ] — 0,800, )
(Xwn) N aj (Xwn) 1 aj (X¢n) N aj(an)

= o () ) )y g ) D1 (1119
+<aib>N5m<§v><aj§§f")—@(ﬁ"))ﬂab)( - Ny o) X (1120
002 = N9 X)) o Coio, (7 — gy L (11.21)
e T e e I
rovt = w0y e vy B0, (1123

Using the Calderén commutator theorem (Lemma 5.2.6), L? boundedness of m(1V) (Lemma 5.2.4),
Hélder’s inequality, and the estimates in (4.2), (4.3) and Proposition 8.1, we obtain (in a similar manner as
(11.13) and (11.14))

IAL.19)[|z> + [(11.20)] 2 + [|(11.21) ][> + [[(11.22) | .

aj (X¢7L) B (Xwn)

Lo (an)
N,

SIXNZ < | + XN = N)llzee 25— N 22

+0:(R(N2 — N2) | (XM . < )\

~
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Therefore, the contribution of (11.19)-(11.22) to (11.17) 4 (11.18) — 0 in analogy with (11.15).
However, in contrast to Proposition 11.1, it is not clear whether the term (11.23) converges to 0 in L2.
This therefore gives rise to the additional term I in the statement of the proposition. (|

The remaining task of this subsection is therefore to show that I in Proposition 11.2 — 0 as n — +oo. (This
requires a use of the full trilinear structure.) We first perform a series of reductions; see Propositions 11.3
and 11.4 below.

Our first reduction is to show that I in Proposition 11.2 has the same limit after the replacement 1, —

wn - %-
Proposition 11.3.

— g 2. n —
_ /]R2+1 (60)0()((;5(? %))5”1){(]\;3 _ Ng)m(iv)(W)
2 —
ol - wp = g,
Démonstration. It clearly suffices to prove the following three convergences as n — 400 :
(e0)o(xtho) cij 1 (“)izj(xwo) 1 92 (xto)
2 2
[, bl iy vz wpychoy ) ey - wp PN s o, g
R2+1 0 i 0 i )
and
2 2
/ (€0 0) iy vz gy 2wy 22X Lyive — v 20y 40 o (120
R2+1 0 i 0 i A

We will in fact not need to take advantage of the commutator [(N2 — N&),m(+V)] in the expressions
above. We will simply control the first term in each of (11.24)—(11.26) ; the second term in each line can be
handled in exactly the same way.

Step 1 : Proof of (11.24) and (11.25). The terms (11.24) and (11.25) are easier because g is smooth and
we can directly bound its second derivatives. More precisely, using Holder’s inequality, the boundedness of
m(3V) on L?, and the estimate (4.2), we obtain

[First term in (11.24)] < [|(e0)o (xvo)ll 22 XN = Ng) £ (16707 (xo)llze S 1-An-1 S An = 0.
Similarly, but using in addition (4.3), we obtain
[First term in (11.25)] < [[(eo)o(xtn) 122 IRIVZ = Nz 6782 (ctbo)ll e S 1+ An -1 S Au — 0.
Step 2 : Proof of (11.26). The key is an integration by parts to throw the derivatives on the smooth .

More precisely, after integrating by parts, applying Holder’s inequality and the boundedness of ﬁz(%V) in
L?, and using the estimates in (4.2), (4.3) and Proposition 8.1, we obtain

IFirst term in (11.26)] < / £, L20)00%0) ij 2 oy Loy G0X)
R2+1 2

N() NO
(e0)o(X%0) <ij 2 oy~ Loy 95 (xn)
+ /Rz+1 N, 0 9;(N; — No)m(2V)7] Ny dx‘
(€0)o(X%0) i, xr2 oy~ 1 (0;No)0;(xn)
+ /R2+1 N, 07 (N7 — No)m(gV)—N;2 dx’

< 119i(e0)o(xtbo) 2 lIN7 = Ngll o< [10; (xtbn) |l 2
+l(e0)oOxvoo) 2 (10: (N7 = N§)llzoe + [N — Ng||zo< ) 1105 (x¥bo)| 2

<hn+ A2 SAZ 0.
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Our next reduction is to freeze the coefficients (cf. Section 8.2). We show that the difficult term is
essentially the same as a “frozen coefficient” version up to error terms which are o(1).

Proposition 11.4. Let b. o, Nea, ,BC « be as in Proposition 8.3. Denote moreover (€p)ec,q = Op — ﬂéa&-.
Then

— ) ) 1 0 (b — | 82, (x(tbn —
/ (eO)O(X(w’ﬂ wo))éz]b{(Ns ~ ij (X(?/} 1/’0)) ( (1/’ 1/10))

—N3>m<;V>< ) — (VNG - NS

1} da

R2+1 NO

=Y [ (eo)eaalGaxn — )G N — NV V)@, (Carx (W = 0))

2
o Nc,a R2+1

— V)N = N3O (Gorxlibm — )]} d > .

Démonstration. We write 1 =Y (3. Then for every a, we apply the estimates in Proposition 8.3 and 8.4
together with Holder’s inequality and the L? boundedness of ﬁL(%V) to obtain the desired result. d

After the series of reductions above, we now finally estimate the term with frozen coefficients. As we
have indicated earlier, the frozen coefficients allow us to employ Fourier techniques and exploit crucial
cancellations.

Proposition 11.5. Let bco, Ne o, Bca and (€0)c,a be as in Proposition 11.4. Then

t [ (en)enlCoxtihn = 0)FHGVE ~ N VIO Coxtihn = )

- m(%V)[cauvﬁ — N3O (Cax (s — )]} dz > 0,

Démonstration. We will bound each term in the sum. Since there are O(\;;3°°) terms in the sum (cf. be-
ginning of Section 8.2), it suffices to show that each term is o(A30). This is what we will show.
From now on fix a.

Step 1 : Frequency space decomposition. Decompose (, (N2 — NZ) into three pieces in frequency space. For
this purpose, define a smooth cutoff function © : [0, +oo) % R such that
©>0, O(x)=1forxze|0,1], ©O(x)=0forz>2. (11.27)

Define now the decomposition of (, (N2 — N¢) as follows

Ca(N2 — N2) = (Naigt)n1 + (Nait)n.2 + (Naift )n.3,

where
(Nai)n1(6) i= OO IE]) (GNZ(©) ~ GaNF(©)) (11.28)
(Nana(€) = (1 = OGIEN) 1 - ) (GNF(E) - L), (11.29)
(Nahnsl€) = (1~ 00 leh)o (15 (€ N2 - &vzle)). (11.30)

|§|

Step 2 : Handling (Naig)n,1- We first deal with the terms involving (Naift )n,1
By Bernstein’s inequality and Proposition 8.5,

I(Naist)nt lwroe S An o [[Ca(NZ = NZ) ||z S Ad- (11.31)

By Lemma 5.2.4, m(+V) is a bounded operator in L?. Therefore, by the Cauchy-Schwartz inequality,
the Calderén commutator theorem (Lemma 5.2.6), (11.31) and Proposition 8.4, we have

R [ (0D G )0 (N7 95 (Gt — )

—W%V)[(Ndiﬁ>n7lafj<<ax<¢n ~ o)) de

3eq

(Cax(Wn —Yo)llz2 S Aa? AR - A = A8 T = o(N3%0),

S N0(Cax (Wn = vo)) |2 | (Naiet ),

as desired.
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Step 3 : Handling (Naift )n,2. For this, we make use of the large spatial frequency to obtain a good L? bound.
_25
ore precisely, since on the support o — 5 i n 2%, by the Planchere
M isely, si h f (1 A“f Ilgl £2>§ 2 Ap 2, by the Plancherel
theorem and Proposition 8.5,
|(Nait)nallze S 1A AWNamnallz S MIACNZ = N2 S AP (11.32)

By Lemma 5.2.4, m(;V) is a bounded operator in L*. Therefore, using Holder’s inequality and the
estimates in (11.32) and in Proposition 8.4, we obtain

bc « iJ m
N / (00— 8000 Cax (1 — 90D (N ) 275 902 (Cax(t — o) d

e [ 0= B0 G — 005 V) (Nt 202 G — )}
c,a JR2+1 ?

S0 = B2 01) (Cax(Wn — Y0) 24167 0F; (Cax (@b — o))l o | (Naigt) .2l 2

3eq _]__»'_3570 §+3€70 L 43¢
SAn4 “An T \BTTET o )\H o __ O()\ieo),

+

(11.33)

as desired.

Step 4 : Handling (Nait)n,3- To handle (Ngif)n,3, we need to compute in Fourier space. Here, we take full
advantage of having frozen the coefficients. In order to simplify the formulae, we will denote (Yaift)n =

CaX(wn - 7/)0)

N [ 0= B0 (ain) o8 (Nas ) V)0 b)) = 7 )Nt 95 b )]}
= [ = 8w i) ) N6 = 1) G (1) ) — (€)) dy d
= ] € hamns s G € N — W) ()l (1) — () .

(11.34)
Exchanging ¢ and 7,(11.34) can be given equivalently as

(11.34) = “ee / / B )56 (Wt (1) (Nt 3 (€ — 1) (ot (—E) [F(E) — ()]l .
(11.35)

Changing variables £ — —¢ and 1 — —n, and using the evenness of m,

(11.35) = oo // B )5 () () (NI (7 — ) (Bt ) () Fi(1y) — ()] iy de.
(11.36)

Therefore, averaging between (11.34) and (11.36), we obtain

fw [ (0= 000 W) 57 (N 9 )O3 (i) = (0 (N0 ()]

W / (& = Bl mil® + (e — B amw)IEl*)
X (et (€) (Nater (7 — €) (haser ) n (—) [7a(17) — 7(€)] A

(11.37)

5
Step 4(a) : Some manipulation of the Fourier multiplier. Note that on the support of (1 — O(A| —

MO, we easily have & = m| 2 1€ = nl = |&; = ;] Z ¢ = nl. It follows that

(6 =) = BLal& —m)I(1 — ORI — O 2‘777') 2 A0, (11.38)
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In particular, (&—n)—p7 ., (£;—n;) is bounded away from 0. Therefore, we can divide by (&—n¢)— B2, (&5—n;)
and a direct computation shows that

(Ut - 5?,:,01773') + (gt - ﬂg,afj)
_ (nt - g,anj)2 - 67276’aN02,o¢|ni|2 . (ft - 6&&&7)2 - 6727630N37a|£1‘|2 67276&ch,0¢(|772'|2 - |£1|2)
(e — Be.amy) — (& — BL.ad;) (e — B2.anj) — (& — BL.ak;) (e = Blany) — (& — Blagy)

(11.39)
Using (11.39), we can therefore write the Fourier multiplier in (11.37) as follows :
(6 = )+ 16— a) (1~ 00— a0
= (006 = 1) (= B20m5) + I (= BLamy) + (& — as))) (1 = OIE ~ n)OE)
= 56— ) )~ BLmi) (1~ OIE ) (1140
e e e s LGSt (1141
o SRR e TP BE 1 el aipeE =) (11.12)
e =1

Step 4(b) : Estimating each term. Define now the term I, II, III and IV respectively by inserting (11.40),
(11.41), (11.42) and (11.43) into (*) below

i [ ) @ @ CNE ~ CNB ) — )G mln) — (€] . (11.44)
For the term I, by first applying Fourier inversion and then Hélder’s inequality, we obtain
115 (6o = o)l 9104004 = 203} Gox( — o))
oW — o)) ||m<%vxat PG o)l
I D)0 Gax W — o))l @ — B0) Cax(¥n — o)l (11.45)

IRV Cox(w — Vo) 241001 = 5L,05) G~ o) s

Vil

S N = N

< (1= ©(AE| V)6

With the estimates in (4.2), (4.3) and Proposition 8.5, Plancherel’s theorem and Holder’s inequality, we
obtain

101~ OOV NE - N3l

1185 (Ca(Nn = No)) |22 | No + Nollzoe + [|Ca (Ve — No) 22 [10: (N + No)|| < (11.46)

3eq

</\2+2 +/\1+2 </\2+2.

Plugging (11.46) into (11.45) and using using the estimates in Proposition 8.4 together with Lemma 5.2.4,
we obtain
3sq  3eq 1, 3%
2 2

3e 3e
< On T ot A AT = AT — (a3, (11.47)



46 CECILE HUNEAU AND JONATHAN LUK

To handle the term II, we likewise apply the inverse Fourier transform and then use Holder’s inequality
to obtain

|Hs(||m< )02 (Gt — )41 Gt — i) 1

HIOB G — YD 719G — b)) (11.48)

[V {

2 2
oD T GV = Nl

By Plancherel’s theorem, (11.38), Holder’s inequality, (4.3) and Proposition 8.5, we obtain

10— 0w (V2 N

[V|Z V= BIV; (11.49)
SALNICa (N2 = ND)ll22 S A NCa(Nn — No)ll2 | Vo + Noll S A

< [[(1 = A&V ])6

Plugging (11.49) into (11.48) and using the estimates in Propositions 8.4 and 8.6 together with Lemma 5.2.4,
we obtain

3eq 11 + 3eq

|H| f, /\;3+60+35 )\1+ .>\n6 2 )\;é+4eo _ O(}\ieo)’ (11_50)

since g9 > & (cf. Section 8.2).
IIT can be controlled in an entirely analogous manner as II; we omit the details :

ITI| < Ay 8450 = o(A3%0). (11.51)

Finally, we handle the term IV. As before, we apply the inverse Fourier transform and then use Holder’s
inequality. We then obtain

ms(nm V)02 (Cor(n — o)) |2 o (Wb — )]

)92 (o vﬁo))umak(cax<¢n—wo>>||L4) (11.52)

Vi
o g, G - N

By Plancherel’s theorem, (11.38), Holder’s inequality, (4.3) and Proposition 8.5, we obtain

< [[(1— A&V )6l

3 Vil
101~ O VDO 5 (Gl = )
<10 - OO RS NelECoE - )l (11.53)

(5-1)(=9) 2 2 3 A
S An [1Ca (N = No) 2 S An° [[Ca(Nn — No)ll L2 ([ Na + Noll e S An :

Plugging (11.53) into (11.52) and using the estimates in Propositions 8.4 together with Lemma 5.2.4, we
obtain

V] < A 2HE AL\ 2 e (300, (11.54)
By (11.47), (11.50), (11.51) and (11.54), we have thus shown that each of the terms obey the desired
estimate. This concludes the proof. O

Let us summarize what we have achieved in this subsection. At this point, let us also note that while
the computations in this subsection concerns the commutator term involving v, they apply in an identical
manner to the commutator term involving w,.

Proposition 11.6.
[ edae) g vz a By — 40,0, (o
R2+1 N, N,

n n

_ / M(gij{ai [NgA(M)} — A0;i[No0; (xn)]} dz — 0.
R2+1 NO NO
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A similar statement holds after replacing v, v« wy, Yo — wo and dz — ie*‘“"“dx.

11.3. The term (11.4). We now look at the term (11.4). Unlike the terms (11.2) and (11.3) (cf. Sections 11.1
and 11.2), we will not be able to just compute the limit of (11.4). Instead we will need to combine this term
with the “hard” term in (9.12).

For this reason, we first consider some reduction of (11.4) and the “hard” term in (9.12) in Section 11.3.1
and Section 11.3.2 respectively. We then consider the limit of the combination in Section 11.3.3.

11.3.1. Reduction for the term (11.4). We first argue as in Proposition 11.2 and identify the main term in
the limit. The proof is essentially the same as Proposition 11.2 and is omitted.

Proposition 11.7.
/RQJrl M{ak[e}‘/nﬁsA(M)] _ Aak[ez%ﬂﬁ(w)]}dx

N, N, N
_ / M{ak[e?‘/oﬁgA( (60)0(Xwn))] o Aak[e}yoﬁk((eo)o( ))]}dx
R2+1 Ny No
_ /IRerl %b{(e%nﬁs - eQ%ﬁé)ﬁl(%V)(%W)
V(e k- gy () g,
1 No

Proposition 11.8.

[ Clboctnd et gy Lodolntn)

~ GOl g - o7l Aokl g,

_ (e0)o(xtn) 020 (gk _ gky (L Ik (e0)o(X¥n)
[, Xl st — sm v % )

Ok(e0)o(xn)

NN e 0.

1
~ AV (85— o)
Démonstration. In view of

62%55 _ 6270566 — 270 (ﬂrli _ 55) + BZ(@QV" _ 62%),

it suffices to show that

/ (€O)O(X’lpn) b{ﬂk(ez’\/" o 6270)m(lv)(ak(60)0(an) )
R2+1

: - m(iV)[ﬂ,’i(e;n - eroi(VW o (11.55)
We compute
e — () POy g g (e — ety LX)y
= B (e* — eQVO)ﬁ%(%V)ak(%)) - m(%V)ak [BE (2 — 6270)%2@#71)} s
+ (e = (Lo OO, o Lo eqprson 2=

(11.56) can be controlled using Calderén’s commutator theorem (Lemma 5.2.6) with T = m(+ V)0, and
using the estimates in (4.2), (4.3), Propositions 8.1 and 8.2, we obtain

JAL56) e < [IRBE(2 — &7 [ (20 0x¥n) ”X“’")n <AL

On the other hand, (11.57) can be bounded using estimates in (4.2), (4.3) and Proposition 8.1 as follows :
60)0(X¢n))(8kN0)” R
Ng L
/87"{(62"/71 — 6270)
Ny

NAL5T) e < R85 — 0 e |

STV

1
+ [[(e0)o(X¥n) || L2 [ XOk e S A+ A2 S i
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It therefore follows that as n — +oo,

8 & n ~ 1 € n
I8k — )ity 2]y g gy gt ernn oy ALy L
(3 NO (3 N()
Hence, our goal (11.55) follows from the Cauchy—Schwarz inequality and the estimates in (4.3). O

We now take the main term in Proposition 11.8 (i.e. the term on the last two lines) and show that the
limit remains the same after (1) replacing v, — ¥, — ¥y and (2) freezing the coefficients. The proof is
entirely analogous to Propositions 11.3 and 11.4 and is omitted.

Proposition 11.9. Let b; o, Nco, Ye,o and B be as in Proposition 8.3. Then

(e0)o(x¥n) ¢210(3 5k(€0) (xtn)
[, Xy gl — gy v (AL,

(e0)o(x¥n)

—ﬁ%(%v)[e%(ﬂli—ﬁ(’f)(&k L))} s

D3 ewA2+1<8t—55,aae><<ax<wn—wo»{(ﬁk ) 9Ok~ BLa0) Cox(tn — )

- m( V(B = B5)(01(0: — BEaOm) (Cax(¥n — %0))]} dz — 0.
11.3.2. Reduction for the ‘hard” term in (9.12). Note that

eop A OLn)) g 4 Pn)) | gt P00y gy Ztn)

Hence, the “hard” term in (9.12) has a similar form as the previous commutator terms, can also be treated
in a similar manner.

First, we identify one main term for which the limit is difficult to compute. This is similar to Proposi-
tion 11.7; we omit the details.

Proposition 11.10.

B /R2+1 [81 (X"/)n)wian{[(e(J)"’ A](

aj (X¢n)
N )} dx

n

)} dzx + /Rz+1 [8i(X'(/)n)]6ijN0{[(eo)O7 A](aj (-Z)\CTZ)#”)

[ N sm o) oy - P ar o
R2+1 1 0 1 0

Next, we show that the limit remains unchanged after replacing ¥, — 1,, —%¢ and freezing the coefficients.
This is similar to Proposition 11.9.

Proposition 11.11. Let b o be as in Proposition 8.5. Then

) 82, (xtn
/ (03 (x¥n)]0% Nob{ (8% — ﬂé“)ﬁl@W%
o1 7 0

=S b [ 10 Cax b~ DI — BTV )@ Gl — b))

R2+1

0? n
)= (L)l(8h - gy )y,
i 0

[}

- m( )[(6k ﬂg)afk(CaX(wn - ¢0))}}dx — 0.

11.3.3. Computation of the limit. We now comblne the terms in Propositions 11.9 and 11.11 and compute
the limit.

Proposition 11.12. Let b, o, Neo; Ye,o and ﬁ be as in Proposition 8.3. Then

be ae2’vc,a

e /Rzﬂ(at — BL 0 00) (Cax (¥ — 10)){(BE — Bg)m ( V) (01(9r — B0 (CaX (¥n — %0)))

— AV ~ B Ok — Bad) Cax(hn — )]} d
+ St / OuGar (W — V)8 — BV V) OB Cax(wrn — ¥0)))

- m< V(BE — 8502 (Cax (W — 0))]} da — 0.
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Démonstration. Step 1 : Fourier decomposition. Let © be as in (11.27). Define now the decomposition of
B — Bi as follows (compare (11.28)—(11.30)) :

X(By, = B6) = (Baist )1 + (Baist )y 2 + (Baier )5, 3,

where

—

(Bast )5 (€) = OO €D (i (€) — XA ©)) |

(Baal) = (1~ ORI - L5 (Th(6) - (o).
T s 1 - o0k emodsly (55 e - T3
(B (€)= (1 = OO AT (RHO) ~ KAL)

We need to estimate the contributions from (Baig), 1, (Baift)s 2 and (Baie)h, 3- The contributions from
the terms (Baig)}, ; and (Baie )}, o can be handled as in Steps 2 and 3 in the proof of Proposition 11.5, where
analogous terms were estimated. We note in particular that in Steps 2 and 3 in the proof of Proposition 11.5,
the argument relies only on the frequency support of the corresponding terms and we did not use the precise
structure of the nonlinear. We therefore omit the details about bounding these terms.

On the other hand, the contribution from (ﬁdiﬁ)ihg requires a more careful treatment. (This is analogous
to the term in Step 4 in the proof of Proposition 11.5, where we fully exploit the precise structure of the
term.) We will thus focus on this term in the remainder of the proof.

Step 2 : Estimating the main term. Denote (Vi )n, = Co(¥n — o). We compute

29e.0
Beae 702 /R @0 500 i) (B’ 1 V) (O — G200 i)
be o2 Ve . 1
- ﬁ /R2H(5t - 5g,aaj)(¢difr)nm(gv)[(ﬁdiﬁ)fﬁ,g((&s — B O0m ) Ok (Yaist )n) )] d
_je2Ve,a bc o . —_— — I — ~ ~
= % /R2+1(£t — B2 0&) (e = Bl )i (Vaist ) (€) (Baier )% 5(€ — 1) (Waisr ) () [M(n) — m(€)] dn dE
_502%c,a bc o X — — — _ _
= MT /Rw(ét — B2 0&5) (e = B )i (Vaisr ) n (€) (Baier )k 5(n — &) (Waisr)n (—1) [M(n) — m(€)] dndE.
’ (11.58)
Similarly,
i koL 2 - 1 k(92
be,a /R2 0i (Vi )n0 J{(ﬁdiﬂ)n,s[m(gv)(ajk(%iff)n)] - m(gv)[(5diﬁ)n73(8jk(wdiff)n))]} dz
v I - (11.59)
= —ibc,a /]R2+1 87 €imymi (Yaite)n () (Baire)E 5(n — &) (Waise)n (=) [(n) — m(€)] dn dE.
We now analyze the Fourier multiplier corresponding to (11.58) + (11.59). First, we compute
e2Ve,a ) .
ﬁ(ﬁt — BLa85) (e — Bamm ) + 6 &y
2 c,x . . ..
6]\:2 (& — BLa&) (& — BLa&) + (e — Beamm))ne + 69 &i(n; — &)k (11.60)
7 e2Ve.a , y
+ (& — BL &) + 67 & ]

-5
Nc,a
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From (11.60) and (11.39) it follows that

2ca ) . 5

(St = 8Lt = A+ 87myme ) (1= € le e E=)
e : (e = BLany)® — e 272 N2, |ni|? 5 & — mil

=+ % e B .0 1-0\ ¢ —n))e . 11.61
Nz, e ) — (6 — Blagy) OO ) (8D
6276"1 j (gt_ gagj)z_ei?yc’aNc?aKiP 2 |§7,_771‘

—C e -8 o 2 1—0(\s[€ —n))e d 11.62
Nz, e e ) — 6 — Blagy) OO (6
e?ree ; e 20 N2 0% (i — &) (ne + &) 5 € — il

+ (& — B & 2 : 1-0(\ - 11.63
N Alame et I el -ne( S

#8960y~ (1~ OO - hyo ) (11.64)
762%’“ pi e N2 L side g _ e €& — il

6 - AL+ 876 (1 - OO - )OI (11.65)

Define now the term I, II, III, IV and V respectively by inserting (11.61), (11.62), (11.63), (11.64) and
(11.65) into (*) below

—ibea / / (%) (et )n (€) (CaBE — CaBE) (0 — €) (Wair)n (=) (1) — (€)] i dE. (11.66)

We note that the term I and IT here can be handled in a similar way as the terms II and IIT in Step 4(b)
of the proof of Proposition 11.5. Also, the term III here can be handled in a similar way as the terms IV in
Step 4(b) of the proof of Proposition 11.5. In particular, we have

1| + |TT| 4 [ITI] = o(A>%). (11.67)

Inverting the Fourier transform, using Hélder’s inequality, Lemma 5.2.4, and applying the estimates in
Propositions 8.4 and 8.5, we obtain

|1V|5(||ai<<axw — vl (5 V)2 Garx (e w0>>||L4)

IV |
VI3
3eq

3eq 1 3eq 1
= == s+=2 5+3e
SAT At AT = AT = o(AF),

% [1(1 = O [V1)O( )i (Ca (B — Bo))llz2 (11.68)

Lemma 5.2.4 Inverting the Fourier transform, using Holder’s inequality, Lemma 5.2.4, and applying the
estimates in Propositions 8.4, 8.5 and 8.6, we obtain

VIS (103G — o) L3 9) (G — o)

B Gox(w — Do) s 190G — )l )

(11.69)
5 V’L
<01 = OO T )5~ 50l
SAnt AT AT = M0 = p(A30),

Noticing that the sum ) has O(A,,%%) terms (cf. beginning of Section 8.2), it follows from (11.58),
(11.59), (11.61), (11.62), (11.63), (11.64), (11.65), (11.66), (11.67), (11.68) and (11.69) that

1

bc ae2'vc o _
Z NI /Rz+1( i — Bg,aaé)(deiﬂf)n(5diﬂ)ﬁ,3[m(;v)((3t — BeaOm) Ok (Yair)n)] d

# St [, 0o (Bl O )] = 0 9B G e 0.

Combining this with the discussions in Step 1, we have thus concluded the proof. g
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We summarize below what we have obtained in this subsection. As in Proposition 11.6, we note that the
computation for the commutator applies equally well to the term involving w,,.

Proposition 11.13.

(€0)n(X¥n) 2y, i (€0)n(X¥n) 1.29n 3 (e0)n(X¥n)
[, X e g 4 ) ag e, (R 4

= [ 6 N, AN 0
R2+1

n

(€0)o(X¥n) ¢ 1 290 gi 4 (€0J0(X¥n) 20 i (€0)0(xn)
_/RMT{&'[e BOA(T)]—A(%[G BO(T)]}dx

+ /RM[8z-(an)]5iﬂ'zvo{[(eo)o, A](%ﬁ’n))} do — 0.

A similar statement holds after replacing V¥, v« wy, Yo — wo and dz — ie*‘wodx.

11.4. Taking limits using the microlocal defect measures. Let us summarize what we have obtained
so far. The following is an immediate consequence of Propositions 11.1, 11.6 and 11.13 :

Proposition 11.14.

[, X e, ) -

det g, n))) dVol
N, T A I ) Ve,

-/ [@(m)}al‘wn{[(eo)mA}(%)}da:
R2+1

B AQ+IW<DQO,A<WH> m A(V/=det 9o, (xthn))) dVol,,

+/Rw[8i(an)]5ifzvo{[(eo)o,A}(J%%))}dxﬁo_

A similar statement holds after replacing ¥ — w and dx +— %efWde.

In other words, we have reduced the computation of the limit of the first two lines to that of the limit of
the last two lines. To proceed, we use Corollary 6.4 to compute the limit of the last two lines on the LHS
as n — +oo. This will be achieved in the next two propositions.

Proposition 11.15.

[ o Nolteo)o, A1 2y g
R2+1 0

- RM[f"*woﬂé”fvo{[(eo)o,A](aj(ﬁf ”

)}de

ij k ij k e dv¥
b I8 O~ GO + 5 0,58)6006,0) T
S*R2+1 No |§|

A similar statement holds after changing v — w and dv?¥ — e %o dp®,
Démonstration. By Lemma 5.2.2, [(eg)o, A] is a 0-th order pseudo-differential symbol with principal symbol

—i{i(& — BEEr), a} = Opra — ByOura + (0,85) &0, a.

The conclusion therefore follows from Corollary 6.4. g

Proposition 11.16.

(e0)o(x¥n)
L e @ an) -

- %M@w(wo)
R2+1 0

A(\/—det goOg, (x¥n))) dVolg,

V= det g0
\/Ttg \/ det gODgo X1/)0 dVOlgo
dv?

+[3 get1 No (gt ﬁOSk)[( by gu( Ozva) _au(gal)aﬂgafﬁ(agua)]w

o= 27
0( MﬂO) i
I e

No \€|2
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A similar statement holds after changing 1 — w and dv¥ — e~ dvw.

Démonstration. Step 1 : Computing the limit using Corollary 6.4. We compare each of the terms in L, 4
and Oy, (cf. definitions in Section 9.1).
By Lemma 5.2.2, [-0;e?7°, A] is a 0-th order pseudo-differential symbol with principal symbol

—i{—i&e*° a} = —e*°0,a + & (Opn 6270)(8&@).

It follows from Corollary 6.4 that

/]R2+1 (e())(’(an){_at[e%oA((eO)O(Xw”))] +A8t[e27°((eo)0(X¢n))] da

Ny Ny Ny
I B e LY
1 e 20 duv?
+ /S*]R2+1 [_Fg(ft - ﬁg&k)2(azta) + Nig&({t - ﬂ(l)cfk)Q(ax“e?m)(af“a)] ‘€|2 :

=:1 =:11I
By Lemma 5.2.2, [9; Ny, 4] is a 0-th order pseudo-differential symbol with principal symbol
—i{i&; NG, a} = NgOpia — &(0u NG ) (g, a).

It follows from Corollary 6.4 that

/ (BO)O(Xz/}n)5ij{ai[NgA(aj(Xwn) )] = A0i[No0; (x¥n)] dw
R2+1

No No
o [ L0000 s g a P g 1 ()] e
R2+1 0 0
—270 20 dv”
76— B (0n) ~ 676 — BEGE, (00 NE) 0,0
=111 =1V

Finally, by Lemma 5.2.2, [9;e27 8}, A] is a 0-th order pseudo-differential symbol with principal symbol

—i{i&ie*™ By, a} = €270 55 (0y1a) —&i(Dun (€77° 7)) (O, @) = €270 530 @) —Ei((Dn €7°) By +€*7 (0 5 ) ) (O, ).
Therefore, by Corollary 6.4,

[ (eololen) g g gy CNOLalyy g i eorstuan
R2+1 N() NO
N (eo)o(X%) {@[e“’ﬁé/l( (60>0(Xw0) )] _ Aai[e}yoﬂ(i)(eo)o(xwo)] dz
R2+1 N() NO
i —270 . . dv?
[ s = A (0us) ~ T (6 — BSEPG(Bune)B) + 7 (0050) 0, 0)) T
=:V =:VI
Step 2 : Computing (g )" €, (0pva).
(90 )" €u(Dva) = — %(& — B5&k) (Oura — Bi0pia) + €276 ¢,0,5a. (11.70)
0
Therefore,
(6~ G 05 ) €0, 0)
0
—27 ..
- %(é} — B6&k)*(Opra — BiByia) + eN7 (& — Bo&r)07&i(Opsa) = T+ 11+ V.
0 0



TRILINEAR COMPENSATED COMPACTNESS AND BURNETT’S CONJECTURE 53

Step 8 : Computing 8#(9(,_1)%5@55(8@(1).
(95 1) €ats (e, a)

- (@g@)a& 20,2

)gt& +8 ( 727051'3' BOBO

)525]) (aé,l,a)
(11.71)

:(a NG (6, e +2 (“50)(& ﬁéék)m(auem)é“&fj) (05,a)

OuN? 5 y
_ ( N];O (€ — Bhen)? + ( uﬁo)(& BrEeE; _6—4%(3”62%)5%1.5],) (Of, a).

Recall that on the support of dv¥, (10.8) holds. Hence, by (11.71) and (10.8), on the support of dv?,
1 —1\o
~ & — B56k)0u(g0 1) €abp (02, a)
o uﬁo)

(
0 N0 e=40(9,e270)

(& — Ba&)?& — T:(ft - 55&)5“&5]‘) (O, a)

(9u%)
NG

(& — B5&k)> +2
)
3

( ~20(0 N2

e 27 (a 62%)

(& — BY&)?& — NG
e *1(9,85)
No

ji,;(ft - 55&)5“5@‘5;‘ +2
( uﬂo)

(& — Bgfk)s) (0¢,a)

= —I1—-1V - VI+ (& — BE&)2¢ = —TT =TV — VI + §9€,E&k.

Combining Steps 1,2 and 3 yields the conclusion. O

11.5. Putting everything together. We summarize what we have obtained so far. Combining Proposi-
tions 11.14, 11.15 and 11.16, we immediately obtain 2°

Proposition 11.17. Suppose A = b(x)m(+V), where the principal symbol a(z, &) = b(x)m(€) (with m(£) =
m(§) for |€] > 1) is real and supported in T*Q, m(€) is homogeneous of order 0, and m and m are both
even. Then

n n 1
L R O i) = e A, () Vol

B / 19Ol No{[(e0) s AY 2Ny

N7l
_ +/Rz+1 (eo)o(X%)( Oy () —

N A(y/ = det gogy, (x¢0))) dVolg,
0

1
v/ —det gg

_ /R2+1[&(XQ/}O)]&]’NO{[(GO)O’A]( (Xlﬁo))}d

e g 6—2’)’0 dv?
_ [5*]1{“1 6Y6i€j(Orta — 505 KQ) ——— N |§|2

: dv?
R Al 600 0) = a5 ) o Oe,0) T

A similar statement holds after replacing ¥ — w and dx — %e“w‘)dw.

12. THE WAVE EQUATION TERMS IN PROPOSITION 9.4 AND TRILINEAR COMPENSATED COMPACTNESS
FOR THREE WAVES

We continue to work under the assumptions of Theorem 4.2 and the reductions in Sections 4.1 and
8.3. As above, let A be a 0-th order pseudo-differential operator given by A = b(x)m(+V), where the
principal symbol a(x, ) = b(x)m(§) (with m(§) = m(€) for |£] > 1) is real and supported in T*Q, m(§) is
homogeneous of order 0, and m and m are both even.

In this section, we handle the terms trilinear; and trilinears in (9.14) (and the analogous terms in (9.15).
There are two types of terms coming from two types of contribution from FY¥ and F“. First, there are
terms which are linear in the wave variables ,, and w,, — these terms are easier and will be handled in

— 2y Ky "
20. Note that the two terms of fS*]R2+1 %@‘%)5”&@& % cancel.
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Section 12.1. The remaining terms are nonlinear and will be treated in Section 12.3. In order to deal
with the nonlinear terms, we will need a trilinear compensated compactness result for three waves, which
will be established in Section 12.2.

12.1. The linear terms in the wave equation.

Proposition 12.1. The following holds after passing to a subsequence (which we do not relabel) :

- /RM W{A[m@gﬂdx,dwn) + 0y, ¥)]} da

- /RM A(%)@gﬁ L(d, dipn) + a0y, ) dVol,,

/R2+1 6_41#0W{A[ v/ — det gn( (gn )aﬂa x0pwn + wnJ gn X )]} dz

/R o e*4¢0A((60)?VM)( H(dy, dwn) + way, x) dVol,,

n

R _/ %M{A[m(mgl(dx,dwo)+wngox)]}dw
R2+1 0

- / A(szgal(d)(’ d’(/}o) + wODQOX) dVOlgo

R2+1 No

4 /Rz+1 e~ %{A[m@gal(dx’ dwo) + wODgoX)}} dx

0

1
— f/ e‘woA(M)anl(dx, dwo) + wog, x) dVolg,.
4 R2+1 No

Démonstration. We will only indicate how to obtain the limit of the terms on the first line; all the other
terms can be treated similarly.

Step 1 : First term on first line. Since a (the symbol of A) and dgx have disjoint support, by Lemma 5.2,
Adgx : L? — L? _ is compact. Therefore, using (4.2) and (4.3), we see that after passing to a subsequence
(not relabeled)

| Algy * (dx, dvon) /= det g] — Algg * (dx, dibo)/— det go] || 2oy — 0.

On the other hand, by (4.2) and (4.3), we know that (0 (an) (EO)O(X%) weakly in L?. Therefore,
_ / (0)nX¥n) 41 /et grgr (dx, dut)
R2+1 N

- - (<o NWO [\/— det gogg ' (dx, dvo)]

R2+1

Step 2 : Second term on first line. By (4.2) and (4.3), /= det g, ¥, 0,, x — v/— det gotpo0,, X in the L? norm.
The fact that A is a 0-th order operator then implies that Aly/—det g,¥,,0g, x] = A[v/— det gotboOy, x] in

the L? norm. Using also that (60)"(’“/’") — (eO)O(X%) weakly in L? (by (4.2) and (4.3)), it thus follows that

e n (e
_/R2+1(Owa {AlV/—det g0y, x|} dz — — / 0) X% ———{A[\/—det govpoOg, x] } dz.

The other terms can be treated similarly ; we omit the details. O

12.2. A general trilinear compensated compactness result.

Proposition 12.2. Let {gi)(l) too {ng oo and {(;Sn?’)} be three sequences of smooth functions with

n=1’

¢Sf) :R2T1 - R. Assume that for any (spacetzme) compact set K c R?HL,
(1) max; sup, (1068 (i) + Do @1l 23s0)) < o0,

(2) max; HQng)HLsm) — 0 as n — +o0.
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Then for any smooth vector field X,
(X{D)go (Ao, dg)) — 0
in the sense of distributions.

Démonstration. We write

- 1
90 (A6, dgY)) =

1 1
5000 (@017 = 5 (a0 6N — 5012 (Dgy01))

=:1I =11 =111

By assumptions of the proposition and Holder’s inequality, IT and IIT both converge to 0 in the L3 norm

o

as n — +o0o. Together with the assumed uniform L3-boundedness of X ¢y, ', Holder’s inequality implies that

X gbg)(H + I1I) in fact converges to 0 in the L' norm on any compact set.
It therefore remains to check the contribution from the term I. Let ¢ € C2°(R?**1) be a smooth function
with support K. We then compute

/ (X L)), (67 6) dVoly,
R2+1

= / (@) (X6D) + (XD, 6(0) + 9Dy, XI6L) + 2(95™1)° (Gat) (05X 6[1)]612 617 dVoly,
R2+1
=1+ 1y + 1.+ 14.

To control I, we note that ¥ is smooth and thus [y ¥ is pointwise bounded on K. Thus using Holder’s
inequality and the bounds in the assumptions of the proposition, we obtain

Ll S XS s 1082 |2 1) 105 s 2y — 0

For I, we integrate by parts to obtain
I, = / [—(X0) (0o 0502 617 — 9(Oge o)) (X D1D) 1]
K

—~ / [9(Tg, 0P (X D) + 9(divg, X ) (Og, )P 7)) dVoly,
K

Since g, X and ¥ are smooth, by Holder’s inequality and the bounds in the assumptions of the proposition,
we obtain

To| S 1060 |22 () (1652 1 22 () 10D L2 a6y + 1 X 6D L2 iy 852 1 22 (e + 1682 1 23 () 1IX 6 12 16)) — O

Note that [[g,, X] is a smooth second order differential operator that can be written as a finite sum ), V;Z;
for some smooth vector fields Y; and Z;. Therefore we can treat I. and Iq simultaneously by bounding a
term of the form

/ (Y ZoD)p(P ¢{2) dVoly,
K

for some smooth function ¢ and smooth vector fields Y and Z. We integrate by parts and then use Holder’s
inequality and the smoothness of ¢ and Y to show that

/ (Y ZoD)p(P ¢{2) dVoly,
K

SNZWD s ey (852 1 20y 10D Lo (1) + 1Y 2 | 300 |02 L2 i) + 1682 1 13y 1Y 682 || £2) — 0.
This shows that I, I4 — 0 and finishes the proof. O

‘We next compute the limits in a similar setting but instead with ¢>$j‘ ) converging to a potentially non-zero
o5,
Proposition 12.3. Let {qﬁ%l) i {¢512) o and {¢£L3)};§°1 be three sequences of smooth functions. Assume
that there exist smooth (bél) :R?T1 = R so that for every compact subset K C R*+1,
(1) max; sup,, (19(61) = 64" 13 + 5o (91 = 667 1 13(10)) < +o0,

(2) max; |\¢5§') - ¢éi)||L3(K) — 0 as n — 4o0.
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Let 9 € C(R?**1). Then

/ I(XP1)gy (dg?, dp{P) dVoly, — / HX M) g5 (dgl?, dpP) dVoly,
R2+1

R2+1

- / H(X ) g5 (Ao, de) dVoly,
R2+1

- (X5 ) g5 (Ao, dpl) dVoly,.

R2+1

Démonstration. Using Proposition 12.2 (with qSSf) — (1) in place of q’)n ) and then expanding the terms,

(X(6) = 6§"))gg (@2 — 6), d(s) — ¢)) dVoly,
(X6 g0 (AP, dp?) dVol,, — / H(X M )gr (da(?, deP) dVoly,
R2+1

241

/R I(X )95 ' (dey”, dg(”) dVoly, + /R I(X 5 )95 (02, dg ) dVoly,

N
g

=1 1
+ /]Rerl 19(X(b(()1))g61(d¢82)’ d(ﬁﬁf’)) d\/Olg0 — /]Rz+1 19<X¢(()1))g071(d¢1(12)7 d¢513)) dVOlgo
=111 ey
- / . (X M) go L (Ao, dp®)) dVoly, — / . (X 6D) g7 (doP, do) dVol,,.
R2+1 R2+1

Note that each of I, IT and III has at most one factor depending on n. Since our assumptions easily imply
that ¢4 converges weakly to ¢\ in L? (for each ), we have
1+11+111— 3 / (XM )gr (das?, dplP) dVol,,.

R2+1

Next, we apply Lemma 7.1 with po =3. Noting that since L? (K) C L2( yand L3(K) C Lg( ) (for any
compact set K), by Lemma 7.1, g, (dqbn ), d¢n ) converges to g, (dqbo ), d¢83)) in the sense of distribution.
Hence,

Vo — [ 06 e, ds) avel,,,

R2+1

Finally, rearranging yields the conclusion. O

12.3. Computation of the remaining terms using trilinear compensated compactness. We now
look at the contributions in F¥ and F which are nonlinear in the derivatives of 1, and w,. There are four
relevant terms. For these terms, we need the trilinear compensated compactness in Section 12.2.

Proposition 12.4. The following holds after passing to a subsequence (which we do not relabel) :

1 (e0)n(X¥n)
5 /]RZJrl A( N,

)
= [ el o, a,) avel,,
R2+1 n

xe g1 (dw,, dwy,) dVoly,

+1/ MA[ —det g, xe g (dwy, dwy, )] dz
2 R2+1 Nn

_ XWn
—/Rzﬂe 4%(7 Al — detgnxgn (dwp, dipy, )] dx

’I’L

— corresponding terms on the RHS of (9.10) and (9.11)

~1yas (9510) dvv

_9 6741/;0(90 ) BY0 _ Bk a '

L. 2 - Betaa T

Démonstration. We will compute the limit of each term. Since the computation is largely similar, we will
give the details for the first term (Step 1) and only give the results for the remaining terms (Step 2).
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Step 1 : Detailed computation for the first term. Notice that on the support of a, x = 1. In particular, by
Lemma 5.2, A(1 — x)(1 + x) and (1 — x)(1 + x)A are both pseudo-differential operators of order —1 and
hence compact on L2. We write 1 = (1 — x)(1 + x) + x? and compute each contribution.

1 (U ~
5 \/]R2+1 A(%(jfd))) 4'¢’n (dwna dwn) dVOl
= 5 o, A0 00 e g e ) VoL,
R2+1 n

(12.1)
=:1

1 n n — —
4= / A(Mbﬁe 4n qgn 1 (dw", dw") dVOlg )
2 R2+1 N, ) "

=:1I

To handle I, we use the following two facts :

— (1—x)(1+ X)A(%) converges in the L? norm to (1 — x)(1 + X)A(W) after passing to
a subsequence (by Lemmas 5.2.1 and 5.2.5).

— By the pointwise convergence in (4.2), the bound in (4.3) and Lemma 7.1, xe~ ¥ g1 (dw,,dw,)
converges to xe %0 g ! (dwp,dwp) in the sense of distributions. Using (4.2) and (4. 3) again then
implies that the sald convergence holds weakly in L2.

Then, we obtain that, up to a subsequence (which we do not relabel),

=5/ A(%(?%))(lfx)(l+x) 490 g5 (dwp, dwp) dVoly,. (12.2)
For II, we further compute
1
M= AL On) s v =1 (o), d(xwn)) dVol,,
2 R2+1 Nn
=:11,
’ 12.3

1 A (eo)n(Xﬂ}n) — 4y, -1 dv.d -1 dv.d dVol ( )

+§ (T)Xﬁ wn[gn ( X (Xwn))‘FXQn ( X5 wn)] VO gn
R2+1 n
::IIb

First, using the fact that g, and v, converges in C° to their limits (see (4.2)), II, has the same limit as

I — % /R y A(%) =490 g1 (d (xwn ), d(xwn)) dVol,, . (12.4)

We now apply the result on trilinear compensated compactness (Proposition 12.3).

L, AXUR)  gge -
o = 5/ ()(NMX W0 g5 (d(xwn), d(xwn)) dVolg,

::Hfd’1

1 [A( (e())O(X"/}n)) . (60)0(A(X¢n))]xe,4wo

+ =
2 Jpat1 Ny Ny
::Hil,2

Note that by Lemmas 5.2.2 and 5.2.4, A, [0, A] are both bounded : L? — L3 and [0,,, A] is bounded

: W3 — L3, Therefore, ¢£,1) = A(xn), ;2) 513) = xwy, satisfy the estimates of Proposition 12.3. Hence,
by Proposition 12.3, and the fact that x = 1 on the support of a,

IT, 4 —>% w e 40 g5 (d(xwo), d(xwo)) dVoly,
R2+1 0

et - OL/B a w Cross Cross
s [ el RO (goomy:, — a0ty

(12.5)

gal(d(an)v d(xwn)) dVoly, .

(12.6)

For II, 2, we note the following
— By Lemma 5.2, [4, & ~ ¢ L? - L?

loc

Subsequence) [A( (eo)%;(wn) ) _ (eo)o(ﬁgan))] converges in the .2 norm to [A( (60)%361110) ) _ (eo)o(ﬁ(xwo))].

0

and [A, (eg)o] : H* — L?

e are compact so that (after passing to a
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— By Lemma 7.1, (4.2) and (4.3), gy ' (d(xwn), d(xwy)) converges weakly in L? to gy *(d(xwo),d(xwo)).
It follows that

1 A
I, — = [A((GO)O(XT/)O)) (0o (Xil)o))]
’ 2 R2+1 No No
We now return to the term II}, in (12.3). Notice now that dx and a have disjoint support. Therefore by
Lemmas 5.2.1 and 5.2.5, OxA : L? — L? is compact. As a result, using also (4.2) and (4.3), we obtain

~Hogg (d(xwo), d(xwo)) dVolg,. (12.7)

1 e _ -
- 5 [ A0 v s ) o (@) VoL, (129)
R2+1

Combining (12.3)—(12.8), we obtain

1
I— = A(M) 3 —4% (dwo, dwp) dVol,
2 Jrot1 Ny (12 9)
+/ 6—41% (951)0’5(@9@0) ((d cross) 5]6( CI'OSS):;k).
S*R2+1 Ny
Combining (12.1), (12.2) and (12.9), we obtain
% / A((eo)?vw)xefw" 9, H(dwp, dw,) dVol,,,
R2+1 n
1
— = / A M) ~40 g1 (dwo, dwg) dVoly, (12.10)
2 R2+1 N

—41/;0 gO ) (63(“)0) cross Cross\ *
o) (o), - B ().
Step 2 : Computing the second to fourth terms. Arguing as in the derivation of (12.10) in Step 1, we obtain
- / _4%14(7(60)”0%) )Xy, ' (dwn, dip,) dVoly,,
]R2+1 N
e~ 4o (e0)o(xwo) -1
— A(~——="—")xgo (dwo, ds)o) dVoly,
R2+1 N )
0 ) (9p10) dv

—471)0 _ gk P
I L=

@B (9,
— 4o gO ) ( Oéwo) docross cro%s
/]R2+1 No a(dog; - ydogi™)

(12.11)

/ (60)n(an) A/ = det gnxe ¥ g} (dwp, dwn)] dz

R N,

N / (e0)o(x¥o) , Aly/—det goxe 0 g5 (dwo, dwo)] dz (12.12)
R2+1

—1\ap 9
+‘/S - 6741#0 (90 ) ( awO)a (daggoss 50 Cross)7
and

N / e—4wo(¢ /= det gnxgi (e, diby)] der
R
- _/ 674%( Xwo A[y/— det gnxgy ' (dwo, dipp)] dz
]R2+1
6 w
e%fﬂoM(& — BE&)Eaa 7|£V|2

—1\ap 6a .
_ /S*]R2Jr1 e~ 4o (gO ) ( WO) ((d cross) _ BO( Cmss)kﬁ)'

(12.13)

No

Step 3 : Putting everything together. Adding (12.10), (12.11), (12.12) and (12.13), and noticing a cancellation
using Proposition 6.2, we finish the proof. O
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12.4. Putting everything together. We now combining the results in Section 11 and this section. More
precisely, subtracting the expression in Proposition 12.4 from the sum of the expressions for ¢ and w in
Proposition 11.17, we obtain the following :

Proposition 12.5. Let dv be defined as in (7.8). Suppose A = b(ac)ﬁl(%V), where the principal symbol
a(z,£) = b(x)m(§) (with m(§) = m(§) for |§| > 1) is real and supported in T*Q, m(§) is homogeneous of
order 0, and m and m are both even. Then, after passing to a subsequence (which we do not relabel),

(RHS of (9.14)) + (RHS of (9.15))

- [ 18 N[, AN o -
— (RHS of (9.10)) + (RHS of (9.11))

1

3 Lo 0 N (o) AL

— [ itaa Nofl(eolo ALy ar - 3 [ e, )l Nod oo, AN
R2+1 Rz+1 0
1 et tad — kQ 7270 dv

=3 Jyp 00 B0

1 1 . d
g [ 6 B 60 0) — Ol (05,00

— 4y (95 )P (9p%0)
B R AL

where X = N%)(at — Bi0;).

13. TRANSPORT EQUATION FOR THE MICROLOCAL DEFECT MEASURE AND CONCLUSION OF THE PROOF
OF THEOREM 4.2

Our goal in this section is to combine Propositions 10.4, 10.5 and 12.5 to prove that the measure dv
indeed satisfies a transport equation as in (2.21). This will allow us to conclude the proof of Theorem 4.2.

Proposition 13.1. Let dv be defined as in (7.8).
Suppose a : T*R%>t1 = R be a smooth function which is homogeneous of order 0 in & and is supported in
T*Q. Then

¢ — Bk B d
/9*R2+1(2(901)a55a8z5(W) — (0u(90 1)“6)5045585“(%)) |£|”2 -0

Démonstration. By Proposition 8.8, it suffices to consider the case where a(x,§) = b(x)m(§), where m is
homogeneous of order 0 and even. We make this assumption for the remainder of the proof (so that we can
apply results in earlier sections).

Note that RHS of (9.12) = RHS of (9.14), RHS of (9.13) = RHS of (9.15), RHS of (9.5) = RHS of (9.10)
and RHS of (9.6) = RHS of (9.11) (because the LHSs all agree). Therefore, combining Propositions 10.4,
10.5 and 12.5, we obtain

-1\« vy 1
0= - /S oo (85 @5 X ey = 5X Dl ) e )

|§|2
+ %/S*RZH[_(SU&(& — BE&R) D dl e;?)cflllé .
+ %/S*]R?Jrl 59, (Opta — ﬁgazka)‘?;%é; )
_ %/S R+ ]\170 (& — 505/&)[( ) fa( Oysa) — 8ﬂ(90_1)a65a53(8@a)] élz’

where X = N%)(at — B340;) as before. (Note that the two terms of 2 [, pous e_]\j:)o( o B (Datho)és (& —
BEEr)a % cancel.)
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Since Nig(ft — BEE&L)? = e727089¢;¢; on the support of dv (by Proposition 6.6),

1 e & v e~ dy 1 e e & e~ dy
) /S*Rpr1 (=0 & (& — Bo&k) Ozl To@ + 9 /S*R"”rl 67¢i€j(O0pra — 508”5’““)70@
_1 ke gl o v 1 BN (B — B ra) = IV
- 5 L*R2+1[_6J§Z(§t - ﬁogk)azia] N, ‘€|2 + 2 /S*RQH(& 6051) (az‘a Oaz’“a) Ng, ‘€|2 (13'2)
1 k ovosiien o (&= Bo&) _ gk 1 dv
- 5 L*R2+1(§t - ﬁoé‘k)[*@ g 6 jflaajﬂa + Ng (8ItCL /BOaxka)} NO |£‘2
By (11.70), it then follows that
1 e 1 d
(132) = =3 [ (6= 8566560 0ur0) -1 (133)
Plugging (13.3) into (13.1), we then obtain
_ —1aaﬂj_ i —1\apB 1 11 -1\« dv
o--/ . <<go ) 560 + (6 = (957 05560 — 537 (coolsi ™) wsa@)a) @
1 e 1., 1. d
- /S oo Ty & BB )60 0200) = 300000 6a3(0,0)) 1z
_ —1\afB (& — BiEr)a o 1 —1\afB (& — BiEr)a dl
= = [ a0 (S - 20,05 ) a0, ()
(13.4)
as desired. O

Proposition 13.2. Let dv be defined as in (7.8).
Suppose a : T*R%2tL = R be a smooth function which is homogeneous of order 1 in & and is supported in
T*Q. Then

~ -, d
o 20 6000~ (0(05™))6a06,3) 15 =0,
seRa €

Démonstration. Suppose a is homogeneous of order +1 in £ with support in S*€). Since dv is supported on
{(x,€) : g5 *(&,€) = 0}, & — BEEL # 0 on the support of dv. Tt follows that we can define a to be homogeneous

k
of order 0 in £ supported in S*(2 so that w = a in a neighborhood of the support of dv. Applying
Proposition 13.1 to this a then yields

- .d
/ (2951 €0yt — (O(05 1))t s0e, ) o,
S*R2+l |§|

which is what we want to prove. O

Proof of Theorem 4.2. In view of Theorem 4.1 and Proposition 4.4, it suffices to prove is that under the
additional assumption of Theorem 4.2, the transport equation (2.21) holds in Q. This is exactly provided
by Proposition 13.2. d
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