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ABSTRACT
Technologies within embedded real-time systems are con-
tinuously evolving making them intelligent; at some point
they can achieve targeted functions autonomously. Such sys-
tems are extended with capability of sensing the surround-
ing environment and deciding on their own. In addition to
the feasible scheduling policy, the correctness of such deci-
sions highly depends on the quality of the used input data.
Thereby, the data management within such systems must
fulfill some properties in order to guarantee their correct
functioning. In this paper we address the problem of data
temporal correlation and validity when the system schedul-
ing properties are defined. We present preliminary results
on expected properties of the architectures and underline
future work.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION AND RELATED WORK
The software embedded in a real-time system is composed

of a large number of applications communicating through
shared variables. These systems have the capability of mak-
ing functional decisions autonomously. For instance, the
autonomous vehicles are extended with capability of sensing
the surrounding environment and navigating on their own
by making driving decisions. Additionally to the traditional
vehicle functions autonomous vehicles are equipped with al-
gorithms that ease to infer the identity of the objects in the
neighborhood. These algorithms work on the data propagat-
ing from different paths where these data may be resulting
from a same or different source application.

In this paper we consider that the data traversing differ-
ent paths result from a same source application and only
the data produced during a same execution step are meant
to be further associated. However, the propagation delays
from the source to the associating application may differ
from one path to another for different reasons. Hence, wait-
ing queues are used to temporally store the data from the
shortest paths until the corresponding data from the longest
path arrive. In this paper we propose how to compute the
minimum size (later referred to as optimal size) for each of
the waiting queues in order to economize the memory re-
source utilization.

Contribution In this paper we study the temporal cor-
relation of the data propagating along several paths taking
into account the timing properties of the system schedul-
ing. We consider the inter-task communication model (cir-
cular buffer) offering a predictable data management be-
tween communicating applications.

Paper structure. In Section 2 we present the system
and the communication models with the associated nota-
tions and we formulate the correlation problem. In Section 3
we introduce our first contribution; the data reading strat-
egy easing the correlation process is proposed in 3.1.1, a for-
mal method computing the Data Consistent Time Interval
in 3.1.2, the formal methods to compute the buffers opti-
mal sizes in 3.1.3 and 3.2.2 and, finally, the proposed data
correlation approach is presented in 3.2.1. We conclude and
present future work in Section 4.

1.1 Motivating example
An example illustrating the need of associating correlated

data is the FADE system [8], represented on the Figure 1.
FADE is a vehicle detection and tracking system composed
of a set of image processing components in charge of de-
tecting the characteristics (detection of shadows, headlights,
etc.) related to the presence of a vehicle in the neighbor-
hood. For the performance optimization reasons, the image
processing is done in a multi-resolution mode. Thereby, only
the central part of the image is processed in the high reso-
lution mode (for detecting vehicles being far away) and the
periphery of the image is treated in the low resolution mode
for detecting closer vehicles.

precisely, the high resolution image initially produced by
the IAA1 is sent to both the CDA2 and the IPA3. Further,
the CDA application reads the high resolution image as in-
put. The latter is cropped, decimated and processed and,
finally, a low resolution image is produced at the CDA out-
put port. Further, the low and high resolution images are
associated and fused in order to infer the identity of the
targeted object.

Obviously, the associated data are shifted by a certain
delay induced by the processing of the CDA. In order to
avoid potential performance degradation, the IPA instances
must read (from each of the buffers) the data resulting from
the same execution step of the IAA [7]. In such a context
we say that the used data are temporally correlated and, in
our paper, we aim to efficiently address the data temporal

1Image Acquisition Application
2Crop and Decimate Application
3Image Processing Application
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Figure 1: The vehicle detection and tracking system.

correlation problem.

1.2 Related works
The problem related to the association of the data pro-

duced during the same execution step (having the same age)
has been addressed during the last decades. N. Pontisso and
al. in [3, 4] proposed approaches to manage data matching
in periodic systems without considering strict properties on
the system scheduling; that is, earlier the implementation
stage. Their work differs from ours in the sense that the cor-
relation of the data produced during the same execution is
ensured taking into account the task system scheduling prop-
erties. The FIFO waiting queues are managed sequentially
(linearly) while in our work we consider the FIFO buffer to
be managed circularly. The circular buffer organization is
described in the Section 2.2.

Authors in [7] consider the circular buffer communication
model but without considering the task system scheduling
properties. In order to ensure the temporal correlation be-
tween data from different paths, the communication model
is organized as follows: each data sample is double stamped
with two different dates; the timestamp and timeOfIssue.
The first, considered as the date of birth of the data sample,
is given by the application that initially generated it and
is remained unchanged.At the execution completion of each
application the data a timeOfIssue is added. At the end
of the paths, the reader application will retrieve the recent
data having the same timestamp from the connected buffers
In our work we do not time stamp the samples.

2. MODELS AND ANNOTATIONS
In this section, we introduce the system and the commu-

nication models as well as the notion of functional chains.

2.1 System Model
We consider a system τ of n periodic tasks {τ1, τ2, · · · , τn}

scheduled preemptively on one processor according to fixed-
priority scheduling algorithm. Each task τi is described by
the tuple (Ci, Ti), where Ci is the worst-case execution time
and Ti is the period of the task τi. We assume that all tasks
are released simultaneously and they have implicit deadline;
that is, the deadline is equal to period.

Without any loss of generality, we consider that the tasks
are ordered from the highest to the lowest priority and the
larger is the task period the lower is the priority. Hence,
if i < j, then τi has a higher priority than τj . Each task
τi generates an infinite number of successive jobs τi,j |j =
1, · · · ,∞. We consider that tasks share data through buffers
and a task may belong to two different classes: producer or
consumer. The shared buffer can be accessed for writing by
a single producer while one or multiple consumers can read

from it. The data propagation order between tasks does not
impact an execution order between those tasks. We describe
the data dependencies between the tasks by a graph.

We denote by G = (V,E) such graph, where V is the set
of tasks {τ1, · · · , τn}, E the set of edges and (τi, τj) ∈ E if
τj consumes data produced by τi.

The graphGmay contain different data propagation paths.
Hence, we define Π = {pth1, · · · , pthm} where m is the
number paths in Π. A same producer may produce data
for several consumers belonging to different paths. For in-
stance, on the Figure 2, the output data of τ1 is utilized by
τ2 and τ4 belonging; respectively, to pth1 and pth2 where
pth1 = {τ1, τ2, · · · , τ5} and pth2 = {τ1, τ4, τ5}. Accord-
ingly, τ1 is called the data dispatching task or simply the
dispatcher whereas τ5 is called the data associating task or
simply the associator.

τ1

τ2

τ4

τ5

τ3

Figure 2: System tasks model

Tasks whose instances consume data produced by the dis-
patcher are referred to as direct successors or simply succes-
sors. Similarly, tasks that produce data for the associator
are referred to as direct predecessors or simply predecessors.

2.2 Communication model
Our communication model is the circular buffer. A circu-

lar buffer is a FIFO data structure that considers memory to
be managed circularly; that is, the read/write indices loop
back to 0 after it reaches the buffer length [1].

Figure 3: Example of
the circular buffer

It has a fixed size allocated
once at the system run-time.
tail and head are the point-
ers indicating the reading
and writing positions. Each
time a new data sample is
inserted into the buffer, the
head pointer is incremented
and likewise, when the data
is read the tail pointer is in-
cremented. tail and head are
initially set to 0. The mod-
ulo operation is performed to

reset head or tail to 0, every time the maximum index is
reached.

The choice of a circular buffer is motivated by:
1. The data sample already written in the buffer slot never

changes the address until it is overwritten: it avoids the
data shifting from slot to the next one as it it the case for a
sequential buffer. Shifting data is a resource consumption
which may lead to unpredictable behavior.

2. The utilization of the circular buffer offers a high degree of
the communication predictability and no dynamic memory
allocation: the required size is computed offline consider-
ing the timing characteristics of the communicating tasks.

3. The circular buffer is easy to implement.



From what precedes, we consider a set of buffers {β1, · · · , βx},
where each buffer βx, in addition to tail and head, is char-
acterized by its cardinality |βx|; that is, its size. The size of
the buffer gives the information about the number of data
samples that can be stored. Each data sample is described
by the tuple 〈dID, dV alue〉 where dID is an integer defined
as the data identifier and dV alue is the data sample value.

We consider a single buffer shared between a single pro-
ducer and one or several consumers.

2.3 Correlation problem formalization
We consider a set of k data paths {pth1, · · · , pthk} ∈ Π

where the data flowing along the all k paths are initially
generated by a same task referred as the dispatcher task
and denoted by τdsp. These paths are later associated by
a same task referred to as the associator task and de-
noted by τas. Accordingly, we call the {τdsp1 , · · · , τdspk}
and {τas1 , · · · , τask}, respectively, the successors to τdsp
and predecessors to τas. For a set of k paths, the data tem-
poral correlation is required if pth1 ∩ pth2 ∩, · · · ,∩ pthk =
{τdsp, τas}.

Correlation problem formalization:

correl(τas) = τdisp{pth1(τdsp1 , τas1), · · · , pthk(τdspk , τask )}

where k is the number of paths involved in the propagation
of the data produced by τdsp until τas.

3. DATA CORRELATION MAINTENANCE
We consider a multirate system where the shared buffer

is accessed asynchronously in a non-blocking fashion4. We
decrease the uncertainty in the data management usually
induced by the utilization of the arbitration mechanisms (i.e
semaphores, synchronisation protocols, etc.). The later may
provoke unpredictable behavior such as the priority inversion
problems and possible deadlock formations [2, 5, 6].

Considering that communicating tasks may sample at dif-
ferent rates, we split the correlating problem into 3 sub-
problems, namely:

Problem 1. Ensuring that all {τdsp1 , · · · , τdspk} propa-
gate the same data produced by τdsp.

Problem 2. Setting τas to read the data resulting from
the same execution step of τdsp.

Problem 3. Computing the optimal size for the buffer
such that Problem 1&2 have at least a solution.

Definition 1 (Optimal size). A buffer size denoted
by |βdsp| is optimal if it is the smallest size of βdsp such that
if the data read by at least one of the successors can be read
by the remaining successors before being overwritten.

3.1 Setting all successors to read the same data
We consider a set of task pairs (τdsp, τdspj ) ∈ E|j ∈ [2, k),

where k is the number of tasks that read the data produced
by τdsp. Let βdsp be the buffer where τdsp instances write and
the {τdsp1 , · · · , τdspk} read their respective inputs. Given
that we are dealing with a multirate system, it is obvious

4Shared variable (buffer) is accessed without any arbitration
mechanism such as semaphores or any kind of synchroniza-
tion protocols.

that some data samples produced by τdsp may be overwrit-
ten before being read by all the k successors or can be read
several times. Thus, in order to solve the Problem 1, it is
required that if a given data sample is read by at least an
instance of one of the τdspj then this sample should not be
overwritten before all the {τdsp} consume it.

3.1.1 Data reading management

As mentioned previously, each time an instance of the
producer task completes, the head pointer is incremented.
We denote by lp{τdspj} the task of lower priority among
{τdsp1 , · · · , τdspk} tasks that read the data produced by τdsp.
In order to set all the successors to read the same data
sample from βdsp the following principle is imposed:
• (i):∀{τdsp1 , · · · , τdspk} the value of tail is set by an

instance of lp{τdspj} at its completion. We assume
that the lp{τdspj} instances are always the last ones
to read the data produced by τdsp which is responsi-
ble of pointingwhere to write next time (head value).
Accordingly, the value of tail is given by the position
where an instance of τdsp previously wrote; that is,
head− 1. Formally,

taillp{τdspj } ← head− 1 (1)

• (ii): Each time an instance of any of the {τdsp1 , · · · , τdspk}
is activated, it reads from the position pointed by tail
pointer. We should note that the tail value is set by
lp{τdspj} at its completion time.

tailτdspj ← taillp{τdspj } (2)

Further, we compute the maximum time delay that the
read data can stay into the buffer before being overwritten
while considering that the buffer size is optimal. We call this
delay the Data Consistent Time Interval that we denote
by DCTI and formally computed using the Equality 3.

3.1.2 Computing the DCTI

The Theorem 1 provides the formal way to computing the
DCTI.

Theorem 1. We consider {τdsp1 , · · · , τdspk} where k is
the number of successors to τdsp. The DCTI is found when
τdsp and lp{τdspj} are released simultaneously in such a man-
ner that the response time of the current instance of lp{τdspj}
is equal to the period of τdsp and the next instance of lp{τdspj}
executes for its worst case response time. Formally,

DCTI = Tlp{τdspj } +Rlp{τdspj } − Cdsp (3)

where Tlp{τdspj } and Rlp{τdspj } are, respectively, the period

and the worst case response time of lp{τdspj} and Cdsp the
worst case execution time of τdsp.

Proof: The Equality 3 is detailed as follows

DCTI = Tdsp − Cdsp︸ ︷︷ ︸
(a)

+Tlp{τdspj } − Tdsp︸ ︷︷ ︸
(b)

+Rlp{τdspj }︸ ︷︷ ︸
(c)

where
• (a): If τdsp and lp{τdspj} were released simultaneously

and the response time of lp{τdspj} is equal to Tdsp, it
means that by the time the data produced by τdsp is
tagged (at the completion of lp{τdspj} instance), the
maximum time this data will have been into the buffer
is given by Tdsp − Cdsp.



• (b): Since the execution completion of the current in-
stant of lp{τdspj} happened at a time instant equal to
Tdsp, the release time of the next instance of lp{τdspj}
is going to happen at a time instant given by Tlp{τdspj }−
Tdsp.
• (c): The next data to be read is going to be tagged

at the execution completion of the next instance of
lp{τdspj}. If the latter executes for a time equal to
its worst case response time, then, the time interval
between the previous and the current tagged data is
the largest possible computed by the Equation 3.

3.1.3 Computing the optimal size of the buffer βdsp

The maximum time delay that can separate two consec-
utive read data is the DCTI. Accordingly, the formal way
to compute the optimal value of |βdsp| is given by the The-
orem 2.

Theorem 2. We consider {τdsp1 , · · · , τdspk} where k is
the number of successors to τdsp. We denote by βdsp the
buffer where τdsp instances write.The optimal value of |βdsp|
is equal to the number of τdsp instances that can be re-
leased and complete their execution within a time given by
the DCTI if Tdsp < Tlp{τdspj } or it is equal to 1 otherwise.

Formally,

|βdsp|=

{⌈
DCTI
Tdsp

⌉
, if Tdsp < Tlp{τdspj }.

1, Otherwise
(4)

Proof: The DCTI time defines the largest time that can
separate two consecutive read data by the {τdsp1 , · · · , τdspk}
where k is the number of successors to τdsp. The read data
( tagged at the execution completion of an instance of the
lp{τdspj}) should not be overwritten before the next instance
of lp{τdspj} completes.

In other words, there should be a sufficient buffer slots
to keep the all data samples produced within the DCTI
time interval. Otherwise, the read data may be overwritten
before the new data is set available to reading. Hence, the
system of equations 4 is correct.

3.2 Maintaining data temporal correlation
The results in Section 3.1 guarantee that each data that

propagate through different paths are read by all {τdspj}
k
j=2

where k is the number of paths that propagate the data
meant to be associated by τas. Moreover, different data
paths may have different propagation delays for the data
propagating from τdsp to τas. In the Sections 3.2.1 and 3.2.2
we propose a solution to this situation.

3.2.1 The correlating approach
When an instance of lp{τdspj} tags the data to be read,

the dID of the tagged data sample is incremented. The
tagged data is propagated trough different paths and all data
related to it will have this same dID. So, when an instance
of the associator task (τas) is activated it reads the data
samples having the same dID from all the buffers where
{τas1 , · · · , τask} output their computation results.

We assume that lp{τdspj} belongs to the path with the
largest data propagation delay from τdsp to τas.

3.2.2 Setting the buffers sizes
We consider a set of k paths, {pth1, · · · , pthk}, through

which the data produced by τdsp propagate until τas. We

denoted by The largest propagation delay it can take for the
data to propagate from τdsp to τas is referred to the worst
case data propagation delay that we denote by WCPDas

dsp.
Additionally, we plan to compute, for each the pthi ∈ Π,

the smallest time delay it can take for the data to propagate
from τdsp to τas and we denote it by min{delay〈pthi〉}. This
calculation is presented here as a conjecture left as future
work.

Conjecture 1. We consider (τasi , τas) ∈ E|i ∈ {2, · · · , k}
where k is the number of paths trough which the data pro-
duced by τdsp propagate until τas and τasi the last task be-
longing to pthi path. Let βasi be the buffer where τasi writes
the outputs meant to be consumed by τas. Formally,

|βasi |=
⌈

WCPDas
dsp

min{delay〈pthi〉}

⌉
(5)

4. CONCLUSION AND FUTURE WORKS
In this paper we have presented preliminary results on the

consideration of both data propagation and the fulfilement
of real-time constraints. Our future work includes the proof
of our conjecture as well as the application of results on a
drone use case study.
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