
HAL Id: hal-02363013
https://hal.science/hal-02363013

Submitted on 14 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Terminating Exploration Of A Grid By An Optimal
Number Of Asynchronous Oblivious Robots

Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, Sébastien
Tixeuil

To cite this version:
Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, Sébastien Tixeuil. Terminating
Exploration Of A Grid By An Optimal Number Of Asynchronous Oblivious Robots. The Computer
Journal, 2021, The Computer Journal, 64 (1), pp.132-154. �10.1093/comjnl/bxz166�. �hal-02363013�

https://hal.science/hal-02363013
https://hal.archives-ouvertes.fr

Optimal Grid Exploration by Asynchronous Oblivious Robots

Stéphane Devismes∗ Anissa Lamani† Franck Petit‡ Pascal Raymond∗

Sébastien Tixeuil‡

Abstract

We propose optimal (w.r.t. the number of robots) deterministic solutions for the terminating
exploration of an anonymous grid-shaped network by a team of asynchronous oblivious robots.
We first consider the semi-synchronous model. We show that it is impossible to explore a grid
of at least 3 nodes with less than 3 robots. Next, we show that it is impossible to explore a
(2, 2)-Grid with less than 4 robots, and a (3, 3)-Grid with less than 5 robots, respectively. The
two first results hold for both deterministic and probabilistic settings, while the latter holds only
in the deterministic case. We then consider the asynchronous model. This latter being strictly
weakest than the semi-synchronous model, all the aforementioned impossibility results still hold
in that context. We then propose deterministic algorithms to exhibit the optimal number of
robots allowing to explore of a given grid. Our results show that except in two particular cases,
3 robots are necessary and sufficient to deterministically explore a grid of at least 3 nodes. The
optimal number of robots for the two remaining cases is: 4 for the (2, 2)-Grid and 5 for the
(3, 3)-Grid, respectively.

1 Introduction

We consider swarms of autonomous robots that are endowed with motion actuators and visibility
sensors. Many potential applications exist for such multi-robot systems in various contexts. For
instance, patrolling in adversarial environments, environmental monitoring, exploration of awkward
environments, intelligence activities, fighting fire in a rescue scenario, and many other risky tasks for
humans can be solved by robotic swarms. Those applications require that the robots collaborate
to succeed in task accomplishment that has been assigned to them. Devising distributed algo-
rithms capable of coordinating robots without central control remains one of the main challenges
to overcome [11].

In this paper, we address the problem of exploring a finite discrete space by autonomous mobile
robots. Exploration is a basic building block for many applications. For instance, mapping of an
unknown area requires that the robots (collectively) explore the whole area. Similarly, to search
and rescue people after a disaster, the team of robots potentially has to explore the whole area. The
so called “area” is often considered as a finite number of locations represented by a graph, where
nodes represent indivisible locations that can be sensed by the robots, and where edges represent
the possibility for a robot to move from one location to the other, e.g., a building, a town, a factory,

∗VERIMAG UMR 5104, Université Joseph Fourier, Grenoble (France)
†MIS, Université de Picardie Jules Verne (France)
‡LIP6, UPMC Sorbonne Universités (France)

1

and more generally, zoned areas. In such settings, a continuous two-dimensional Euclidean space
is conveniently represented using a grid-shaped network.

The exploration problem has been addressed in the distributed computing community consider-
ing dual settings: probabilistic [7] vs. deterministic [10], and perpetual [1] vs. terminating [10]. In
this paper, we focus on deterministic terminating exploration. In this problem, all robots, initially
placed at different places, have to collectively visit all nodes (i.e., every node to be visited by at
least one robot) and then eventually stop.

We consider the problem of performing the terminating exploration with the constraint of using
as less resources as possible. By minimizing the resources, we first mean weakening as much
as possible the assumptions made on the robot capabilities. Actually, we assume robots that
are uniform (all robots follow the same algorithm), anonymous (robots are identical), oblivious
(robots do not remember the past), disoriented (robots have no mean to locally or globally orient
themselves), and deaf-mute (robots have no means of communicating together). However, robots
are endowed with visibility sensors enabling to see robots located on nodes. Arguments justifying
such assumptions are varied and numerous. Reducing manufacturing costs, design, and operating
expenses are some of them. Also, numerous realistic scenarios can easily be considered where
devices are faulty, unusable, or even non-existent, for instance, sensors and guidance systems like
GPS or compass may be faulty, communications may be scrambled or forbidden, physical space
aboard robots may not allow to embed some devices, like sensors or storage memory. Another
objective in assuming such robot weakness is to provide an answer to the following fundamental
question: What is computational complexity required for the robots to deterministically solve a given
problem? (In our case the terminating exploration.) Since we are addressing distributed solutions,
such issue must be addressed globally, i.e., over all the robots. In other words, the number of robots
that are required to solve the problem is also a crucial parameter. The minimum number of robots
in the accomplishment of a given task is also are important knowledge in order to achieve fault
tolerant solutions as describe above in an environment where some robots may be totally destroyed
or unusable.

1.1 Related Work

With respect to the (terminating) exploration problem, minimizing the number of robots for explor-
ing particular classes of graphs led to contrasted results. The only result available for exploration
in general graphs [4] considers that edges are labeled in such a way that the network configuration
is asymmetric. In this extended model, three robots are not sufficient to explore all asymmetric
configurations, and four robots are sufficient to explore all asymmetric configurations. Note that
exploring the set of asymmetric configurations is strictly stronger than exploring the complete un-
derlying graph, especially when the graph is highly symmetric. The rest of the literature is thus
dedicated to a weaker model, where edges are not labeled. One extreme case in this weak model is
the set of tree-shaped networks, as in general, Ω(n) robots are necessary and sufficient to explore
a tree network of n nodes deterministically [9]. Flocchini et al. [10] proved that no deterministic
ring exploration is possible in the asynchronous model when the number of robots k divides the
number of nodes n. However, they proposed a deterministic algorithm that solves the problem,
still in the asynchronous model, using k ≥ 17 robots provided that n and k are co-prime. Lamani
et al. [13] proved that there exists no deterministic algorithm that can explore an even sized ring
with k ≤ 4 robots, even in the semi-synchronous (SSYNC) model [16]. Impossibility results in the
semi-synchronous model naturally extend to the asynchronous non-atomic model [14]. Lamani et

2

al. [13] also provide an algorithm, working in the semi-synchronous model, which allows 5 robots to
deterministically explore any ring whose size is co-prime with 5. By contrast, 4 robots are necessary
and sufficient to probabilistically explore any ring of size at least 4 in the semi-synchronous model [7].
Still in the semi-synchronous model, 4 robots are necessary and sufficient to probabilistically explore
any torus of size `× L, where 7 ≤ ` ≤ L [6].

Grid-shaped networks were considered in the context of anonymous and oblivious robot explo-
ration [1, 2, 3] for a variant of the exploration problem where robots perpetually explore all nodes
in the grid. The first two works [1, 2] consider robots that are endowed with a common sense of
direction (that is, common, North, South, East, and West directions), while the last paper [3] con-
siders the same model as ours: in this case, perpetually exploring a grid is as difficult as perpetually
exploring a ring, as three robots are necessary and sufficient in both cases.

1.2 Contribution

In this paper, we propose optimal (w.r.t. the number of robots) solutions for the deterministic ter-
minating exploration of an anonymous grid-shaped network by a team of k asynchronous oblivious
robots in the asynchronous model. Moreover, our solution are asymptotically optimal in time, as
they require Θ(n) moves to explore any grid of n nodes.

In more details, we first consider the semi-synchronous model. In this model, we show that it
is impossible to explore a grid of at least 3 nodes with less than 3 robots. Next, we show that it is
impossible to explore a (2, 2)-Grid with less than 4 robots, and a (3, 3)-Grid with less than 5 robots,
respectively. The two first results hold for both deterministic and probabilistic explorations, while
the latter holds only in the deterministic case. Note also that these impossibility results naturally
extend to the asynchronous model.

Then, we propose several deterministic algorithms in the asynchronous model that use the
optimal number of robots allowing to explore a given grid. Our results show that except in two
particular cases, 3 robots are necessary and sufficient to deterministically explore a grid of at least
3 nodes. The optimal number of robots for the two remaining cases is: 4 for the (2, 2)-Grid and 5
for the (3, 3)-Grid, respectively.

The above results show that, contrary to the case of perpetual exploration, exploring a grid and
terminating is easier than exploring a ring and terminating. In the ring, deterministic solutions
essentially require 5 robots [13] while probabilities enable solutions with only 4 robots [7]. In the
grid, 3 robots are necessary and sufficient in all but two cases even for deterministic algorithms,
the two latter cases do require 4 or 5 robots. Also, deterministically exploring a grid requires no
primality condition while deterministically exploring a ring expects the number k of robots to be
co-prime with n, the number of nodes.

1.3 Roadmap

Section 2 presents the system model and the problem to be solved. Lower bounds are shown in
Section 3. The deterministic general solution using 3 robots is given in Section 4, the special case
with 5 robots is studied in Section 5. (Note that exploring a (2, 2)-Grid using 4 robots is trivially
possible, henceforth not considered in this paper.) Section 6 gives some concluding remarks.

3

2 Preliminaries

2.1 Distributed Systems

We consider systems of autonomous entities called robots equipped of motion actuators and visibility
sensors. These robots evolve in a simple undirected connected graph G = (V,E), where V is a finite
set of n nodes and E a finite set of edges. In G, nodes represent locations that can be sensed by
robots and edges represent the possibility for a robot to move from one location to another. We
assume that G is an (`, L)-Grid (or a Grid, for short) where `, L are two positive integers such
that ` × L = n, i.e., G satisfies the following condition: there exists an order on the nodes of V ,
v1, . . . , vn, such that

1. ∀x ∈ [1..n], (x mod `) 6= 0⇒ {vx, vx+1} ∈ E, and
2. ∀y ∈ [1..`× (L− 1)], {vy, vy+`} ∈ E.

We denote by δ(v) the degree of node v in G.
Nodes of the grid are anonymous. (We may use indices, but for notation purposes only.)

Moreover, given two adjacent nodes u and v, there is no explicit or implicit labelling allowing the
robots to determine whether u is either on the left, on the right, above, or below v.

Remark that an (`, L)-Grid and a (L, `)-Grid are isomorphic. Hence, as the nodes are anony-
mous, we cannot distinguish an (`, L)-Grid from a (L, `)-Grid. So, without loss of generality, we
always consider (`, L)-Grids, where ` ≤ L. Note also that any (1, L)-Grid is isomorphic to a chain.
In this case, either the grid consists of one single node, or two nodes are of degree 1 and all other
nodes are of degree 2. When ` > 1, 4 nodes in the grid are of degree 2 and all other nodes are of
degree either 3 or 4. In any grid, the nodes of smallest degree are called corners. In any (1, L)-Grid
with L > 1, the unique chain linking the two corners is called the borderline. In any (`, L)-Grid
such that ` > 1, there exist four chains v1, . . . , vm of length at least 2 such that δ(v1) = δ(vm) = 2,
and ∀x, 1 < x < m, δ(vx) = 3, these chains are also called the borderlines. We call line (of the
grid) any maximal path of the grid that is parallel to a borderline (including the borderline itself).
We call L-borderline any borderline constituted of L nodes (n.b., there are 4, 2, or 1 L-borderlines
depending on whether or not ` > 1 and whether or not ` = L).

2.2 Robots

Operating on the grid G are k ≤ n (deterministic) robots. The robots do not communicate in
an explicit way; however they see the position of all other robots in their ego-centered coordinate
system and can acquire knowledge from this information. We assume that the robots cannot
remember any previous observation nor computation performed in any previous step. Such robots
are said to be oblivious (or memoryless).

Each robot operates according to its (local) program. In general setting, an algorithm is a
collection of k programs, each one operating on one single robot. However, here we assume that
robots are uniform and anonymous, i.e., they all have the same program using no local parameter
(such as an identity) that could permit to differentiate them. The program of a robot consists in
executing Look-Compute-Move (LCM) cycles infinitely many times. That is, the robot first observes
its environment (Look phase). Then, based on its observation and according to its program, the
robot then decides to move or stay idle (Compute phase). When the robot decides to move, it
moves from its current node to an adjacent node during the Move phase.

4

2.3 Computational Models

We consider two models: the semi-synchronous (atomic) model [8, 16] (SSYNC model [11]), and the
asynchronous (non-atomic) model [14] (ASYNC model [11]). In both models, time is represented
by an infinite sequence of instants 0, 1, 2, . . . No robot has access to this global time. Every
robot executes cycles infinitely many times. Each robot performs its own cycles in sequence.
However, the time between two cycles of the same robot and the interleavings between cycles of
different robots are decided by an adversary whose power depends on the considered model. We are
interested in algorithms that correctly operate despite the choices of the adversary. In particular,
our algorithms should also work even if the adversary forces the execution to be fully sequential or
fully synchronous.

In the semi-synchronous model, each LCM cycle execution is assumed to be atomic: every robot
that is activated (by the adversary) at instant t instantaneously executes a full cycle between t and
t+ 1.

In the asynchronous model, LCM cycles are performed asynchronously by each robot: the
time between Look, Compute, and Move operations is finite yet unbounded, and is decided by the
adversary. The only constraint is that both Move and Look are instantaneous.1

Note that in both models, any robot performing a Look operation sees all other robots on nodes
and not on edges. However, in the asynchronous model, a robot R may perform a Look operation
at some time t, perceiving robots at some nodes, then Compute a target neighbor at some time
t′ > t, and Move to this neighbor at some later time t′′ > t′ when some robots are at different nodes
from those previously perceived by R because they moved meanwhile. Hence, in the asynchronous
model, robots may move based on significantly outdated perceptions.

Of course, the semi-synchronous model is stronger than the asynchronous one. So, to be as gen-
eral as possible, in this paper, our impossibility results are written assuming the semi-synchronous
model, while our algorithms assume the asynchronous model.

2.4 Multiplicity

We assume that during the Look phase, each robot can perceive whether several robots are located
on the same node or not. This ability is called Multiplicity Detection. We shall indicate by di(t) the
multiplicity of robots present in node ui at instant t. We consider two kinds of (global) multiplicity
detection: the weak and strong (global) multiplicity detections.

Under the weak multiplicity detection, for every node ui, di is a function N 7→ {◦,⊥,>} defined
as follows: di(t) is equal to either ◦, ⊥, or > according to ui contains none, one or several robots
at time instant t. If di(t) = ◦, then we say that ui is free at instant t, otherwise ui is said occupied
at instant t. If di(t) = >, then we say that ui contains a tower at instant t.

Under the strong multiplicity detection, for every node ui, di is a function N 7→ N where
di(t) = j indicates that there are j robots in node ui at instant t. If di(t) = 0, then we say that
ui is free at instant t, otherwise ui is said occupied at instant t. If di(t) > 1, then we say that ui
contains a tower (of di(t) robots) at instant t.

As previously, to be as general as possible, our impossibility results are written assuming the
strong multiplicity detection, while our algorithms assume the weak multiplicity detection.

1As explained in [5], this assumption is not restrictive, rather a way to simplify the reasoning.

5

2.5 Configurations and Views

To define the notion of configuration, we need to use an arbitrary order ≺ on nodes. The system
being anonymous, robots do not know this order. Let v1, . . . , vn be the list of the nodes in G
ordered by ≺. The configuration at time t is d1(t), . . . , dn(t). We denote by initial configurations
the configurations from which the system may start at time 0. Every configuration where all robots
stay idle forever is said to be terminal (i.e., in a terminal configuration there is no possibility, even
probabilistic, for a robot to move). Two configurations d1, . . . , dn and d′1, . . . , d

′
n are indistinguish-

able (distinguishable otherwise) if there exists an automorphism f on G such that ∀vi ∈ V , we have
di = d′j where vj = f(vi).

The view of robot R at time t is a labelled graph isomorphic to G, where every node ui is
labelled by di(t), except the node where R is currently located, this latter node uj is labelled by
dj(t), ↓. Indeed, the coordinate system is ego-centered. Hence, from its view, a robot can compute
the view of each other robot, and decide whether some other robots have the same view as its own.

Every decision to move is based on the view obtained during the last Look action. However, it
may happen that some edges incident to a node v currently occupied by the deciding robot look
identical in its view, i.e., v lies on a symmetric axis of the configuration. In this case, if the robot
decides to take one of these edges, it may take any of them. As in related work (e.g., [10, 9, 13]),
we assume the worst-case decision in such cases, i.e., the actual edge among the identically looking
ones is chosen by the adversary. More generally, if several possible destinations are selected during
the Compute phase, the final destination is also chosen by the adversary.

2.6 Execution

We model the executions of our algorithm in G by the list of configurations by which the system
goes. So, an execution is a maximal list of configurations γ0, . . . , γi such that ∀j > 0, we have:

1. γj−1 6= γj ,
2. γj is obtained from γj−1 after some robots move from their locations in γj−1 to an adjacent

node, and
3. for every robot R that moves between γj−1 and γj , there exists 0 ≤ j′ ≤ j, such that R

takes its decision to move according to its program and its view in γj′ . (In semi-synchronous
model, we necessarily have j′ = j − 1.)

An execution γ0, . . . , γi is said to be sequential if ∀j > 0, exactly one robot moves between γj−1
and γj . An execution terminates if it eventually reaches a terminal configuration.

2.7 Exploration

We consider the exploration problem, where k robots, initially placed at different nodes, collectively
explore an (`, L)-grid before stopping moving forever. By “collectively” explore we mean that every
node is eventually visited by at least one robot. More formally, an algorithm P deterministically
(resp. probabilistically) solves the exploration problem if every execution e of P starting from a
towerless configuration2 satisfies:

1. e terminates in finite time (resp. with probability 1), and

2Obliviousness requires the set of initial configurations to be a proper subset of the set of all configurations to make
termination possible in our model; following the literature [10] we assume that every possible initial configuration is
towerless.

6

2. every node is visited by at least one robot during e.
Observe that the exploration problem is not defined for k > n and is straightforward for k = n.
(In this latter case the exploration is already accomplished in the initial towerless configuration.)

3 Bounds

In this section, we first show that, except for trivial case where k = n, if the model is semi-
synchronous and the multiplicity is strong, then at least 3 (oblivious) robots are necessary to solve
the (probabilistic or deterministic) exploration of any grid (Theorem 1). Moreover, in a (2, 2)-
Grid, 4 robots are necessary (Theorem 2). Finally, at least 5 robots are necessary to solve the
deterministic exploration of a (3, 3)-Grid (Theorem 4). In the two next sections, we show that all
these bounds are also sufficient to solve the deterministic exploration in the asynchronous model.

Given that robots are oblivious, if there are more nodes than robots, then any terminal con-
figuration should be distinguishable from any possible initial (towerless) configuration. So, we
have:

Remark 1. Any terminal configuration of any (probabilistic or deterministic) exploration algorithm
for any graph of n nodes using k < n oblivious robots contains at least one tower.

Theorem 1. There exists no (probabilistic or deterministic) exploration algorithm in the semi-
synchronous model using k ≤ 2 oblivious robots for any graph made of at least 3 nodes.

Proof. By Remark 1, there is no algorithm allowing one robot to explore any graph made of at
least 2 nodes. Indeed, any configuration is towerless in this case. Assume by contradiction, that
there exists an algorithm P in the semi-synchronous model to explore with 2 oblivious robots a
graph made of at least 3 nodes. Consider a sequential execution e of P that terminates.3 Then, e
starts from a towerless configuration (by definition) and eventually reaches a terminal configuration
containing a tower (by Remark 1). As e is sequential, the two last configurations of e consist of a
towerless configuration followed by a configuration containing one tower. These two configurations
form a possible sequential execution that terminates where only two nodes are visited, thus a
contradiction.

Any (2, 2)-Grid is isomorphic to a ring of 4 nodes. It is shown in [7] that no (probabilistic or
deterministic) exploration using less than 4 oblivious robots is possible for any ring of size at least
4 in the semi-synchronous model. So:

Theorem 2 ([7]). There exists no (probabilistic or deterministic) exploration algorithm using k ≤ 3
oblivious robots in the semi-synchronous model for a (2, 2)-Grid.

Lemma 1. Considering any deterministic exploration algorithm P in the semi-synchronous model
using 1 < k < n oblivious robots for a (3, 3)-Grid, there exist finite sequential executions of P,
e = γ0, . . . , γw, where:

• For every x, y with 0 ≤ x < y ≤ w, γx and γy are distinguishable.
• Only the first configuration γ0 is towerless.

3By definition, if we consider a deterministic exploration, then all executions should terminate; while if we con-
sider a probabilistic exploration, some executions may not terminate, even though the overall probability that such
executions occur should be 0.

7

Proof. Consider an exploration algorithm P in the semi-synchronous model using 1 < k < n
oblivious robots for some graph G of n nodes. Consider any sequential execution e of P. By
definition of the exploration, e is finite and starts from a towerless configuration. Moreover, the
terminal configuration of e contains a tower, by Remark 1. Take the last towerless configuration
of e and all remaining configurations that follow in e (all of them contain a tower) and form e′.
The sequence e′ is a possible finite sequential execution of P where only the first configuration is
towerless. Let e′ = α0, . . . , αm. Let two configurations αx = dx1 , . . . , d

x
n and αy = dy1, . . . , d

y
n of e′,

that are indistinguishable with 0 ≤ x < y ≤ m. Then, by definition, there exists an automorphism
f on G satisfying the additional condition: let v1, . . . , vn be the nodes of V , for all s ∈ [1..n],
we have dxs = dyu where vu = f(vs). Then, α0, . . . , αx, βy+1, βm is a possible finite sequential
execution of P such that ∀z ∈ [y + 1..m], we have βz = dzg(1), . . . , d

z
g(n) where g is a bijection

such that ∀s ∈ [1..n], f(vs) = vg(s) and αz = dz1, . . . , d
z
n. Moreover, in α0, . . . , αx, βy+1, βm, the

number of configurations indistinguishable from αx decreases by at least one. Repeating the same
construction, we eventually obtain a possible finite sequential execution e′′ = ρ0, . . . , ρw of P that
starts from a towerless configuration only followed by configurations containing at least one tower
such that for every x, y with 0 ≤ x < y ≤ w, ρx and ρy are distinguishable.

0

k

0

0

0 0

0

00

1 2 3

4 5 6

7 8 9

(b)

0

0

0

0

k 0

0

00

1 2 3

4 5 6

7 8 9

(a)

0

0

0

0

0 0

0

0k

1 2 3

4 5 6

7 8 9

(c)

Figure 1: Three possible configurations in a (3, 3)-Grid with a tower of k robots.

Lemma 2. Considering any deterministic exploration algorithm P in the semi-synchronous model
using k > 1 oblivious robots for a (3, 3)-Grid, if there exists an execution of P e = γ0 . . . γx . . .
where γx contains a tower of k robots, then there exists an execution e′ starting with the prefix
e = γ0 . . . γx such that at most one new node can be visited after γx.

Proof. Assume the existence of an execution of P e = γ0 . . . γx . . . where γx contains a tower of k
robots. Then, γx is different from γ0. Furthermore, γx is indistinguishable from one of the three
configurations depicted in Figure 1—symbols inside the circles represent the multiplicity of the
node and numbers next the circle are node’s labels to help explanations only. Without loss of
generality, assume that γx is either configuration (a), (b), or (c).

To visit a new node, one of the robots should eventually decide to move. Moreover, in γx, all
robots have the same view. So, the adversary can choose any of them to move.

(1) Consider configuration (a). Then, all possible destinations for the robots are symmetric. So,
the adversary can activate the robots in a way we retrieve configuration γx−1. Then, it can

8

activate robots in a way that the system return to γx, and so on. Hence, in this case, there
exists a possible execution of P that is infinite, a contradiction. So, from (a), P cannot try
to visit a new node.

(2) Consider configuration (b).
If robots synchronously move to node 5, node 5 may be unvisited. So, it is possible to visit a
new node, but then we retrieve Case (1). So, we can conclude that in this case from (b) only
one new node can be visited.
If robots synchronously move to node 1 (resp. 7), then this node may be unvisited. So, it
is possible to visit a new node. But, in node 1, all possible destinations for the robots are
symmetric. So, the adversary can activate the robots in a way that we retrieve the previous
configuration, if we want to visit another node. So, as for Case (1), we can conclude that no
new node can be visited, that is from (b) only one new node can be visited.

(3) Using a reasoning similar to case (1), we can conclude that from (c), P cannot try to visit a
new node.

Proving Lemma 3 below is particularly tedious and error-prone because many cases must be
considered (positions of robots, symmetry classes, etc.). The proof was thus completed as auto-
matically as possible, by using model-checking techniques. The method is briefly sketched here, a
detailed presentation, together with the source code and the necessary tools can be found on the
web.4

Lemma 3. Assume that there exists a deterministic exploration algorithm P in the semi-synchronous
model using 3 oblivious robots for a (3, 3)-Grid. Consider any suffix γw, . . . , γz of any sequential
execution of P where:

• For every x, y with w ≤ x < y ≤ z, γx and γy are distinguishable.
• γw contains a tower of 2 robots.

Then, at most 4 new nodes can be visited from γw before a robot of the tower moves.

Proof Outline. First, an operational model of the problem is built: this model is a reactive program
that manages an abstract view of the grid and robots, according to a flow of (random) move
commands. This model is restricted to the configurations relevant for the following property: an
immobile two-robots tower and a mobile single robot. The reactive program (i.e., the model)
computes the consequences of the moves induced by the input commands; in particular, it takes
trace of the visited nodes, and the encountered indistinguishable configuration classes. As soon as
such a class has been reached twice, a flag stuck is raised. And, all along the execution, a validity
flag is computed that way: stuck ⇒ number of new visited nodes is ≤ 4. A model-checker tool
is then used to check the following invariant: whatever be a sequence of input move commands,
valid remains true. In other words, the invariance of valid is sufficient to establish that, starting
from any configuration with a tower and a single moving robot, at most 4 new nodes can be visited
before the configuration becomes indistinguishable from some already encountered configuration.
Concretely, the model is written in the Lustre language [12, 15], and is itself partially generated
by a ”meta” program written in oCaml (which computes, in particular, the classes). The source
is made of approximately 150 lines of oCaml, and 100 lines of Lustre. The invariance checking is
performed by the model-checker from the Lustre distribution.

4 http://www-verimag.imag.fr/~devismes/robots/

9

Theorem 3. There exists no deterministic exploration algorithm in the semi-synchronous model
using k ≤ 3 oblivious robots for a (3, 3)-Grid.

Proof. According to Theorem 1, we only need to consider the case of 3 robots.
Assume that there exists an exploration algorithm P in the semi-synchronous model for a (3, 3)-

Grid using 3 robots. By Lemma 1, there exists a (finite) sequential execution e = γ0, . . . , γw that
starts from a towerless configuration, only followed by configurations containing at least one towers,
and such that for every x, y with 0 ≤ x < y ≤ w, γx and γy are distinguishable.

In γ0, 3 nodes are visited. The execution being sequential, no new node is visited in the first
step where a tower of two robots is created. So, in γ1, 3 nodes are visited and there exists a tower
of two robots R1 and R2.

• Assume that R1 and R2 never moved after γ1. Then, by Lemma 3, at most 4 new nodes are
visited until the termination of e. So, at the termination of e, at most 7 distinct nodes have
been visited, a contradiction.

• Assume that R1 or R2 eventually moved. Let γs the first configuration where R1 or R2

moves. From the previous case, at most 7 distinct nodes have been visited before γs. The
execution being sequential, only one robot of the tower moves during the step from γs to γs+1

and as in e only the first configuration is towerless, that robot moves to an occupied node.
Now, the view of R1 and R2 are identical in γs. So, there exists an execution e′ starting from
the prefix γ0, . . . , γs where both R1 and R2 move from γs to the same occupied node. As no
new node is visited during the step, still at most 7 nodes are visited once the system is in the
new configuration and this configuration contains a tower of 3 robots. By Lemma 2, at most
one new node is visited from this latter configuration. So, at the termination of e′, at most 8
distinct nodes have been visited, a contradiction.

1

0

0

0

0 0

1

11

1 2 3

4 5 6

7 8 9

(b)

0

1

1

1

0 1

0

00

1 2 3

4 5 6

7 8 9

(a)

0

0

0

0

4 0

0

00

1 2 3

4 5 6

7 8 9

(c)

Figure 2: Three possible configurations in a (3, 3)-Grid with 4 robots. Numbers inside the circles
represent the multiplicity of the node. Numbers near the circles are node’s labels that are used to
ease the explanations only.

Theorem 4. There exists no deterministic exploration algorithm in the semi-synchronous model
using k ≤ 4 oblivious robots for a (3, 3)-Grid.

10

Proof. According to Theorem 3, we only need to consider the case of 4 robots.
Assume, by the way of contradiction, that there exists an exploration algorithm P for a (3, 3)-

Grid with 4 robots in the semi-synchronous model.
Figure 2 depicts three possible configurations for a (3, 3)-Grid with 4 robots. In Figure 2,

symbols inside the circles represent the multiplicity of the node and numbers next the circle are
node’s labels to help explanations only. Note that both Configuration (a) and (b) can be initial
configuration.

From now on, consider any synchronous execution of P (synchronous executions are possible
in the semi-synchronous model) starting from configuration (a). By “synchronous” we mean that
robots execute each operation of each cycle at the same time.

Configuration (a) is not a terminal configuration by Remark 1. So at least one robot move in
the next Move operation. Moreover, the views of all robots are identical in (a). So, every robot
moves in the next Move operation. Two cases are possible:

• Every robot moves to Node 5 and the system reaches Configuration (c). In this case, none
of the corners has been visited, so Configuration (c) is not terminal and at least one robot
moves in during the next Move operation. Moreover, the views of all robots are identical,
so every robot moves in the next Move operation. Each robot cannot differentiate its four
possible destinations. So, the adversary can choose destinations so that the system reaches
configuration (a) again.

• Every robot moves to a corner node and as its view is symmetric, the destination corner
is chosen be the adversary. In this case, the adversary can choose destinations so that the
system reaches configuration (b). Configuration (b) being not terminal, at least one robot
moves in during the next Move operation. Moreover, the views of all robots are identical,
so every robot moves in the next Move operation. Each robot cannot differentiate its two
possible possible destinations. So, the adversary can choose to destinations so that the system
reaches configuration (a) again.

From the two previous cases, we can deduce that there exist executions of P that never terminates,
so P is not an exploration algorithm, a contradiction.

4 Deterministic solution using 3 robots

In this section, we focus on the deterministic exploration of a grid by 3 robots, in asynchronous
model, and assuming weak multiplicity detection. Recall that there exists no deterministic solution
for the exploration using 3 robots in a (2, 2)- or (3, 3)-grid assuming that model (Section 3). More-
over, exploring a (1, 3)-grid using 3 robots is straightforward. So, we consider all remaining cases.
We split our study in two cases. The deterministic solution for any (`, L)-grid such that L > 3 is
given in Subsection 4.1. The particular case of the (2, 3)-grid is solved in Subsection 4.2.

4.1 The main algorithm

4.1.1 Overview

Our algorithm works according to the following successive three phases:
Set-Up phase: Starting from the initial (towerless) configuration, this phase aims at reaching a

particular configuration called Set-Up, without creating any tower during the process. A

11

configuration is of type Set-Up if there is a single line of robots starting at a corner and along
one of the L-borderlines of the grid, see Figure 3.

Figure 3: Configuration Set-Up

Orientation phase: Starting from a Set-Up configuration, this phase aims at giving an orienta-
tion to the grid. To achieve this, the robot that is at the corner moves to its adjacent occupied
node creating then a tower. The position of the tower establishes a common coordinate sys-
tem, see Figure 4. The resulting configuration is called an Oriented configuration.

Exploration phase: This phase starts from an Oriented configuration where exactly one node is
occupied by one single robot, called Explorer. Based on the coordinate system defined during
the Orientation phase, the explorer visits all the nodes, except three already visited ones,
see Figure 5.

We now describe the three above phases in more details. We start with the two last ones. We
focus then on the first phase, which is the most critical part of the algorithm.

4.1.2 Orientation Phase

This phase follows the Set-Up phase and consists of a single move where the robot that is at the
corner move to its adjacent occupied node. Once it has moved, a tower is created. The resulting
configuration is called an Oriented configuration, where the robots agree on a common coordinate
system as shown in Figure 4. The node with coordinates (0, 0) is the unique corner that is the
closest to the tower. The x-axis is given by the vector linking the node (0, 0) to the node where the
tower is located. The y-axis is given by the vector linking the node (0, 0) to its neighboring node
that does not contain the tower.

The following lemma is straightforward:

Lemma 4. Starting from a configuration of type Set-Up, the Orientation phase allows to reach
a configuration of type Oriented in 1 move.

4.1.3 Exploration Phase

This phase starts from an Oriented configuration. Note that, once this configuration is reached,
nodes of coordinates (0, 0), (1, 0), and (2, 0) have been necessarily visited. So, the goal is to visit all

12

(3,0) (4,0) (5,0) (6,0)

(6,1)(5,1)(4,1)(3,1)(2,1)(1,1)(0,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

(6,3)(5,3)(4,3)(3,3)(2,3)(1,3)(0,3)

(6,4)(5,4)(4,4)(3,4)(2,4)(1,4)(0,4)

(0,0) (1,0) (2,0)

Figure 4: Coordinate system built by the Orientation phase.

Figure 5: Exploration phase.

13

remaining nodes. To ensure that the exploration phase remains distinct from the previous phases
and keep the coordinate system, we only authorize the robot that does not belong to the tower to
move. This robot is called the explorer.

To explore all remaining nodes, the explorer should order all coordinates in such a way that (a)
(0, 0) and (0, 1) are before its initial position (that is (0, 2)) and all other coordinates are after; and
(b) for all non-maximum coordinates (x, y), if (x′, y′) are successor of (x, y) in the order, then the
nodes of coordinates (x, y) and (x′, y′) are neighbors. An example of such an order is �, defined as

follows: (x, y) � (x′, y′)
def
= y < y′∨ [y = y′∧ (x = x′∨y mod 2 = 0∧x < x′∨y mod 2 = 1∧x > x′)]

Using �, the explorer moves as follows: While the explorer is not located at the node having
the maximum coordinates according to �, the explorer moves to the neighboring node whose
coordinates are successors of the coordinates of its current position, as described in Figure 5.

The following lemma is straightforward:

Lemma 5. Starting from an Oriented configuration, the Exploration phase is done in n − 4
moves and once terminated all nodes have been visited.

4.1.4 Set-Up Phase

Assuming L > 3, the Set-Up phase aims at reaching a Set-Up configuration from any towerless
configuration, without creating any tower during the process. To that goal, we split the set of
all non-Set-Up towerless configurations into several classes. The behavior of the robots is mainly
determined according to these classes.

Beforehand, we define some terms and notations used in the sequel.

Definitions. We denote by ‖x, y‖ the Manhattan distance between nodes x and y. By a slight
abuse of notation, we also denote by ‖R1, y‖, ‖x,R2‖, or ‖R1,R2‖ the Manhattan distance ‖x, y‖
whenever R1 is a robot located on x and R2 is a robot located on y. In any configuration, we
denote by dcmin the minimal distance between a robot and any of the four corners. For any robot
R, we denote by #CC(R) the number of corners at distance dcmin from R. Conversely, we denote
by #CR(c) the number of robots which are at distance dcmin from c, for every corner c. When we
say “the robot R moves toward a node x (resp. toward a robot R?)” we mean that R moves to a
neighboring node that is on a shortest path (in terms of Manhattan distance) linking the location
of R to x (resp. to the location of R?). When we say “the robot R moves toward the borderline
bl” we mean that R moves to a neighboring node that is on a shortest path (in terms of Manhattan
distance) linking the location of R to a closest node that belongs to bl.

Classes. We now split the set of all non-Set-Up towerless configurations into several classes.
Class B: every towerless configuration, which is not Set-Up, and where all robots are located on

the same L-borderline.5 In this case, we denote by EBL (for “Elected BorderLine”) the
borderline which contains the three robots. Among the configurations of B, we distinguish

• the configurations of type B∗∗ where a corner and its neighbor on EBL are occupied.
(The second corner of EBL may be occupied too.)

• the configurations of type B∗ where
– either a unique corner is occupied, but its neighbor on EBL is free, or

5If ` = 1, then all non-Set-Up towerless configurations belong to Class B.

14

– the special case where L = 5 and EBL has two robots located on its extremities
and the third one located on its middle node.

Let B− = B \ (B∗∗ ∪ B∗).
Class C0: every towerless configuration, which is not B, where all corners are free.
Class C1: every towerless configuration, which is neither Set-Up nor B, where exactly one corner

is occupied. Among the configurations of C1, we distinguish the subclass C∗1 where, a second
robot is on a L-borderline having an occupied corner, but not the third one. Let C−1 = C1 \
C∗1.

Class C2: every towerless configuration, which is not B, where two exactly corners are occupied.
Among the configurations of C2, we distinguish the subclass C∗2 where the two occupied corners
are extremities of the same L-borderline. Let C−2 = C2 \ C∗2.

Class C3: every towerless configuration, where three corners are occupied. Notice that Class C3 is
not empty if and only if ` > 1.

Remark 2. {Set-Up, B, C0, C1, C2, C3} is a disjoint partition of the set of towerless configurations.

To simplify the design, we express below the algorithm of the Set-Up phase as a set of prioritized
rules, i.e., Rule (i) can be executed only if no Rule (j) with j < i is enabled. The rules are
discriminated according to the class where they apply. To accommodate the non-atomicity of the
model, we try to prevent, as far as possible, situations where more than one robot is engaged to
move. Actually, our algorithm never engage more than 2 robots simultaneously. Moreover:

Remark 3. There are only two cases when two robots can be engaged simultaneously: the first case
of either Rule (2) or Rule (16), respectively given in page 17 and 22.

From Remark 3, it follows that the three robots always move sequentially (i.e., one after an-
other), except in the two above cases. However, even these two cases, we adopt a “quasi-sequential”
behavior as follows:

Remark 4. When two robots R1 and R2 are engaged in a configuration γ, but only one robot, say
R1 moves, then in the reached configuration γ′, no robot except R2 is engaged. Moreover, the only
reachable configuration from γ′ is the same as the configuration reached from γ when both R1 and
R2 move simultaneously.

According to Remark 3 and Remark 4, the correctness is established by showing that our
algorithm actually achieves the transition system given in Figure 6.

Class B

When the current configuration belongs to this class, the Set-Up phase is in its final stage: the
system leaves this class within O(L) moves, and when it does, the reached configuration is of type
Set-Up.

Rule (1): If the configuration is of type B∗∗, then let c be the corner and x its neighbor such that
both c and x are occupied, the robot which is located neither on c nor on x moves toward x
(on EBL).

By definition of Rule (1), we immediately obtain the following lemma.

Lemma 6. If the configuration is of type B∗∗, then a configuration Set-Up is reached within at
most L− 3 moves, and no tower is created during the process.

15

≤ l

2

≤ 3

≤ 32

≤ 2

1

≤ l

≤ l-1

≤ l+1≤ l+1≤ l+1

≤ max(2,L-4)

≤ l

1

B**

C2
*

≤ l-1

C2
-C3

≤ 3

Set-Up≤ L-3B*B-
≤ L/2+2

C1
*C1

- \ (R16∪ R17)

R17

R16

R9

R8
≤ 3

C0 \ (R8∪ R9)

≤ (l +L)/2+1

≤ (l +L)/2+1

≤ (l +L)/2+1

≤ (l +L)/2+1

≤ (l +L)/2+1

≤ (l +L)/2-2

Figure 6: Transition system of the Set-Up phase. States represent classes of configurations, where
Ri denote the class of configurations where Rule (i) is enabled. Each weighted arrow is the possi-
bility of migrating from a class to another within a number of moves satisfying the bound given as
weight.

16

Then, we have a special case that applies only if L is odd (in this case, L ≥ 5). This special
case is described in Figures 7 and 8 and solved by Rule (2). It allows to obtain a useful property
used in Rules (5)-(7).

Rule (2): If the configuration is of type B, L is odd, and the node m in the middle of EBL is
in one of the two situations described in Figures 7-8, then apply the moves depicted in the
corresponding figure.

Figure 7: Case 1 for Rule (2). Figure 8: Case 2 for Rule (2).

mx y

Figure 9: Result of Rule (2).

Observation 1. If Rule (2) is enabled, then the system reaches within at most 2 moves the con-
figuration described in Figure 9 where robots on x and y are not engaged, and no tower is created
during the process.

Rule (3): If the configuration is of type B∗, then the robot not located on a corner which is closest
from an occupied corner moves toward a closest occupied corner (on EBL).

Lemma 7. If the configuration is of type B∗, then a configuration B∗∗ is reached within at most
max(2, L− 4) moves, without creating any tower during the process.

Proof. Assume a configuration of type B∗ with L = 5. Then, within at most 1 move, a configuration
of type B∗ like in Figure 9 is reached (if necessary, case 2 of Rule (2) is executed). Next, the robot
m located at the middle node move using Rule (3) (its destination is chosen by the adversary), and
then a configuration B∗∗ is reached. No tower is created during these moves.

Assume now a configuration of type B∗ with L > 5. Using Rule (3), a configuration B∗∗ is reached
within at most sequential L− 4 moves, and without creating any tower during the process.

Rule (4): If the configuration is of type B−, no corner (of EBL) is occupied, and a robot R is the
unique robot at distance dcmin from a corner,6 then R moves (on EBL) toward its closest
corner.

If Rule 4 is enabled, dcmin ≤ L
2 − 2, hence, by definition of Rule 4, follows.

Lemma 8. If Rule 4 is enabled, then a configuration B∗ is reached within at most L
2 − 2 moves,

and no tower is created during the process.

We consider now the case where the configuration is of type B− and Rule (2) is disabled whereas
two robots are, each of them, at distance dcmin from a corner (including the case where those robots
are located on the corners of EBL). In such a case, the third robots R allow to break ties.

First, consider the case where R is equidistant from the two corners of EBL. Notice that in
that case, the two neighboring nodes of R are free since Rule (2) is disabled. Moreover, R can
move to one of those free nodes without risking to create a tower, by Observation 1.

6This corner is necessarily on ABL.

17

Rules (5)-(7) below are, each of them, executed at most once. Rule (5) is followed by either
Rule (6) or Rule (7). Rules (6) and (7) are mutually exclusive in the whole execution.

Rule (5): If the configuration is of type B−, two robots are, each of them, at distance dcmin ≥ 0
from a corner (of EBL), and the other robot R is equidistant from the two corners of EBL,
then R moves to any adjacent node on EBL (the destination node is chosen by the adversary).

Rule (6): If the configuration is of type B−, two robots R1 and R2 are, each of them, located on a
corner (of EBL), and the other robot R3 satisfies ‖R3,R1‖ < ‖R3,R2‖, then R2 moves to
its adjacent (free) node on EBL.

Rule (7): If the configuration is of type B−, two robots R1 and R2 are, each of them, at distance
dcmin > 0 from a corner (of EBL), and the other robot R3 satisfies ‖R3,R1‖ < ‖R3,R2‖,
then R1 moves (on EBL) toward its closest corner.

Lemma 9. For any configuration B−, a configuration of type B∗ is reached within at most L
2 + 2

moves, without creating any tower during the process.

Proof. Let γ be any configuration of type B−. If Rule 4 is enabled, we are done by Lemma 8.
Otherwise, consider the following two cases:

1. Assume that two corners are occupied in γ. Then, L > 5 and a configuration of type B∗ is
reached within at most 2 moves (i.e., Rule (6), maybe preceded by Rule (5).

2. Assume that two robots are, each of them, at distance dcmin > 0 from a corner in γ. Then,
within at most 4 moves (n.b., the worst case consists in the following sequence: Rule (2)
twice, Rule (5), and finally Rule (7)), either a configuration of type B∗ or a configuration
where Rule (4) is enabled is reached. In the latter case, up to L

2 − 2 moves may be necessary
to reach a configuration of type B∗, by Lemma 8.

In all cases, no tower is created during the process, thanks to the property given in Observation 1.

Class C0

Except for Rule (8) which allows to directly reach a configuration Set-Up, the rules below aim
at migrating to either Class C1, Class B−, or B∗, within at most `+L

2 + 1 moves.
We begin by considering two special cases (Rules (8) and (9)) that help to solve the convergence

from Class C1 when ` = L (n.b., in that case, L ≥ 4), refer to Rules (16) and (17).

Rule (8): If the configuration is of type C0, ` = L, and robots are placed like one the two situations
described in Figures 10-13, apply the move depicted in corresponding figure.

Notice that in Cases 1-3, the execution of Rule (8) leads to a configuration where Case 4 applies,
hence follows.

Lemma 10. If Rule (8) is enabled, then a configuration Set-Up is reached within at most 2 moves,
and no tower is created during the process.

The following rule can be executed at most once.

18

Figure 10: Case 1 for Rule (8) (` = L) Figure 11: Case 2 for Rule (8) (` = L)

Figure 12: Case 3 for Rule (8) (` = L) Figure 13: Case 4 for Rule (8) (` = L)

Rule (9): If the configuration is of type C0, ` = L, and exactly one robot R1 is a distance 1 from
a corner, say c, and ‖R2, c‖ = ‖R3, c‖ where R2 and R3 are the two other robots, then
the robot, among R2 and R3, which is the closest from the borderline containing R1, moves
toward c (the adversary breaks ties, if necessary).

We now discriminate the remaining configurations C0 according to the number of robots at
distance dcmin from a corner.

Rule (10): If the configuration is of type C0 and there is a unique robot R at distance dcmin from
a corner, then R moves toward a closest corner (the adversary breaks ties, if necessary).

Lemma 11. After an execution of Rule (9), either a configuration C∗1 or a configuration C−1 where
both Rules (16) and (17) are disabled is reached within 1 move.

Proof. If Rule (9) is enabled, then Rule (8) is disabled and so both R2 and R3 are at distance
at least 3 from c, and consequently, all their neighboring nodes are free. After the execution of
Rule (9), Rule (10) is executed and the system reaches either a configuration C∗1 or a configuration
C−1 . Now, if the reached configuration is of type C−1 , then

• the two robots which are not located on the unique occupied corner c are at different distances
from c thanks to Rule (9),so Rule (17) is disabled, and

• one of them is at least at distance 3 from c as explained before, so Rule (16) is disabled.
Finally, since the two aforementioned moves are sequential, we can see that no tower is created
during the process.

The following four rules are executed at most once. More precisely, Rule (11) is necessarily
followed by Rule (12), Rule (12) is necessarily followed by Rule (13), and Rules (11)-(13) and
Rule (14) are mutually exclusive in the whole execution.

19

If exactly two robots are at distance dcmin from a corner, then the third robot is used to break
ties.

Rule (11): If the configuration is of type C0, there are exactly two robots R1 and R2 at distance
dcmin from a corner, R1 and R2 are on the same line, and the third robot R3 is neighbor
of both R1 and R2, then R3 moves to a neighboring free node (the adversary breaks ties, if
necessary).

Rule (12): If the configuration is of type C0, there are exactly two robots R1 and R2 at distance
dcmin from a corner, and ‖R1,R3‖ = ‖R2,R3‖, where R3 is the third robot, then R3 moves to
a neighboring free node x such that ‖R1, x‖ 6= ‖R2, x‖ (the adversary breaks ties, if necessary).

Rule (13): If the configuration is of type C0, there are exactly two robots R1 and R2 at distance
dcmin from a corner, but one of them, say R1, satisfies ‖R1,R3‖ < ‖R2,R3‖, where R3 is the
third robot, then R1 moves toward its closest corner (the adversary breaks ties, if necessary).

If the three robots are at distance dcmin from a corner, we use #CC() and #CR() to “elect”
one robot using Function Leader() given in Algorithm 1. In this case, #CC(R) ≥ 1 for every robot
R. Notice also that the configuration being towerless, #CC(R) ≤ 2 for every robot R. Moreover,
by definition, #CR(c) ≤ 3 for every corner c.

Rule (14): If the configuration is of type C0 and all robots are at distance dcmin from a corner,
then Leader() (see Algorithm 1) moves toward its closest corner.

Lemma 12. If the configuration is of type C0 and Rules (8) and (9) are disabled, then one of the
two following situations occurs.

1. A configuration γ of type either C1, B−, or B∗ is reached within at most `+L
2 + 1 moves.

Moreover, in γ, if ` = L, then the two robots R1 and R2 that are not on the unique occupied
corner c satisfy ‖R1, c‖ 6= ‖R2, c‖. Consequently, Rule (17) is disabled in γ.

2. A configuration of type C0 where Rule (9) is enabled is reached within at most `+L
2 −2 moves.

In both cases, no tower is created during the process.

Proof. In Class C0, moves are sequential only. So, if the system exits from C0, then it reaches either
C1, B

−, or B∗ without creating tower during the process, by definition of Rules (8)-(14). Moreover,
Rules (11)-(13) and Rule (14) are mutually exclusive, all of them always preceded Rule (10).

Assume Rule (13) is eventually executed. Then, Rule (13) may be preceded by at most two
moves (Rules (11)-(12)). After Rule (13), Rule (10) becomes enabled and dcmin ≤ `+L

2 − 2.
Executing Rule (10), some robot R moves and Rule (9) cannot becomes enabled because Rule (13)
has been executed before Rule (10), meaning the two robots other than R are always at different
distance from the corner targeted byR. So, after at most `+L

2 −2 moves of Rule (10), a configuration
of type either C1, B

−, or B∗ is reached: Case 1 of the lemma is satisfied.
Assume Rule (13) is never executed. Rule (14) may be executed once before Rule (10) becomes

enabled. When Rule (10) is enabled, dcmin ≤ `+L
2 − 2. Executing Rule (10), some robot R moves

and a configuration where Rule (9) is enabled may be reached 1 move before a robot reaches a
corner. So, either Rule (9) becomes enabled after at most one move of Rule (14) and at most
`+L
2 − 3 moves of Rule (10): case 2 of the lemma is satisfied. Or, Rule (9) never becomes enabled,

meaning the two robots other than R are always at different distance from the corner targeted by

20

Algorithm 1 Leader()

1: if there is a unique robot R such that #CC(R) = 1 then
2: return R
3: else if there is a unique robot R such that #CC(R) = 2 then
4: return R
5: else if every robot R satisfies #CC(R) = 1 then
6: if there is a unique corner c such that #CR(c) = 1 then
7: return R, such that R is at distance dcmin from c
8: else if every corner c satisfies #CR(c) ≤ 1 then
9: Let c1, c2, and c3 be the three corners such that #CR(ci) = 1, ∀i ∈ {1, 2, 3}.

10: Let c be the unique corner in {c1, c2, c3} which is the common extremity of two border-
lines,

each one having one of the two other corners of {c1, c2, c3} \ {c} as other extremity.
11: Let R be the robot at distance dcmin from c.
12: return R
13: else
14: Let c be the unique corner such that #CR(c) = 3.
15: Let SRE be the smallest rectangle that encloses c and the three robots.
16: Let R be the unique robot which is not on the boundary of SRE.
17: return R
18: end if
19: else
20: /* Every robot R satisfies #CC(R) = 2 */
21: There is a unique line ul that contains exactly two robots.
22: Let R be the robot which is not on ul.
23: return R
24: end if

21

R, and after at most one move of Rule (14) and at most `+L
2 −2 moves of Rule (10): a configuration

of type either C1, B
−, or B∗ is reached: Case 1 of the lemma is satisfied.

Class C1

In this class, we have two particular cases. The first one (Rule (16)) allows to reach a configu-
ration Set-Up within at most 5 moves. The second one (Rule (17)) is more intricate. Indeed, using
Rule (17) the system migrates within one move to Class C0, and then goes back to a configuration
γ of C1 within O(`+L) moves, however from γ Rule (17) remains disabled forever. All other rules
allow the system to migrate to Classes either Set-Up, B∗, B∗∗, or C∗2 within O(`) moves (from this
latter class, a configuration B is reached within O(`) moves).

Rule (15): If the configuration is of type C∗1, then the robot which is not on the L-borderline lbl
containing two robots moves a neighboring free non-corner node toward the closest free non-
corner node on lbl (the adversary breaks ties, if necessary).

Lemma 13. From Class C∗1, the system reaches either Class Set-Up, Class B∗ or Class B∗∗ within
at most `+ 1 moves, and without creating any tower during the process.

Proof. Using Rule (15), always the same robot moves toward free nodes, without creating any
tower until a configuration of either Class B∗ or Class B∗∗ is reached. Moreover, the robot may have
to circumvent a robot on lbl, so in the worst case at most ` + 1 moves are necessary to reach a
configuration of either Class B∗ or Class B∗∗.

We now consider two special cases when ` = L (in this case, L ≥ 4).

Figure 14: Case 1 for
Rule (16) (` = L)

Figure 15: Case 2 for
Rule (16) (` = L)

Figure 16: Case 3 for
Rule (16) (` = L)

Rule (16): If the configuration is of type C−1 , ` = L, and robots are placed like one the two
situations described in Figures 14-16, apply the move depicted in corresponding figure.

Notice that in Case 3 (Figure 16), the symmetric is broken by the adversary. From the definition
of Rule (16), we immediately deduce the following lemma.

Lemma 14. If Rule (16) is enabled, then a configuration C0 where Rule (8) (Case 1) is enabled is
reached within at most 3 moves, and no tower is created during the process.

The following rule can be executed at most once.

22

Rule (17): If the configuration is of type C−1 , ` = L, and ‖R3,R1‖ = ‖R2,R1‖ where R1 is the
unique robot located at a corner and R2 and R3 are the two other ones, then R1 moves to a
neighboring node (the adversary breaks the symmetry).

Notice that, since Rule (16) is disabled, if Rule (17) is enabled, then the two robots not located
on the unique occupied corner c are at least at distance 3 from c. In particular, the two neighbors
of c are free. From the definition of Rule (17), we immediately deduce the following lemma.

Lemma 15. If Rule (17) is enabled, then a configuration C0 where Rule (9) is enabled is reached
within 1 move, and no tower is created during the process.

Rules (18-20) below are executed, each of them, at most once. Moreover, they are mutually
exclusive in the whole execution.

Rule (18): If the configuration is of type C−1 , ` < L, and ‖R3,R1‖ = ‖R2,R1‖ where R1 is the
unique robot located at a corner and R2 and R3 are the two other ones, then the robot, among
R2 and R3, which is the closest from the L-borderline lbl having R1 located at one corner,
moves to a neighboring free node toward the closest free node of lbl.

If Rule (18) is enabled, then within on move the system reaches either Class C∗1, Class C∗2, a
configuration of type C−1 where Rule (21) is enabled.

Rule (19): If the configuration is of type C−1 and ‖R3,R1‖ > ‖R2,R1‖ where R1 is the unique
robot located at a corner and R2 and R3 are the two other ones, but both R2 and R3 are on
two L-borderlines having an occupied corner7, then R2 moves to its neighboring node outside
any borderline.

An execution of Rule (19) leads to a configuration is type C∗1.

Rule (20): If the configuration is of type C−1 and the robots are in the situation described in Fig-
ure 17, then apply the move depicted in the figure.

If Rule (20) is enabled, then ` > L and the borderline bl containing only one robot is a L-
borderline (otherwise, the configuration is of type C∗1), and consequently bl contains at least 4
nodes ensuring that the destination exists.

Figure 17: Rule (20), the configuration is of type C−1

Rule (21): If the configuration is of type C−1 and ‖R3,R1‖ > ‖R2,R1‖ where R1 is the unique
robot located at a corner and R2 and R3 are the two other ones, then R2 moves to a free

7This case can only occur if ` = L.

23

neighboring node x such that (a) ‖R3,R1‖ > ‖x,R1‖ and (b) x is on a shortest path (in terms
of Manhattan distance) to a closest free node on a L-borderline having an occupied corner
(the adversary breaks ties, if necessary).

Lemma 16. From any configuration C−1 where both Rule (16) and Rule (17) are disabled, a con-
figuration of type either C∗1, or C∗2 is reached within, respectively, at most ` moves and at most `− 1
moves. Moreover, no tower is created during the process.

Proof. Consider any configuration γ of type C−1 where both Rule (16) and Rule (17) are disabled
and study the following cases:

• Assume Rule (18) is enabled in γ. After the execution of Rule (18), the system is either Class
C∗1, Class C∗2, a configuration of type C−1 where Rule (21) is enabled. In the latter case, the
fact that Rule (19) is disabled and the configuration is of type C−1 implies that neither R2 nor
R3 are on a L-borderline having one occupied corner. Moreover, since Rule (20) is disabled,
there is a free node x satisfying Conditions (a) and (b). So, the unique robot that moves
using Rule (21) always move to a free node and is at distance at most `− 2 from a free node
of the L-borderline having an occupied corner. Hence, overall, in at most ` − 1 moves, the
system reaches a configuration of type either C∗1 or C∗2, without creating any tower during the
process.

• Assume Rule (19) is enabled in γ. Within the next move, the system reaches a configuration
of type C∗1 and we are done.

• Assume Rule (20) is enabled in γ. In this case, ` ≥ 3 and in three sequential moves (Rule (20)
followed by Rule (21) twice), the system reaches a configuration of type C∗1 without creating
any tower during the process, and we are done.

• Assume Rule (21) is enabled in γ. In this case, the fact that Rule (19) is disabled and the
configuration is of type C−1 implies that neither R2 nor R3 are on a L-borderline having
one occupied corner. Moreover, since Rule (20) is disabled, there is a free node x satisfying
Conditions (a) and (b). So, until a configuration of type C∗1 or C∗2 is reached, the same robot
move using Rule (21) toward a free node, so no tower is created until a configuration of type
C∗1 or C∗2. Moreover, we have two cases: either the final destination of the moving robot is
a corner and in this case, a configuration of type C∗2 is reached within at most ` − 1 moves;
otherwise, a configuration of type C∗1 is reached within at most ` moves (the robot may have
to circumvent an occupied corner).

Class C2

The aim here is to migrate to either C1 (within at most 3 moves) or B (within at most ` moves).

Rule (22): If the configuration is of type C∗2, then the robot which is not located on a corner moves
to a free neighboring node toward the closest free node located on the L-borderline having two
occupied corners.

By definition of Rule (22), follows.

Lemma 17. If the configuration is of type C∗2, then a configuration of type Class B is reached within
at most `− 1 moves, without creating any tower during the process.

24

In the remaining cases, the robot which is not on a corner allows to break ties.

Rule (23): If the configuration is of type C−2 and ‖R3,R1‖ = ‖R3,R2‖ where R1 and R2 are the
two robots located on a corner and R3 the other one, and R3 is neighbor of two corners, then
R3 moves to its unique non-corner neighbor.

Rule (24): If the configuration is of type C−2 and ‖R3,R1‖ = ‖R3,R2‖ where R1 and R2 are the
two robots located on a corner and R3 the other one, then R3 moves to a neighboring free node
x such that x is not a corner and ‖x,R1‖ 6= ‖x,R2‖ (the adversary breaks ties, if necessary).

Rule (25): If the configuration is of type C−2 and ‖R3,R1‖ 6= ‖R3,R2‖ where R1 and R2 are the
two robots located on a corner and R3 the other one, then the robot, among R1 and R2, which
is the farthest from R3 moves to a neighboring non-corner free node (the adversary breaks
ties if necessary).

Lemma 18. If the configuration is of type C−2 , then a configuration of type C1 where Rule (16) is
disabled is reached within at most 3 moves, without creating any tower during the process.

Proof. Each of the three rules (23), (24), and (25) are executed at most once and are sequential.
So, from their definition, we can deduce that their execution do not create any tower.

Moreover, Rule (23) is necessarily followed by Rule (24), and Rule (24) is necessarily followed
by Rule (25). Finally, when one of these rules is enabled, the configuration is not of type C∗2 and
as using these rules, the robots located at corners do not move, the configuration reached after
executing these rules cannot be of type B. That is, the reached configuration is necessarily of type
C1. Moreover, in this latter configuration, Rule (16) is disabled. Indeed, if ` = L, then the two
occupied corners are not extremities of the same borderline and so the unique robot that occupies
a corner after at most 3 moves remains at distance at least 5 from the robot that has just left a
corner.

Class C3

The aim here is to migrate in 1 move to Class C−2 .

Rule (26): If the configuration is of type C3, then the robot located on the occupied corner c that is
the common extremity of two borderlines, each one having its two extremities occupied, moves
toward an adjacent free node (the adversary breaks ties, if necessary).

By definition of Rule (26), follows.

Lemma 19. If the configuration is of type C3, then a configuration of type C−2 is reached within 1
move, without creating any tower during the process.

The transition system given in Figure 6 summarizes Lemmas 6-19. Its states represent a parti-
tion of the set of all towerless configurations (see Remark 2). Moreover, this system is acyclic and
contains only one sink: the class Set-Up. So, we can deduce from any towerless configuration the
system reaches within a finite number of moves a configuration of type Set-Up. Finally, we can
remark that the weight of any directed path to Set-Up is in O(`+ L). Hence, follows.

Lemma 20. Starting from any towerless configuration, the Set-Up phase allows to converge to a
configuration of type Set-Up in O(`+ L) moves.

25

By Lemmas 6-19, no tower is created during the Set-Up phase, hence Phases Set-Up, Orientation,
and Exploration are unambiguous, and by Lemmas 4-20, we can deduce the following theorem.

Theorem 5. The three phases Set-Up, Orientation, and Exploration allows to deterministically
explore any (`, L)-Grid such that L > 3 in Θ(n) moves using 3 robots, where n = `× L is the size
of the grid.

4.2 Exploring a (2,3)-Grid

The idea for the (2, 3)-Grid is quite simple. Let us consider the two L-borderlines of the grid. Since
there are initially three isolated robots on the grid, there exists one of the two L-borderlines, say
lbl, that contains either all the robots or exactly two robots. In the second case, the robot that
is not part of lbl moves to the adjacent free node toward the free node of lbl. Thus, the three
robots are located on lbl after at most 3 moves. Next, the robot not located at any corner moves
to one of its two neighboring occupied nodes. (The destination is chosen by the adversary.) Thus,
a tower is created after one additional move. Once the tower is created, the grid is oriented. Then,
the single robot moves to the adjacent free node in the L-borderline that does not contain the
tower. Next, it explores the nodes of this line by moving along the line toward the tower. When
it becomes neighbor of the tower (after 3 moves), it stops and all the nodes of the (2, 3)-Grid have
been explored.

Theorem 6. In the asynchronous model, the deterministic exploration of a (2, 3)-Grid can be solved
in at most 7 moves by 3 oblivious robots.

5 Deterministic solution for a (3,3)-grid using 5 robots

In this section, we propose an algorithm that explores a (3, 3)-Grid using 5 asynchronous robots,
assuming weak multiplicity detection. The algorithm works within two phases executed in sequence:
the Set-Up phase, followed by the Exploration phase.

5.1 Set-Up Phase

The Set-Up phase starts from any towerless configuration. Let U be a maximal set of towerless
configurations such that every two configurations of U are distinguishable.

First, since the number of robots and the size of the grid are small, we have automatically
computed the set U of

(
9
5

)
= 126 possible towerless configurations. Then, for every pair of config-

urations g1, g2 in U , we have removed g2 from U if g1 and g2 are indistinguishable. This process
led to the set of 23 configurations shown in Figure 18.8

Observation 2. Any set U contains exactly 23 configurations given in Figure 18.

Figure 18 also shows the transition diagram of the Set-Up phase, with the robot’s moves.
The goal of Set-Up consists in reaching one of the configurations in P-E ⊆ U . They are called
Pre-Exploration configurations, from which the Exploration phase starts. P-E = { 12 , 13 , 14 , 15 , 19 , 20 , 22 , 23},
where each x represents the ID of the configuration in Figure 18. The configuration in grey be-
longs to P-E, the set of Pre-Exploration configurations. The little arrows represent the possible

8The source code, written is C, can be found at http://www-verimag.imag.fr/~devismes/robots/.

26

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23

Figure 18: Set-Up built over U , a maximal set of distinguishable towerless configurations.

27

12 13 19

Figure 19: Exploration starting from the configurations 12 , 13 , and 19 . Hatched areas show visited
nodes.

moves. When several destinations are possible, the choice is left to the adversary. Transitions from
a configuration to another are shown with dashed arrows. A single head arrow 99K (double head
arrow 99K99K) shows a transition with only one robot (resp., two robots) moving.

Observation 3. Starting from any towerless configuration, the Set-Up phase leads to a configura-
tion in P-E in at most 3 moves.

5.2 Exploration Phase

There are five different sequences to explore the (3, 3)-grid, depending on the Pre-Exploration

configuration where preparation phase terminated. The five sequences are shown from Figure 19
to Figure 23.

Explorations proposed in Figures 19 and 20 are respectively distinct from all other explorations
thanks to the position of the unique tower. For the other explorations in Figures 21-23, the
positions of the robots relative to the unique tower make all configurations of these explorations
distinguishable from each other. So, explorations given in Figures 19-23 are unambiguous, and
follows.

Observation 4. Any configuration used during the Exploration phase appears only once and each
of the five exploration sequences terminates after at most 9 moves.

Theorem 7. In the asynchronous model, the deterministic exploration of a (3, 3)-Grid can be solved
in at most 12 moves by 5 oblivious robots.

28

22

12

3

0

4 5

6

Figure 20: Exploration from Configuration 22 .

29

14 23

Figure 21: Exploration starting from 14 and 23 . Hatched areas show visited nodes.

6 Conclusion

We presented necessary and sufficient conditions to explore an anonymous grid with a team of
k asynchronous oblivious robots. Our results show that, perhaps surprisingly, exploring a grid
is easier than exploring a ring. In the ring, deterministic (respectively, probabilistic) solutions
essentially require 5 (resp., 4) robots. In the grid, 3 robots are necessary (even in the probabilistic
case) and sufficient (even in the deterministic case) in the all but two cases, while the two remaining
instances do require 4 and 5 robots, respectively. Note that the general algorithm given in this
paper requires exactly 3 robots to solve the problem in Θ(n) moves, where n is the number of nodes
in the grid. It is worth investigating whether exploration of a grid of n nodes can be achieved using
any number k (3 > k ≥ n− 1) of robots, in particular when k is even.

References

[1] Roberto Baldoni, François Bonnet, Alessia Milani, and Michel Raynal. Anonymous graph
exploration without collision by mobile robots. Inf. Process. Lett., 109(2):98–103, 2008.

[2] Roberto Baldoni, François Bonnet, Alessia Milani, and Michel Raynal. On the solvability of
anonymous partial grids exploration by mobile robots. In Theodore P. Baker, Alain Bui, and
Sébastien Tixeuil, editors, Principles of Distributed Systems, 12th International Conference,
OPODIS 2008, Luxor, Egypt, December 15-18, 2008. Proceedings, volume 5401 of Lecture
Notes in Computer Science, pages 428–445. Springer, 2008.

[3] François Bonnet, Alessia Milani, Maria Potop-Butucaru, and Sébastien Tixeuil. Asynchronous
exclusive perpetual grid exploration without sense of direction. In Antonio Fernández Anta,

30

20

Figure 22: Exploration starting from 20 . Hatched areas show visited nodes.

31

15

Figure 23: Exploration from 15 . Hatched areas show visited nodes.

32

Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed Systems - 15th Inter-
national Conference, OPODIS 2011, Toulouse, France, December 13-16, 2011. Proceedings,
volume 7109 of Lecture Notes in Computer Science, pages 251–265. Springer, 2011.

[4] Jérémie Chalopin, Paola Flocchini, Bernard Mans, and Nicola Santoro. Network exploration
by silent and oblivious robots. In Dimitrios M. Thilikos, editor, Graph Theoretic Concepts in
Computer Science - 36th International Workshop, WG 2010, Zarós, Crete, Greece, June 28-
30, 2010 Revised Papers, volume 6410 of Lecture Notes in Computer Science, pages 208–219,
2010.

[5] Gianlorenzo D’Angelo, Gabriele Di Stefano, Alfredo Navarra, Nicolas Nisse, and Karol Suchan.
A unified approach for different tasks on rings in robot-based computing systems. In IPDPS
Workshops, pages 667–676. IEEE, 2013.

[6] Stéphane Devismes, Anissa Lamani, Franck Petit, and Sébastien Tixeuil. Optimal torus explo-
ration by oblivious robots. In Ahmed Bouajjani and Hugues Fauconnier, editors, Networked
Systems - Third International Conference, NETYS 2015, Agadir, Morocco, May 13-15, 2015,
Revised Selected Papers, volume 9466 of Lecture Notes in Computer Science, pages 183–199.
Springer, 2015.

[7] Stéphane Devismes, Franck Petit, and Sébastien Tixeuil. Optimal probabilistic ring exploration
by semi-synchronous oblivious robots. Theoretical Computer Science (TCS), 498:10–27, 2013.

[8] Asaf Efrima and David Peleg. Distributed algorithms for partitioning a swarm of autonomous
mobile robots. Theor. Comput. Sci., 410(14):1355–1368, 2009.

[9] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. Remembering without
memory: Tree exploration by asynchronous oblivious robots. Theor. Comput. Sci., 411(14-
15):1583–1598, 2010.

[10] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. Computing without com-
municating: Ring exploration by asynchronous oblivious robots. Algorithmica, 65(3):562–583,
2013.

[11] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool, 2000.

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming
language lustre. Proceedings of the IEEE, 79(9):1305–1320, september 1991.

[13] Anissa Lamani, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. Optimal determin-
istic ring exploration with oblivious asynchronous robots. In 17th International Colloquium on
Structural Information and Communication Complexity (SIROCCO), pages 183–196, 2010.

[14] Giuseppe Prencipe. Instantaneous actions vs. full asynchronicity : Controlling and coor-
dinating a set of autonomous mobile robots. In Theoretical Computer Science, 7th Italian
Conference (ICTCS 2001), Proceedings, volume 2202 of Lecture Notes in Computer Science,
pages 154–171, 2001.

33

[15] P. Raymond. Synchronous program verification with lustre/lesar. In S. Mertz and N. Navet, ed-
itors, Modeling and Verification of Real-Time Systems, chapter 6, page 171–206. ISTE/Wiley,
2008.

[16] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

34

