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This paper investigates the effect of inertia on the dynamics of elongated chains to go beyond the overdamped
case that is often used to study such systems. For that purpose, numerical simulations are performed considering
the motion of freely jointed bead-rod chains in an extensional flow in the presence of thermal noise. The coil-stretch
transition and the tumbling instability are characterized as a function of three parameters: the Péclet number, the
Stokes number, and the chain length. Numerical results show that the coil-stretch transition remains when inertia
is present and that it depends nonlinearly on the Stokes and Péclet numbers. Theoretical and numerical analyses
also highlight the role of intermediate stable configurations in the dynamics of elongated chains: chains can indeed
remain trapped for a certain time in these configurations, especially while undergoing a tumbling event.
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I. INTRODUCTION

The dynamics of elongated and flexible chains has attracted
much attention in the past few years. Elongated chains are
indeed found in a wide range of applications, including in
the paper-making industry (the dynamics of fibers impacts the
properties of paper [1,2]), in DNA and polymer physics (rheol-
ogy changes in the presence of polymers [3,4] sometimes lead-
ing to glasslike transitions [5,6]), or in biological oceanography
(with the central role played by plankton such as diatoms which
form chainlike colonies [7]). The challenges associated with
such complex systems include the description of their dynam-
ics and conformation in complex flows as well as their effect
on rheological properties of fluids (see, e.g., reviews [3,8,9]).
This has led to renewed attention to the dynamics of complex-
shaped objects and especially for flexible fibers [10–13].

In this paper, we focus on the dynamics of freely jointed
chains. Recent experimental studies on elastic filaments have
revealed a complex nonlinear dynamics characterized by coil-
stretch transitions (i.e., the shift from extended to folded
conformations), tumbling and buckling instabilities in various
model flows (purely extensional [14,15], or simple shear [16]),
as well as with a more complex dynamics (random or chaotic
flows [17,18], in the presence of an obstacle [19] or in a mi-
crochannel [20]). These experimental findings on the dynamics
of chains have been further confirmed through numerous
theoretical and numerical studies (see, e.g., [3,9,21–23], and
references therein). In particular, simulations based on the
slender-body theory have been used to characterize finely
the coil-stretch transition and tumbling statistics [9,24] in the
case of inertialess fibers. Other simulations of flexible chains
using a trumbbell model [25], again in the absence of inertia,
have shown that tumbling occurs even in stretching-dominated
flow. A recent numerical study based on bead-spring chains
has recently shown that fibers are trapped in either coiled
or stretched states in the limit of infinite chain sizes and
small-enough diffusion [26] in linear and nonlinear extensional
flows. Yet, it remains to be seen whether such conclusions
remain valid when inertial effects are taken into account while
considering an inextensible chain.

Following these recent studies, the aim of the present study
is to characterize the effect of inertia on the dynamics of freely
jointed chains immersed in an extensional flow with stochastic
noise. Particular attention will be paid to both the coil-stretch
(CS) transition and the tumbling instability of such chains
as well as to characterizing the stable configurations of such
chains in such a flow. We consider the case of freely jointed
bead-rod chains, i.e., a chain of elementary beads connected
by rigid inextensible rods. This model is thus similar to the
so-called Kramers chains [27,28]. We introduce a high-order
numerical method to impose the inextensibility constraints
(also referred to as holonomic constraint in mechanics) in the
presence of a stochastic term.

For that purpose, the dynamics of inertial chains in a flow
is presented in Sec. II: it provides details on the model used
for bead-rod chains (see Sec. II A) together with a theoretical
analysis of the stationary states (in Sec. II B) as well as
details on the numerical implementation used (see Sec. II C).
Then, numerical results are analyzed first for the coil-stretch
transition in Sec. III and then for chain tumbling in Sec. IV.

II. MODEL AND THEORETICAL ANALYSIS

A. Dynamics of inertial chains

1. Equation of motion for inertial chains

a. Generic case. We consider a suspension of inertial,
freely jointed chains embedded in an ambient flow and ex-
periencing a viscous drag. Each chain is represented as a
bead-rod Kramers chain [27,28], i.e., constituted of N + 1
beads connected by N rigid inextensible bonds. Each bead
labeled i has a given position denoted by X i and is maintained
at a fixed distance �K from consecutive beads in the chain
(corresponding to the Kuhn length). Each bead can undergo a
free angular motion relative to its neighbors while remaining
at a fixed distance �K from them (see Fig. 1). We have further
assumed that all beads are identical with a given mass m

while neglecting shielding effects (the effect of hydrodynamic
interactions is out of the scope of this paper and will be
investigated in future studies). Following Newton’s second law,
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FIG. 1. An elongated chain is approximated as a bead-rod
Kramers chain. The beads X i’s are linked together by infinitesimal
rigid rods of length �K. The orientation of the links is given by the
unitary vectors ξ i = (X i − X i−1)/�K.

the individual motion of each bead reads

m
d2 X i

dt2
= −ζ

[
d X i

dt
− u(X i , t )

]
+

√
2kBT ζ ηi

+ λi (X i − X i−1) − λi+1 (X i+1 − X i ), (1)

The first term on the right-hand side (RHS) corresponds to
the Stokes drag of the beads with a prescribed velocity field u
and ζ denotes the individual drag coefficient of the particles.
The second term on the RHS stands for the effect of thermal
fluctuations on each bead: ηi are independent isotropic white
noises, with T denoting the fluid absolute temperature and kB

the Boltzmann constant. The third and fourth terms on the RHS
account for the tension (or internal forces) within a chain: λi

is thus the tension between the ith and the (i − 1)th beads.
Unlike spring-bead models where the tension is given by a
spring force (such as Hookean spring as in [29]), the tensions
are here time-dependent Lagrange multipliers associated to
the inextensibility constraint |X i − X i−1| = �K (also referred
to as the holonomic constraint in the field of mechanics). This
implies that

d

dt
|X i − X i−1|2 = d2

dt2
|X i − X i−1|2 = 0. (2)

Using Eq. (1), the tensions satisfy the system

0 = [X i − X i−1] · {ζ [u(X i , t ) − u(X i−1, t )]

+
√

2kBT ζ [ηi − ηi−1] + 2λi (X i − X i−1)

−λi+1 (X i+1 − X i ) − λi−1 (X i−1 − X i−2)}

+
∣∣∣∣d(X i − X i−1)

dt

∣∣∣∣
2

. (3)

b. Small chains in an extensional flow. In the following, we
consider that the chain length is below the smallest scale of
variation of the fluid velocity field u. In that case, the flow
stretching is uniform along the chain since all beads feel the
same value ∇u of the fluid gradient. It is then more natural to
reformulate the dynamics in terms of the link unitary directions

ξ i = (X i − X i−1)/�K, that is,

d2ξ i

dt2
= − ζ

m

[
dξ i

dt
− ξ i · ∇u

]
+ 2λi ξ i − λi+1 ξ i+1

−λi−1 ξ i−1 +
√

2kBT ζ

m2�2
K

(ηi − ηi−1). (4)

The λi’s are again Lagrangian multipliers associated to the in-
extensibility constraint (constant distance �K between beads),
this time reading |ξ i | = 1. Note that neither thermal fluctu-
ations nor inertial effects are neglected: we aim indeed at
studying chain sizes that span both the colloidal range (where
Brownian motion is predominant) and the inertial range.

We further assume that the fluid gradient is given by the
simple case of a 2D extensional flow: The fluid is stretching
in the horizontal direction x while it is compressing in the
vertical direction y (see also Fig. 1). The velocity gradient
then simplifies to

∇u =
(

σ 0

0 −σ

)
, (5)

where σ > 0 denotes the local fluid velocity shear rate.

2. Dimensionless parameters

With the assumption that ∇u depends on a single timescale
τfluid = σ−1, the problem depends upon three dimensionless
parameters: the Stokes number St, the Péclet number Pe, and
the chain length N . First, the Stokes number is the ratio between
the beads response time and the fluid flow timescale:

St = τbeads

τfluid
= σ m

ζ
. (6)

It measures the inertia of chains: St � 1 corresponds to
the case of tracers (i.e., particles following the streamlines)
while St � 1 designates particles that depart from the fluid
streamlines. Second, the Péclet number is given by the ratio
between the diffusion and the advection timescales:

Pe = τdiff

τfluid
= σ �2

K ζ

kBT
. (7)

It measures the relative importance between thermal fluc-
tuations and fluid stretching: Pe � 1 signifies that thermal
fluctuations dominate the dynamics while Pe � 1 implies that
the dynamics is governed by fluid stretching. It is similar to the
Weissenberg number usually used in polymer physics (which
measures the ratio between the fluid strain and the diffusion).
Third, the chain length corresponds to the number of Kuhn
links forming the chain:

N = L

�K
, (8)

where L denotes the total length of the chain. It is a measure
of the number of degrees of freedom in the chain.

3. Overdamped limit

When the relaxation time of a bead τbeads = m/ζ is much
shorter than the fluid flow timescale, the inertial term in
Eq. (4) can be neglected. In this overdamped case, the equation
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simplifies to

dξ i

dt
= ξ i · ∇u +

√
2kBT

�2
K ζ

(ηi − ηi−1)

+ 2λ′
i ξ i − λ′

i+1 ξ i+1 − λ′
i−1 ξ i−1, (9)

with λ′ the renormalized Lagrange multipliers given by λ′ =
λ m/ζ . As in the inertial case, the tension forces are calculated
by imposing a constant distance between consecutive beads
which gives the following matrix equation:

ξ i · dξ i

dt
= 0. (10)

In the presence of stochastic forces, both systems [Eqs. (3)
and (10)], need to be solved using high-order methods to
avoid systematic numerical errors on the distance between
beads (details on the numerical implementation are provided
in Sec. II C and in the Appendix).

4. Observables

Since we are interested in the stretching and orientation of
freely jointed chains, two observables have been retained to
monitor their dynamics in an extensional flow based on the
usual parameters measured for fibers and elongated particles
[9] as well as on an analogy with spin systems: the chain end-to-
end length (analogous to magnetization in spin systems) and
the chain orientation (analogous to magnetic energy in spin
systems).

First, the chain coarse end-to-end length along the stretching
direction is defined as

L(t ) = 1

N

N∑
i=1

sgn ξx
i (t ). (11)

Note that we are using here the sign of segments along the x

direction to obtain an end-to-end length equal to ±1 when the
chain is close to being fully stretched.

Second, the chain coarse orientation along the stretching
direction is defined as

F (t ) = 1

N − 1

N−1∑
i=1

sgn ξx
i (t ) sgn ξx

i+1(t ). (12)

It measures the relative orientation of consecutive beads in the
chain.

In the following, we characterize the evolution of chains in
terms of theses two quantities and as a function of the three
parameters of the system: the chain length (number of links)
N , the Péclet number Pe, and the Stokes number St.

B. Stationary states

In the absence of noise, all configurations where the unitary
link vectors ξ i are aligned with the stretching direction x are
steady solutions to Eq. (4). Indeed, if we assume that ξ i =
(εi, 0)T with εi = ±1, the dynamics is trivially stationary if
the tensions satisfy

−2εi λi + εi+1 λi+1 + εi−1 λi−1 = ζ σ

m
εi. (13)

This system always admits solutions of the form
(λ1, . . . , λN )T = (ζ σ/m)E−1 (ε1, . . . , εN )T, where E
denotes the tridiagonal matrix with elements Ei,j =
εi+1δi+1,j − 2εiδi,j + εi−1δi−1,j and whose determinant
reads det E = (−1)N (N + 1) ε1 · · · εN �= 0. These stationary
configurations comprise the case of a fully stretched chain
for which εi = +1 for all i, as well as the alternating folded
polymer associated to εi = (−1)i . Besides these extremes,
other intermediate configurations are allowed corresponding
to partial folding of the chain.

If such stationary configurations are stable, they could
play an important role in the dynamics. For instance, the
system could, in the presence of noise, spend some time in
those states. To evaluate the linear stability of these various
cases, let us consider that the link vectors are of the form
ξ i = (εi

√
1 − α2

i ,αi )T with αi � 1. Clearly, the perturbation of
the stationary state is order α2 in the x direction, as well as for
the tension equation (13). The dominant evolution is thus in
the y direction and reads

d2αi

dt2
= − ζ

m

[
dαi

dt
+ σαi

]
+ 2λiαi − λi+1αi+1 − λi−1αi−1,

which can be written in vectorial form as

d

dt

(
α

α̇

)
= M

(
α

α̇

)
,

with M =
(

ON IN

−[(ζ σ/m) IN + �λ] −(ζ/m) IN

)
. (14)

ON and IN denote the N × N zero and identity matrices,
respectively. We have introduced α = (α1, . . . , αN )T, α̇ =
(dα1/dt, . . . , dαN/dt )T, and �λ the tridiagonal matrix with
elements (�λ)i,j = λi+1δi+1,j − 2λiδi,j + λi−1δi−1,j .

The linear stability of stationary configurations is entailed in
the eigenvalue μM of the matrix M which has the largest real
part. One can easily check that for all stationary configurations
obeying (13), the vector α = (ε1, . . . , εN )T and α̇ = μα is an
eigenvector associated to the eigenvalue μ if the latter satisfies
μ2 + (ζ/m) μ + 2 ζ σ/m = 0. We thus obtain the following
lower bound:

Re (μM) � σ

2 St
Re[

√
1 − 8 St − 1]. (15)

The right-hand side has a nonmonotonic behavior as a function
of the Stokes number St. We can thus expect some stationary
states to get stabilized by a moderate inertia. However, these
states necessarily become less stable when St → ∞. This is
illustrated below.

1. The stretched line

Let us first consider the stationary state where all rods are
aligned with the stretching direction, i.e., εi = ε for all i, with
ε = ±1. Equation (13) becomes

−2λi + λi+1 + λi−1 = ζσ/m with λ0 = λN+1 = 0,

so that the tensions read

λi = −[ζσ/(2m)]i(N + 1 − i). (16)

As can be seen from Fig. 2, this configuration is always stable,
independently of the Stokes number and the number N of Kuhn
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FIG. 2. Real part of the most unstable eigenvalue μM (in units of
the fluid shear rateσ ) as a function of the Stokes number St for the fully
stretched chain (solid line, filled symbol) and the completely folded
case (dashed line, empty symbols). The lines show the predictions
(see text), while symbols are numerical evaluations for various chain
lengths, as labeled.

lengths in the chain. In addition, the less stable eigenvalue μM

is exactly equal in that case to the lower bound (15) discussed
above. Inertia tends to stabilize this configuration up to St =
1/8. Above this value, the stretched line becomes less stable
with Re (μM) = σ/(2 St).

2. Folded polymer

A second stationary configuration of interest is the case
when the chain is completely folded in an accordion shape.
We have in that case εi = (−1)i , so that the equations for the
tensions become

2λi + λi+1 + λi−1 = −ζσ/m, (17)

which yields

λi = − ζσ

4m
[1 − (−1)i] − ζσ

4m

i(−1)i

N + 1
[1 + (−1)N ]. (18)

This time, the associated matrix �λ admits zero modes. Indeed,
if without loss of generality we assume that N is odd, the
second term in the right-hand side of (18) vanishes and the
λi alternate between −ζσ/(2m) and 0. Any vector α with
vanishing odd components belongs to the kernel of �λ. As
a consequence, vectors of the form (α, μα) are eigenvectors
of M associated to the eigenvalue

μ = σ

2 St
[
√

1 − 4 St − 1].

As can be seen in Fig. 2, such eigenvalues correspond to
the less stable mode of this stationary configuration. As for
the stretched line, a sufficiently small inertia has a stabilizing
effect. The critical value is this time 1/4, so that when St >

1/4, the configuration in accordion shape is as stable as the
fully stretched chain.

3. Intermediate configurations

Besides these two extreme configurations, there exists
in general a large number of possible stationary states, as
illustrated in Fig. 3 in the overdamped (St = 0) case for N =

FIG. 3. Stable configurations of a chain with N = 20 and St = 0
in the (F,L) plane. The filled circles stand for the real part of the
less stable eigenvalue μM (in units of σ ). Two intermediate stable
configurations are singled out at L ≈ 1/3, F = (N − 5)/(N − 1),
where the chain is approximately folded in three equal pieces, and
at L = 1/5 and F ≈ 0.15, for which the chain alternates between
stretched and folded segments.

20. These various configurations were obtained numerically
by a Monte Carlo method. The fully stretched line (in the
top-right corner) is in that case the most stable configuration
with Re (μM) = −2σ . The fully folded accordion shape in
the bottom-left corner is associated to Re (μM) = −σ . Other
stable configurations associated to partial foldings of the chain
span the bottom half of the (F ,L) plane. We expect the fiber
to explore them in the presence of noise. This will be the case
during the tumbling of the chain, as we will see later in Sec. IV.

C. Numerical implementation

In the presence of noise, we simulate the dynamics of chains
by integrating numerically their equation of motion given by
Eq. (4). To that extent, we resort to an explicit first-order Euler-
Maruyama method with temporal discretization. In that case,
the discretized system reads:

V i (t + �t ) = V i (t ) + �t{−(ζ/m)[V i (t ) − ξ i (t ) · ∇u]

+ 2λiξ i (t ) − λi+1ξ i+1(t ) − λi−1ξ i−1(t )}

+
√

2kBT ζ

m2�2
K

(�W i − �W i−1),

ξ i (t + �t ) = ξ i (t ) + �tV i (t ), (19)

where ξ i is the segment labeled “i” and V i = dξ i/dt its
velocity, �t is the time step used in the simulation, and �W i

are the increments of a two-dimensional Wiener process over
a time step �t .

To close the system given by Eq. (19), the inextensibility
constraint (or holonomic constraint) |ξ i (t + �t )|2 = |ξ i (t )|2
is used to evaluate the tensions λi . Replacing with the dis-
cretized system, this constraint reads

2ξ i (t ) · V i (t ) + �t |V i (t )|2 = 0. (20)

This matrix equation depends nonlinearly on ξ i (t ) and λi . As a
result, there is no easy numerical resolution of the tensions λi .

023107-4



TUMBLING DYNAMICS OF INERTIAL INEXTENSIBLE … PHYSICAL REVIEW E 98, 023107 (2018)

5.005.0-
Axis X

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

A
xi

s
Y

Coiled
Stretched

-1 0 1
F

0

0.5
P

D
F

-1 0 1
L

0

0.5

P
D

F

(a)

-1 -0.5 0 0.5 1
F

-1

-0.5

0

0.5

1

L

Stretched

Coiled

(b)

FIG. 4. End-to-end length and orientation of a freely jointed chain (N = 40) at two values of Péclet numbers showing the chain in both the
coiled state (Pe = 0.05) and the stretched state (Pe = 0.3). (a) Snapshots of a chain in the coiled and stretched states. The insets display the
histograms of L and F for both states. (b) Map showing the probability of occurrence for each discrete state in the (F,L) plane around the
coiled (hot color) and stretched state (cold color).

However, we note that tension forces have the same scaling as
the stochastic term and it can be written as a series expansion
in powers of (�t )1/2. This provides a new high-order method
for the numerical simulation of bead-rod chains (further details
are given in the Appendix).

III. COILED-STRETCHED TRANSITION

A. Principle and mechanism

Chain orientation changes constantly due to the competition
between fluid stretching and thermal fluctuations. As a result,
they explore a wide range of states, leading to a broad distri-
bution in the end-to-end length and orientation (see Fig. 4). In
particular, two notable states can be reached, corresponding to
a stretched and a coiled configuration, respectively, and that
are typical of flexible particles such as fibers or polymers.
These two states have been studied for a long time in the field
of polymer science [4,30] and have recently attracted more
studies in the multiphase flow community [3,9].

Similarly to the well-studied conformation of polymers [4],
chains are stretched when fluid strain prevails over thermal
fluctuations, i.e., Pe � 1. The probability density function of
L(t ) and F (t ) are peaked toward unity (with the end-to-end
length being either positive or negative depending on the chain
orientation with respect to the fluid). Oppositely, chains are
coiled when thermal fluctuations are predominant over fluid
stretching, i.e., Pe � 1. In that case, it is well known that
the probability density function (PDF) of L(t ) and F (t ) both
display a Gaussian distribution with zero mean due to the
random orientation of consecutive links.

Another way to differentiate between coiled and stretched
states is to have a look at the chain orientation and end-to-end
length in the (F ,L) plane [see Fig. 4(b)]. Chains in the
coiled state remain around the configuration (F ,L) ∼ (0, 0),
whereas chains in the stretched state are close to (F ,L) ∼
(1, 1). Figure 4(b) also provides additional information on
the nearby partially folded or unfolded states that chains
explore. These states can be related to the intermediate stable
configurations that have been identified in Sec. II B 3. Besides,
it appears that the range of nearby states accessible depends

on the relative importance of thermal fluctuations to fluid
stretching.

The CS transition has been extensively studied in the
literature in the overdamped case, i.e., when inertia is negligible
(see, for instance, [3,14,25,26,28,30–34]). In the following, we
characterize the effect of inertia on the CS transition for such
elongated chains using the two observables (L,F).

B. Validation of the model: Overdamped case

Before evaluating the effect of inertia on the CS transition,
the current model for the dynamics of freely jointed chains is
first validated by studying the well-known overdamped case.

For that purpose, we first characterize the chain end-to-end
length and orientation as a function of time. Both observables
(L,F) are indeed fluctuating all the time due to instantaneous
thermal fluctuations which can change the chain conformation.
In line with previous studies on coil-stretch transitions (see,
e.g., [3]), we have measured both observables after a fixed time
(roughly equal to ten times the transition time from one state
to another one, which is a complex function of Pe, St, and N ).

FIG. 5. Chain end-to-end length and orientation as a function of
Pe showing the subcritical phase transition for N = 10, 20, and 40.
Subcritical phase transition visible when plotting the average over
several realizations of the flow 〈|L|〉ens. Inset showing the average
orientation over time 〈F〉t .
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Figure 5 displays the chain end-to-end length averaged over
several realizations of the flow 〈|L|(t )〉ens taken after this fixed
time. Two main results are retrieved from this figure.

First, the CS transition is related to the balance between
thermal fluctuations and fluid stretching: a chain is indeed
stretched for high fluid stretching, i.e., Pe � 1, whereas it
is coiled for high fluctuations, i.e., Pe � 1. The ensemble
averaged end-to-end length 〈|L|〉ens is proportional to 1/

√
N

at small Péclet number due to the random orientation of
consecutive beads when thermal fluctuations are high (the
central limit theorem then applies). Second, a conformation
hysteresis can be observed, similarly to the hysteresis loop that
has been observed for long polymers or DNA molecules in a
flow [3]. This hysteresis can be interpreted as resulting from
higher internal constraints found in a stretched chain. We have
indeed seen in Sec. II B that the tensions behave quadratically
in a stretched configuration, while they are at best linear in a
coiled chain: this makes it harder to start folding a stretched
chain than to start unfolding a coiled chain.

To further assess the effect of Pe on L and F , the time-
averaged chain end-to-end length and orientation has been
extracted from numerical simulations when a stationary state
is reached. The inset in Fig. 5 displays the orientation 〈F〉 as
a function of the Péclet number Pe. It confirms that chains are
coiled for Pe � 1 and stretched for Pe � 1. It also appears that
the evolution of 〈F〉 with Pe is monotonic: It decreases toward
0 when Pe decreases. It should be noted here that hysteresis
is not visible since results have been averaged over time, i.e.,
the dependence on the initial conditions has been lost in the
process.

The CS transition is also affected by the chain length: Fig. 5
shows that the CS transition occurs at smaller values of the
Péclet number when the chain length N increases. This is in
agreement with recent results [26], where the hysteresis curve
was shown to occur at smaller values of the flow strength (the
Deborah number in the original article). To further confirm
these trends, the chain end-to-end length averaged over time
〈|L|〉t has been characterized as a function of both N and Pe.
Results are plotted in Fig. 6: One observes that a long chain is
usually coiled for Pe � 0.1 while it remains stretched for Pe �
0.4. The transition between the coiled and stretched states can
be distinguished using a critical Péclet number Pe�, defined
as the value at which the averaged chain end-to-end length
exceeds a certain threshold 〈|L|〉t > L�. The solid red line in
Fig. 6 displays this critical Péclet number for L� = 0.9. The
CS transition has a nontrivial dependence on the chain length:
It becomes independent of the chain length N for sufficiently
long chains (here around N � 30), but it occurs at increasing
Péclet numbers with small chains (here 30 � N � 4). It should
be noted here that, in the case of infinitely long chains, the
assumption of a constant gradient along the chain is debatable:
it nevertheless provides interesting trends and such effects will
be studied in future work by explicitly calculating the dynamics
of very long chains in homogeneous isotropic turbulence.

C. Impact of inertia on the coil-stretch transition

The model having been validated and characterized in
the overdamped case, we now focus on assessing the effect
of inertia on the coil-stretch transition. To that extent, we

FIG. 6. Average chain end-to-end length over time 〈L〉t in the
(Pe, N ) plane. The red solid line corresponds to the critical Péclet
number Pe� at which the chain end-to-end length exceeds a threshold
〈|L|〉t > L� = 0.9. This shows the existence of an asymptotic regime
for sufficiently long chains.

characterize a chain end-to-end length and orientation as a
function of both Pe and St for a given length. Drawing
on the observations made in the overdamped case, we have
retained a chain length N = 20, which is large enough to be
representative of the behavior of long chains, but not too large
to remain numerically tractable.

The dynamics is impacted by the inertia of each bead. In
particular, two regimes can be identified depending on whether
the Stokes number is greater or higher than 1/8. Indeed, as was
shown in Sec. II B 1 (in the absence of noise), for St < 1/8
the eigenvalues of a stretched chain are real [see Eq. (15)].
Therefore, at small Stokes numbers, the inertial dynamics
can be seen as that of an overdamped chain in a synthetic
compressible flow where the effective compression rate reads
σ (1 + 2 St).

Figure 7 shows the time-averaged chain end-to-end length
〈|L|〉t in the (Pe, St) plane. One clearly observes that for

FIG. 7. Time-averaged extension 〈L〉t in the (St, Pe) plane. The
dotted vertical line shows the critical value St = 1/8. The solid and
dashed lines display the prediction Pe�(St) = Pe�(0)/(1 + 2 St) and
the asymptotic behavior Pe�(St) = Pe�(0)/(2 St), respectively, with
Pe�(0) = 0.4.
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FIG. 8. Evolution of the chain orientation for N = 20 near the CS transition (here Pe = 0.14) in the overdamped case. (a) Chain orientation
L(t ) as a function of time. Inset showing a zoom on a selected tumbling event. (b) Probability of occurrence for each discrete state over the
whole simulation in the (F,L) plane. (c) Analogous to (b) but over a selected tumbling event.

St < 1/8, the CS transition occurs at a critical value of the
Péclet number that is compatible with the formula Pe�(St) =
Pe�(0)/(1 + 2 St) obtained using the effective compression
rate described above. Surprisingly, this behavior describes also
what is happening for St > 1/8. At very large Stokes numbers,
the critical Péclet number decreases as a power law Pe�(St) ∝
St−1. This can be interpreted using dimensional analysis
as follows: The CS transition results from the competition
between thermal fluctuations and fluid stretching and thus
occurs when both contributions are balanced. According to
Eq. (4), this means 1/St ∼ 1/(PeSt2) and thus Pe ∼ St−1.

IV. TUMBLING

A. Principle and mechanism

Another typical feature of elongated particles is the ex-
istence of tumbling events [25,35–38]. These events corre-
spond to the reversal of the chain orientation with respect
to the fluid stretching. This is illustrated in Fig. 8(a): A
chain is trapped in one of the stretched configurations with
L = ±1 for a long time until a sufficiently high fluctuation
makes it tumble. The inset of Fig. 8(a) shows a focus on
one of the tumbling events: It occurs due to a favorable
sequence of thermal fluctuations that allows the chain to
transition from a stretched state to a coiled state, before
unfolding toward the reversed stretched configuration. This
process is thus similar to the tumbling-through-folding motion
that has been recently characterized for trumbbells [25] or
polymers [36].

Further information on the intermediate states explored
during the tumbling event has been obtained by studying the
probability of occurrence for each discrete state in the (F ,L)
plane. This is displayed in Figs. 8(b) and 8(c), which highlights
the signature of intermediate states in tumbling. The chains
seem to stay temporarily close to the secondary stable states
described in the stability analysis of Sec. II B 3. In the present
case, the state where (F ≈ 0.15,L ≈ −0.2) is rather frequent
during the tumbling transition. It corresponds to the partially
coiled configuration shown in Fig. 3.

In the following, we characterize the tumbling dynamics of
inertial chains in terms of the two observables (L,F).

B. Validation of the model: Overdamped case

As in the case of the coil-stretch transition, we start by
analyzing numerical results in the well-known overdamped
case to validate our approach.

We first evaluate the persistence time τt , which corresponds
to the time spent by a fiber in an extended state. In that sense, τt

measures the time separating two tumbling events. As revealed
by Fig. 8(a), the persistence time is distributed randomly.
Figure 9 displays the PDF of the persistence time for various
values of the Péclet number (slightly above the critical Péclet
Pe� at which the CS transition occurs). First, it can be seen that
the value of the persistence time is high, especially compared to
recent experimental data on polymer dynamics in extensional
flows which measured a residency time around 6 s for a shear
rate of 0.86 s−1 [39]. Second, the PDF turns out to have an
exponential tail for large τt , i.e., p(τt ) ∝ exp(−τt/τ

avg
t ) with

τ
avg
t the average persistence time. This exponential tail is in line

with recent numerical and theoretical results on tumbling [25].
These recent theoretical results [25] also predict that the

mean persistence time increases exponentially when the am-
plitude of the noise decreases. This relates to the fact that it
becomes harder for chains to exit the stretched state when

FIG. 9. Probability density function (PDF) of the persistence time
for N = 20 in the overdamped case for various values of the Péclet
number (slightly above the CS transition). The dotted lines correspond
to the exponential law p(τt ) = exp(−τt/τ

avg
t )/τ avg

t .
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FIG. 10. Average persistence time 〈τt 〉 as a function of the
normalized Péclet number Pe+ = (Pe − Pe�)/Pe�. Inset showing the
evolution of the persistence time 〈τt 〉 with the chain length N .

the amplitude of thermal fluctuations decreases. This trend
is confirmed in Fig. 10, where the average persistence time
is plotted as a function of the reduced Péclet number Pe+ =
(Pe − Pe�)/Pe�. It also appears that, when fluctuations are
small enough (here for Pe+ > 0.1), there is an exponential
increase of 〈τt 〉 with Pe+. Besides, as seen in the inset of
Fig. 10, the persistence time increases very rapidly as a function
of the chain length N . This means that chains are trapped
in either stretched state as N → ∞ and that there is a loss
of ergodicity as the chain length diverges at a fixed Péclet
number. A similar ergodicity breaking has been reported for
the CS transition [26]. This has been explained theoretically
by reducing the problem to thermally activated transitions over
an energy barrier described by a rate theory. The same applies
here: The energy needed for a chain to escape from one attractor
(or state) to another is proportional to the chain length. As a
result, the transition rate decays exponentially with the chain
length N .

C. Impact of inertia on the tumbling dynamics

The model having been validated and characterized in the
overdamped case, we now focus on assessing the effect of
inertia on the tumbling dynamics. In line with the previous
analysis of the CS transition including inertial effects, we have
chosen to fix the chain length to N = 20 and to assess how
the tumbling dynamics evolves with both Péclet and Stokes
numbers.

In line with the previous analysis, the mean persistence
time is expected to increase exponentially as the amplitude
of the noise decreases for a given value of the Stokes num-
ber. This is confirmed in Fig. 11 that displays the evolu-
tion of the persistence time as a function of the reduced
Péclet number Pe+ for three values of the Stokes num-
ber (respectively, 0.1, 0.5, and 2). Besides, it also appears
from Fig. 11 that the persistence time increases with the
Stokes number. This is in line with recent theoretical results
[37] showing a decrease in the tumbling rate for increasing
inertia.

Furthermore, two regimes can be identified in Fig. 11:
First, close to the CS transition (Pe+ � 0.1), the persistence

FIG. 11. Average persistence time 〈τt 〉 as a function of the
normalized Péclet number Pe+ = (Pe − Pe�)/Pe� for various Stokes
number (N = 20).

time increases linearly with the Stokes number and all curves
collapse on a single master curve when plotting τt/St as a
function of the reduced Péclet number Pe+. Second, at larger
Péclet numbers (Pe+ � 0.1), different behaviors are displayed
by the two families of particles. Low-inertia particles (St <

1/8) appear indeed to tumble at a higher rate than high-inertia
particles (St > 1/8).

V. CONCLUDING REMARKS

The dynamics of inertial deformable chains has been ex-
plored in the case of an extensional flow. In particular, we
have assessed the role of the Péclet number, Stokes number,
and chain length on the dynamics of such chains, especially
regarding the coil-stretch transition and tumbling phenomena.
The current approach has been first validated by comparing
numerical results to well-known results on the coil-stretch
transition in the overdamped case. Then, the effect of inertia
on this transition has been characterized: It was shown that
the transition depends nonlinearly on the three parameters
and that, for a given chain length, it evolves proportionally
to 1/(1 + 2 St). Second, numerical results obtained with the
current approach have been compared to well-known results
on tumbling dynamics of chains. In particular, the simulations
support recent results on the loss of ergodicity as the chain
length goes to infinity (meaning that chains are kinetically
trapped in a given stretched state). Then, the effect of inertia on
the tumbling dynamics of such chains has been characterized:
it was shown that the persistence time increases nonlinearly
with the Stokes number.

These promising results on the dynamics of inertial chains
in an extensional flow call for further refinements and develop-
ments. In particular, it is worth assessing how 3D simulations
affect these results and to see if recent results showing a
higher tendency for trumbbells to remain in the stretched
state in 3D cases than in 2D cases are confirmed. The next
step will be to investigate the role of chain flexibility on
the coil-stretch transition and on tumbling dynamics. The
model for the dynamics of these chains will also be extended
to include the effect of hydrodynamic interactions between
beads (as in [40]). Another question remains to be explored:
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What is happening when fluctuations are triggered by the flow
itself rather than by noise? This issue will be investigated by
coupling the dynamics of such chains with turbulent velocity
gradients (coming directly from direct numerical simulations).
The role of fluctuations both in the intensity of the velocity
gradient and in its direction will be explored. In the general
context of flexible particles in turbulent flows, further studies
are needed to evaluate the effect of preferential sampling and
preferential concentration of such fibers in the near-wall region,
especially in the case of highly elongated and deformable
fibers. Future studies will also explore the dynamics of chains
with a size longer than the smallest scale of variation of the
fluid velocity field: in that case, the velocity gradient along
the chain will not be constant but governed by the turbulent
flow. Since fluctuations due to turbulence do have spatial and
temporal correlations, we expect complex behavior of such
chains that can be very different from that obtained in the
present study (where a white noise has been used for thermal
fluctuations). These issues will be probed in future studies by
coupling the dynamics of such fibers with direct simulations
of wall-bounded turbulent flows.
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APPENDIX

1. Implementation in the general case

In the following, we focus on the numerical implementation
of the chain equation of motion in an extensional flow. In that
case, it is given by Eq. (4) which can be rewritten as

dξ i

dt
= V i , (A1)

dV i

dt
= − ζ

m
[V i − ξ i · ∇u] +

√
2kBT ζ

m2�2
K

(ηi − ηi−1)

+ 2λiξ i − λi+1ξ i+1 − λi−1ξ i−1. (A2)

This equation is solved using a simple first-order Euler-
Maruyama method with temporal discretization (time step �t):

V i (t + �t ) = V i (t ) + δV i (t ),

ξ i (t + �t ) = ξ i (t ) + �tV i (t ) (A3)

with the variation of the bead velocity given by

δV i (t ) = −�t
ζ

m
[V i (t ) − ξ i (t ) · ∇u]

+
√

�tKBr(γ i − γ i−1) − �t (�ξ λ)i (A4)

with KBr = √
2kBT ζ/(m�K ) the diffusion coefficient for

Brownian motion, γi taken from a Gaussian distribution (with
zero mean and a standard deviation equal to 1), λ denotes
the N -dimensional vector (λ1, . . . , λN )T, and �ξ is such that
(�ξλ)i = −2λiξ i + λi−1ξ i−1 + λi+1ξ i+1.

The tension forces acting on each rigid segment is obtained
by imposing a constant distance between consecutive beads
|ξ i (t + �t )|2 = |ξ i (t )|2 for all 1 � i � N . Using Eq. (A3),
this leads to

2ξ i (t ) · V i (t ) + �t |V i (t )|2 = 0. (A5)

By writing the above equation at time t + �t , we obtain

2�t |V i (t )|2 + 2ξ i (t ) · δV i (t )

+ 4�tV i (t ) · δV i (t ) + �t |δV i (t )|2 = 0. (A6)

The above nonlinearities do not allow for writing an explicit
solution. Yet, one can note that the terms on the left-hand side
involve various powers of the time step �t . For that reason,
we chose to decompose the tensions λi as series in powers of√

�t , i.e.,

�tλ =
∞∑

k=1

λ(k)�t k/2. (A7)

The series starts with terms O(
√

�t ) to account for the tension
that balances the noise. We can then identify each contribution
to obtain a set of equations for each term:

(1) Terms in �t1/2:

ξ i · (�ξλ
(1) )i = KBrξ i · (γ i − γ i−1).

(2) Terms in �t :

ξ i · (�ξλ
(2) )i = |V i |2 − ζ

m
ξ i · (V i − ξ i · ∇u).

(3) Terms in �t3/2:

ξ i · (�ξλ
(3) )i = 2V i · [KBr(γ i − γ i−1) − (�ξλ

(1) )i].

(4) Terms in �t2:

ξ i · (�ξλ
(4) )i = 2V i ·

[
− ζ

m
ξ i · (V i − ξ i · ∇u) − (�ξλ

(2) )i

]

+1

2
|KBr(γ i − γ i−1) − (�ξλ

(1) )i |2.

The above expansion can be continued to reach an arbitrary
precision. In practice, we stop at a given order and use the
corresponding approximation of the tensions to update the
chain velocity. In the paper, we used the expansion to order
�t . The terms order �t3/2 are stochastic with a zero mean, so
that the error is on average O(�t2).
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2. Implementation for small chains

In the case of chains composed of beads that act as tracers
in the flow, the equation of motion simplifies to

dξ i

dt
= ξ i · ∇u +

√
2kBT

�2
Kζ

(ηi − ηi−1)

+ 2λ′
i ξ i − λ′

i+1ξ i+1 − λ′
i−1ξ i−1, (A8)

with λ′ = λ m/ζ . This equation is solved using a first-order
Euler-Maruyama method with time step �t :

ξ i (t + �t ) = ξ i (t ) + δξ i (t ) (A9)

with the variation of the bead position δξ i (t ) given by

δξ i (t ) = �t ξ i (t ) · ∇u +
√

�tK ′
Br(γ i − γ i−1)

−�t (�ξλ
′)i (A10)

with K ′
Br =

√
(2kBT )/(ζ�2

K ) the diffusion coefficient for Brow-
nian motion, the γi’s taken from a Gaussian distribution (with
zero mean and a standard deviation 1).

The tension forces acting on each rigid segment are obtained
by imposing a constant distance between consecutive beads,
i.e., |ξ i (t + �t )|2 = |ξ i (t )|2, leading to

2ξ i (t ) · δξ i (t ) + |δξ i (t )|2 = 0. (A11)

As in the inertial case, we decompose the tensions λ′
i as

�tλ′ =
∞∑

k=1

λ′(k)�t k/2, (A12)

and identify contributions of different orders in �t1/2:
(1) Terms in �t1/2:

ξ i · (�ξλ
′(1) )i = K ′

Brξ i · (γ i − γ i−1).

(2) Terms in �t :

ξ i · (�ξλ
′(2) )i = ξ i · (ξ i · ∇u) − K ′

Br(γ i − γ i−1) · (�ξλ
′(1) )i

+ 1
2 |K ′

Br(γ i − γ i−1)|2 + 1
2 |(�ξλ

′(1) )i |2.
(3) Terms in �t3/2 :

ξ i · (�ξλ
′(3) )i = [ξ i · ∇u − (�ξλ

′(2) )i]

·[K ′
Br(γ i − γ i−1) − (�ξλ

′(1) )i].

(4) Terms in �t2:

ξ i · (�ξλ
′(4) )i = −(ξ i · ∇u) · (�ξλ

′(2) )i

×[(�ξλ
′(1) )i − K ′

Br(γ i − γ i−1)] · (�ξλ
′(3) )i

+ 1
2 |ξ i · ∇u|2 + 1

2 |(�ξλ
′(2) )i |2.

The above approximation, with terms up to those of order �t2,
is used in the paper.
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