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Machine learning strategies for path-planning microswimmers in turbulent flows

Jaya Kumar Alageshan†, Akhilesh Kumar Verma†, Jérémie Bec‡, and Rahul Pandit†∗
†Centre for Condensed Matter Physics, Department of Physics,

Indian Institute of Science, Bangalore, India - 560012. and
‡MINES ParisTech, PSL Research University, CNRS, CEMEF, Sophia–Antipolis, France.

We develop an adversarial-reinforcement learning scheme for microswimmers in statistically ho-
mogeneous and isotropic turbulent fluid flows, in both two (2D) and three dimensions (3D). We
show that this scheme allows microswimmers to find non-trivial paths, which enable them to reach
a target on average in less time than a näıve microswimmer, which tries, at any instant of time
and at a given position in space, to swim in the direction of the target. We use pseudospectral
direct numerical simulations (DNSs) of the 2D and 3D (incompressible) Navier-Stokes equations to
obtain the turbulent flows. We then introduce passive microswimmers that try to swim along a
given direction in these flows; the microswimmers do not affect the flow, but they are advected by
it. Two, non-dimensional, control parameters play important roles in our learning scheme: (a) the

ratio Ṽs of the microswimmer’s bare velocity Vs and the root-mean-square (rms) velocity urms of the

turbulent fluid; and (b) the product B̃ of the microswimmer-response time B and the rms vorticity
ωrms of the fluid. We show that the average time required for the microswimmers to reach the
target, by using our adversarial-learning scheme, eventually reduces below the average time taken
by microswimmers that follow the näıve strategy.

I. INTRODUCTION

Machine-learning techniques and advances in compu-
tational facilities have led to significant improvements
in obtaining solutions to optimization problems, e.g., to
problems in path planning and optimal transport, re-
ferred to in control systems as Zermelo’s navigation prob-
lem [1]. With vast amounts of data available from ex-
periments and simulations in fluid dynamics, machine-
learning techniques are being used to extract information
that is useful to control and optimize flows [2]. Recent
studies include the use of reinforcement learning, in fluid-
flow settings, e.g., (a) to optimise the soaring of a glider
in thermal currents [3] and (b) the development of an
optimal scheme in two- (2D) and three-dimensional (3D)
fluid flows that are time independent [4, 5]. Optimal loco-
motion, in response to stimuli, is also important in biolog-
ical systems ranging from cells and micro-organisms [6–8]
to birds, animals, and fish [9]; such locomotion is often
termed taxis [10].

It behooves us, therefore, to explore machine-learning
strategies for optimal path planning by microswimmers
in turbulent fluid flows. We initiate such a study for mi-
croswimmers in 2D and 3D turbulent flows. In particular,
we consider a dynamic-path-planning problem that seeks
to minimize the average time taken by microswimmers
to reach a given target, while moving in a turbulent fluid
flow that is statistically homogeneous and isotropic. We
develop a novel, multi-swimmer, adversarial-Q-learning
algorithm to optimise the motion of such microswim-
mers that try to swim towards a specified target (or tar-
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gets). Our adversarial-Q-learning approach ensures that
the microswimmers perform at least as well as those that
adopt the following näıve strategy: at any instant of time
and at a given position in space, a näıve microswimmer
tries to point in the direction of the target. We examine
the efficacy of this approach as a function of the following
two dimensionless control parameters: (a) Ṽs = Vs/urms,
where the microswimmer’s bare velocity is Vs and the the
turbulent fluid has the root-mean-square velocity urms;
and (b) B̃ = B ωrms, where B is the microswimmer-
response time and ωrms the rms vorticity of the fluid. We
show, by extensive direct numerical simulations (DNSs),
that the average time 〈T 〉, required by a microswimmer
to reach a target at a fixed distance, is lower, if it uses our
adversarial-Q-learning scheme, than if it uses the näıve
strategy.

II. BACKGROUND FLOW AND
MICROSWIMMER DYNAMICS

For the low-Mach-number flows we consider, the fluid-
flow velocity u satisfies the incompressible Navier-Stokes
(NS) equation. In two dimensions (2D), we write the NS
equations in the conventional vorticity-stream-function
form, which accounts for incompressibility in 2D [11]:

(∂t + u · ∇)ω = ν∇2ω − α ω + Fω; (1)

here, u ≡ (ux, uy) is the fluid velocity, ν is the kinematic
viscosity, α is the coefficient of friction (present in 2D,
e.g., because of air drag or bottom friction) and the vor-
ticity ω = (∇× u), which is normal to u in 2D. The 3D
incompressible NS equations are

(∂t + u · ∇)u = −∇p/ρ+ f + ν∇2u;

∇.u = 0; (2)
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p is the pressure and the density ρ of the incompressible
fluid is taken to be 1; the large-scale forcing Fω (large-
scale random forcing in 2D) or f (constant energy injec-
tion in 3D) maintains the statistically steady, homoge-
neous, and isotropic turbulence, for which it is natural
to use periodic boundary conditions.

We consider a collection of Np passive, non-interacting
microswimmers in the turbulent flow; Xi and p̂i are the
position and swimming direction of the microswimmer.
Each microswimmer is assigned a target located at XT

i .
We are interested in minimizing the time T required by
a microswimmer, which is released at a distance r0 =
|Xi(0)−XT

i | from its target, to approach within a small
distance r = |Xi(T ) − XT

i | � r0 of this target. The
microswimmer’s position and swimming direction evolve
as follows [12]:

dXi

dt
= u(Xi, t) + Vs p̂i ; (3)

dp̂i
dt

=
1

2B
[ôi − (ôi.p̂i) p̂i] +

1

2
ω × p̂i ; (4)

here, we use bi-linear (tri-linear) interpolation in 2D (3D)
to determine the fluid velocity u at the microswimmer’s
position Xi from eq. 2; Vsp̂i is the swimming velocity,
B is the time-scale associated with the microswimmer
to align with the flow, and ôi is the control direction.
Equation 4 implies that p̂i tries to align along ôi. We
define the following non-dimensional control parameters:
Ṽs = Vs/urms, where urms = 〈|u|2〉1/2 is the root-mean-

square (rms) fluid flow velocity, and B̃ = B/τΩ, where
τΩ = ω−1

rms; ωrms = 〈|ω|2〉1/2 denotes the root-mean-
square vorticity.

III. ADVERSARIAL Q-LEARNING FOR
SMART MICROSWIMMERS

Designing a strategy consists in choosing appropriately
the control direction ôi, as a function of the instanta-
neous state of the microswimmer, in order to minimize
the mean arrival time 〈T 〉. To develop a tractable frame-
work for Q-learning, we use a finite number of states
by discretizing the fluid vorticity ω at the microswim-
mer’s location into 3 ranges of values labelled by Sω and
the angle θi, between p̂i and T̂i, into 4 ranges Sθ, as
shown in fig 1. The choice of ôi is then reduced to a
map from (Sω,Sθ) to an action set, A, which we also
discretize into the following four possible actions: A :={
T̂i,−T̂i, T̂i⊥,−T̂i⊥

}
, where T̂i = (XT

i −Xi)/|XT
i −Xi|

is the unit vector pointing from the swimmer to its tar-
get and (T̂i⊥ · T̂i) = 0. Therefore, for the näıve strategy

ôi(si) ≡ T̂i, ∀ si ∈ (Sω,Sθ). This strategy is optimal if

Ṽs � 1: Microswimmers have an almost ballistic dynam-
ics and move swiftly to the target. For Ṽs ' 1, vortices
affect the microswimmers substantially, so we have to de-
velop a nontrivial Q-learning strategy, in which ôi is a
function of ω(Xi, t) and θi.

FIG. 1. Left panel: a pseudocolor plot of the vorticity field,
with a microswimmer represented by a small white circle; the
black arrow on the microswimmer indicates its swimming di-
rection, p̂, the red arrow represents the direction towards the
target, T̂, and θ is the angle between p̂ and T̂. Top-center
panel shows the discretized vorticity states (red |||: ω > ω0,
green \\\: −ω0 ≤ ω ≤ ω0, blue ///: ω < −ω0). In our ap-
proach we use ω0 = ωrms. The bottom-center panel indicates
the color code for the discretized θ(red |||: −π/4 ≤ θ < π/4;
orange \\\: π/4 ≤ θ < 3π/4; blue ///: −3π/4 ≤ θ < −π/4;
gray ≡: 3π/4 ≤ θ < 5π/4). The right panel lists all possi-
ble discrete states of the microswimmers, via colored squares
where the lower half stands for the vorticity state, Sω, and
the upper half represents the direction state, Sθ .

In our Q-learning scheme, we assign a quality value
to each state-action binary relation of microswimmer i
as follows: Qi : (si, ai) → R, where si ∈ (Sω,Sθ)
and ai ∈ A; and we use the ε-greedy method [22]
(with parameter εg), in which the control direction is
chosen from the probability distribution P [ôi(si)] =
εg/4 + (1 − εg) δ (ôi(si)− ômax), where ômax :=
argmaxa∈AQi(si, a) and δ(.) is the Dirac delta function.
At each iteration, ôi is calculated as above and the mi-
croswimmer evolution is performed by using eqs. 3 and 4.
In the canonical Q-learning approach, during the learn-
ing process, each of the Qi’s are evolved by using the
Bellman equation [13] below, whenever there is a state
change, i.e., si(t) 6= si(t+ δt):

Qi (si(t), ôi(si(t))) 7→ (1− λ) Qi (si(t), ôi(si(t)))

+ λ

[
Ri(t) + γ max

a∈A
Qi(si(t+ δt), a)

]
,(5)

where λ and γ are learning parameters that are set to op-
timal values after some numerical exploration (see tab. I),
and Ri is the reward function. For the path-planning
problem we define Ri(t) = |Xi(t−nδt)−XT

i |− |Xi(t)−
XT
i |, where n = minl∈N {si(t− l δt) 6= si(t)}. According

to eq. 5, any ôi for which Ri is positive can be a solution,
and there exist many such solutions that are sub-optimal
compared to the näıve strategy.

To reduce the solution space, we propose an adversar-
ial scheme: Each microswimmer, the master, is accompa-
nied by a slave microswimmer, with position XSl

i (t), that
shares the same target at XT

i , and follows the näıve strat-
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γ = 0.99 λ = 0.01

εg = 0.001 ω0/ωrms = 1.0

TABLE I. List of learning parameter values: γ is the earning
discount, λ is the learning rate, εg is the ε-greedy algorithm
parameter that represents the probability with which the non-
optimal action is chosen, ω0 is the cut-off used for defining Sω,
and ωrms is the rms value of ω.

egy, i.e., ôSli (t) ≡ T̂Sl
i = (XSl

i −XT
i )/|XSl

i −XT
i |. Now,

whenever the master undergoes a state change, the corre-
sponding slave’s position and direction are re-initialized
to that of the master, i.e., if si(t) 6= si(t + δt), then
XSl
i (t + δt) = Xi(t + δt) and p̂Sli (t + δt) = p̂i(t + δt)

(see fig. 2). Then the reward function for the master
microswimmer is given by RADi (t) = |XSl

i (t) − XT
i | −

|Xi(t) − XT
i |; i.e., only those changes that improve on

the näıve startegy are favored.
In the conventional Q-learning approach [15, 22], the

matrices Qi of each microswimmer evolve independently;
this matrix is updated only after a state change, so a large
number of iterations are required for the convergence of
Qi. To speed-up this learning process, we use the follow-
ing multi-swimmer, parallel-learning scheme: all the mi-
croswimmers share a commonQmatrix, i.e., Qi = Q,∀i.
At each iteration, we choose one microswimmer at ran-
dom, from the set of microswimmers that have undergone
a state change, to update the corresponding element of
the Q matrix (flow chart in Appendix A); this ensures
that the Q matrix is updated at almost every iteration
and so it converges rapidly.

IV. NUMERICAL SIMULATION

We use a pseudospectral DNS [17, 18], with the 2/3
dealiasing rule to solve eqs. 1 and 2. For time marching
we use a third-order Runge-Kutta scheme in 2D and the
exponential Adams-Bashforth time-integration scheme in
3D; the time step δt is chosen such that the Courant-
Friedrichs-Lewy (CFL) condition is satisfied. Table II
gives the parameters for our DNSs in 2D and 3D, such
as the number N of collocation points and the Taylor-
microscale Reynolds numbers Rλ = urmsλ/ν, where the

Taylor microscale λ =
[∑

k k
2E(k)/

∑
k E(k)

]−1/2
.

A. Näıve microswimmers

The average time taken by the microswimmers to reach
their targets is 〈T 〉 (see fig. 3). If T̂i = (Xi−XT

i )/|Xi−
XT
i | is the unit vector pointing from the microswim-

mer to the target, then for Ṽs � 1 we expect the
näıve strategy, i.e., ôi = T̂i, to be the optimal one.
For Ṽs ' 1, we observe that the näıve strategy leads

FIG. 2. Top-left panel: a schematic diagram illustrating the
trajectories of master (black line) and slave (dashed black
line) microswimmers superimposed on a pseudocolor plot of
the two-dimensional (2D) discrete vorticity field Sω; the mas-
ter undergoes a state change at the points shown by white
filled circles; white arrows indicate the re-setting of the slave’s
trajectory. Top-right panel: color code for the control direc-
tion ôi; for the states si ∈ (Sω,Sθ) see Fig. 1. Bottom panel:
control maps for the master and slave; for the purpose of il-
lustration, we use ôi = T̂i⊥, for the master; for Ṽs � 1 and
B̃ = 0, this leads to the circular path shown in our schematic
diagram.

TABLE II. Parameters: N , the number of collocation points;
ν the kinematic viscosity; α the coefficient of friction; δt the
time step; and Rλ the Taylor-microscale Reynolds number.

2D 3D

N 256× 256 128× 128× 128

ν 0.002 0.002

α 0.05 0.00

δt 5× 10−4 8× 10−3

Rλ 130 30

to the trapping of microswimmers (fig. 3(b)) and gives
rise to exponential tails in the arrival-time (T ) proba-
bility distribution function (PDF); in fig. 4 we plot the
associated complementary cumulative distribution func-
tion (CCDF) P>(T ) =

∫∞
T
℘(τ) dτ , where ℘(τ) dτ is

the probability of particle arrival in the time interval
[τ, τ + dτ ] and τ is the time since initialization of the
microswimmer. As a consequence of trapping, 〈T 〉 is
dominated by the exponential tail of the distribution, as
can be seen from fig. 4.
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FIG. 3. (a) Illustrative (blue) paths for two microswim-
mers, with their corresponding (yellow) circular target regions
(mapping in red dashed lines) where the microswimmer is
eventually absorbed and re-initialized. We consider random
positions of targets and initialize a microswimmer at a fixed
distance from its corresponding target with randomized p̂;
(b) a snapshot of the microswimmer distribution, in a vortic-
ity field (ω), for the näıve strategy, at time t = 30τΩ, with

Ṽs = 1. Here, the initial distance of the microswimmers from
their respective targets is L/3 and the target radius is L/50;
we use a system size L with periodic boundary conditions in
all directions.

FIG. 4. Plots showing exponential tails in P>(T ) for the

näıve strategy, with different values of Ṽs and B̃. The inset
shows how these data collapse when, T is normalized, for
each curve, by the corresponding 〈T 〉, which implies P>(T ) ∼
exp (−T /〈T 〉).

B. Smart microswimmers

In our approach, the random initial positions of the mi-
croswimmers ensures that they explore different states
without reinitialization for each epoch. Hence, we
present results with 10000 microswimmers, for a single
epoch. In our single-epoch approach, the control map ôi

reaches a steady state once the learning process is com-
plete (fig. 5(b)). We would like to clarify here that, in
our study, the training is performed in the fully turbulent
time-dependent flow; even though this is more difficult
than training in a temporally frozen flow, the gains, rel-
ative to the näıve strategy, justify this additional level of
difficulty.

We use the adversarial Q-learning approach outlined
above (parameter values in tab. I) to arrive at the opti-
mal scheme for path-planning in a 2D turbulent flow. To
quantify the performance of the smart microswimmers,
we introduce equal numbers of smart (master-slave pairs)
and näıve microswimmers into the flow. The scheme pre-
sented here pitsQ-learning against the näıve strategy and
enables the adversarial algorithm to find a strategy that
can out-perform the näıve one. (Without the adversarial
approach, the final strategy that is obtained may end up
being sub-optimal.)

FIG. 5. Learning statistics: (a) Plot of 〈T |t,∆〉, with
∆ = 10 τΩ, in 2D. Adversarial Q-learning initially shows a
transient behavior, before settling to a lower value of 〈T 〉
than that in the näıve strategy. (b) The evolution of the
control map, ôi, where the color codes represent the actions
that are performed for each of the 12 states. Initially, Q-
learning explores different strategies and settles down to a
ôi that shows, consistently, improved performance relative to
the näıve strategy.
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FIG. 6. The dependence of 〈T 〉 on Ṽs, for different values of B̃,
shown for the näıve strategy (dotted line) and for adversarial
Q-learning (solid line), for our 2D turbulent flow. The plot
shows that, in the parameter space that we have explored, our
adversarial-Q-learning method yields a lower value 〈T 〉 than
in the näıve strategy. The plot in the inset shows that the
CPDF of T has an exponential tail.

V. RESULTS

The elements of Q evolve during the initial-training
stage, so P>(T ) also evolves in time until the system
reaches a statistically steady state (in which the elements
of Q do not change). Hence, 〈T 〉 also changes during the
initial-training stage; to capture this time dependence,

we define 〈T (t)〉 := 1/N(t)
∑N(t)
i=1 Ti, where Ti is the

time taken by the ith microswimmer, since its intializa-
tion, to arrive at its target at the time instant t and N(t)
is the number of microswimmers that reach their targets
at time instant t. We find that 〈T (t)〉 shows large fluc-
tuations; so we average it over a time window ∆ and de-

fine 〈T |t,∆〉 := 1/∆
∫ t+∆

t
〈T (τ)〉 dτ . The initial growth

in 〈T |t,∆〉 arises because 〈T |t,∆〉 ≤ t. The plots in
figs. 5(a) and 7 show the time evolution of 〈T |t,∆〉 for
the smart and näıve microswimmers. Note that ôi be-
comes a constant, for large t, in fig. 5(b); this implies that
the elements of Q have settled down to their steady-state
values.

Figures 5(a), and 5(b) show the evolution of 〈T |t,∆〉
and ô, respectively, for the näıve strategy and our
adversarial-Q-learning scheme. After the initial learning
phase, the Q-learning algorithm explores different ô, be-
fore it settles down to a steady state. It is not obvious, a
priori, if there exists a stable, non-trivial, optimal strat-
egy, for microswimmers in turbulent flows, that could
out-perform the näıve strategy. The plot in fig. 6 shows
the improved performance of our adversarial-Q-learning
scheme over the näıve strategy, for different values of Ṽs

and B̃; in these plots we use 〈T 〉 = 〈T |t → ∞,∆〉, so
that the initial transient behavior in learning is excluded.
The inset in fig. 6 shows that P>(T ) has an exponential
tail, just like the näıve scheme in fig. 4, which implies
the smart microswimmers also get trapped; but a lower
value of 〈T 〉 implies they are able to escape from the
traps faster than microswimmers that employ the näıve
strategy. Note that the presence of a possible noise in
the measurement of the discrete vorticity Sω should not
change our findings because of the coarse discretization
we use in defining the states.

In a 3D turbulent flow, we also obtain such an improve-
ment, with our adversarial Q-learning approach, over the
näıve strategy. The details about the 3D flows, parame-
ters, and the definitions of states and actions are given in
Appendix B. In fig. 7 we show a representative plot, for
the performance measure, which demonstrates this im-
provement in the 3D case (cf. fig. 5 for a 2D turbulent
flow).

FIG. 7. Learning statistics in 3D: (a) The performance trend,
〈T |t,∆〉/τΩ, with ∆ = 10τΩ for adversarial Q-learning (blue
line) and näıve strategy (red broken-line) for microswimmers

in a 3D homogeneous isotropic turbulent flow, for Ṽs = 1.5
and B̃ = 0.5. The trend shows a slow rise in performance, sim-
ilar to that observed in 2D. In 3D the Q-learning is performed
by using 13 states and 6 actions defined in Appendix B; (b)
The evolution of ôi in 3D shows that learning has not reached
a steady state due to lower probability of swimmers reaching
the target, compared to 2D case.

VI. CONCLUSIONS

We have shown that the generic Q-learning approach
can be adopted to solve control problems arising in com-
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plex dynamical systems. In [19], global information of
the flows has been used for path-planning problems in
autonomous-underwater-vehicles navigation to improve
their efficiency, based on the Hamilton-Jacobi-Bellmann
approach. In contrast, we present a scheme that uses
only the local flow parameters for the path planning.

The flow parameters (tab. II) and the learning parame-
ters (tab. I) have a significant impact on the performance
of our adversarial-Q-learning method. Even the choice of
observables that we use to define the states (Sω,Sθ) can
be changed and experimented with. Furthermore, the
discretization process can be eliminated by using deep-
learning approaches, which can handle continuous inputs
and outputs [20]. Our formulation of the optimal-path-
planning problem for microswimmers in a turbulent flow
is a natural starting point for detailed studies of control
problems in turbulent flows.

VII. DISCUSSION

We were made aware of [21] during the writing of
this manuscript, where they tackle the problem using an
Actor-Critic reinforcement learning scheme.

We contrast, below, our reinforcement- learning ap-
proach with that of Ref. [21].

• Reference [21] uses 900 discrete states, which are
defined based on the approximate location of the
microswimmer. By contrast, our scheme uses only

the local vorticity (Sω), at the position of the mi-
croswimmer, and the orientation (Sθ); after dis-
cretization, we retain only 12 states. In analogy
with navigation parlance, Ref. [21] uses a GPS and
our approach uses a light-house along with a local-
vorticity measurement.

• In Ref. [21], the states are sensed periodically and
the elements of Q are updated at every sensing in-
stant. In constrast, we monitor the states contin-
uously and update the elements of Q only when
there is a state change. If the periodicity of sensing
is smaller than the rate of change in states of the
microswimmer, both schemes should show similar
convergence behaviors.

• Reference [21] uses a conventional, episode-based
training approach, which is sequential, whereas we
use multiple microswimmers to perform parallel
training.

• Reference [21] uses an actor-critic approach,
whereas we use an adversarial-learning method.
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Appendix A: Flowchart

Figure 8 shows the sequence of processes involved in
our adversarial-Q-learning scheme. Here it stands for the
iteration number and s is the number of sessions. We
use a greedy action in which the action corresponding
to the maximum value in the Q matrix, for the state of
the microswimmer, is performed; ε-greedy step ensures
with probability εg that the non-optimal action is chosen.
Furthermore, we find that episodic updating of the values
on the Q matrix lead to a deterioration of performance;
therefore, we use continuous updating of Q.

FIG. 8. This flow chart shows the sequence of processes in-
volved in our adversarial Q-learning algorithm.

Appendix B: State and action definitions for 3D
turbulent flow

From our DNS of the 3D Navier-Stokes equation we
obtain a statistically steady, homogeneous-isotropic tur-
bulent flow in a 128 × 128 × 128 periodic domain. We
introduce passive microswimmers into this flow. To de-
fine the states, we fix a coordinate triad, defined by{
T̂, (T̂× ω̂), T̂⊥

}
as shown in fig. 9; here, T̂ is the

unit vector pointing from the microswimmer to the tar-
get, ω̂ is the vorticity pseudo-vector, and T̂⊥ is defined
by the conditions T̂⊥ · T̂ = 0 and T̂⊥ · (T̂ × ω̂) = 0.

This coordinate system is ill-defined if ~T is parallel to
~ω. To implement our Q-learning in 3D, we define 13
states: S = (S|ω|,Sθ,Sφ) (see fig. 10); and 6 actions,

A =
{
T̂,−T̂, (T̂× ω̂),−(T̂× ω̂), T̂⊥,−T̂⊥

}
. Conse-

quently, the Q matrix is an array of size 13× 6.

FIG. 9. We define a Cartesian coordinate system by using

the ortho-normal triad
{

T̂, (T̂× ω̂), T̂⊥
}

; thus, all the vec-

torial quantities are represented in terms of this observer-
independent coordinate system.
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FIG. 10. Discretization of states in 3D: We define a spherical-polar coordinate system for each particle with the z axis pointing
along the T̂ direction and the x axis along T̂⊥. We define the canonical angles θ and φ, and discretize the states into 13,
based on the magnitude of ~ω, where ω0 and ω1 are state-definition parameters (we use ω0 = ωrms/3 and ω1 = ωrms), and the
direction of p̂, with respect to the triad, is defined in fig. 9.
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