
HAL Id: hal-02362922
https://hal.science/hal-02362922

Submitted on 11 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engineering the Floquet spectrum of superconducting
multiterminal quantum dots

Régis Mélin, Romain Danneau, Kang Yang, Jean-Guy Caputo, Benoît Douçot

To cite this version:
Régis Mélin, Romain Danneau, Kang Yang, Jean-Guy Caputo, Benoît Douçot. Engineering the
Floquet spectrum of superconducting multiterminal quantum dots. Physical Review B, 2019, 100 (3),
pp.035450. �10.1103/PhysRevB.100.035450�. �hal-02362922�

https://hal.science/hal-02362922
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW B 100, 035450 (2019)
Editors’ Suggestion

Engineering the Floquet spectrum of superconducting multiterminal quantum dots

Régis Mélin,1 Romain Danneau,2 Kang Yang,3,4 Jean-Guy Caputo,5 and Benoît Douçot3
1Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France

2Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany
3Laboratoire de Physique Théorique et Hautes Energies, Sorbonne Université and CNRS UMR 7589,

4 place Jussieu, 75252 Paris Cedex 05, France
4Laboratoire de Physique des Solides, CNRS UMR 8502, Univ. Paris-Sud, Université Paris-Saclay F-91405 Orsay Cedex, France

5Laboratoire de Mathématiques, INSA de Rouen, Avenue de l’Université, F-76801 Saint-Etienne du Rouvray, France

(Received 12 March 2019; published 31 July 2019)

Here we present a theoretical investigation of the Floquet spectrum in multiterminal quantum dot Josephson
junctions biased with commensurate voltages. We first draw an analogy between the electronic band theory and
superconductivity which enlightens the time-periodic dynamics of the Andreev bound states. We then show
that the equivalent of the Wannier-Stark ladders observed in semiconducting superlattices via photocurrent
measurements, appears as specific peaks in the finite frequency current fluctuations of superconducting
multiterminal quantum dots. In order to probe the Floquet-Wannier-Stark ladder spectra, we have developed an
analytical model relying on the sharpness of the resonances. The charge-charge correlation function is obtained
as a factorized form of the Floquet wave function on the dot and the superconducting reservoir populations.
We confirm these findings by Keldysh Green’s function calculations, in particular regarding the voltage and
frequency dependence of the resonance peaks in the current-current correlations. Our results open up a road map
to quantum correlations and coherence in the Floquet dynamics of superconducting devices.
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I. INTRODUCTION

Since the early 1960’s, the Josephson effect has attracted
continuous interest and its development over the years has
led to major applications in quantum information and tech-
nologies. It occurs when two superconductors connect a non-
superconducting material and its physical mechanism can be
described via the notion of Andreev bound states (ABS).
These phase-sensitive midgap doublets are produced by prox-
imity effect. The ABS microscopically originate from the
formation of entangled electron-hole pairs in the normal
conductor and can be seen as two-level systems [1]. Many
physical properties of the Josephson junctions, such as the
value of the Josephson current, depend on the energy-phase
relation of the ABS at zero bias voltage and finite phase drop
across the junction [2–5].

The growing interest in quantum information has boosted
investigations on the zero-energy states in proximitized su-
perconducting structures [6]. ABS physics is pivotal in the
interpretation of the experimental evidence for Majorana
bound states in nanowires [7–11]. Moreover, new states of
matter based on ABS have been predicted in conventional
superconductor multiterminal devices, offering the possibility
to engineer artificial topological materials featuring Weyl
singularities [12–15]. We note that recent works aiming at
probing these topological systems have been reported [16,17].
Experiments on multiterminal superconducting junctions have
been already performed [18–20], highlighting multiple An-
dreev reflections (MAR) involving more than two leads
[21–23] as well as correlations between Cooper pairs [24–28].
In addition, ABS in the static regime have also been proposed

to create triplet correlations using ferromagnetic wires in mul-
titerminal configurations [29], to study the effect of spin-orbit
interactions in one-dimensional (1D) systems coupled to su-
perconducting leads [30], and to simulate Andreev molecules
using two Josephson junctions in series [31].

ABS have been experimentally studied by tunnel or mi-
crowave spectroscopy [32–43]. Theoretically, one can distin-
guish between two different regimes: the first one refers to
a static phase configuration, i.e., when a Josephson junction
is driven by a time-independent magnetic flux within a loop,
with all parts of the circuit at the same chemical potential.
The second one corresponds to a dynamical control of the
superconducting phases, for instance when the system is
set out-of-equilibrium via voltage biasing. The latter is a
time-periodic problem and therefore described by the Flo-
quet theory where time periodicity plays the role of spatial
periodicity for electrons in a solid. Recently [44], some of
the authors have shown that, set out of equilibrium, the ABS
appear as periodic resonances equivalent to the Wannier-Stark
ladders predicted [45] for a solid under electric field, and
observed in semiconducting superlattices from photocurrent
experiments [46,47]. In these superconducting systems, the
time-periodicity of the ABS dynamics implies the emergence
of a spectrum made of two sets of energy levels, namely the
Floquet-Wannier-Stark (FWS) ladders.

In this paper, we study the Floquet spectrum of a super-
conducting multiterminal quantum dot (QD) by means of
analytical and numerical calculations. We show that in this
configuration (see Fig. 1) the FWS ladders can be revealed
by finite frequency noise spectroscopy, with sharp peaks
at the transitions between pairs of FWS resonances. Our
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FIG. 1. A N-terminal superconducting-quantum dot biased at
voltages V1, . . . ,VN . The superconducting phase of lead Sn evolves
according to ϕn(t ) = ϕn + 2eVnt/h̄, where ϕ1, . . . , ϕN are the phases
at the origin of time t = 0. Commensurate ratio between the Vn

is assumed in the paper. The resonant quantum dot hosts a single
spin-degenerate level at zero energy.

approach involves an analytical calculation of the charge-
charge correlation function which shows that the peak fre-
quencies obtained in the noise match the energy spacing
between arbitrary levels in the Floquet spectra. The analytical
model based on a sharp resonance approximation is used to
label the noise spectra obtained numerically from microscopic
Keldysh Green’s function calculations. Our work enables
further investigations of the coherent qu-bit-like dynamics of
two FWS ladders.

This paper is organized as follows. In Sec. II, we expose
an analogy between Wannier-Stark ladders in band theory and
in multiterminal hybrid superconducting systems. The results
on the connection between the FWS resonance spectra and
finite frequency cross-correlations are presented in Sec. IV.
Summary and perspectives are provided in Sec. V.

II. PARALLEL BETWEEN BAND THEORY
AND SUPERCONDUCTIVITY

Following the seminal works of Anderson [48,49], a classi-
cal parallel is known between two distinct fields of condensed
matter physics, i.e., band theory and superconductivity. We
go beyond by implementing this analogy for time-periodic
Floquet Hamiltonians.

Bloch oscillations in periodic crystals. A simple cubic
lattice crystal is parameterized by the spacing a0 between
nearest-neighboring sites. Electrons are localized indepen-
dently on each atom if a0 is much larger than the size of the
atomic electronic clouds. As a0 diminishes, the ground state
degeneracy for the single-electron Hamiltonian is gradually
lifted upon increasing tunnel coupling between neighbor-
ing electronic clouds. A “band” of energy with continuous
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FIG. 2. Bloch oscillations. Evolution of wave vector k and real
space coordinate x in Bloch oscillations. Wave vector k increases
linearly in time according to dk/dt = −eE/h̄, with E the electric
field. The group velocity vg(t ) = dE/dk oscillates as a function of
time t , yielding oscillations of wave packets in real space, with
frequency proportional to the electric field E . (a)–(f) cover one period
of oscillations. Due to the periodicity of the lattice potential in real
space, the Fourier point π/a′

0 in (f) is identified to −π/a′
0 in (a).

spectrum is then formed in the thermodynamic limit. This
corresponds to band theory with Bloch wave functions [50].
Eigenstates are extended plane waves multiplied by a function
which is periodic in a0.

In the presence of an additional static and uniform electric
field E , Zener [51] showed theoretically that an electron in
a crystal oscillates periodically in space, and that electro-
magnetic radiation is emitted at the corresponding frequency
(see Fig. 2). However, the so-called Bloch oscillations have
never been demonstrated experimentally for bulk materials
(neither bulk metals nor bulk semiconductors). In this case,
the inelastic scattering time is much shorter than the delay
�t = h/eEa0 for crossing the Brillouin zone under action
of electric field. However, �t is strongly reduced in artifi-
cial semiconducting superlattices, in which the potential can
be modulated with period a′

0, much larger than the lattice
parameter a0 of a bulk semiconductor. The semiconducting
superlattice Brillouin zone (having a size ∼1/a′

0) is thus
strongly reduced compared to that of the corresponding bulk
semiconductor (having a size ∼1/a0). The delay for crossing
the semiconducting superlattice Brillouin zone under action
of the electric field can advantageously be much smaller
than the inelastic scattering time [52]. Many cycles of Bloch
oscillations are then possible on time scale much shorter than
the inelastic scattering time, making possible the observation
of Bloch oscillation-related effects. Bloch oscillations are
the time-dependent counterpart of the Wannier-Stark ladder
spectrum mentioned in Introduction. Indeed, the spectral gap
eEa0 between two consecutive energy levels in such ladder is
equal to hνB, where νB = 1/�t is the frequency associated to
Bloch oscillations. This has been observed in ultracold atoms
[53–55]. We notice the properties of Bloch oscillations have
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TABLE I. Analogy between band theory and superconductivity.

Band Theory Superconductivity

Wave vectors Superconducting phases

Position xn in Number N of transmitted
real space Cooper pairs

xn/a0 integer equivalent to N integer equivalent to
2π/a0-periodic wave vector k 2π -periodic phase ϕ

Plane waves in Bloch theory States with fixed superconducting
|k〉 = ∑

x exp(ikx)|x〉 phase |ϕ〉 = ∑
N exp(iNϕ)|N〉

Hopping between neighboring Transferring pairs between leads
tight-binding sites by Andreev reflection

Electric field Josephson relation
dk/dt = −eE dϕn/dt = 2eVn/h̄

Wannier-Stark ladders Floquet-Wannier-Stark ladders

already been used in Coulomb blockaded Josephson junction
circuits for low noise amplification [56,57].

Parallel between band theory and superconductivity. The
use of conventional superconductors (such as aluminum) in
electronic devices based on the Josephson effect is at the
heart of the developments on quantum circuits and quan-
tum technologies. One of the reasons why superconductivity
remains forefront in both fundamental and applied physics
research for more than a century is reflected in the existence
of broken gauge symmetry. The BCS microscopic theory
describes superconductivity as an effect of electron-phonon
coupling yielding formation of bound states of electron pairs
with opposite spins, so-called “Cooper pairs,” which condense
into a collective ground state. Anderson implemented his the-
ory of gauge invariance which successfully accounts for the
Meissner effect on the basis of the so-called Higgs mechanism
[48,49]. Even if the phase of a single superconductor is not
measurable, phase differences are gauge-invariant (and thus
measurable) quantities. Consequently, the Josephson effect
occurs as a dissipationless current flowing through a weak link
[58] connected by two phase biased superconductors.

It turns out that band theory and superconductivity share
deep common features. Based on the concept of phase rigidity
[48], Anderson has described the wave function associated
to the Josephson effect as coherent superposition between
states with different numbers of pairs within the two super-
conducting leads [49]. In solid state physics, wave vectors in
the Brillouin zone are analogous to superconducting phases
between 0 and 2π while the “position” basis corresponds to
the “number of transmitted pairs” basis in superconductivity.
The Wannier-Stark ladders emerge in both cases as natural
consequence of this analogy. The parallel between band the-
ory and superconductivity is described in Table I.

Having emphasized this analogy, it is worth pointing out
a distinction between momentum k in band theory and the
phase difference ϕ in superconductivity. Whereas k has to be
regarded as a good quantum number, ϕ is a classical param-
eter in the BCS mean-field Hamiltonian. However, one can
circumvent this issue by promoting ϕ to a genuine quantum
degree of freedom, canonically conjugate to the number of
transmitted Cooper pairs N (see Table I).

It turns out that superconductivity is not required for pro-
ducing dynamical Wannier-Stark ladders [59]. In this work
[59], the authors study theoretically the response of a semi-
conducting superlattice to a periodic train of pulses of the
electric field. However, superconductivity offers the unique
opportunity to explore Floquet physics with purely dc-voltage
biasing.

How to detect FWS ladders? In a two-terminal Josephson
junction biased with voltage V , the superconducting phase
ϕ(t ) winds in time t according to the Josephson relation

ϕ(t ) = ϕ + 2eV t/h̄. (1)

Then, the two equilibrium ABS [see Fig. 3(a)] give rise to
two alternating FWS ladders [see Fig. 3(b)] [44], which are
the counterparts of the Wannier-Stark ladders [45] observed
experimentally in semiconducting superlattices [46,47].

This raises the natural question of how to demonstrate
experimentally the presence of FWS ladders, and to extract
their precise location in energy. The two ladders are indeed at
energies (see Fig. 3)

Eq,± = E± + qeV/h̄ (2)

(q being an even integer for our two-terminal junction, and
with any parity for three terminals). The simple relation
E+ = −E− for the energy shifts E± is valid in general. Far
from crossing in the real part of FWS resonances, we have
in addition E+ � 〈EABs〉, where 〈EABS〉 is the average of the
equilibrium ABS energy over the fast superconducting phase
variable [44].

Microwave radiation can excite transitions between two
arbitrary rungs Eq1,ε1 or Eq2,ε2 [see Eq. (2), with q replaced
by q1 or q2, and ε1,2 = ±], on the condition of resonance
� = Eq2,ε2 − Eq1,ε1 between the rf-field frequency � and the
energy difference Eq2,ε2 − Eq1,ε1 [see Eq. (2)], as illustrated
by the drawing on Fig. 3(b). It is also possible to perform
such spectroscopy by measuring current correlations at finite
frequency, as it will be further explained in Sec. IV. There, we
will show that, as a function of the measurement frequency �,
the finite frequency current cross-correlations Sa,b(�) exhibit
peaks at � = �E+,p, �E0,p, �E−,p, with

�E+,p = Eq2,+ − Eq1,− = E+ − E− + peV/h̄, (3)

�E0,p = Eq2,ε − Eq1,ε = peV/h̄, (4)

�E−,p = Eq2,− − Eq1,+ = E− − E+ + peV/h̄, (5)

where ε = ±, and p = q2 − q1 is an even integer in the case of
two terminals, but takes any parity for three-terminal systems
with commensurate dc-voltage biasing, such as opposite volt-
ages Va = −V , Vb = V and Vc = 0 in the quartet configuration
[25]. Thus �E+,p and �E−,p encode interladder transitions,
while �E0,p corresponds to intraladder transitions.

III. HAMILTONIANS

We consider in the paper a QD coupled to N superconduct-
ing reservoirs (see Fig. 1). The reservoirs are assumed to be
biased at dc voltages Vi (1 � i � N) (chosen to be commensu-
rate). Therefore we write Vi = siV where si is an integer. For
example, in the quartet configuration [25], we have N = 3,
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FIG. 3. Floquet-Wannier-Stark ladders. (a) Energies ±E (ϕ) of the two ABS as a function of superconducting phase variable ϕ in absence
of bias voltage (V = 0). The red dashed regions correspond to the quasiparticle continua. (b) The corresponding Floquet-Wannier-Stark ladders
in presence of finite bias voltage V . Notation 〈E (ϕ)〉 is used for the average of E (ϕ) over the superconducting phase variable ϕ. (c) Energy vs
number N of transmitted Cooper pairs displaying the tilted band picture of Floquet-Wannier-Stark ladder localization.

and si ∈ {0, 1,−1}. It is easy to specialize to the two-terminal
case, simply by setting to zero the tunneling coupling Jc to the
reservoir such that sc = 0. Then the dc voltage drop between
the two remaining superconducting reservoirs is equal to 2V .

The Hamiltonian can be written as

H(t ) = H0 + HJ (t ), (6)

where H0 is an usual BCS Hamiltonian for the superconduct-
ing reservoirs and HJ (t ) describes the tunneling processes
between these reservoirs and the QD. Specifically,

H0 =
N∑

j=1

∑
σ

∫
dDk

(2π )D
(ε( j, k)c†

σ ( j, k)cσ ( j, k)

+� jc
†
↑( j, k)c†

↓( j,−k) + �∗
j c↓( j,−k)c↑( j, k)) (7)

and

HJ =
N∑

j=1

Jj

∑
σ

∫
dDk

(2π )D
(e−is jω0t c†

σ ( j, k)dσ

+ eis jω0t d†
σ cσ ( j, k)). (8)

Here, c†
σ ( j, k) and cσ ( j, k) are creation and annihilation op-

erators for an electron on reservoir j with momentum k and
spin σ along the quantization axis. Corresponding operators
on the dot are denoted by d†

σ and dσ . The dimension D of
the reservoirs is left undetermined, since its actual value is not
crucial. The basic frequency ω0 is associated to single electron
tunneling processes, and it is equal to ω0 = eV/h̄. Note that
ω0 = ωJ/2, where ωJ is the Josephson frequency associated
to V .

IV. RESULTS

The “sharp resonance” approximation is first introduced at
moderately low voltage in Sec. IV A. In the next Sec. IV B,
an analytical expression of the finite frequency charge-charge

correlations is obtained with this sharp resonance approxima-
tion. Numerical results for the finite frequency current-current
correlations are presented next in Sec. IV C.

A. Sketch of the sharp resonance approximation

The goal of this section is to develop an approximation
scheme to evaluate analytically the resolvent R(E ) at energy
E , defined as

R(E ) = (E − H)−1, (9)

where the Hamiltonian H is given in Sec. III [see Eqs. (6)-
(8)]. The resulting compact form of R(E ) resulting from
the sharp resonance approximation will be used in Sec. IV B
to provide an analytical expression for the finite frequency
charge-charge correlation function.

Break junction experiments realize superconducting weak
links with only a few conduction channels [60–62]. In a
single-channel weak link [63], the ABS are at energies ±� if
the phase bias ϕ = 0 vanishes, whatever contact transparency
(with � the superconducting gap). Once biased at voltage
V , the superconducting phase difference evolves in time ac-
cording to Eq. (1). Consequently, the ABS touch periodically
the gap edge singularities at energies ±� in the presence of
bias voltage: the narrow equilibrium ABS acquire large width
at nonequilibrium. Indeed, numerical calculations [61] of the
first harmonics of the current in a superconducting weak link
show smooth energy dependence, without sharp resonances
(see Figs. 3 and 4 in Ref. [61]).

The situation is quite different in superconducting-QD
where the equilibrium ABS stay away from the gap edge
singularities in the full range of the superconducting phase
difference ϕ, even if ϕ = 0. Indeed, the ABS energies at
ϕ = 0 are of order ≈
, with 
 = J2/W . (In this expression,
J is the hopping matrix element between the QD and the
superconductor, and W the band-width of the superconducting
leads. In experiments [19], the parameter 
 is usually a
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fraction of the superconducting gap �). In a voltage-biased
superconducting-QD, the equilibrium ABS are separated from
the gap edge singularities by the finite energy difference
≈� − 
. Still, at finite V , the FWS resonances remain cou-
pled by MAR to the semi-infinite quasiparticle continua.
The resulting linewidth broadening γ ≈ � exp(−c�/eV ) is
exponentially small in the ratio between the gap � and the
voltage energy eV [28] [with c a constant of order unity].
Since γ drops rapidly to zero as �/eV is increased above
unity, another mechanism of relaxation has to be advocated at
inverse voltages larger than 3 � �/eV , such as the coupling
to phonons [44].

Given the exponential dependence on inverse voltage of
the MAR linewidth broadening γ , we discuss now (within
the wave-function approach introduced in Sec. I of Ref. [64])
an approximation relying on the sharpness of the FWS reso-
nances for 3 � �/eV (see Secs. I– III in Ref. [64] for details).
A central role in these calculations is played by R(E ) in
Eq. (9) which can be factorized according to

R(Ẽ + pω0)m,n �
∑
α=±

m+p(Eα ) ⊗ �n+p(Eα )

Ẽ − Eα + i
α

, (10)

where p is an integer. Eq. (10) above is identical to Eq. (18) in
Sec. II of Ref. [64]. Further details on its demonstration can be
found in Appendix A of Ref. [64]. The notation {m(E )}m∈Z
stands for the two-component right zero-eigenvector of the
Floquet equations. The notation {�n(E )}n∈Z is used for the
corresponding left eigenvector of the transposed equations.
The notation Ẽ + pω0 stands for the energy, where ω0 =
eV and Eα is the energy shift of the FWS ladder α = ±
[see Eq. (2)]. The notation 
α is used for the corresponding
linewidth broadening.

B. Finite frequency charge-charge correlation function in the
sharp resonance approximation

Now, we demonstrate Eqs. (3)–(5) in the sharp resonance
approximation, on the example of the charge-charge correla-
tion function

C(t, t ′) =
∑
σ,σ ′

〈d†
σ (t )dσ (t )d†

σ ′ (t ′)dσ ′ (t ′)〉

−
(∑

σ

〈d†
σ (t )dσ (t )〉

)(∑
σ ′

〈d†
σ ′ (t ′)dσ ′ (t ′)〉

)
, (11)

where dσ and d†
σ are defined in the Appendix.

The sharp resonance approximation discussed above in the
preceding Sec. IV A leads to simple expressions for (i) the
charge-charge correlation function given by Eq. (11) (see be-
low), (ii) the dot propagators (see Sec. II in Ref. [64]), (iii) the
charge on the quantum dot (Sec. III in Ref. [64]), and (iv) the
direct currents (see Sec. IV, again in Ref. [64]). Our analytical
calculations can be also extended straightforwardly to the
finite frequency current cross-correlations (the expression of
which is not given here), however with more tedious formula.

Equation (11) is first Fourier transformed from times
t, t ′ to frequencies ω, ω′. The resulting C(ω,ω′) has
nonvanishingly small elements if ω − ω′ is an integer
multiple of ω0. Here, we limit the analysis to the “diagonal”
time-translational invariant part of the finite frequency charge

correlation function Cd (�) ≡ C(�,�), which takes the
following form in the sharp resonance approximation (similar
to Eqs. (24) and (25) in Ref. [64]):

Cd (�) = 4
N∑

i, j=1

∑
α=±

∑
β=±

(i, j)∑
p

× Si,αS j,β (
α + 
β )

(� − Eα − Eβ − pω0)2 + (
α + 
β )2

×
(i, j)∑

(m,m′ )∈Z2

Fα,β (m, m′, m − p, m′ − p), (12)

with

Si,α = ADJ2
i

2(2π )D−1
α

∑
p∈Z

∑
τ

ν(i, α, p, τ )(k(i, α, p, τ ))D−1

× θ (Eα + pω0 − |�i|)|�(Eα )−si+p,ueiϕi/2

× x(i, k(i, α, p, τ ))

−�(Eα )si+p,ve−iϕi/2y(i, k(i, α, p, τ ))|2 (13)

and

Fα,β (m, m′, n, n′) = m,u(Eα )∗
m′,u(Eα )n,v (Eβ )∗

n′,v (Eβ )

+m,v (Eα )∗
m′,u(Eα )n,u(Eβ )∗

n′,v (Eβ ),

(14)

where the expression of Si,α in Eq. (13) above coincides
with Eq. (25) in Ref. [64]. The right and left “Floquet wave
functions” are denoted by  and � [see Eq. (9) above]. The
Heaviside step function is denoted by θ in Eq. (13). The
superconducting leads have dimension D in Eqs. (12)–(14).
The notation AD stands for the D-dimensional sphere area
(A1 = 2, A2 = 2π, A3 = 4π ). The integers si are used for
characterizing commensurate voltage biasing: The voltage
Vi on superconducting lead Si is given by Vi = siV (see also
Appendix). The variable Ji is the tunneling amplitude between
the quantum dot and the superconducting lead Si phase ϕi.
The integer p in Eq. (12) has the same parity as si + s j , and
m and m′ have the same parity as si.

The BCS quasiparticle dispersion relation in lead j is
given by

E ( j, k) ≡
√

ε( j, k)2 + |� j |2 = Eα + pω0, (15)

where ε( j, k) is the kinetic energy. Eq. (15) has two solutions
labeled by τ ∈ {>,<}. The density of states ν( j, α, p, τ ) is
defined as follows:

ν( j, α, p, τ ) =
[

dE ( j, k)

dk
(k = k( j, α, p, τ ))

]−1

. (16)

The notations x and y in Eq. (13) stand for the BCS coherence
factors

x( j, k) =
√

1

2

(
1 + ε( j, k)

E ( j, k)

)
, (17)

y( j, k) =
√

1

2

(
1 − ε( j, k)

E ( j, k)

)
. (18)
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In the expression (12) of the charge-charge correlation
function in the sharp resonance approximation, α labels the
two FWS ladders, and not all values of m, m′, p, p′ ranging
from −∞ to +∞ contribute to a physically observable reso-
nance in Cd (�). The “wave functions” m,w(Eα ) (w = u, v)
have indeed finite extent as a function of m, due to localization
on the FWS ladders plotted as a function of the number of
transmitted Cooper pairs [see Fig. 3(c)]. Further investigations
on the extent of the FWS ladders as a function of N in the
semiclassical limit will be presented elsewhere.

In general, Eq. (10) is the sum of two terms because of
the summation over α = ±, but one of these can be discarded
if the energy Ẽ ≈ Eα is close to Eα . Then, the resolvent is
well approximated by the resonant term in Eq. (10), which
takes a simple factorized form involving products of the 

and � wave functions. The resulting expression Eq. (12) of
the charge-charge correlation function is also factorized into
the corresponding � and  contributions: (i) the Si,α (and
S j,β ) factors given by Eq. (13) depend only on �, and they
encode the contributions of the lead i (or j) populations to the
resonance α (or β); (ii) The  terms in the “form factors” Fα,β

originate directly from Wick theorem for products of four-
fermion operators, and they do not depend on the populations
in the reservoirs.

Another appealing feature of Eq. (12) is that the frequency
dependence solely encoded in a “minimal” information about
(i) the spectrum of resonances (such as the energies Eα , the
widths 
α) and (ii) the wave function m(Eα ) at resonance.
The Si,α coefficients contain indeed all information about
the stationary state, and they reflect the initial state of the
reservoirs before adiabatic switching of tunneling processes.

Further semiclassical analysis reveals that the sum over p
in Eq. (13) converges easily since the decay of �(Ẽ )p at large
p is very fast. We note that, besides this large p behavior, the
factor ν( j, α, p, τ ) diverges when Eα + pω0 is close to |� j |.
The sum in Eq. (13) is then dominated by the contribution of
quasiparticle states injected on the dot at energies close to the
BCS gaps in the reservoirs.

A direct consequence of the compact Eq. (12) is emergence
of three series of sharp peaks in Sa,b(�) at frequencies

�α,β,p = Eα + Eβ + pω0, (19)

which coincide with the preceding Eqs. (3)–(5). The sign of
these peaks depends on the Floquet wave functions, and thus,
it cannot be predicted from simple arguments.

Now, we want to confirm these predictions from indepen-
dent microscopic Keldysh Green’s functions calculations for
the finite frequency current-current correlation function. We
also want to visualize the frequency-� and voltage-eV depen-
dencies of the cross-correlations, with a choice of the model
parameters compatible with possible experimental realization.

C. Numerical results for the cross-correlation spectra

In this section, we present our numerical results on the con-
nection between the FWS ladders of resonances and the sym-
metrized finite frequency current-current cross-correlations
Sa,b(�). After the necessary definition of Sa,b(�), the Floquet
spectra are presented for the four sets of device parameters
which will be used afterwards in the evaluation of Sa,b(�).

TABLE II. The couplings (a)–(d) used in the numerical calcula-
tions. [The same labeling (a)–(d) is used in Figs. 4–7]. The notation

i (with i = a, b, c) stands for 
i = J2

i /W , where Ji is the hopping
amplitude between the dot and lead Si, and W is the band-width of
the superconductors.

Panel Number of
label terminals 
a/� 
b/� 
c/� ϕq/2π

(a) 2 0.3 0.3 0
(b) 2 0.4 0.2 0
(c) 3 0.3 0.3 0.3 0
(d) 3 0.3 0.3 0.3 0.1

Expression of Sa,b(�). The quantity Sa,b(�) calculated
numerically is the diagonal term (in frequency) of the Fourier
transform of the following two-time current-current correla-
tion function

Sa,b(t, t ′) = 〈δÎa(t )δÎb(t ′)〉 + (t ↔ t ′), (20)

where Îa(t ) and Îb(t ′) are the operators for the currents enter-
ing superconducting leads Sa and Sb at times t and t ′. The nota-
tions δÎa(t ) = Îa(t ) − 〈Îa(t )〉 and δÎb(t ′) = Îb(t ′) − 〈Îb(t ′)〉 are
used for the deviations with respect to the expectation value
in the stationary states.

The four sets of device parameters. Different configu-
rations of the superconducting-QD (e.g., depending on the
number of terminals, the symmetry of the contacts and the
presence/absence of quartet phase [25] for three terminals)
lead to qualitatively different variations in the voltage de-
pendence of the Floquet spectra. All numerical calculations
presented below were indeed carried out with the four sets
of parameters labeled by (a)–(d) in Table II. The notation
ϕq in this table stands for the so-called “quartet phase” [25],
corresponding to the static phase combination appearing in a
three-terminal Josephson junction biased with commensurate
voltages. Indeed, the superconducting phase ϕi(t ) of leads
Si (with i = a, b, c) is given by ϕi(t ) = ϕi + 2eVit/h̄. With
opposite voltage biasing in the three-terminal configurations
(c) and (d) (i.e., Va = −Vb = V and Vc = 0), the static com-
bination [25] ϕq is given by ϕq = ϕa + ϕb − 2ϕc ≡ ϕa(t ) +
ϕb(t ) − 2ϕc(t ).

The rescaled spectra are shown in Fig. 4, where the x axis
is �/eV (inverse voltage normalized to the gap) and y axis
is En/eV (the FWS resonance energies divided by voltage).
Indeed, Eqs. (3)–(5) for the Floquet levels lead to

Eq,±
eV

= E±
eV

+ q. (21)

These plots in reduced variables [65] (i.e., E/eV versus
�/eV ) can advantageously be used instead of the more con-
ventional ones (i.e., E/� versus V/�) in order to produce
regular patterns of avoided levels at low voltage.

Figure 4 shows the FWS resonance energies En/eV evalu-
ated from the maxima in |R(E )| [see Eq. (9)]. In addition to
the expected FWS resonances, spurious maxima at energies
E∗

m are visible in the small-�/eV region of the spectra.
Inspection of the numerical data for the energy dependence of
|R(E )| shows that they appear in the vicinity of the gap edges,
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FIG. 4. Floquet-Wannier-Stark ladders. The figure shows the Floquet energies as a function of inverse voltage, using the rescaled variables
given by Eq. (21). The x axis is �/eV and y axis is E/eV . Small voltage means large value of �/eV on x axis. The superconducting-QD
junction parameters are given in Table II: (a) two symmetrically coupled terminals, 
a/� = 
b/� = 0.3; (b) two terminals with generically
different couplings to the leads, 
a/� = 0.4, 
b/� = 0.2; (c) three symmetrically coupled terminals with vanishingly small quartet
phase ϕq/2π = 0, 
a/� = 
b/� = 
c/� = 0.3; and (d) three symmetrically coupled terminals with finite value for the quartet phase
ϕq/2π = 0.1, 
a/� = 
b/� = 
c/� = 0.3. As discussed in the text, the spurious data-points for �/eV � 10 are an artifact of the gap
edge singularities.

generally with tiny curvature |d2|R(E∗
m)|/dE2| compared to

the sharp FWS resonances.
Very different behavior emerges on panels (a)–(d) of

Fig. 4, according to the symmetry of the coupling between the
dot and the leads (see Table II). For instance, the basic period
on Fig. 4(b) with two terminals is 4eV/h̄, instead of 2eV/h̄
for three terminals [see Figs. 4(c) and 4(d)]. In this case, the
Bogoliubov-de Gennes equations (see Sec. I in Ref. [64])
decouple into two blocks. Each of these blocks gives rise to
a pair of FWS ladders, with the basic period �E = 4eV/h̄.
This explains the period doubling observed in panels (a) and
(b) of Fig. 4.

Another characteristic feature of these spectra of reso-
nances is absence of level repulsion in Figs. 4(a) and 4(c).
For these highly symmetric configurations of the tunnel am-
plitudes between the quantum dot and the superconducting
leads, the Bogoliubov-de Gennes Hamiltonian commutes with
the σ x Pauli matrix, thus we get two decoupled tight-binding
problems in the Floquet coordinate (e.g., the coordinate N on
the x axis of Fig. 3). This explains why we do not observe
Landau-Zener transitions [66,67] because the two FWS ladder
are independent in Figs. 4(a) and 4(c). In this case, Bohr-
Sommerfeld quantization [44] becomes exact for a single
band, and E± = ±〈EABS〉, where EABS is the average of the
equilibrium ABS energy over the fast phase variable. We have

±〈EABS〉 = 0 for the parameters on Fig. 4 (a), in agreement
with the horizontal lines seen on this figure.

The spectra shown in Figs. 4(b) and 4(d) are more complex,
since they both exhibit repulsion among FWS resonances.
For panel (d), the two tunneling paths for Landau-Zener
transitions [instead of a single one for panel (b)] produce a
modulation of the level repulsion pattern related to Landau-
Zener-Stückelberg interferences [67].

Numerical results for the cross-correlation spectra. Once
Fourier transformed, Eq. (20) is written as a sum of terms
originating from Wick theorem for products of four creation
or annihilation operators in the current-current correlation
function. Each of these terms is given by products of Keldysh
Green’s functions [22,28]. The latter can be expressed in terms
of the resolvent defined by Eq. (9). This is formally similar
to the superconducting quantum point contact [68] relevant
to break-junction experiments [69]. In our calculations of the
current-current cross-correlations in superconducting-QD, the
numerical method relies on recursive Green’s functions in
energy, combined to sparse matrices algorithms, and adaptive
integration over the spectral parameter [22,28]. The numerical
value of the cross-correlations converges towards the exact
answer upon increasing the adjustable level of accuracy.

Figure 5 shows the current-current cross-correlations
Sa,b(�) [see Eq. (20)] as a function of frequency �, for
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FIG. 5. Cross-correlation spectra Sa,b(�). The contact transparencies are given in Table II: [(a1), (a2), and (a3)] two symmetrically
coupled terminals, 
a/� = 
b/� = 0.3; [(b1), (b2), and (b3)] two terminals with generically different couplings to the leads, 
a/� = 0.4,


b/� = 0.2; [(c1), (c2), and (c3)] three symmetrically coupled terminals with vanishingly small quartet phase ϕq/2π = 0, 
a/� = 
b/� =

c/� = 0.3; and [(d1), (d2), and (d3)] three symmetrically coupled terminals with finite value for the quartet phase ϕq/2π = 0.1, 
a/� =

b/� = 
c/� = 0.3. The values of inverse voltage are indicated on the figure: ([a1), (b1), (c1) and (d1)] �/eV = 2; [(a2), (b2), (c2), and
(d2)] �/eV = 4; and [(a3), (b3), (c3), and (d3)] �/eV = 8. The theoretical prediction [see Eqs. (3)–(5)] for the collection of values of En − Em

(i.e., the differences between Floquet energies) is shown by colored bars on each panel. Each bar x-axis coordinate is at the value of En − Em.
The color code is the following: yellow, magenta, and orange correspond to �E+,p, �E0,p, and �E−,p respectively [see Eqs. (3)–(5)]. The x
axis is �/� and y axis is Sa,b in natural units. Temperature is vanishingly small.

the four sets (a)–(d) of junction parameters in Table II.
The following values of inverse-voltage are used: �/eV = 2
[panels (a1), (b1), (c1), and (d1)], �/eV = 4 [panels (a2),
(b2), (c2), and (d2)], and �/eV = 8 [panels (a3), (b3), (c3),
and (d3)]. In agreement with the preceding Sec. IV A, sharp
peaks emerge on Fig. 5 for Sa,b(�), which become denser
and narrower [44] as �/eV is increased (i.e., as voltage is
reduced). It was verified that the zero-frequency limit Sa,a(0)
of the current-current autocorrelation function is always pos-
itive in these calculations, and that the zero-frequency cross-
correlation Sa,b(0) is negative for two terminals. The peaks
in the frequency dependence of the cross-correlations Sa,b(�)
(see Fig. 5) show both positive or negative sign, depending
on the values of frequency or bias voltage. Indeed, inspection
of Eqs. (12)–(14) reveals that the sign and amplitude of the
resonances in Sa,b(�) cannot be fixed by a simple general rule.
Instead, it depends on complex combinations of the Floquet
wave functions which are oscillating as a function of the
coordinate N in Fig. 3.

Figure 6 shows the same data as Fig. 5, but now the y axis
(i.e., the Sa,b axis) is on a logarithmic scale. This reveals many
peaks, which disappear for frequencies 3 � �/�.

The theoretical prediction for the three families of FWS
transition energies �E+,p, �E0,p, and �E−,p [see Eqs. (3)–
(5)] are shown as bars of different colors in Figs. 5 and 6.
The values of E+ and E− in Eq. (2) are calculated numerically
from the sharp maxima in the resolvent |R(E )| [see Eq. (9)].
For clarity, the values of the y-axis (i.e., the Sa,b or log10 |Sa,b|-
axis) coordinate of all bars has been shifted by a positive or
negative offset.

The x-axis (i.e., the �-axis) coordinate of the bars (in
Figs. 5 and 6) compares well with the location in energy of
the sharp maxima in Sa,b(�) (see Fig. 5) or log10 |Sa,b(�)| (see
Fig. 6). This provides numerical evidence for the expectation
(discussed above in the preceding section II) that the peak
frequencies match the energy differences En − Em between
pairs of Floquet states [see also the preceding Eq. (19)
deduced from Eqs. (11)–(14)]. We note that a few of the
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FIG. 6. Cross-correlation spectra log10 |Sa,b(�)|. The same as Fig. 5 but now y axis (i.e., the Sa,b axis) is a logarithmic scale. Temperature
is vanishingly small.

theoretically predicted peaks are barely visible in Sa,b(�) (see
Fig. 5) or log10 |Sa,b(�)| (see Fig. 6), because they are directly
surrounded by sharp peaks with positive and negative signs,
and thus, the value |Sa,b| is weak for these resonances.

Panels (a1)–(d1) of Fig. 7 show the cross-correlations
Sa,b(�/eV,�/eV ) in the plane of parameters �/eV (on x
axis) and �/eV (on y axis). This is compared with panels
(a2)–(d2) on the same figure, featuring (En − Em)/eV (on y
axis) as a function of inverse voltage �/eV (on x axis). The
data for the resolvent are similar to those in Fig. 4, but now
in the experimentally relevant window 2 � �/eV � 10 of
inverse voltage. The data on panels (a2)–(d2) were truncated
to �/eV � 5. The values of En and Em calculated from
|R(E )| are indeed within the gap region −� � En, Em � �.
This implies lower bound on �/eV if one wants to produce
from |R(E )| the full spectrum of (En − Em)/eV within range
0 < (En − Em)/eV < 16 [see panels (a2)–(d2) of Fig. 7].

We note also the presence in Fig. 7(d1) of a resonance
line at frequency � = 2�, in addition to the FWS resonance
lines coinciding with Fig. 7(d2). This resonance corresponds
to the expected transitions between both gap edge singularities
at energies ±�. The resulting peak in Sa,b cannot be distin-
guished from the series of transitions between FWS ladders
in the preceding Figs. 5 and 6, because �/eV is an integer
on these figures, implying that the quasiparticle resonance at
energy 2� necessarily coincides with the transitions �E0,p

[see Eq. (4)].

It is concluded from Figs. 5–7 that the frequency � of
the sharp peaks in the cross-correlation matches very well the
energy difference En − Em between FWS resonances in the
resolvent, in addition to a quasiparticle line at energy � =
2�. This confirms that finite frequency cross-correlations
can be used to make spectroscopy of the Floquet spectrum
(i.e., the spectrum of the FWS ladders) in a multiterminal
superconducting-QD. Our predictions for the voltage depen-
dence is of particular relevance to experiments, which is
discussed now in the concluding section.

V. SUMMARY AND PERSPECTIVES

A. Summary

The equilibrium ABS are protected by a finite energy gap
from the semi-infinite quasiparticle continua in multiterminal
superconducting-QD. The nonequilibrium Floquet states can
thus have very long lifetime. Still, the higher-order MAR
provide a finite width γ to these FWS resonances, which is
exponentially small in �/eV . Due to the drastic reduction of
γ as eV/� decreases, sharp resonances emerge already in a
relatively large range of eV/� � 1/3 (see Figs. 5 and 6 for
the evolution with voltage of the width of the resonances in
the cross-correlations).

An analytical theory was presented, which takes advan-
tage of the smallness of the width of the FWS resonances.
A compact expression was obtained for the charge-charge
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FIG. 7. Comparison between the cross-correlation and resolvent spectra. The contact transparencies are given in Table II: [(a1) and
(a2)] two symmetrically coupled terminals, 
a/� = 
b/� = 0.3; [(b1) and (b2)] two terminals with generically different couplings to the
leads, 
a/� = 0.4, 
b/� = 0.2; [(c1) and (c2)] three symmetrically coupled terminals with vanishingly small quartet phase ϕq/2π = 0,


a/� = 
b/� = 
c/� = 0.3; and [(d1) and (d2)] three symmetrically coupled terminals with finite value for the quartet phase ϕq/2π =
0.1, 
a/� = 
b/� = 
c/� = 0.3. (a1), (b1), (c1), and (d1) show log10 |Sa,b(eV/�,�/�)| (the logarithm of the cross-correlations) in color
scale, as a function of normalized inverse voltage �/eV (x axis) and normalized frequency �/eV (y axis). (a2), (b2), (c2), and (d2) show the
theoretical prediction [see Eqs. (3)–(5)], i.e., the collection of (En − Em )/eV vs �/eV , where En and Em are two arbitrary Floquet energies. The
bright peaks in the color-plot in (a1)–(d1) correspond to the peaks in the cross-correlations, also visible in Figs. 5 and 6. Similar inverse-voltage
dependence is obtained for the calculated cross-correlations [see (a1)–(d1)] and the Floquet spectrum (i.e., the collection of (En − Em )/eV )
[see (a2)–(d2)]. The dark blue areas in (a1)–(d1) correspond to the regions in which the cross-correlations Sa,b is small in absolute value (thus
with negative log10 |Sa,b|), due to change of sign of Sa,b as a function of � between some of the resonance peaks (see Fig. 5). Temperature is
vanishingly small.

correlation function. Remarkably, due to the presence of sharp
FWS resonances, the charge correlation function factorizes
into a product of two quantities: (i) a first term containing
information about the populations in the lead and (ii) a second
one involving products of four Floquet wave functions on the
QD. This analytical theory reveals three series of peaks in the
frequency dependence of the cross-correlations, which receive
interpretation of transitions between Floquet states belonging
to the same or different ladder. Numerical calculations for the
cross-correlations Sa,b (between currents entering the super-
conducting leads Sa and Sb) were presented in the case of two-
and three-terminal configurations with various symmetries
of the couplings. The numerical results for the location in
energy of the resonances are in a quantitative agreement
with the analytical theory. It is concluded that the nontrivial
voltage dependence of the Floquet spectrum can be accessed
experimentally via finite frequency noise spectroscopy in a
superconducting-QD.

B. Perspectives

Calculating the nonsymmetrized correlators instead of the
symmetrized ones would not change the energy values of the
peaks in the noise, but may possibly modify their sign. This
question will be addressed in the future in connection with
experiments.

Expanding the modulus square in Eq. (13) produces several
terms in which different physical processes can be recognized.
It would be interesting to investigate a similar expansion
for the current cross-correlations. Classifying the different
processes beyond perturbation theory was already done for the
dc-current [70] and for the current cross-correlations [71–75]
of a metallic normal metal-superconducting-normal metal
double junction. For a multiterminal all-superconducting-QD
(see Fig. 1), this can lead to nonperturbative characterization
of the quartet [18,19,25], multipair or phase-MAR [19,20,26]
channels. At present time, separation of the dc-current
[26] and the current-current cross-correlations [28] into the
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different physical channels relies solely on the symmetries
with respect to phase or voltage inversion [22].

Another interesting perspective is to develop nonstandard
algorithms to calculate the current and the current-current
correlation function in the sharp resonance approximation.
Namely, this approximation is based on a limited number
of parameters for the spectrum of FWS resonances (i.e., the
position of the Floquet resonance energies and their width),
and on the Floquet wave functions at resonance. The fac-
torized form of the charge-charge correlation function [see
Eq. (12)] suggests the possibility of spectacular enhancement
of the performances of the codes with respect to those used in
Sec. IV C to evaluate the current correlation functions.

It is also an open question to show that FWS ladders
are robust against Coulomb interaction. We note that finite
frequency noise has been calculated recently for an interacting
quantum dot [76].

Figures 7(b1) and 7(b2) reveal nontrivial features already
for a two-terminal device with generically different couplings
to the leads in the experimentally accessible voltage range
0.1 � eV/� � 1. Two-terminal devices are much easier to
control experimentally than their three-terminal counterparts.
Figures 7(b1) and 7(b2) feature repulsion among FWS reso-
nances in this case, which is a signature of quantum coherent
coupling between the time-periodic states originating from

different ladders. The Floquet wave functions are then delo-
calized on both “FWS ladder rungs” in quasicoincidence (as a
function of the coordinate N in Fig. 3). Future perspectives on
a “Floquet qu-bit” based on the time-periodic dynamics of the
superconducting-QD can be envisioned, including opening on
the physics of driven qu-bits [77,78]. Finally, the possibility to
perform tunnel spectroscopy of the FWS ladders is currently
under investigation.
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