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Purpose: To propose a novel segmentation framework that is dedicated to the  
follow‐up of fat infiltration in individual muscles of patients with neuromuscular 
disorders.
Methods: We designed a semi‐automatic segmentation pipeline of individual leg 
muscles in MR images based on automatic propagation through nonlinear registra-
tions of initial delineation in a minimal number of MR slices. This approach has been 
validated for the segmentation of individual muscles from MRI data sets, acquired 
over a 10‐month period, from thighs and legs in 10 patients with muscular dystrophy. 
The robustness of the framework was evaluated using conventional metrics related to 
muscle volume and clinical metrics related to fat infiltration.
Results: High accuracy of the semi‐automatic segmentation (mean Dice similarity 
coefficient higher than 0.89) was reported. The provided method has excellent reli-
ability regarding the reproducibility of the fat fraction estimation, with an average in-
traclass correlation coefficient score of 0.99. Furthermore, the present segmentation 
framework was determined to be more reliable than the intra‐expert performance, 
which had an average intraclass correlation coefficient of 0.93.
Conclusion: The proposed framework of segmentation can successfully provide an 
effective and reliable tool for accurate follow‐up of any MRI biomarkers in neuro-
muscular disorders. This method could assist the quantitative assessment of muscular 
changes occurring in such diseases.

K E Y W O R D S
image registration, image segmentation, muscle, neuromuscular disorders

1 |  INTRODUCTION

Patients with neuromuscular diseases experience progressive 
loss of muscle strength. Histopathological analysis of muscle 

biopsies often reveals signs of fatty infiltration. Quantification 
of the corresponding pathological process is of great value 
for understanding natural history of a given disease1-3 and for 
reliable evaluation of therapeutic strategies.4,5
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Magnetic resonance imaging has become a tool of choice 
for the investigation of neuromuscular diseases, thanks to its 
noninvasive nature and its ability to distinguish fat and mus-
cle tissue.6 As such, MRI allows quantitative assessment of 
the amount of fat infiltration by determining the fraction of 
fat within the muscle. To do so, muscles of interest have to 
be delineated. The corresponding segmentation process has 
primarily been performed manually, making the approach  
operator‐dependent and time‐consuming.7 As a result, 
often only a limited number of slices have been selected.3,8 
Considering that fat replacement is nonuniformly distributed 
along the proximo‐distal axis in muscles,1,9 a single slice or 
a limited number of slices might not accurately represent the 
entire muscle. In addition, each individual muscle can be  
affected differently and varies among patients and neuro-
muscular disorders.10-12 Therefore, it is of utmost importance 
to assess muscles individually, instead of muscle groups. 
Reliable automatic segmentation methods are still warranted 
for individual muscles.

Several semi‐automated and automated methods have 
been reported in the literature with the aim of segmenting 
muscle groups or individual muscles in MR images of healthy 
volunteers.13-18 Although promising, none of these methods 
has been tested for MR images recorded in patients with neu-
romuscular disorders. Automatic segmentation methods have 
been reported for images of obese patients,19,20 but only for 
the discrimination between the muscle as a whole and the ad-
ipose tissue. More recently, a few studies have addressed the 
issue of distinguishing muscle, intramuscular adipose tissue, 
and subcutaneous adipose tissue in patients with a severe fat 
infiltration.21-24 These approaches have considered the mus-
cle compartment as a whole or as muscle groups, which might 
not be optimal in neuromuscular disorders in which individ-
ual muscles will be affected differently.11,12 Segmentation of 
individual muscles has only been performed in healthy sub-
jects, in whom fat infiltration and atrophy are not confound-
ing factors for the automatic muscle segmentation.

We previously combined 2D nonlinear registration meth-
ods with the aim of retrieving the whole 3D muscle segmenta-
tion on the basis of a propagation of 2D manually segmented 
masks for a limited number slices. This approach reported 
promising results for the segmentation of the 4 quadriceps 
femoris muscles from MR images recorded in healthy sub-
jects.25 As an extension of this seminal work, the first pur-
pose of the present study was to assess the performance of the 
corresponding method for the segmentation of all individual 
leg muscles in MR images recorded in patients with neuro-
muscular disorders.

Furthermore, quantification of muscle volumes and fat 
infiltration in individual muscles is also of interest for longi-
tudinal assessments such as natural history studies or clinical 
trials. In that respect, segmentation of individual muscles has 
to be repeated multiple times along the assessment period. 

Therefore, the second aim of this study was to further extend 
our initial work toward a longitudinal aspect. More specif-
ically, we proposed a new propagation tool based on a 3D 
nonlinear registration method that is dedicated to follow‐up 
studies. In that respect, we assessed the corresponding per-
formance regarding changes over repeated sessions with an 
initial delineation only performed at baseline. The proposed 
segmentation framework has been designed to save time 
without compromising the accuracy of the whole 3D muscle 
segmentation for multiple data sets recorded longitudinally. 
The robustness of the framework was evaluated using con-
ventional metrics related to muscle volume and clinical met-
rics related to fat infiltration.

2 |  METHODS

2.1 | Subjects
We randomly selected 12 patients (5 women) with geneti-
cally confirmed myotonic dystrophy type 1 (DM1), who par-
ticipated in the randomized controlled trial OPTIMISTIC.26 
They were 46 ± 12 years old, had a disease severity score  
of 3.0 ± 0.8 (MIRS score27) and could walk on average  
411 ± 90 m during a 6‐minute walk test.

2.2 | Magnetic resonance imaging protocol
The thigh and lower leg of the DM1 patients were examined 
twice, 10 months apart, with a 3T MR system (TIM Trio, 
Siemens, Erlangen, Germany) using a spine/phased array coil 
combination. We acquired a 3D Dixon sequence (TR = 10 ms,  
flip angle = 3°, in‐plane FOV = 256 × 192 mm2, matrix = 
256 × 192, number of slices = 32, slice thickness = 5 mm) 
with either a 2‐point Dixon (TE1/TE2 = 2.45/3.675 ms) or 
a 3‐point Dixon (TE1/TE2/TE3 = 2.31/3.68/5.07 ms). The 
same protocol was used for the thigh and leg and ensured that 
baseline and follow‐up scans were acquired with the same 
version of the Dixon protocol (i.e., or both time points with 
a 2‐point version or both time points with a 3‐point version). 
Fat (F) and water (W) images were generated using the man-
ufacturer’s reconstruction, and a fat fraction (FF) map was 
calculated voxel‐wise as F/(F+W). Furthermore, 4 subjects 
were scanned twice on the same day in order to assess in-
trasubject repeatability. The study was approved by the local 
human research committee and was conducted in conformity 
with the Declaration of Helsinki (version October 2013) and 
the Medical Research Involving Human Subjects Act. Prior 
written informed consent was obtained from all subjects.

2.3 | Ground truth segmentation
An expert (L.H.) manually segmented each individual mus-
cle of the thigh and lower leg on the 25 middle slices of the 
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out‐of‐phase images using FSLview, the 3D viewer included 
in the FSL toolbox.28 Individual muscles were delineated on 
all 25 slices approximately 1 voxel away from the subcutane-
ous fat, fasciae, and large blood vessels, to avoid contamina-
tions that could bias the FF values. The corresponding masks 
were considered as the ground truth and were used to assess 
the performance of the semi‐automatic segmentation method. 
The following muscles were delineated: adductor longus, ad-
ductor magnus, long head of the biceps femoris, short head of 
the biceps femoris (BFS), gracilis, rectus femoris (RF), sarto-
rius, semimembranosus, semitendinosus, vastus intermedius, 
vastus lateralis, vastus medialis (VM) and extensor digito-
rum/hallucis longus, fibularis brevis/longus, gastrocnemius 
lateralis (GL), gastrocnemius medialis (GM), soleus, tibi-
alis anterior, and tibialis posterior (TP) for the thigh and the 
lower leg, respectively (Figure 1). The time for the manual 
segmentation of a given data set was approximately 2 hours 
for the lower leg and 3 hours for the thigh.

2.4 | Segmentation propagation
Our semi‐automatic segmentation framework is outlined in 
Figure 2. Two different successive propagation processes 
were involved: 1 for transversal propagation and 1 for lon-
gitudinal propagation for the segmentation of baseline and 
follow‐up data sets, respectively. Segmentation propagations 
were performed using the 4 Dixon contrast independently, to 
determine the optimal contrast for the propagation processes.

2.4.1 | Transversal propagation
On the baseline data set, we selected the first and the last 
slice of the manual gold‐standard segmentation defining 
the 3D region of interest together with additional slices for 
which a muscle was appearing or disappearing (step 1 in 
Figure 2). For the thigh, the manual segmentation of 3 sup-
plementary slices were required in order to take into account 

F I G U R E  1  Overview of the segmented muscles in the thigh and lower leg. Abbreviations: AL, adductor longus; AM, adductor magnus; 
BFL, long head of the biceps femoris; BFS, short head of the biceps femoris; EDL‐EHL, extensor digitorum/hallucis longus; FB‐FL, fibularis 
brevis/longus; G, gracilis; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; RF, rectus femoris; S, sartorius; SM, semimembranosus; SOL, 
soleus; ST, semitendinosus; TA, tibialis anterior; TP, tibialis posterior; VI, vastus intermedius; VL, vastus lateralis; VM, vastus medialis
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the emergence of both RF and adductor longus muscles and 
the termination of the BFS muscle. For the lower leg, the 
manual segmentation of 2 supplementary slices were needed 
for the emergence of gastrocnemii muscles. These nine 2D 
manual segmentations were then transversally propagated 
to the 41 remaining slices of the 3D region of interest using 
several 2D nonlinear registration approaches as we previ-
ously described25 (step 2). For this transversal propagation 
aspect, the method took advantage of the shape information 
from the initial manual segmentations, with no other previ-
ous information regarding muscles shapes, together with the 
grayscale anatomical information provided by MR images, 
to follow the anatomical variations of muscles along the leg. 
The propagation process was performed simultaneously on 
all muscles, so overlapping classes did not occur.

2.4.2 | Longitudinal propagation
The longitudinal propagation was based on a robust reg-
istration process performed between the baseline and fol-
low‐up data sets. As a prerequisite, a N4 bias correction 
algorithm29 was used on both data sets. Then, an initial 

translation was performed using the centers of mass, and the 
corresponding result was used to design an optimal affine 
transformation. Thereafter, a 3D nonlinear B‐Spline SyN 
registration (B‐spline symmetric diffeomorphic normali-
zation implemented in the ANTs library30) was performed 
between the pre‐aligned baseline and follow‐up Dixon data 
sets. The choice of such a nonlinear diffeomorphic model 
was motivated by the need to register muscles that might 
show large deformations between 2 acquisition sessions. 
The following variables were used for the optimization of 
the B‐spline SyN stage: gradient step = 0.1, cost function as 
cross correlation, 4 multiresolution steps with, respectively, 
100 × 70 × 50 × 10 iterations max per level, shrink factor = 
8 × 4 × 2 × 1, and smoothing sigmas = 3 × 2 × 1 × 0 mm. 
Finally, we applied the B‐spline SyN deformation field and 
the affine transform file on the baseline segmentation to ob-
tain the follow‐up segmentation masks. Nearest‐neighbor 
interpolation was applied to each baseline mask to keep the 
integer values from the original labels. To make sure that, 
on a subject basis, volumes of interest were comparable for 
successive acquisition time points, translations along the 
proximo‐distal axis were not allowed for the longitudinal 

F I G U R E  2  Schematic overview of the semi‐automated segmentation pipeline. The manual delineation of individual muscles was initially 
performed for a few axial slices of each baseline data set (step 1). The corresponding masks were then transversally propagated to the whole 
3D region of interest (step 2). Subsequently, a 3D nonlinear registration step was performed between baseline and follow‐up data sets so that a 
longitudinal propagation of the baseline 3D segmentations was possible (step 3)
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registration processes. This way, the volumes of interest for 
both baseline and follow‐up MR acquisitions always cov-
ered the same area of 25 slices.

2.4.3 | Validation metrics
To assay the performance of our semi‐automatic segmenta-
tion framework regarding both transversal and longitudinal 
propagations, metrics related to muscle volume and fat in-
filtration were used. The manually segmented slices used as 
input for the transversal propagation process have not been 
considered in the metric computations.

To assess the similarity between volumes of interest, the 
Dice similarity coefficient31 (DSC) was calculated for each 
muscle. The DSC values can range from 0 to 1 and describe 
the similarity between the muscle segmentation obtained 
using our semi‐automatic methods (A) and with the manual 
delineation process (M) (Equation 1). A high DSC value il-
lustrates a high similarity.

Regarding the fat infiltration metric, FF values were aver-
aged within the whole set of voxels of the FF map within 
the regions of interest for both the manual (FFM) and auto-
matic segmentation (FFA). The values of FFM and FFA were 
computed separately for both baseline and follow‐up data 
sets.

In addition, we performed 2 types of repeatability assess-
ments to test the repeatability of the fat infiltration quanti-
fication through the segmentation and between repeated 
acquisitions. First, the measurement repeatability was as-
sessed by scanning 4 subjects twice over a single day. In that 
case, segmentations were performed manually twice (FFMR1 
and FFMR2) by the same expert. Second, we assessed the in-
terexpert repeatability of the method. Two experts performed 
the initialization work (i.e., the manual segmentation of a few 
chosen slices for 4 MRI data sets [thigh and leg] randomly 
extracted from the baseline data sets). The semi‐automated 
propagation generated 2 sets, A1 (expert 1) and A2 (expert 2), 
from which FF values (FFA1 and FFA2) could be computed 
and compared to the results of the ground‐truth manual seg-
mentation (FFM) of expert 1.

The obtained FF values were compared using the intra-
class correlation coefficient (ICC) with a 2, 1 formula32 and 

standard error of measurement (SEM). Furthermore, Bland‐
Altman analysis33 was performed to analyze the agreement 
between the manual and automatic methods.

3 |  RESULTS

The proposed method was used for the semi‐automatic seg-
mentation of 20 data sets from 12 subjects (10 thigh and  
10 lower‐leg data sets). Two data sets were excluded due to 
acquisition issues.

3.1 | Semi‐automatic propagation compared 
with manual ground truth

3.1.1 | Dice similarity index
As illustrated in Table 1, DSC values related to different con-
trasts did not differ for both the transversal and longitudinal 
propagations. For the sake of clarity, all results shown from 
here on were obtained by propagating on the water contrast, 
which provided the highest mean DSC values. Similar results 
were obtained with the other contrasts.

Figure 3 shows a few examples of the muscle‐region seg-
mentation propagation for the thigh and lower leg. For the 
sake of simplicity, only the most middle slice of the seg-
mented region of interest is shown. There is a large variation 
in muscle volume, muscle fat infiltration, and subcutaneous 
fat thickness among subjects. Furthermore, these images 
represent the variation observed in our data set between a 
baseline scan and a follow‐up. For example, the lower leg 
shape in patient P10 was clearly different between baseline 
and follow‐up, probably due to different positioning of the 
leg and surface coils, affecting the longitudinal segmentation. 
Considering the whole set of muscles, the overall mean DSC 
value was higher than 0.89, with an average of 91.2 ± 4.3 for 
baseline data sets (transversal propagation) and 87.9 ± 7.7 for 
follow‐up (longitudinal propagation) data sets (Table 1). The 
DSC values obtained for the individual muscles ranged from 
0.83 to 0.96 for the baseline and from 0.76 to 0.94 for the 
follow‐up data sets (Figure 4). The transversal propagation 
showed rather homogeneous results with DSC values higher 
than 0.90 for all muscles but adductor longus, BFS, exten-
sor digitorum/hallucis longus, and GL. The GL had the low-
est overall scores for almost every patient. The longitudinal 
propagation generated more outliers with a particularly low 

(1)DSC(A, M)=
2 ⋅ |A∩M|

|A|+ |M|

Dixon image In phase Out phase Water Fat

DSCTransversal Propagation 89.5 ± 5.2 90.3 ± 4.8 91.2 ± 4.3 90.9 ± 4.5

DSCLongitudinal Propagation 80.0 ± 17.0 85.4 ± 13.3 87.9 ± 7.7 87.3 ± 9.1

T A B L E  1  Global mean DSC between manual reference and automatic propagation (transversal and longitudinal) segmentation using each 
Dixon contrast
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6 |   OGIER Et al.

F I G U R E  3  Examples of the automatic muscle segmentation for the baseline propagation and the longitudinal follow‐up propagation (Aseg) 
compared with the manual segmentation (Mseg)

F I G U R E  4  Box plots showing Dice individual similarity coefficients (DSC) for each muscle (x‐axis). The DSC values were calculated from 
a comparative analysis between manual and automatic segmentations for both baseline and follow‐up data sets. Circles represent DSC values for 
each subject
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DSC value (0.35) regarding the GL muscle in patient P10 
(Figure 4).

3.1.2 | Fat fraction
The averaged FF values quantified from the manual and auto-
matically obtained segmentations and the corresponding ICC 
and SEM values are gathered in Table 2. For the thigh mus-
cles at baseline, FFM values ranged from 7.8 ± 7.0 % (RF) to 
22.1% ± 21.1% (semimembranosus), while FFA values were 
very similar and ranged from 8.3% ± 7.8% (RF) to 22.3% ± 
21.0% (semimembranosus). For follow‐up data sets, FF val-
ues were slightly higher with FFM values in the thigh ranging 
from 9.5% ± 7.7% (RF) to 24.2% ± 25.9% (semitendinosus),  
while FFA values ranged from 11.2% ± 10.5% (RF) to  
24.2% ± 25.7% (semitendinosus). In the lower leg, more severe 
fat infiltration is observed (Table 2). For the baseline data sets, 
FFM values in the lower leg ranged from 13.1% ± 17.9% (TP) 
to 36.8% ± 25.8% (SOL), while FFA values were very simi-
lar and ranged from 13.1% ± 18.1% (TP) to 37.0% ± 27.8% 
(GM). Similar to what we observed in the thigh muscles, the 
averaged FF values were slightly higher for the follow‐up data 
sets, with FFM values ranging from 14.0% ± 17.6% (TP) to 

39.3% ± 26.9% (semitendinosus), while FFA values ranged 
from 14% ± 17.6% (TP) to 39.9% ± 23.6% (SOL).

3.1.3 | Intraclass correlation coefficient
The corresponding ICC values were very high, with an 
average score of 0.99, and most values were equal to 1.00. 
In the baseline data sets, they ranged from 0.98 to 1.00 and 
0.99 to 1.00 in the thigh and lower leg, respectively. For the 
follow‐up data sets, ICC values ranged from 0.94 to 1.00 for 
the thigh muscles and from 0.97 to 1.00 for the lower leg 
muscles. For each muscle, ICC values were always lower in 
the follow‐up data sets than in the baseline data sets (Table 2), 
which can be explained by the longitudinal propagation of 
segmentation errors created in the transversal propagation 
process.

3.1.4 | Bland‐Altman analysis
The Bland‐Altman analysis revealed for the FF values quan-
tified from automatic and manual segmentations at baseline a 
bias of −0.3 percentage point of FF value with 95% limits of 
agreement ranging between −3.0 and 2.4 points (Figure 5A).  

T A B L E  2  Mean FF values, intraclass correlation coefficient, and standard error of the measurement measured for the baseline and follow‐up 
data sets

Muscle

Baseline Follow‐up (10 months)

FFM (%) FFA (%) ICC SEM (%) FFM (%) FFA (%) ICC SEM (%)

AL 14.5 ± 27.3 14.3 ± 26.5 1.00 0.6 15.0 ± 26.8 15.8 ± 26.5 1.00 1.3

AM 12.0 ± 10.7 14.2 ± 10.7 0.98 1.7 12.9 ± 12.0 14.8 ± 11.8 0.99 1.2

BFL 13.1 ± 13.5 13.2 ± 13.7 1.00 0.1 13.9 ± 13.4 14.1 ± 13.5 1.00 0.2

BFS 19.4 ± 23.1 19.6 ± 23.3 1.00 0.3 20.3 ± 22.2 20.6 ± 22.4 1.00 0.4

G 9.7 ± 5.2 9.9 ± 5.3 0.98 0.7 10.6 ± 5.1 11.2 ± 5.7 0.94 1.3

RF 7.8 ± 7.0 8.3 ± 7.8 0.99 0.7 9.5 ± 7.7 11.2 ± 10.5 0.94 2.2

S 16.5 ± 10.0 16.3 ± 9.9 1.00 0.5 17.4 ± 9.5 18.2 ± 9.6 0.98 1.3

SM 22.1 ± 21.1 22.3 ± 21.0 1.00 0.4 23.1 ± 21.0 23.3 ± 21.3 1.00 0.4

ST 22.0 ± 23.5 22.2 ± 23.7 1.00 0.7 24.2 ± 25.9 24.2 ± 25.7 1.00 0.3

VI 17.7 ± 23.4 18.1 ± 22.9 1.00 0.8 19.4 ± 23.7 19.3 ± 23.2 1.00 0.8

VL 11.1 ± 8.9 11.1 ± 8.9 1.00 0.1 11.8 ± 9.5 12.2 ± 9.8 1.00 0.4

VM 13.2 ± 19.6 13.3 ± 19.8 1.00 0.1 14.3 ± 20.6 14.2 ± 20.4 1.00 0.2

EDL‐EHL 25.3 ± 18.8 25.4 ± 18.7 1.00 0.3 26.8 ± 19.3 27.2 ± 18.6 1.00 0.8

FB‐FL 28.0 ± 21.7 28.1 ± 21.6 1.00 0.3 29.7 ± 21.2 29.7 ± 21.1 1.00 0.4

GL 19.2 ± 23.4 21.7 ± 22.2 0.99 2.7 20.3 ± 23.7 23.4 ± 21.8 0.97 3.7

GM 36.7 ± 28.1 37.0 ± 27.8 1.00 0.9 39.3 ± 26.9 39.5 ± 26.4 1.00 1.2

SOL 36.8 ± 25.8 36.4 ± 25.5 1.00 0.3 40.2 ± 23.8 39.9 ± 23.6 1.00 0.4

TA 24.9 ± 19.9 24.9 ± 19.9 1.00 0.4 26.4 ± 19.6 26.5 ± 19.2 1.00 0.8

TP 13.1 ± 17.9 13.1 ± 18.1 1.00 0.3 13.7 ± 17.6 14.0 ± 17.6 1.00 0.3

Note: Mean FFs were quantified on masks resulting from the automatic (FFA) and manual (FFM) segmentations for each muscle. ICC and SEM values were computed 
for each muscle from a comparative analysis between both methods.
Abbreviations: ICC, intraclass correlation coefficient; SEM, standard error of the measurement.
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The FF values computed from automatic and manual seg-
mentations for follow‐up data sets illustrated a bias of  
−0.5 point with 95% limits of agreement ranging between 

−4.2 and 3.1 points (Figure 5B). For both the baseline and 
follow‐up data sets, the bias was not related to the muscle’s 
FF (Figure 5).

F I G U R E  5  Bland‐Altman analysis of fat fraction (FF) values quantified for each individual muscle and each patient for the manual (FFM) 
and automatic (FFA) segmentations. A, Baseline data. B, Follow‐up data. Central lines indicate the mean difference, and the dashed lines indicate 
the limits of agreement
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3.2 | Measurement repeatability
The average FF values and the corresponding ICC and SEM 
values for the 4 volunteers who were scanned twice on the 
same day are found in Table 3. In the thigh, FFMR1 values 
ranged from 5.3% ± 2.9% (VM) to 11.3% ± 8.4% (BFS), while 
FFMR2 values were quite similar and ranged from 4.8% ±  
2.6% (adductor magnus) to 11.3% ± 8.1% (sartorius). Similar 
to the FF values in Table 2, the fat infiltration was larger 
in the lower leg muscles. The FFMR1 values ranged from 
6.3% ± 4.4% (TP) to 30.8% ± 22.4% (GM), while FFMR 2  
values were very similar and ranged from 6.2% ± 4.2% (TP) 
to 30.5% ± 22.2% (GM). The corresponding ICC values were 
high except for the adductor magnus (0.61), and a most val-
ues were superior to 0.90. They ranged from 0.61 to 0.99 for 
the thigh muscles and from 0.95 to 1.00 for the lower leg 
muscles. All muscles, except GL, have a lower ICC value 
for the measurement repeatability segmentation than for the 
automatic segmentation versus the manual segmentation.

3.3 | Interexpert repeatability
The average FF values and the corresponding ICC and SEM 
values for the interexpert repeatability assessment are found 
in Table 4. For the thigh muscles, FFM values ranged from 

7.1% ± 4.0% (VM) to 31.4% ± 34.9% (BFS), and FFA1 values 
ranged from 7.1% ± 3.9% (VM) to 31.7% ± 35.3% (BFS), 
which is quite similar to the FFA2 values that ranged from 
7.1% ± 3.9% (VM) to 31.4% ± 36.0% (BFS). In the lower 
leg, FFM values ranged from 8.5% ± 7.1% (GL) to 34.2% ± 
34.9% (GM), and FFA1 values ranged from 13.4% ± 9.1% 
(GL) to 34.8% ± 34.7% (GM), with FFA2 values quite similar 
ranging from 10.6% ± 8.0% (GL) to 34.5% ± 35.2% (GM).

For both experts, the FF values calculated using the semi‐
automatic method compared with those obtained using man-
ual segmentation of the main expert of the study provided 
ICC values higher than 0.95 except for the adductor magnus 
(0.90 and 0.91 for FFA1 and FFA2, respectively) and the GL 
(0.83 and 0.84 for FFA1 and FFA2, respectively). For the DSC 
scoring, comparing the initial segmentations of both experts 
resulted in DSC scores ranging from 0.69 to 0.96 (Supporting 
Information Table S1). In addition, comparing the propaga-
tions resulting from the manual segmentations of expert 2 
with the full manual segmentation of expert 1 gave DSC 
scores ranging from 0.75 to 0.95.

4 |  DISCUSSION

A semi‐automatic segmentation tool of the whole set of 
individual thigh and lower leg muscles was designed and 
assessed in patients with neuromuscular disorders, both cross‐ 
sectionally and longitudinally.

The present method allowed the segmentation of 19 indi-
vidual muscles in MR images of patients based on the manual 
delineation of these muscles on 9 appropriately chosen slices. 
The corresponding masks were used as seed regions, which 
were transversally and longitudinally propagated to the re-
maining 91 slices for both the baseline and follow‐up data 
sets. The corresponding DSC values ranged from 0.83 to 0.96 
for the transversal propagation and from 0.76 to 0.94 for the 
longitudinal propagation. The few studies in which the issue 
of image segmentation from patients with severe fat infiltra-
tion has been addressed only aimed at distinguishing muscle 
from fat compartments.21-24 None of them addressed indi-
vidual muscles segmentation for which fat infiltration and/or 
muscle atrophy are definitive confounding factors. Individual 
muscle segmentation has been performed in healthy subjects 
and patients with chronic obstructive pulmonary disease, 2 
groups of subjects in whom fat infiltration is moderate.14,15 
In MR images from healthy subjects, Baudin et al reported 
a global mean DSC of 0.86 ± 0.07, whereas in images from 
chronic obstructive pulmonary disease patients, Andrews et 
al reported DSC values ranging from 0.70 ± 0.16 to 0.93 ±  
0.06. It should be noted that the algorithm of Andrews 
et al performed significantly worse when muscle boundaries  
were less visible, which is often the case for severely fat‐
infiltrated muscles in neuromuscular disorders and performed  

T A B L E  3  Mean FF values, ICC, and SEM measured at 2 
different times for each muscle of a group of 4 subjects

Muscle FFMR1 (%) FFMR2 (%) ICC SEM (%)

AL 5.6 ± 3.2 5.8 ± 3.4 0.97 0.6

AM 5.8 ± 3.2 4.8 ± 2.6 0.61 1.8

BFL 7.4 ± 4.5 6.6 ± 3.8 0.93 1.0

BFS 11.3 ± 8.4 10.4 ± 7.8 0.99 0.6

G 6.7 ± 3.3 7.2 ± 4.4 0.93 1.0

RF 5.4 ± 2.7 6.2 ± 4.3 0.88 1.2

S 10.7 ± 6.0 11.3 ± 8.1 0.93 1.9

SM 8.7 ± 5.6 9.0 ± 5.5 0.92 1.6

ST 6.8 ± 3.7 6.8 ± 4.1 0.94 0.9

VI 7.4 ± 5.5 7.4 ± 5.8 0.99 0.5

VL 6.0 ± 3.2 6.5 ± 3.9 0.94 0.9

VM 5.3 ± 2.9 5.8 ± 3.9 0.89 1.2

EDL‐EHL 9.6 ± 5.4 9.5 ± 4.8 0.97 0.9

FB‐FL 22.5 ± 19.5 21.8 ± 19.7 1.00 0.7

GL 12.6 ± 16.5 11.9 ± 14.8 0.99 1.3

GM 30.8 ± 22.4 30.5 ± 22.2 1.00 0.3

SOL 22.9 ± 24.2 22.5 ± 24.3 1.00 0.8

TA 7.2 ± 4.6 7.2 ± 4.1 0.95 0.9

TP 6.3 ± 4.4 6.2 ± 4.2 0.97 0.8

Note: Segmentation was performed manually twice (FFMR1 and FFMR2). The 
ICC and SEM values were computed for each muscle on the basis of a compara-
tive analysis between both methods.
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differently depending on the MRI modality used. In the pres-
ent study, the whole set of MR modalities tested did provide 
DSC values larger than 0.80 and the water contrast was de-
fined as the optimal modality.

One of our aims was to assess the potential of our segmen-
tation tool for follow‐up studies in patients with neuromuscu-
lar disorders. In that respect, in addition to the conventional 
DSC metric, we assessed one of the most commonly reported 
outcome measures in this field: the FF. Such an approach has 
already been reported by Gadermayr et al,23 who used the FF 
error computed in T1‐weighted images as an additional met-
ric to assess the performance of their automatic segmentation 
method of muscle tissue as a whole. To go further, we as-
sessed the performance of our segmentation framework from 
FF of all individual muscles measured from proton density 
fat fraction images, which are quantitative images in contrast 
to T1‐weighted images that only provide information related 
to contrast. Our results demonstrated a very high reliability 
for both the transversal (ICC > 0.98) and longitudinal propa-
gation (ICC > 0.94) for each individual muscle. In addition, 
we found higher ICC values for our semi‐automatic method 
as compared with the measurement repeatability. This 
strongly supports that, regarding fat infiltration quantifica-
tion, the variation in FF caused by automatic segmentation is 

comparable to closeness of the agreement between 2 succes-
sive measurements on the same day. Furthermore, high ICC 
values and DSC values were also reported for the transver-
sal propagation of expert 2 compared with the ground‐truth 
manual segmentation of expert 1, which demonstrates a good 
interexpert repeatability. Together, this demonstrates that our 
proposed algorithm can result in reliable and repeatable FFs, 
which is essential for follow‐up measurements.

The increase in FF we observed from baseline to follow‐
up is related to the natural progression of the disease, as also 
previously reported for a large number of neuromuscular dis-
eases such as Duchenne muscular dystrophy34 and fascios-
capulohumeral dystrophy.12

Regarding the transversal propagation, an initial manual 
segmentation is mandatory and can be considered a limiting 
factor considering the well‐known operator dependency.7 
This process is even more difficult in the case of severely 
infiltrated muscles, for which the delimitation of muscle 
boundaries might be difficult. In that respect, inappropri-
ate 2D manual segmentations might be propagated, thereby 
compromising the 3D automatic segmentation. This issue 
is especially relevant for muscles showing large anatomical 
variations along the leg. Those muscles for which the trans-
versal propagation was suboptimal also showed a suboptimal 

T A B L E  4  Mean FF values, ICC, and SEM measured for 4 baseline data sets of the thighs and legs

Muscle FFM (%)

Expert 1 Expert 2

FFA1 (%) ICC SEM (%) FFA2 (%) ICC SEM (%)

AL 7.5 ± 4.4 7.4 ± 4.2 0.99 0.4 7.3 ± 4.3 1.00 0.2

AM 11.2 ± 7.7 14.2 ± 8.0 0.90 2.5 13.8 ± 8.0 0.91 2.3

BFL 20.3 ± 20.3 20.4 ± 20.5 1.00 0.2 20.4 ± 20.3 1.00 0.1

BFS 31.4 ± 34.9 31.7 ± 35.3 1.00 0.4 31.4 ± 36.0 1.00 2.0

G 10.8 ± 6.5 10.6 ± 6.3 1.00 0.3 10.8 ± 6.5 1.00 0.1

RF 7.9 ± 4.9 8.4 ± 4.9 0.98 0.7 8.6 ± 4.9 0.95 1.1

S 19.0 ± 14.8 19.0 ± 14.7 1.00 0.1 19.1 ± 14.1 1.00 0.9

SM 21.6 ± 22.1 22.1 ± 22.6 1.00 0.4 20.9 ± 20.8 1.00 1.1

ST 26.3 ± 32.6 26.2 ± 32.6 1.00 0.3 25.9 ± 33.0 1.00 0.7

VI 9.9 ± 6.9 10.9 ± 7.2 0.98 1.1 10.9 ± 6.9 0.96 1.3

VL 9.9 ± 5.0 10.0 ± 4.9 1.00 0.2 10.1 ± 5.3 0.99 0.4

VM 7.1 ± 4.0 7.1 ± 3.9 1.00 0.1 7.1 ± 3.9 1.00 0.1

EDL‐EHL 14.2 ± 13.4 14.6 ± 13.6 1.00 0.2 14.3 ± 13.2 1.00 0.8

FB‐FL 8.5 ± 7.1 13.4 ± 9.1 0.83 3.3 10.6 ± 8.0 0.84 3.0

GL 34.2 ± 34.9 34.8 ± 34.7 1.00 0.7 34.5 ± 35.2 1.00 1.4

GM 28.7 ± 33.3 28.6 ± 33.1 1.00 0.3 26.7 ± 34.2 1.00 1.6

SOL 20.0 ± 26.9 20.1 ± 26.6 1.00 0.3 20.2 ± 26.2 1.00 0.6

TA 20.4 ± 28.8 20.7 ± 29.1 1.00 0.2 20.9 ± 29.4 1.00 0.4

TP 16.9 ± 12.1 16.9 ± 12.4 1.00 0.2 16.6 ± 12.4 0.99 1.0

Note: Mean FFs were quantified on masks resulting from the manual (FFM) segmentation and the automatic (FFA) segmentations initiated by 2 different experts for 
each muscle (FFA1 and FFA2, respectively). The ICC and SEM values were computed for each muscle from a comparative analysis between manual and automatic 
methods.
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longitudinal propagation, thereby illustrating the interdepen-
dence of both methods. The semi‐automatic nature of our 
method and the need for manual segmentation input offer 
a large flexibility regarding the number of muscles to be 
segmented. One might be interested in whole‐muscle com-
partments, while others might intend to segment a variable 
number of individual muscles. Regardless of the type of in-
puts, corresponding masks can be propagated to the whole 
3D region using the present method, not only at baseline, but 
also for an unlimited number of repeated acquisitions.

Regarding the longitudinal propagation, segmentation 
results were very high for almost all of the subjects. We ob-
served that suboptimal results were obtained when muscles 
shapes were changing between the baseline and the follow‐up 
data sets. Considering that muscles are made of soft tissue, 
one can expect large shape changes due to various constraints 
imposed by leg and/or coil positioning. As illustrated in 
Figure 3, our longitudinal propagation process performed 
well despite these potential anatomical variations, whether 
they were global crushing pressures (P04) or localized pres-
sure points (P02). As illustrated by the GL muscle in subject 
P10, a localized pressure point can be such that the muscle 
shape can change dramatically, thereby compromising the au-
tomatic segmentation process. This issue can also be relevant 
for follow‐up studies based on manual segmentation only. 
Overall, distortions regarding muscle shapes for repeated ac-
quisitions represent biases that would have to be accounted 
for in future studies.

The high DSC values obtained in the present study as 
compared with previously reported methods14,15 and the very 
high reliability of FF values strongly support that our seg-
mentation framework can be considered reliable and accurate 
for the segmentation of individual muscles in patients with 
neuromuscular disorders and so for both cross‐sectional as 
longitudinal studies.

5 |  CONCLUSIONS

We present a reliable semi‐automatic method for segmenta-
tion of individual muscles in MR images from patients with 
neuromuscular disorders. It relies on propagation methods 
based on nonlinear registration and is effective for cross‐ 
sectional and longitudinal studies. As far as we know, this 
is the very first segmentation framework that is dedicated to 
individual muscle segmentation in neuromuscular diseases 
ever reported for follow‐up studies, which are of utmost im-
portance in this clinical field. Both the DSC and FF values 
demonstrated the high performance of our method, which 
allowed a substantial reduction of the number of slices to 
be manually segmented. With no additional manual input,  
follow‐up scans can be processed automatically with a very 
high reliability. This minimal manual segmentation stage, 

which allows the choice of regions of interest, should encour-
age clinicians to use such a method in a clinical environment 
for a quantitative assessment of muscular changes occurring 
in neuromuscular disorders.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

TABLE S1 Dice similarity coefficients measured for 4 base-
line data sets of the thighs and legs to assess the interobserver 
variability. Note: The DSCs were obtained by comparing the 
ground‐truth segmentation (Manual) with the segmentations 
of 2 different experts used to initiate the automatic method 
(IniAuto) and the results of the automatic method (Auto)
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