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Small flexible fibers in a turbulent flow are found to be as straight as stiff rods most of the time. This is
due to the cooperative action of flexural rigidity and fluid stretching. However, fibers might bend and
buckle when they tumble and experience a strong enough local compression. Such events are similar to an
activation process, where the role of temperature is played by the inverse of Young’s modulus. Numerical
simulations show that buckling occurs very intermittently in time. This results from unexpected long-range
Lagrangian correlations of the turbulent shear.
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Elongated colloidal particles are essentially subject to three
forces: bending elasticity, thermal fluctuations, and viscous
dragwith the suspending flow.An important andwell-studied
case is that of infinitely flexible polymers for which only two
effects compete: coiling promoted by thermal noise and
stretching induced by fluid shear. Relaxation to equilibrium
is then fast enough to give grounds for adiabatic macroscopic
models, such as elastic dumbbells [1,2], often used to
investigate the rheology of polymer suspensions [3]. Much
less is known about when the thermal fluctuations are
negligible but bending elasticity becomes important. This
asymptotics is relevant to describe macroscopic particles,
such as cellulose fibers in the paper making industry [4], or
diatom phytoplankton colonies [5] that significantly partici-
pate in the CO2 oceanic pump [6]. In principle, without
molecular diffusion there is no coiling. Furthermore, bending
elasticity and flow stretching act concomitantly to straighten
the fiber, suggesting an unsophisticated stiff rod dynamics.
However, most natural or industrial flows are turbulent. They
display violent and intermittent fluctuations of velocity
gradients, susceptible of destabilizing a straight configuration
by buckling the fiber [7].
We are interested in elongated, deformable, nondiffusive

particles passively transported by a turbulent flow. We aim at
quantifying two aspects: first, the extent to which their
dynamics can be approximated as that of rigid rods and,
second, the statistics of buckling. For that purpose, we focus
here on the simplest model, the local slender-body theory,
whichdescribes themotionof an inextensibleEuler-Bernoulli
beam immersed in a viscous fluid. In the limit of zero inertia,
the fiber velocity is obtained by equating the drag, the tension,
and the bending elasticity (see, e.g., Ref. [8]). The dynamics
of a fiber with cross section a and length l is then

∂tX ¼ uðX; tÞ þ c
8πρfν

D½∂sðT∂sXÞ − E∂4
sX�;

j∂sXj2 ¼ 1; with D ¼ I þ ∂sX∂sXT; ð1Þ

in the asymptotics c ¼ −½1þ 2 logða=lÞ� ≫ 1. Here,
Xðs; tÞ is the spatial position of the point indexed by the
arc length coordinate s ∈ ½−l=2;l=2�, u is the velocity
field of the fluid, ν its kinematic viscosity, ρf its mass
density, and E denotes the fiber’s Young modulus. The
tension Tðs; tÞ, which satisfies Tj�l=2 ¼ 0, is the Lagrange
multiplier associated to the fiber’s inextensibility con-
straint. Equation (1) is supplemented by the free-end
boundary conditions ∂2

sXj�l=2 ¼ 0 and ∂3
sXj�l=2 ¼ 0.

The considered fibers are much smaller than the smallest
active scale of the fluid velocity u. In turbulence, this means
l ≪ η, where η ¼ ν3=4=ε1=4 is the Kolmogorov dissipative
scale, ε ¼ νhk∇uk2i being the turbulent rate of kinetic
energy dissipation. In this limit, the particle motion
is to leading order that of a tracer and dX̄=dt ¼ uðX̄; tÞ,
where X̄ðtÞ denotes its center of gravity. The deformation
of the fiber solely depends on the local velocity gradient,
so that uðX; tÞ ≈ uðX̄; tÞ þ AðtÞðX − X̄Þ, where AijðtÞ ¼
∂juiðX̄; tÞ. The dynamics is then fully described by
two parameters: the fluid flow Reynolds number Re,
prescribed very large, and the nondimensional fiber flexi-
bility, defined as

F ¼ 8πρfνl4

cEτη
; ð2Þ

where τη ¼
ffiffiffiffiffiffiffi
ν=ε

p
is the Kolmogorov dissipative time and

quantifies typical values of the turbulent strain rate. The
parameter F can be understood as the ratio between the
timescale of the fiber’s elastic stiffness to that of the turbulent
velocity gradients. At small F , the fiber is very rigid and
always straight. On the contrary, for largeF it is very flexible
andmight bend. Clearly, if the fiber had inertia, the dynamics
would involve its material density and depend on an extra
parameter (e.g., the Stokes number). This would probably
affect bending properties.
In the straight configuration, the tangent vector is

constant along the fiber, i.e., ∂sX ¼ pðtÞ, and follows
Jeffery’s equation for straight ellipsoidal rods [9]:
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dp
dt

¼ Ap − ðpTApÞp: ð3Þ

This specific solution to Eq. (1), which is independent of s,
is stable when the fiber is sufficiently rigid. However, it
becomes unstable when increasing flexibility, or equiva-
lently for larger fluid strain rates. As shown and observed
experimentally in two-dimensional velocity fields, such as
linear shear [7,10,11] or extensional flows [12–14], this
instability is responsible for a buckling of the fiber. This
occurs when the elongated fiber tumbles [15,16] and
experiences a strong enough compression along its direc-
tion. This compression is measured by projecting the
velocity gradient along the rod directions, i.e., by the
stretching rate _γ ¼ pTAp. In turbulence, buckling thus
occurs when the instantaneous value of _γ becomes large
with a negative value (compression).
To substantiate this picture, we have performed direct

numerical simulations of three-dimensional homogeneous
isotropic turbulence. The flow is obtained by integrating the
incompressible Navier-Stokes equations using the LATU

spectral solver with 40963 collocation points and a force
that keeps kinetic energy constant in the two first Fourier
shells [17]. Once a statistically steady state is reached with a
Taylor microscale Reynolds number, Reλ ≈ 730, the flow is
seeded with several millions of tracers, along which the full
velocity gradient is stored with a period ≈τη=4 during four
large-eddy turnover times (up to t ≃ 734τη). The local
slender-body equation for fibers, Eq. (1), is then integrated
a posteriori along a subset of 4000 tracer trajectories
uniformly distributed in the domain, and eight different
values of the flexibility. We use the semi-implicit, finite-
difference scheme of Ref. [9], with the inextensibility
constraint enforced by penalization. N ¼ 201 grid points
are used along the fiber arc length, with a time step
5 × 10−4τη. We use linear interpolation in time to access
the velocity gradient at a higher frequency than the output
from the fluid simulation.
Numerics confirm that fibers much smaller than the

Kolmogorov scale are almost always straight. This can be
measured from the end-to-end length RðtÞ ¼ jXðl=2; tÞ−
Xð−l=2; tÞj. When R ¼ l, the fiber has a rod shape.
Buckling occurs when R < l. The upper panel of Fig. 1
shows the time evolution of the end-to-end length along a
single trajectory for various nondimensional flexibilities F .
Clearly, bending is sparse and intermittent. Buckling events
are separated by long periods during which R≡ l, up to
numerical precision. For instance, one observes j1 −
RðtÞ=lj < 10−13 in the time interval 100 < t=τη < 180. In
the lower panel ofFig. 1,wehave shown the timeevolutionof
the stretching rate _γ along the same Lagrangian trajectory. As
expected, buckling events are associatedwith strong negative
fluctuations of _γ. Note that, because p is preferentially
alignedwith the fluid stretching [18], the rate _γ has a positive
mean h_γi ≈ 0.11=τη. Its standard deviation is ≈0.2=τη.

To get more quantitative insight, we define buckling
events as times when RðtÞ=l is below a prescribed thresh-
old (we have used 0.999). Figure 2 shows the probability of
buckling as a function of the flexibility F. This quantity,
denoted Φ, is defined as the fraction of time spent by the
end-to-end length below this threshold. Conversely to

FIG. 1. Top: Time evolution of the end-to-end length RðtÞ for a
specific turbulent tracer trajectory and three different values of the
nondimensional flexibility F, as labeled. Bottom: Evolution of
the instantaneous stretching rate _γ along the same trajectory. The
solid lines correspond to τη _γ ¼ 0, −0.13, −0.26, and −0.52. Note
that time is rescaled by the Kolmogorov timescale τη. In these
units, the large-eddy turnover time is τL ≈ 190τη.

FIG. 2. Probability of buckling Φ as a function of F . The
squares come from numerical simulations and were calculated as
the fraction of time during which RðtÞ=l < 0.999. Error bars
show the standard deviation of these estimates, obtained when
assuming that buckling events are uncorrelated. The bold line is
the probability that the stretching rate _γ is less than −F ⋆=ðτηF Þ
with F⋆ ¼ 2.1 × 104. The corresponding cumulative distribution
function (CDF) is shown in the inset, together with a fit (dashed
line) of the form ∝ exp½−Aðτηj_γjÞ1=2�, where A ¼ 1.69. The same
approximation is used in the main panel to fit Φ (dashed line).
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simple steady shear flows (see, e.g., Ref. [8]), and differ-
ently from what is observed for long fibers in turbulence
[19,20], here we find that there is no critical value of the
flexibility above which buckling occurs. Fibers bending is
similar to an activated process with Φ ∝ expð−C=F αÞ and
where the flexibility F plays a role resembling that of
temperature in chemical reactions. Indeed, the fiber is
found to buckle when its instantaneous flexibilityF locðtÞ ¼
τηj_γðtÞjF is larger than a critical value F ⋆, with _γðtÞ < 0.
This leads to

Φ ¼ Pr ðτη _γ < −F ⋆=F Þ: ð4Þ

As can be seen in Fig. 2, the cumulative probability of the
stretching rate can indeed be used to reproduce the numerical
measurements of Φ by choosing F ⋆ ¼ 2.1 × 104. This
value, which just corresponds to a fit, is much larger than
those observed in time-independent shear flows [11] where
buckling occurs for F ≳ 300. A first reason comes from
using the Kolmogorov dissipative timescale when defining
F . This is a natural but arbitrary choice in turbulence.
However, τη is significantly smaller than typical values of
_γ−1, so that effective flexibilities could be smaller than F .
This is similar to choosing τη rather than the Lyapunov
exponent to define the Weissenberg number for the coil-
stretch transition of dumbbells in turbulent flow [21].
Another explanation for a large F ⋆ could be the intricate
relation in turbulence between the amplitude of velocity
gradients and their dynamical timescales, which implies in
principle that the stronger _γ is, the shorter the lifetime of the
associated velocity gradient.
Fibers with a small flexibility buckle only when the

instantaneous stretching rate is sufficiently violent.
Moreover, it is known that at large Reynolds numbers
[22], the probability distribution of velocity gradients has
stretched-exponential tails with exponent≈1=2. This behav-
ior is also present in the cumulative probability of _γ, as seen in
the inset of Fig. 2. This leads to the prediction that

Φ ∝ e−AðF ⋆=F Þ1=2 for F ≪ F ⋆: ð5Þ

This asymptotic behavior is shown as a dashed line in the
main panel of Fig. 2. It gives a rather good fit of the data, up to
F ≈ 1.6 × 105. At larger values, this activationlike asymp-
totics and relation to the tail of the distribution is no longer
valid. At very small values (or equivalently large negative
_γ’s), one observes tiny deviations from the stretched expo-
nential, certainly resulting from numerical errors overpre-
dicting extreme gradients [23].
The relevance to buckling of an instantaneous flexibility

larger than F ⋆ can be seen in Fig. 1. The dashed lines in the
bottom panel are the critical values τη _γ ¼ −F ⋆=F asso-
ciated to the three flexibilities of the top panel. We indeed
observe that buckling occurs when the instantaneous
stretching rate underpasses these values. In some cases

(e.g., for times between 400 and 500τη), it seems that the
fiber is straight, even if _γ is below the threshold. Still,
buckling occurs but with an amplitude so small that it
cannot be detected from the top panel. This threshold
therefore provides information on the occurrence of buck-
ling, but not on the strength of the associated bending.
Another qualitative assessment that can be drawn from

Fig. 1 is that large excursions of _γ are not isolated events but
form clumps. This is a manifestation of the Lagrangian
intermittency of velocity gradients. Tracers might indeed be
trapped for long times in excited regions of the flow, leading
to fluctuations correlated over much longer times than τη.
This can be quantified from the autocorrelation ρðtÞ of the
negative part _γ− ¼ maxð−_γ; 0Þ of the stretching rate, which
is represented in the inset of Fig. 3. The corresponding
integral correlation time is

R
ρðtÞdt ≈ 2.8τη. This can be

explained by the abrupt decrease of the autocorrelation at
times of the order of the Kolmogorov timescale. This
behavior is essentially a kinematic effect due to fast rotations.
Remember that _γ is obtained by projecting the velocity shear
on the directionp of a rigid rod. This direction rotates with an
angular speed given by the vorticity ω ¼ j∇ × uj, so that _γ
can alternate from expansion to compression, on timescales
of the order ofω−1 ∼ τη. Surprisingly, at longer times t≳ 4τη,
the autocorrelation of _γ− changes regime and decreasesmuch
slower than an exponential. This contradicts the classical
phenomenological vision that velocity gradients are purely a
small-scale quantity with correlations spanning only the
dissipative scales. For more than a decade in t within the

FIG. 3. Probability density functions [PDF (solid lines)] of
the time T between successive buckling events, normalized
to its average hTi ≈ 52τη for F ¼ 1.6 × 105, and hTi ≈ 36τη for
F ¼ 3.2 × 105. The dotted line represents the exponential distri-
bution. The dashed line is aWeibull distribution, Eq. (6),with shape
β ¼ 0.7 and scale parameter λ ¼ 1. Inset: Autocorrelation ρðtÞ ¼
cov(_γ−ðtÞ; _γ−ð0Þ)=Varð_γ−Þ of the negative part of the stretching
rate. The dotted line stands for expð−t=τηÞ. The vertical dashed line
indicates the large-eddy turnover time t ¼ τL. The solid line shows
a slope −0.7.
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inertial range, we indeed find a power-law behavior
ρðtÞ ∝ t−β, with β ≈ 0.7� 0.1. To our knowledge, this is
the first time such a long-range behavior is observed for
turbulent Lagrangian correlations.
These intricate correlations have important conse-

quences on the incidence of buckling. Memory effects
are present, as the fiber is likely to bend several times when
in a clump of violent, high-frequency fluctuations of _γ.
Consequently, the probability distribution pðTÞ of the time
T between successive buckling events is not exponential.
This is clear from the main panel of Fig. 3, where this
distribution is shown for F ¼ 1.6 × 105 and 3.2 × 105.
One observes deviations from the exponential distribution
(dotted line). They relate to the two regimes discussed
above for the time correlations of _γ−. First, the distribution
of interbuckling times is maximal for T of the order of τη.
This corresponds to rapid oscillations of the sign of _γ. The
fiber experiences several tumblings in an almost-constant
velocity gradient and is alternatively compressed and
pulled out by the flow due to fast rotations. This leads
to a rapid succession of bucklings and straightenings.
Second, strong deviations to the exponential distribution
also occur for interbuckling times T in the inertial range.
As seen in Fig. 3, the distribution of interbuckling times in
the intermediate range 0.5≲ T=hTi≲ 5 is well approxi-
mated by a Weibull distribution with shape β and scale
parameter λ:

pðTÞ ≈ βTβ−1

λβ
e−ðT=λÞβ : ð6Þ

This decade exactly matches the time lags for which _γ
displays long-range correlations, that is, ρðtÞ ∼ t−β. The
return statistics of processes with power-law correlations
is indeed expected to be well approximated by a Weibull
distribution [24]. Longer times correspond to t≳ τL, for
which pðTÞ is expected to ultimately approach an exponen-
tial tail.
To characterize further buckling events and in particular

their geometry, we show in Fig. 4 the joint probability
density of the end-to-end length R and of the fiber’s mean
curvature, κ̄ ¼ ð1=lÞ R j∂2

sXjds. The distribution is sup-
ported in a thin strip aligned with κ̄ ∝ ð1 − R=lÞ1=2.
Bucklings correspond to loops in this plane. Trajectories
typically start such excursions with a larger curvature
(upper part of the strip) than the one they have when
relaxing back to a straight configuration (lower part). The
orange curve corresponds to the first buckling event of the
trajectory shown in Fig. 1. The curvature increases con-
comitantly to a decrease of the end-to-end length. Right
before reaching a maximal bending, the fiber displays
several coils (top left inset). This configuration depends on
the most unstable mode excited with the current value of
the instantaneous flexibility F loc. It is indeed known that
buckling fibers in steady shear flows can experience several

bifurcations, depending on their elasticity [7]. Once the
fiber has again aligned with _γ > 0, that is, a couple of τη ’s
later, these coils unfold (bottom right inset), the curvature
decreases, and the fiber relaxes back to a straight configu-
ration. This specific event has been chosen for its simplicity
and representativity. Still, it experiences a nontrivial epi-
sode at 1 − R ≈ 10−4, during which the fiber configuration
seems frozen. This event corresponds to the plateau
observed in the top of Fig. 1 for 50τη < t < ≈80τη, right
after the maximum of buckling. At these instants of time, _γ
is weakly oscillating around zero and the fiber is neither
compressed nor stretched by the flow.
To conclude, recall that we have focused on passively

transported fibers. In several applications, they actually
have an important feedback on the flow and might even
reduce turbulent drag. We found here that the dynamics of
flexible fibers strongly depends on the shear strength: In
calm regions, they just behave as stiff rods; in violent,
intermittent regions, they can buckle, providing an effective
transfer of kinetic energy toward bending elasticity. Such
nonuniform, shear-dependent effects likely lead to intricate
flow modifications, where the presence of small fibers
affects not only the amplitude of turbulent fluctuations but
also their very nature. Such complex non-Newtonian
effects undoubtedly lead to novel mechanisms of turbu-
lence modulation.
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FIG. 4. Contour levels of the joint distribution of the end-to-end
length R and of the mean curvature κ̄ for F ¼ 1.6 × 105. The
vertical dashed line shows the threshold R=l ¼ 0.999. An
excursion of the same trajectory as Fig. 1 is shown for 43 <
t=τη < 77 (orange). Also, two instantaneous configurations of the
fiber are represented for t ¼ 43τη (top left inset) and t ¼ 45τη
(bottom right inset).
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