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Technologies within embedded real-time systems are continuously evolving making them intelligent; at some point they can achieve targeted functions autonomously. Such systems are extended with capability of sensing the surrounding environment and deciding on their own. In addition to the feasible scheduling policy, the correctness of such decisions highly depends on the quality of the used input data. Thereby, the data management within such systems must fulfill some properties in order to guarantee their correct functioning. In this paper we address the problem of data temporal correlation and validity when the system scheduling properties are defined. We present preliminary results on expected properties of the architectures and underline future work.

INTRODUCTION AND RELATED WORK

The software embedded in a real-time system is composed of a large number of applications communicating through shared variables. These systems have the capability of making functional decisions autonomously. For instance, the autonomous vehicles are extended with capability of sensing the surrounding environment and navigating on their own by making driving decisions. Additionally to the traditional vehicle functions autonomous vehicles are equipped with algorithms that ease to infer the identity of the objects in the neighborhood. These algorithms work on the data propagating from different paths where these data may be resulting from a same or different source application.

In this paper we consider that the data traversing different paths result from a same source application and only the data produced during a same execution step are meant to be further associated. However, the propagation delays from the source to the associating application may differ from one path to another for different reasons. Hence, waiting queues are used to temporally store the data from the shortest paths until the corresponding data from the longest path arrive. In this paper we propose how to compute the minimum size (later referred to as optimal size) for each of the waiting queues in order to economize the memory resource utilization.

Contribution In this paper we study the temporal correlation of the data propagating along several paths taking into account the timing properties of the system scheduling. We consider the inter-task communication model (circular buffer) offering a predictable data management between communicating applications.

Paper structure. In Section 2 we present the system and the communication models with the associated notations and we formulate the correlation problem. In Section 3 we introduce our first contribution; the data reading strategy easing the correlation process is proposed in 3.1.1, a formal method computing the Data Consistent Time Interval in 3.1.2, the formal methods to compute the buffers optimal sizes in 3.1.3 and 3.2.2 and, finally, the proposed data correlation approach is presented in 3.2.1. We conclude and present future work in Section 4.

Motivating example

An example illustrating the need of associating correlated data is the FADE system [START_REF] Steux | Fade: a vehicle detection and tracking system featuring monocular color vision and radar data fusion[END_REF], represented on the Figure 1. FADE is a vehicle detection and tracking system composed of a set of image processing components in charge of detecting the characteristics (detection of shadows, headlights, etc.) related to the presence of a vehicle in the neighborhood. For the performance optimization reasons, the image processing is done in a multi-resolution mode. Thereby, only the central part of the image is processed in the high resolution mode (for detecting vehicles being far away) and the periphery of the image is treated in the low resolution mode for detecting closer vehicles.

precisely, the high resolution image initially produced by the IAA 1 is sent to both the CDA 2 and the IPA 3 . Further, the CDA application reads the high resolution image as input. The latter is cropped, decimated and processed and, finally, a low resolution image is produced at the CDA output port. Further, the low and high resolution images are associated and fused in order to infer the identity of the targeted object.

Obviously, the associated data are shifted by a certain delay induced by the processing of the CDA. In order to avoid potential performance degradation, the IPA instances must read (from each of the buffers) the data resulting from the same execution step of the IAA [START_REF] Steux | RTMAPS, un environnement logiciel dédié à la conception d'applications embarqués tems-réel. Utilisation pour la détection automatique de véhicules par fusion radar/Vision[END_REF]. In such a context we say that the used data are temporally correlated and, in our paper, we aim to efficiently address the data temporal 

Related works

The problem related to the association of the data produced during the same execution step (having the same age) has been addressed during the last decades. N. Pontisso and al. in [START_REF] Pontisso | Association cohérente de données dans les systèmes temps réel à base de composants: Application aux logiciels spatiaux[END_REF][START_REF] Pontisso | Analysis of distributed multi-periodic systems to achieve consistent data matching[END_REF] proposed approaches to manage data matching in periodic systems without considering strict properties on the system scheduling; that is, earlier the implementation stage. Their work differs from ours in the sense that the correlation of the data produced during the same execution is ensured taking into account the task system scheduling properties. The FIFO waiting queues are managed sequentially (linearly) while in our work we consider the FIFO buffer to be managed circularly. The circular buffer organization is described in the Section 2.2.

Authors in [START_REF] Steux | RTMAPS, un environnement logiciel dédié à la conception d'applications embarqués tems-réel. Utilisation pour la détection automatique de véhicules par fusion radar/Vision[END_REF] consider the circular buffer communication model but without considering the task system scheduling properties. In order to ensure the temporal correlation between data from different paths, the communication model is organized as follows: each data sample is double stamped with two different dates; the timestamp and timeOfIssue. The first, considered as the date of birth of the data sample, is given by the application that initially generated it and is remained unchanged.At the execution completion of each application the data a timeOfIssue is added. At the end of the paths, the reader application will retrieve the recent data having the same timestamp from the connected buffers In our work we do not time stamp the samples.

MODELS AND ANNOTATIONS

In this section, we introduce the system and the communication models as well as the notion of functional chains.

System Model

We consider a system τ of n periodic tasks {τ1, τ2, • • • , τn} scheduled preemptively on one processor according to fixedpriority scheduling algorithm. Each task τi is described by the tuple (Ci, Ti), where Ci is the worst-case execution time and Ti is the period of the task τi. We assume that all tasks are released simultaneously and they have implicit deadline; that is, the deadline is equal to period.

Without any loss of generality, we consider that the tasks are ordered from the highest to the lowest priority and the larger is the task period the lower is the priority. Hence, if i < j, then τi has a higher priority than τj. Each task τi generates an infinite number of successive jobs τi,j|j = 1, • • • , ∞. We consider that tasks share data through buffers and a task may belong to two different classes: producer or consumer. The shared buffer can be accessed for writing by a single producer while one or multiple consumers can read from it. The data propagation order between tasks does not impact an execution order between those tasks. We describe the data dependencies between the tasks by a graph.

We denote by G = (V, E) such graph, where V is the set of tasks {τ1, • • • , τn}, E the set of edges and (τi, τj) ∈ E if τj consumes data produced by τi.

The graph G may contain different data propagation paths. Hence, we define Π = {pth1, • • • , pthm} where m is the number paths in Π. A same producer may produce data for several consumers belonging to different paths. For instance, on the Figure 2, the output data of τ1 is utilized by τ2 and τ4 belonging; respectively, to pth1 and pth2 where pth1 = {τ1, τ2, • • • , τ5} and pth2 = {τ1, τ4, τ5}. Accordingly, τ1 is called the data dispatching task or simply the dispatcher whereas τ5 is called the data associating task or simply the associator. Tasks whose instances consume data produced by the dispatcher are referred to as direct successors or simply successors. Similarly, tasks that produce data for the associator are referred to as direct predecessors or simply predecessors.

Communication model

Our communication model is the circular buffer. A circular buffer is a FIFO data structure that considers memory to be managed circularly; that is, the read/write indices loop back to 0 after it reaches the buffer length [START_REF] Embedjournal | Implementing circular buffer in c[END_REF].

Figure 3: Example of the circular buffer

It has a fixed size allocated once at the system run-time. tail and head are the pointers indicating the reading and writing positions. Each time a new data sample is inserted into the buffer, the head pointer is incremented and likewise, when the data is read the tail pointer is incremented. tail and head are initially set to 0. The modulo operation is performed to reset head or tail to 0, every time the maximum index is reached.

The choice of a circular buffer is motivated by: 1. The data sample already written in the buffer slot never changes the address until it is overwritten: it avoids the data shifting from slot to the next one as it it the case for a sequential buffer. Shifting data is a resource consumption which may lead to unpredictable behavior. 2. The utilization of the circular buffer offers a high degree of the communication predictability and no dynamic memory allocation: the required size is computed offline considering the timing characteristics of the communicating tasks.

The circular buffer is easy to implement.

From what precedes, we consider a set of buffers {β1, • • • , βx}, where each buffer βx, in addition to tail and head, is characterized by its cardinality |βx|; that is, its size. The size of the buffer gives the information about the number of data samples that can be stored. Each data sample is described by the tuple dID, dV alue where dID is an integer defined as the data identifier and dV alue is the data sample value.

We consider a single buffer shared between a single producer and one or several consumers.

Correlation problem formalization

We consider a set of k data paths {pth1, • • • , pth k } ∈ Π where the data flowing along the all k paths are initially generated by a same task referred as the dispatcher task and denoted by τ dsp . These paths are later associated by a same task referred to as the associator task and denoted by τas. Accordingly, we call the {τ dsp 1 , • • • , τ dsp k } and {τas 1 , • • • , τas k }, respectively, the successors to τ dsp and predecessors to τas. For a set of k paths, the data temporal correlation is required if

pth1 ∩ pth2 ∩, • • • , ∩ pth k = {τ dsp , τas}.
Correlation problem formalization:

correl(τas) = τ disp {pth1(τ dsp 1 , τas 1 ), • • • , pth k (τ dsp k , τas k )}
where k is the number of paths involved in the propagation of the data produced by τ dsp until τas.

DATA CORRELATION MAINTENANCE

We consider a multirate system where the shared buffer is accessed asynchronously in a non-blocking fashion 4 . We decrease the uncertainty in the data management usually induced by the utilization of the arbitration mechanisms (i.e semaphores, synchronisation protocols, etc.). The later may provoke unpredictable behavior such as the priority inversion problems and possible deadlock formations [START_REF] Kloda | Latency analysis for data chains of real-time periodic tasks[END_REF][START_REF] Schlatow | Response-time analysis for task chains in communicating threads[END_REF][START_REF] Sha | Priority inheritance protocols: An approach to real-time synchronization[END_REF].

Considering that communicating tasks may sample at different rates, we split the correlating problem into 3 subproblems, namely: Problem 1. Ensuring that all {τ dsp 1 , • • • , τ dsp k } propagate the same data produced by τ dsp .

Problem 2. Setting τas to read the data resulting from the same execution step of τ dsp . Problem 3. Computing the optimal size for the buffer such that Problem 1&2 have at least a solution.

Definition 1 (Optimal size). A buffer size denoted by |β dsp | is optimal if it is the smallest size of β dsp such that if the data read by at least one of the successors can be read by the remaining successors before being overwritten.

Setting all successors to read the same data

We consider a set of task pairs (τ dsp , τ

dsp j ) ∈ E|j ∈ [2, k),
where k is the number of tasks that read the data produced by τ dsp . Let β dsp be the buffer where τ dsp instances write and the {τ dsp 1 , • • • , τ dsp k } read their respective inputs. Given that we are dealing with a multirate system, it is obvious that some data samples produced by τ dsp may be overwritten before being read by all the k successors or can be read several times. Thus, in order to solve the Problem 1, it is required that if a given data sample is read by at least an instance of one of the τ dsp j then this sample should not be overwritten before all the {τ dsp } consume it.

Data reading management

As mentioned previously, each time an instance of the producer task completes, the head pointer is incremented. We denote by lp{τ dsp j } the task of lower priority among {τ dsp 1 , • • • , τ dsp k } tasks that read the data produced by τ dsp . In order to set all the successors to read the same data sample from β dsp the following principle is imposed:

• (i):∀{τ dsp 1 , • • • , τ dsp k }
the value of tail is set by an instance of lp{τ dsp j } at its completion. We assume that the lp{τ dsp j } instances are always the last ones to read the data produced by τ dsp which is responsible of pointingwhere to write next time (head value). Accordingly, the value of tail is given by the position where an instance of τ dsp previously wrote; that is, head -1. Formally,

tail lp{τ dsp j } ← head -1 (1) 
• (ii): Each time an instance of any of the {τ dsp 1 , • • • , τ dsp k } is activated, it reads from the position pointed by tail pointer. We should note that the tail value is set by lp{τ dsp j } at its completion time.

tailτ dsp j ← tail lp{τ dsp j } (2) 
Further, we compute the maximum time delay that the read data can stay into the buffer before being overwritten while considering that the buffer size is optimal. We call this delay the Data Consistent Time Interval that we denote by DCTI and formally computed using the Equality 3.

Computing the DCTI

The Theorem 1 provides the formal way to computing the DCT I.

Theorem 1. We consider {τ dsp 1 , • • • , τ dsp k }
where k is the number of successors to τ dsp . The DCTI is found when τ dsp and lp{τ dsp j } are released simultaneously in such a manner that the response time of the current instance of lp{τ dsp j } is equal to the period of τ dsp and the next instance of lp{τ dsp j } executes for its worst case response time. Formally,

DCT I = T lp{τ dsp j } + R lp{τ dsp j } -C dsp (3) 
where T lp{τ dsp j } and R lp{τ dsp j } are, respectively, the period and the worst case response time of lp{τ dsp j } and C dsp the worst case execution time of τ dsp . Proof: The Equality 3 is detailed as follows

DCT I = T dsp -C dsp (a) + T lp{τ dsp j } -T dsp (b) + R lp{τ dsp j } (c)
where • (a): If τ dsp and lp{τ dsp j } were released simultaneously and the response time of lp{τ dsp j } is equal to T dsp , it means that by the time the data produced by τ dsp is tagged (at the completion of lp{τ dsp j } instance), the maximum time this data will have been into the buffer is given by T dsp -C dsp .

• (b): Since the execution completion of the current instant of lp{τ dsp j } happened at a time instant equal to T dsp , the release time of the next instance of lp{τ dsp j } is going to happen at a time instant given by T lp{τ dsp j } -T dsp . • (c): The next data to be read is going to be tagged at the execution completion of the next instance of lp{τ dsp j }. If the latter executes for a time equal to its worst case response time, then, the time interval between the previous and the current tagged data is the largest possible computed by the Equation 3.

3.1.3

Computing the optimal size of the buffer β dsp

The maximum time delay that can separate two consecutive read data is the DCT I. Accordingly, the formal way to compute the optimal value of |β dsp | is given by the Theorem 2.

Theorem 2. We consider {τ dsp 1 , • • • , τ dsp k } where k is the number of successors to τ dsp . We denote by β dsp the buffer where τ dsp instances write.The optimal value of |β dsp | is equal to the number of τ dsp instances that can be released and complete their execution within a time given by the DCT I if T dsp < T lp{τ dsp j } or it is equal to 1 otherwise. Formally,

|β dsp |= DCT I T dsp , if T dsp < T lp{τ dsp j } . 1, Otherwise (4) 
Proof: The DCT I time defines the largest time that can separate two consecutive read data by the {τ dsp

1 , • • • , τ dsp k }
where k is the number of successors to τ dsp . The read data ( tagged at the execution completion of an instance of the lp{τ dsp j }) should not be overwritten before the next instance of lp{τ dsp j } completes.

In other words, there should be a sufficient buffer slots to keep the all data samples produced within the DCT I time interval. Otherwise, the read data may be overwritten before the new data is set available to reading. Hence, the system of equations 4 is correct.

Maintaining data temporal correlation

The results in Section 3.1 guarantee that each data that propagate through different paths are read by all {τ dsp j } k j=2

where k is the number of paths that propagate the data meant to be associated by τas. Moreover, different data paths may have different propagation delays for the data propagating from τ dsp to τas. In the Sections 3.2.1 and 3.2.2 we propose a solution to this situation.

The correlating approach

When an instance of lp{τ dsp j } tags the data to be read, the dID of the tagged data sample is incremented. The tagged data is propagated trough different paths and all data related to it will have this same dID. So, when an instance of the associator task (τas) is activated it reads the data samples having the same dID from all the buffers where {τas 1 , • • • , τas k } output their computation results.

We assume that lp{τ dsp j } belongs to the path with the largest data propagation delay from τ dsp to τas.

Setting the buffers sizes

We consider a set of k paths, {pth1, • • • , pth k }, through which the data produced by τ dsp propagate until τas. We denoted by The largest propagation delay it can take for the data to propagate from τ dsp to τas is referred to the worst case data propagation delay that we denote by W CP D as dsp . Additionally, we plan to compute, for each the pthi ∈ Π, the smallest time delay it can take for the data to propagate from τ dsp to τas and we denote it by min{delay pthi }. This calculation is presented here as a conjecture left as future work.

Conjecture 1. We consider (τas i , τas) ∈ E|i ∈ {2, • • • , k} where k is the number of paths trough which the data produced by τ dsp propagate until τas and τas i the last task belonging to pthi path. Let βas i be the buffer where τas i writes the outputs meant to be consumed by τas. Formally, 

CONCLUSION AND FUTURE WORKS

In this paper we have presented preliminary results on the consideration of both data propagation and the fulfilement of real-time constraints. Our future work includes the proof of our conjecture as well as the application of results on a drone use case study.
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 1 Figure 1: The vehicle detection and tracking system.
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 2 Figure 2: System tasks model

Shared variable (buffer) is accessed without any arbitration mechanism such as semaphores or any kind of synchronization protocols.