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Classification of 3R Positioning Manipulator

Introduction

Manipulator global kinematic properties are intimately related to the geometry and topology of singularities. Most of the considerable literature dealing with manipulator singularities are concemed with manipulator control and trajectory planning (Borrel and Liegeois, 1986;[START_REF] Tsai | Admissible Motions in Manipulator's Workspace[END_REF][START_REF] Chevallereau | Feasible Trajectories for a Non-Redundant Robot at a Singularity[END_REF]. On the other hand, few authors have addressed manipulator singularities for global analyses purposes. Manipulator workspace has been frequently used as a tool for manipulator analysis and design [START_REF] Kumar | The Workspace of Mechanical Manipulators[END_REF][START_REF] Gupta | Design Considerations for Manipulator Workspaces[END_REF][START_REF] Yang | On the Workspace of Mechanical Manipulators[END_REF][START_REF] Kholi | The Jacobian Analysis of Workspaces of Mechanical Manipulators[END_REF][START_REF] Rastegar | Methods to Determine Workspace with Different Numbers of Configurations and ail the Possible Configurations of a Manipulator[END_REF][START_REF] Paden | Optimal Kinematic Design of 6R Manipulators[END_REF][START_REF] Wenger | On the Connectivity of Manipulator Free-Workspace[END_REF][START_REF] Ceccarelli | A Synthesis Algorithm for Three-Revolute Manipulators by Using an Algebraic Formulation of Workspace Boundary[END_REF]. However, the workspace approach may not be sufficient for characterizing important kinematic features like the genericity. The geometry and topology of the critical point manifolds in the joint space tum out to be an interesting complementary way of globally analysing and categorizing the kinematic properties of manipulators. In 1988, Burdick presented a detailed analysis of 3R manipulator singularities [START_REF] Burdick | Kinematic Analysis and Design of Redundant Manipulators[END_REF]. One year later, Pai introduced the notion of generic manipulators [START_REF] Pai | Generic Singularities of Robot Manipulators[END_REF]. A manipulator is said generic if its singularities are generic, that is, if they form smooth manifolds in the joint space. The set of nongeneric manipulators forms hyper surfaces in the space of all manipulators. Consequently, a manipulator is almost generic, in the sense that if the geometric parameters of a manipulator are given at random, the probability to obtain a nongeneric manipulator is null. At the end of his work, [START_REF] Burdick | A Classification of 3R Positioning Manipulator Singularities and Geometries[END_REF] proposed a preliminary classification scheme for 3R positioning manipulators, using the number and homotopy class of their critical point manifolds. However, he did not attempt a complete enumeration of all possible generic manipulator classes.

The primary goal of this paper is to enumerate all possible classes of homotopie generic positioning 3R (nonredundant) manipulators. Positioning manipulators are referred to as serial manipulators whose primary task is to reach points in the 3-D Cartesian space. The main application of this study is the complete categorization of the 3R generic cuspidal and noncuspidal manipulators. The remainder of this paper is organized as follows:

-section 2 recalls the notions of singularity, genericity, cuspidality and homotopy class, -section 3 sets new results about the geometry and topology of the critical point manifolds. lt is proved that there are only eight classes of homotopie generic manipulators, with only one class of noncuspidal manipulators, -section 4 illustrates the different manipulator classes, -section 5 is devoted to some important comments,

The last section concludes this paper.

Preliminaries

2.1 The Singularities of Positioning 3R Manipulators.

Only positioning singularities will be studied here, and from now on, the word singularity will stand for positioning singularity. In a positioning singularity, the end-effector cannot be instantaneously translated along an axis.

The singularities of a positioning manipulator can be characterized by the set of joint configurations q which nullify the determinant of the Jacobian matrix. In the joint space, they form two-dimensional closed manifolds, referred to as critical point manifolds [START_REF] Burdick | Kinematic Analysis and Design of Redundant Manipulators[END_REF][START_REF] Tsai | Admissible Motions in Manipulator's Workspace[END_REF]. They divide the joint space into at least two singularity-free domains called aspects (Borrel and Liegeois, 1986;[START_REF] Wenger | On the Connectivity of Manipulator Free-Workspace[END_REF][START_REF] Ranjbaran | On Positioning Singularities of 3-Revolute Robotic Manipulators[END_REF] or c-sheets [START_REF] Burdick | Kinematic Analysis and Design of Redundant Manipulators[END_REF][START_REF] Smith | Design of Solvable 6R Manipulators[END_REF][START_REF] Tsai | Admissible Motions in Manipulator's Workspace[END_REF]. The global kinematic properties of a manipulator are intimately related to the geometry and topology of the critical point manifolds. Under the forward kinematic map, the critical point manifolds are rearranged into manifolds ( the critical value manifolds ) which divide the workspace into regions with different number of inverse kinematic solutions or postures [START_REF] Rastegar | Methods to Determine Workspace with Different Numbers of Configurations and ail the Possible Configurations of a Manipulator[END_REF][START_REF] Tsai | Admissible Motions in Manipulator's Workspace[END_REF]. The joint space of a 3R manipulator has the structure of a 3-dimensional torus, but since the singularities are independent of the first joint axis, the critical point manifolds can be analyzed in the (theta2-theta3)-torus, where they form closed curves. For more convenience, however, the critical point manifolds are traced in a square of dimension 2Pi, by cutting the torus along its generators. In order to keep the topology of torus, the opposite sides of square should be always identified.

Generic Manipulators.

A manipulator is said to be generic when its singularities form a collection of smooth nonintersecting manifolds in the joint space [START_REF] Pai | Generic Singularities of Robot Manipulators[END_REF]). An algebraic condition for a 3-DOF positioning manipulator to be generic was also provided in Pai, (1989) but will not be reported here since it will not be used in the following.

It appears that nongenericity often arises from geometric simplification conditions in the manipulator structure (like two intersecting or parallel joint axes) , and that most industrial manipulators are, in tum, nongeneric [START_REF] Smith | Design of Solvable 6R Manipulators[END_REF][START_REF] Burdick | A Classification of 3R Positioning Manipulator Singularities and Geometries[END_REF]. On the other hand, many nongeneric manipulators have no simple DH 1 -parameters.

1 DHstands for Denavit-Hartenberg. Standard original notation will be used throughout this paper.

An important feature of generic manipulators is that their global kinematic properties remain stable under small changes in their kinematic parameters. This is not the case for nongeneric manipulators. This means that particular attention must be paid when manufacturing a nongeneric manipulator, since too large manufacturing tolerances may profoundly modify the expected kinematic: properties of the manipulator.

Cuspidal Manipulators. A cuspidal manipulator is

one which can change posture without meeting a singularity. The existence of manipulators having this property was first pointed out in 1988 by [START_REF] Parenti | Spatial Open Kinematic Chains: Singularities, Regions and Subregions[END_REF], and, simultaneously by [START_REF] Burdick | Kinematic Analysis and Design of Redundant Manipulators[END_REF]. A theory and a methodology were developed in [START_REF] Wenger | A New General Formalism for the Kinematic Analysis of ail Non-Redundant Manipulators[END_REF] for the characterization of new uniqueness domains in the joint space of cuspidal manipulators. In [START_REF] Wenger | Changing Posture for Cuspidal Robot Manipulators[END_REF], the nonsingular posture changing feature was deeply analyzed using typical examples. lt was shown, in particular, that if a manipulator can change posture without passing through a singularity, it cannot do so in all parts of il:s workspace, but only in a region with four inverse kinematic solutions. A major difficulty has been the characterization of cuspidal manipulators. It has been conjectured by different authors that: ( 1) manipulators with geometric simplifying conditions like intersecting, orthogonal or parallel joint axes are not able to avoid a singularity when changing posture, and, conversely, (2) manipulators with arbitrary kinematic parameters have the nonsingular posture changing property. These conjectuoes were based on the observation of several examples which terni to follow this rule. Unfortunately, the examination of counter-examples have clearly revealed that the aforementioned conjecture:s cannot be stated in such a general way. A significant progress in the characterization of cuspidal manipulators was done in Wenger (1995): a 3-DOF positioning manipulator can change posture without meeting a singularity if, and only if, there exists at least one point in its workspace with exactly three coïncident inverse kinematic solutions. In a cross-section of the workspace, such a point appears as a cusp 2 point (hence the word "cuspidal" manipulators). Figure 1 depicts, in a half cross-section of the workspace, the critical value manifolds for a cuspidal manipulator (DH-parameters: al = 1, a2 = 1.7, a3 = 1.3, d2 = 0.8, d3 = 0.5, alphal = -70 deg and alpha2 = 56 deg).

There are four cusp points in this workspace. The cusp points are alway:> located at "corner points" of a region with four admissible: postures.

The condition for the existence of a cusp point can be checked graphically or numerically. When integrated in a CAD environment, it provides a useful tool for the purpose of manipulator design. Unfortunately, it can be shown that the existence condition of a cusp point cannot be written in an explicit, amenable expression of the DH-parameters solely [START_REF] El Omri | Kinematic Analysis of Robot Manipulators[END_REF], and it has not been possible to enumerate all nonsingular posture changing manipulators using a DH-parameter based general condition.

2.4 Classification Using the Notion of Homotopy Class. Two maps are said to be homotopie if there exist a continuous transformation between them. In the context of manipulator kinematics, two generic manipulators Ml and M2 are homotopie if the critic:al point manifolds of Ml can be smoothly deformed to the critkal point manifolds of M2. More importantly, it was shown in [START_REF] Burdick | A Classification of 3R Positioning Manipulator Singularities and Geometries[END_REF] that the kinematic maps of two homotopie manipulators have the same multiplicity. This means that the maximum number of inverse kinematic solutions per c-sheet is the sam1 for two homotopie manipulators. Consequently, if an arbitrary manipulator M is cuspidal (resp. noncuspidal), all manipulators which are homotopie to M will be also cuspidal 2 The cusp point is one of the two typical singular points on algebraic curves (a singular point is defined here as one point where the partial derivative with respect to eac:h independent variable of the curve is zero). The other singular point is the double point, occurring at self-intersection points [START_REF] Smith | Design of Solvable 6R Manipulators[END_REF].

Joint axis 1 fig. 1 Cusp points in the workspace cross section of a cuspidal manipulator (resp. noncuspidal). The homotopy based classification scheme is the following:

-the space of all quatemary3 3R positioning manipulators is naturally divided by the set of nongeneric manipulators, into disjoint subspaces of homotopie generic manipulators.

-the homotopie generic manipulators are characterized by the number and homotopy class of their critical point manifold branches in the joint space. The word "branches" is referred to as the connected components of the critical point manifolds.

The drawback of the square representation of the torus is that, since it splits artificially the critical point manifolds along the generators of the torus, it is sometimes difficult to identify their shape, especially when we have a ( 0, 0 )-branch which is not confined within the square representation. To better understand that there is actually one single critical point manifold branch with homotopy class (0, 0), it is useful to "reconstruct" the critical point manifold by identifying the opposite sides of 

3(b)

, it is clear that there is only one branch, which can be smoothly contracted to one point. Thus, this manipulator is 1(0, 0). A simple, general procedure for recognizing the homotopy class of an arbitrary generic manipulator can be established ( see Section 4).

The enumeration of all generic manipulator classes has not been attempted yet. In the following section, a series of seven new theorems will be set which will permit to enumerate all possible classes.

3 Enumeration of ail Branch Homotopy Classes 3.1 Separating and Nonseparating Critical Point Manifolds. The critical point manifolds <livide the joint space of 3R manipulators in at least two c-sheets. A single critical point manifold branch has not necessarily the ability to eut the joint space into several c-sheets. When it can do so, the branch is said to be separating [START_REF] Burdick | Kinematic Analysis and Design of Redundant Manipulators[END_REF][START_REF] Tsai | Admissible Motions in Manipulator's Workspace[END_REF].

Theorem 1: A branch is separating if and only if its homotopy class is ( 0, 0). Thus, the only branch which can appear alone in a generic manipulator is a (0, 0)-branch.

Proof This result is due to the topology of the torus, which, unlike R 2 , is not simply connected. The only loop which can divide the torus is one which encircles no generators. In Fig. 2 it is clear that L1 and L2 do not divide the torus, while L3 does. Any other (regular, i.e., without self-intersection ) loop appears as a helical closed curve on the torus, and it is always possible to link any two points on the torus without encountering the loop. In effect, the set obtained by removing the helical loop from the torus forms an helical closed band. Figure 4 illustrates this result with a (5, 2)-loop ( the dashed lines show the "jumps" of the loop between two opposite sides of the square, indicating that the loop wraps around one generator). Since a generic 3R manipulator must have at least two c-sheets, (0, 0) is the only possible homotopy class for a single critical point manifold branch.

3.2 Enumeration of the Possible Loop Homotopy Classes. Many branch homotopy classes cannot exist in generic manipulators, as will be shown in the following theorems. Theorem 5: Branches with homotopy class (0, 1), (1, 0), (1, 1), and ( 2, 1) cannot appear in a mixed combination.

Proof: Any mixed combination would lead to intersecting branches, as shown in Fig. 7. Journal of Mechanical Design JUNE 1998, Vol. 120 I 331 0), 2(0, 0), 1(0, 0) + 2(1, 0), 2(1, 0), 4(1, 0), 2(0, 1), 2(1, 1), 2(2, 1)}.

Examples

Systematic investigations have confirmed the existence of the preceding eight homotopy classes (El Omri,96) . In this section, we provide an example for each class. For each example, a figure depicts the manipulator geometry in the zero configuration, the critical point manifolds and the critical value manifolds in a cross section of the workspace (e.g., in a plane x , p = x 2 + y 2 ), along with the number of postures in each region.

If at least one cusp point exist, it can be concluded that all manipulators belonging to the homotopy class of the manipulator at hand are cuspidal (and conversely ).

To identify the homotopy class of a given generic manipulator, one can follow the following procedure. The idea is to track each branch, and to count for the number of "jumps" between to opposite sides of the square representation. At each jump, n2 and n3 are either increased or decreased, according to whether the jump occurs from -Pi to +Pi or from +Pi to -Pi, respectively. Table 1 synthesizes the main properties of the eight classes of homotopie manipulators found and the DH-parameters of the manipulator examples shown in Fig. 8(ah ).

Comments

Interesting Results for Generic

Manipulators. From the above categorization, it is apparent that:

a generic 3R manipulator may have two, three, or four csheets. It has often been thought that manipulators with general geometry should have only two c-sheets, and that manipulators with four c-sheets should have some simple geometric parameters. It has been established here that a manipulator with general DH-parameters may have four c-sheets. Manipulators with four c-sheets have only one inverse kinematic solution in each c - sheet. Manipulators with three c-sheets have two inverse kinematic solutions in one of their c-sheets, and there is only one solution in each of the remaining two c-sheets.

most generic manipulators are cuspidal. In effect, the only way for a generic manipulator to be noncuspidal, is either to have only two inverse kinematic solutions ( which requires specific geometric conditions), or to belong to the class of 4 (1, 0)-manipulators, which was shown to be the least populated class (El Omri,96) . From a design point of view, this means that the set of admissible design variables is limited for a generic noncuspidal manipulator, and the possibility to optimize additional design criteria is, in tum, also limited.

-the only generic manipulators with four c-sheets are the 4( 1, 0)-manipulators, which are the only noncuspidal manipulators with four solutions. Thus, the following new result can be stated: 
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  Theorem 9: a generic quaternary 3R manipulator is noncuspidal if and only if it has four c-sheets. 5.2 Nongeneric Manipulators. The eight homotopy classes of generic manipulators are connected through the set of nongeneric manipulators. When a generic manipulator changes class (under modification of the DH-parameters), it must pass through an intermediate (unstable) nongeneric state, which can be interpreted as a bifurcation. A nongeneric manipulator can be cuspidal or noncuspidal. Determination of cuspidal and noncuspidal nongeneric manipulators is stiH a subject of research. 5.3 Workspace Structure of Homotopie Manipulators. The classification presented in this work relies on the geometry and topology of the critical point manifolds in the joint space. Workspace boundaries are generated by the transformation of these manifolds under the action of the forward kinematic map,
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Table 1

 1 The eight classes of generic manipulators

Most 3R manipulators are quatemary, i.e., have four inverse kinematic solutions. Under special geometric conditions (like d4 d3), 3R manipulators may have only two inverse solutions, one in each c-sheet, and it can be shown that such manipulators are always noncuspidal. Quatemary manipulators are more desirable since the possibility to reach a location with four different postures is more interesting. Only quatemary manipulators will be considered in this classification.

Transactions of the ASME

Jar, the occurence of voids in the workspace is not related to a particular homotopy class.

Conclusions and Perspectives

This paper has established the complete classification of ail generic positioning 3R manipulators. The classification was based on the number and loop homotopy class of manipulator critical point manifold branches. The homotopy class was defined by a pair of two integers which indicate the number of times a branch wraps around each generator of the ({12, 03 )torus. A series of theorems have shown that there are no more than eight distinct classes of homotopie manipulators. It was found that ail manipulators with homotopy class 1(0, 0), 2 (1, 0) , 2(0, 1), 2(1, 1), and2(2, 1) have two c-sheets. Manipulators with homotopy class 2(0, 0) and 1(0, 0) + 2(1, 0) have 3 c-sheets. Finally, ail manipulators with homotopy class 4(1, 0) have four c-sheets. The classification proposed in this paper provides an efficient synthetic tool for categorizing cuspidal and noncuspidal manipulators. lt was shown that the only noncuspidal generic 3R manipulators are the 4(1, 0)-manipulators. More generally, it has been pointed out that most generic 3R manipulators are cuspidal. This is an interesting, nonintuitive new result.

The classification presented here applies to 6R manipulators with spherical wrist as well, and can be extended without difficulty to 3-DOF manipulators with prismatic joints. On the other hand, generalization to 6-DOF manipulators with nonspherical wrist is not so easy, because their critical point manifolds must be analyzed in a four-dimensional space (since they depend on four joint variables q2 to q5 ).

Future research work is to include the complete categorization of nongeneric 3-DOF manipulators.