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Abstract

Squeal of rail-bound vehicles emitted in tight curves is characterized by high sound pressure levels at pure medium
and high frequencies. Many models have been proposed in the literature to explain the occurrence of this noise
with different instability mechanisms: negative damping due to falling friction or instability with a constant friction
coefficient. The aim of the paper is to contribute to the understanding of the instability mechanisms in the case of a
constant friction coefficient. A stability analysis of the wheel/rail contact dynamics in curve is performed by using an
equivalent point contact model combined with wheel and rail modal bases. Results show that even with an assumption
of a constant Coulomb friction coefficient, two types of instabilities may occur in the wheel/rail system: classical mode
coupling and instabilities due to negative damping added to a single wheel mode when the track dynamical behavior,
especially in the vertical direction, is included. For this second type of instabilities, an 1-degree of freedom model can
be formulated. By using this model, it is found that the equivalent damper behavior of the infinite track is the origin
of these instabilities.
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1. Introduction

When a railway vehicle negotiates a tight curve, a strong noise called curve squeal may be emitted. The sound
pressure levels can reach 130 dB close to the wheel, and up to 110 dB at 7.5 m from the track center [1]. It has
been observed by Eadie et al. that squeal due to high lateral slip of the wheel on the rail-head tends to occur in the
range of 1000 − 5000 Hz, whereas squeal noise due to wheel flange contact shows spectral characteristics primarily
in the range of 5000 − 10000 Hz [2]. The predominating part of squeal energy is concentrated in one or several pure
tone frequencies [3]. Experimental observations (cf. for instance [4]) show that curve squeal is strongly influenced
by the local kinematic parameters at wheel/rail contact, the friction at contact interface and the wheel vibro-acoustic
characteristics. The measurements described by Rudd [5], Vincent et al. [3], Koch et .al [4] and Glocker et .al [6]
show that the wheel radiates at frequencies close to its natural frequencies. In addition, the highest noise level is often
radiated by the inner leading wheel. However, squeal is occasionally observed on the outer wheel [6].

Although longitudinal wheel slip and wheel flange contact have originally been cited as a cause of curve squeal,
they have been discredited as a main energy input in several works [3, 5, 7]. Most of mechanisms proposed in the
literature put forward the high lateral slip of the wheel on the rail-head as the main cause of curve squeal. Indeed, in
tight curves, a steady lateral sliding motion is imposed to the wheel due to the misalignment between wheel and rail
(angle of attack or yaw angle). A widespread assumption is that the friction forces generated by the sliding motion
may lead to structural instability and self-sustained vibration of the wheel/rail system. Like brake squeal, curve squeal
is also considered as a kind of friction-induced vibrations. Two instability mechanisms have been proposed to explain
the origin of friction-induced vibrations: falling friction and mode coupling. Many studies [8–10] dealt with the
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falling friction mechanism. A falling slope in the velocity-dependent friction law can be mathematically expressed as
a negative damping leading to an unstable behavior. The notion of mode coupling was notably introduced by Oden
and Martins in [11] following the observation of a coupling between the normal and tangential directions carried
out in [12, 13]. Many studies [14–16] proposed 2-degree of freedom (DOF) models to highlight this mechanism.
Mathematically, this is the non-symmetric stiffness matrix due to friction which leads to instability. Without the
system damping, this instability is characterized by a perfect coalescence between the frequencies of an unstable
complex mode and another stable complex mode when the friction coefficient reaches a critical value.

Models proposed in [5, 17–25] show that a falling friction law can generate instabilities of wheel/rail contact.
The unstable frequencies found are generally close to axial wheel modes with 0 nodal circle. However, Brunel [26]
obtained squeal even if the friction law is positive. It is concluded that squeal is due to the coupling of the normal
and lateral dynamics by the Poisson ratio of the wheel material (sprag-slip phenomena). The consideration of mode
coupling instability in curve squeal models is relatively recent. Although such a mechanism may occur with a constant
friction coefficient, it needs to take into account the vertical dynamics of the system. In the case of constant friction
coefficient and rigid rail, Glocker et al. [6] found that mode coupling occurs with a number of wheel modes with
closely spaced natural frequencies: one axial mode with zero nodal circles and two radial modes of the wheel. Ding et
al. [27] also demonstrated that a mode-coupling instability can occur and there is a slight gap between the squealing
frequency and the natural frequency of the wheel modes. In the case of constant friction coefficient and flexible rail,
Pieringer [28], Zenzerovic [29, 30] showed that curve squeal can occur due to coupling of the normal and lateral
dynamics of a single wheel mode. Finally, Ding et al. [24] found that the dynamic rail plays an important role by
suddenly changing the stability of the system in the case of constant friction coefficient. If the rail dynamic is not
included, the unstable frequencies seem to be caused by the coupling of wheel modes. Otherwise, almost unstable
frequencies get close to axial wheel modes with 0 nodal circle. Ding et al. concluded that this is due to the coupling
of the normal and lateral component of the single wheel mode when the flexibility of normal contact is changed by
the rail dynamics.

From the results of existing curve squeal models, the instability mechanisms are still controversial. In the case of
friction coefficient decreasing with creep velocities, the phenomena are rather straightforward. Instability is caused
by the negative damping introduced by the slope of creep/friction curve for large creepages. The results of the models
correspond well to experimental observations such as instabilities of axial modes with zero nodal circle and creep/slip
limit cycles. However, the slope of the friction coefficient is not really proved in experimental terms. Experimentally, it
is difficult to measure the dynamic creep quantities (especially contact forces) and the dynamic curve is not accessible.
So one may wonder whether the addition of this slope is artificial but not a physical means to bring out the instability.
In the case of constant friction coefficient and provided that the rail dynamics is taken into account, one can also
find results consistent with experimental observations such as instabilities of axial modes with zero nodal circle and
creep/slip limit cycles [24, 28–30]. However, the mechanisms behind this instability are not clear. To study this kind
of instability, Ding et al. [31] recently developed a reduced 2-DOF model in which the wheel is represented by a
single mode and the track vibration behavior in the vertical direction is simplified as a mass, a spring, or a damper
equivalent to the behavior of an infinite track. Instabilities of the system were observed even with a very small friction
coefficient. However, the instability mechanisms still differ according to the track model. Mode coupling was found
when the track is simplified as a mass. On the other hand, it seems that there is no mode coupling when the track is
simplified as a damper. Ding et al. [31] did not compare the results obtained by the reduced model with those from
the full model, thus the exact instability mechanism in this case is still unknown. This kind of instabilities should
therefore be studied more closely.

The aim of this paper is to clarify the mechanisms responsible for curve squeal. By using a point-contact model
and wheel/rail modal bases, a stability analysis is performed around the equilibrium state. The normal contact problem
is assumed to be Hertzian. A constant Coulomb’s friction law is used in the tangential problem. Full sliding equilib-
rium states are assumed. Section 2 presents a stability analysis of wheel/rail contact in curve by using modal bases.
These bases are calculated using the stiffness and mass matrices computed from wheel and rail finite element models.
Instabilities are analyzed and distinguished through the use of bifurcation curves. In order to examine in detail one
kind of instability, Section 3 proposes a reduced 1-DOF model which is based on the results provided by Section 2.
The contact model is similar but the wheel dynamics is represented by only one free-interface normal mode. The
rail dynamics is simplified as a complex stiffness. The results obtained by this reduced model are compared with the
results of the full model.
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2. Stability analysis for a wheel/rail contact system in curve

2.1. Statement of the problem

The wheel/rail interaction model is described in Fig. 1.
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Figure 1: Reference frame of the wheel/rail interaction. The rolling direction along the rail is the x− direction. The
lateral direction is the y− direction. The vertical direction is the z−direction. (n, t, b) and (n′, t′, b′) are respectively
the local frames of the wheel and the rail such that: n′ = −n = Z, t′ = −t = −Y , b′ = −b = X

A loaded wheel with constant rolling speed V and angle of attack α is considered (Fig. 2). While the angle of
attack α is enough small, the resulting sliding velocity is ∆Vy ≈ Vα. In the case of enforced lateral creepage syo =

∆Vy

V ,
the mean dynamic lateral creepage sy at the contact point is defined by:

sy =
vw

y − vr
y

V
= syo +

(u̇w
y − u̇r

y)

V
(1)

where vy and uy are the lateral dynamic velocity and displacement respectively. w and r denote the wheel and the rail
respectively. •̇ represents the time derivative.
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Figure 2: Coordinate system, kinetic variables (α: angle of attack of the curve, ∆Vy: imposed lateral sliding velocity,
∆Vx: imposed longitudinal sliding velocity and ∆Ωz: imposed spin velocity)

Two major assumptions are made. Firstly, the normal contact is Hertzian so that the normal contact force can be
analytically determined. Secondly, the lateral friction force satisfies the Coulomb law in the full sliding phase with a
constant friction coefficient µ.
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2.2. Wheel and rail dynamics

It is assumed that the wheel and the rail are represented by normal modal bases Φ. These wheel and rail normal
modal bases are made of the eigenvectors of the eigenvalue problem:

KΦ = ω2MΦ (2)

where ω is the natural pulsation. K and M are the stiffness and mass matrices respectively. These matrices K and M
are provided by wheel/rail FE models which are presented in section 2.5. These bases Φ are then normalized with
respect to mass so that ΦTMΦ = I. Theses bases are calculated using classical solvers IRA/Sorensen of the ARPACK
or the Lanczos library, both available in Matlab’s SDT Toolbox.

At the contact point, the vertical and lateral displacements of wheel and rail can be written as:

u(w,r)
z = Φz

(w,r)q

u(w,r)
y = Φy

(w,r)q
(3)

where (w, r) denote wheel and rail. Φz
(w,r) and Φy

(w,r) are the vectors of vertical and lateral modal amplitudes at the
contact point on the wheel and the rail. q denotes the unknown generalized coordinates vector. The size of vector q is
m where m is the total number of modes in the normal modal bases.

2.3. Contact mechanics

In the normal direction n, a linearized Hertz’s stiffness ([32]) can be applied for small amplitudes of displacement:

kH =
3
2

Fn

δ
(4)

where Fn is the static normal contact force and δ is the static penetration caused by the load Fn at the contact point.
The dynamic perturbation fn of the normal force can be expressed through the contact stiffness as:

fn = −kHun (5)

where un = ur
z − uw

z = (−Φw
z + Φr

z)q is the dynamic relative displacement between the wheel and the rail in the normal
direction n.

In tangential direction t, a Coulomb’s friction law is assumed and a full sliding contact state is considered. The
relation between the dynamic perturbation ft of the tangential contact force and the dynamic perturbation of the normal
contact force fn is then given by:

ft = µ fnsign(sy) (6)

where sign(•) denotes the sign of (•). In the full sliding state, sign(sy) = sign(syo).

2.4. Stability analysis

By using the normal modal bases, the linearized equation of motion around the total sliding equilibrium in the
global frame is written as:

Mredq̈ + Credq̇ + Kredq = (−Φw
z + Φr

z)
T fn + (Φw

y −Φr
y)T ft (7)

where q is the dynamic perturbation of generalized coordinates vector around the total sliding equilibrium. Mred,
Kred,Cred are the reduced mass, stiffness and viscous damping matrix of the whole system and come from the com-
bination of wheel and track reduced matrices detailed in the following sections. Matrix Kred is generally a diagonal
matrix containing the squared natural pulsations of the wheel and the rail. Cred depends on the chosen viscous damp-
ing model with extra diagonal terms in the case of non proportional damping cases. Mred is an identity matrix I due
to the normalization of the wheel/rail modes with respect to mass.

6

                  



Hence, combining with Eqs. (5) and (6), an eigenvalue problem can be obtained from Eq. (7) given by:

Mredq̈ + Credq̇ +
(
Kred + Kµ

)
q = 0 (8)

where Kµ = kH
(
(−Φw

z + Φr
z)

T + µ sign(sy)(Φw
y −Φr

y)T
)

(−Φw
z +Φr

z). This matrix is not symmetric due to the coupling
of the normal and tangential dynamics with a non-zero friction coefficient µ.

The solution of Eq. (8) is sought in the form: q = qoeλt where qo is the complex amplitude of q and λ is a complex
number. Eq. (8) becomes:

(
λ2Mred + Credλ +

(
Kred + Kµ

))
qo = 0 (9)

If the real part of λ is positive, the system becomes unstable. A perturbation of the equilibrium leads to an
increasing vibration with deformations and frequencies related to the unstable modes. The divergence rate of a mode
is defined as the ratio between the real and imaginary part of the complex mode:

DvR = Real(λ)/Imag(λ) (10)

where Real(λ) and Imag(λ) are the real and imaginary parts of the associated complex mode.

2.5. Wheel and rail FE models for modal bases calculation

In this section, the finite element (FE) wheel and rail models as well as modal bases for the numerical application
are presented. These models allow for an extraction of the stiffness and mass matrices which are then used to calculate
normal modal bases and the reduced stiffness, mass and viscous damping matrices in the Eq. (7).

2.5.1. Wheel model
The considered wheel model is a wheel of type ”Vyksa BA005” with a nominal rolling diameter of 920 mm and

a mass of 314 kg (Fig. 3). The material data of the wheel are listed in Tab. 1. A rigid constraint is applied at the inner
face of the hub, where the wheel is connected to the axle. This boundary condition avoids rigid mode in the modal
basis.

Z

0
x

rigid constraint

(a) XOZ plan

Z

Y

0

(b) YOZ plan

Figure 3: Wheel FEM mesh (wheel of type ”Vyksa BA005” with a nominal rolling diameter of 920 mm and a mass
of 314 kg) with a rigid constraint applied at the inner face of the hub, where the wheel is connected to the axle.

In this paper, only high lateral slip of the wheel on the rail-head is considered as the main cause of curve squeal,
the corresponding frequency range is up to 5000 Hz [2]. The 60 first natural frequencies and corresponding free-
interface modes have then been calculated up to 5000 Hz using Eq. (2). As in [29, 30, 33], three types of mode may
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Data Wheel Rail
Young’s modulus (GPa) 206.9 205

Poisson’s ratio 0.288 0.3
Density (kg/m3) 7800 7800

Table 1: Material data of the wheel and the rail

be distinguished: the radial modes (r, nd), the axial modes (a, nc, nd) and the circumferential modes (c, nc, nd), where
nd is the number of nodal diameters and nc is the number of nodal circles. In order to validate the wheel FE model,
the mesh has been refined until the normal frequencies converge in the frequency range of interest. Fig. 4 presents
the relative frequency difference as a function of mesh size for the main wheel modes which are considered prone
to squeal in the literature [3, 6]. The chosen FE mesh (see Fig. 3) is made of 70300 tetra quadratic elements with
mesh size length of 15mm. The choice of the mesh size length of 15mm ensures a relatively good quality (the relative
frequency difference is inferior to 0.15%). On the other hand, the corresponding number of DOFs of the model is not
too large to stock the wheel nomal basis (500000 DOFs) and to work more easily with a computer of 8GB RAM.
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Figure 4: Relative difference of some wheel normal frequencies as a function of mesh size (Reference mesh size:1cm)

The corresponding modes types and frequencies are listed in Tab. 2 where ”double” means that there are two
wheel modes of the same type with same frequency due to the symmetry of the wheel. Some typical mode shapes are
shown in Fig. 5.

Classical modal damping factors ξw are chosen depending on the nodal diameters [32]:



ξw = 10−3 if nd = 0
ξw = 10−2 if nd = 1
ξw = 10−4 if nd ≥ 2

(11)

The reduced stiffness matrix Kw
red corresponding to this wheel normal basis is generally a diagonal matrix con-

taining the squared natural pulsations ωi:

Kw
red =



ω2
1

. . .

ω2
60


(12)

while the reduced viscous damping matrix Cw
red is a diagonal matrix containing the damping factors ξw

i multiplied by
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Mode number Type Frequencies (Hz) Mode number Type Frequencies (Hz)
1,2 a,0,1 double 135 31 a,1,0 3238
3 a,0,0 226 32,33 r,5 double 3280

4,5 a,0,2 double 335 34,35 a,1,1 double 3356
6 c,0 445 36,37 a,0,6 double 3419

7,8 r,0 double 659 38,39 a,1,4 double 3541
9,10 a,0,3 double 920 40,41 a,1,2 double 3614
11,12 r,2 double 1155 42,43 r,6 double 4074
13,14 a,1,0 double 1494 44,45 a,1,3 double 4310
15,16 a,0,4 double 1671 46,47 c,2 double 4313
17,18 a,1,1 double 1709 48,49 a,0,7 double 4350
19,20 r,3 double 1833 50,51 a,1,5 double 4390

21 r,0 2059 52 a,2,0 4704
22,23 a,1,2 double 2152 53 a,2,1 4733

24 a,0,5 2519 54 a,3,0 4747
25,26 r,4 double 2543 55,56 a,2,2 double 4854
27,28 r,1 double 2683 57,58 r,7 double 4931
29,30 a,1,3 double 2774 59,60 a,2,4 double 5054

Table 2: Wheel FE modal basis

(a) Mode axial of 135 Hz (b) Mode radial of 3280 Hz

(c) Mode axial of 3419 Hz

Figure 5: Wheel natural free-interface mode shape
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the natural pulsations of wheel:

Cw
red =



2ξw
1ω1

. . .

2ξw
60ω60


(13)

2.5.2. Track model
Unlike the wheel, the rail is an infinite structure in the longitudinal direction which induces some advantages but

also some drawbacks for the modeling. The main advantage is that the rail can be modeled using beam-like structures
in a wide frequency range, for which analytical or semi-analytical solutions exist. Cross-sectional deformation has to
be taken into account only at high frequency for which numerical methods with rail section discretization has to be
used. The drawback is that the vibratory behavior is not modal but the result of propagating waves in the longitudinal
direction. This is not a problem in the case of equations formulated in the frequency domain with point mobilities,
however, this can be unfavorable to other methods like time-domain modeling or model reduction.

Considering that the effects of the rail could be neglected due to the high flexibility of the wheel at squeal frequen-
cies, the rail dynamics was not included in the models proposed by Rudd [5], Van Ruiten [34], Schneider et al. [18],
Heckl et al. [21, 22], Chiello et al. [23], Brunel et al. [26] or Glocker et al. [6].

The rail vertical and lateral dynamics was included through point mobilities obtained from the TWINS software
[35] in Debeer et al. [25], Xie et al. [36], Hsu et al. [37] and Squicciarini [38]’s models. There are three available
modules in TWINS for the track dynamics. In case of ballasted tracks, the first two modules use analytical models of
a Timoshenko beam in vertical and lateral bending, mounted on a two-layer continuous (Rodel) or periodic support.
Pads and ballast are modeled by springs whereas sleepers are considered as rigid masses. The damping of the pads
and ballast is taken into account by structural loss factors rather than viscous dampers. The third module includes the
deformation of the rail cross-section. This is particularly important at high frequencies (above 1 or 3 kHz according
to the vertical or lateral bending). A short length of rail, modeled with finite elements, is joined end to end to form
an infinite model using periodic structure or transfer matrix theory. As well as the rail, the pad, sleeper and ballast
are also included using finite element matrices [39]. However, since the support is continuous, this last model can not
predict the behavior associated with the ”pinned-pinned” effect. Indeed, depending on the location of the excitation,
resonances or anti-resonances occur at frequencies when the half of the wavelengths of the propagating waves in
the rail are close to the length of the sleeper span. In Pieringer [28] and Zenzerovic et al. [29, 30]’s models, the
lateral, vertical and longitudinal rail dynamics are modeled using waveguide finite elements (WFE) [40]. Considering
that the rail has a constant cross-section in the longitudinal direction, a wave-type solution is assumed along the rail.
The model takes into account the cross-sectional deformations of the rail. However, in this model, the support is
continuous. It can not predict the behavior associated with the ”pinned- pinned” effect.

In this section, a FE track model which can overcome the limits of these models above is used. In order to avoid
the reflexion of waves in a FE model, anechoic terminations are modeled by gradually increasing the rail damping
at its termination, as proposed for instance in [41]. The track model consists in one periodically supported rail of
UIC60 type (Fig. 6). This rail is 48 m long. The space between the sleepers (sleeper span) is 60 cm. The FE track
model is made of 200000 quadratic elements and 600000 DOFs. As a first approach, the dynamics of the sleepers
and the ballast is neglected because of its rather low frequency domain. The track support contains only elastic pads
that connect the rail and each sleeper. They are modeled by 69 springs of longitudinal, lateral and vertical stiffnesses
(Kx = Ky = 36,Kz = 180) MN/m for each sleeper. The pad structural damping is set to ηs = 1. The contact position
is in the center of the rail in the x−axis. The rail structural damping is η = 0.02. The terminations are obtained by
gradually increasing the rail damping from 2% to 100 % [41].

Finally, a complex stiffness matrix K̂r is obtained which includes the real stiffness matrix Kr and the damping
matrix Kr

imag, given by K̂r = Kr + jKr
imag where Kr

imag is piecewise proportional to Kr according to the different
structural damping factors. At this point, no viscous damping is introduced for the track (Cr = 0).

The 1700 natural frequencies and corresponding free-interface modes Φr have been calculated up to 5000 Hz using
only the real stiffness matrix Kr from the Eq. (2). The proposed track model is validated by calculating its dynamic
mobilities and comparing these mobilities with the results obtained by analytical models (Timoshenko beam models).
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Figure 6: Track model (Rail of type UIC60 with periodical supports (pad))

The dynamic mobilities at the contact point are computed by using the reduced basis including the free-interface
modes Φr. For each frequency ω, the mobility at contact DOF i1 due to a force at contact DOF i2 is given by:

V i1,i2
c (ω) = jωΦr(i1, :)

(
−ω2Mred

r + K̂r
red

)−1
Φr(i2, :)

T (14)

where K̂r
red = ΦrTK̂rΦr and M̂r

red = ΦrTMrΦr = I are the (non diagonal) reduced complex stiffness and the reduced
mass matrix respectively.

The amplitude and phase of the track vertical and lateral point mobilities at the center point between two sleepers
are represented in Figs. 7 and 8. Two resonant frequencies f = 1059 Hz and f = 503 Hz are observed on the mobility
curves respectively for the cases of lateral and vertical loads. These frequencies correspond to the pinned-pinned
frequencies.
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Figure 7: Vertical mobility at contact point (Reference amplitude: 1 m/s/N)

The dynamic response obtained by FEM is compared with the analytical Timoshenko beam [42] in vertical bend-
ing in Fig. 7. The frequencies of the peaks of the FE track are close to those from Timoshenko beam model. However
between the FE track and Timoshenko beam model, there are some differences in the amplitudes at the resonance
peak that are related to the distance between two sleepers. This difference results from the spreading of the springs
that connect the rail and the sleepers in the FE model. In the Timoshenko beam, there is only one spring that connects
the rail and the sleepers. The evolution of the curves for high frequencies (> 3000 Hz) is also different. This is due to
the cross-sectional deformations which are not taken into account in the Timoshenko beam. For the lateral vibration,
no comparison is proposed since a pertinent analytical model should include both bending and torsional deformations
and is only valid at low frequencies.
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Figure 8: Lateral mobility at contact point (Reference amplitude: 1 m/s/N)

Concerning the rail anechoic termination, the amplitude of the vertical response along the track caused by the
impulsion at the contact point (x = 0) at some frequencies is presented in Fig. 9. The amplitude of this mobility
decreases along the track and there is no wave reflection.
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Figure 9: Vertical mobility along the track caused by the impulsion at the contact point (x = 0)

Finally, the reduced mass, stiffness and viscous damping matrix of the whole system Mred, Kred,Cred used in
Eq. (9) are given by:

Mred = I

Cred =

[
Cw

red
0

]

Kred =

[
Kw

red
K̂r

]
(15)
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2.6. Numerical results

In this section, in order to study the effect of the track dynamics, a case with rigid track and another case with
flexible track are studied. In each case, the results of stability analysis of the wheel/rail system obtained from Eq. (9)
using the reference data listed in Table 3 are firstly presented. To analyze the instability mechanism, it is useful to
compute the bifurcation curves representing the evolution of the unstable modes as a function of friction coefficient µ
while the other parameters are kept constant.

Rolling velocity V (m/s) 10
Imposed lateral velocity of the wheel Vy (m/s) 0.1

Friction coefficient µ 0.3
Static vertical load N 7 kN

Table 3: Kinematic parameters of the wheel/rail rolling contact model

2.6.1. Rigid track
The rigid track case is obtained by neglecting all contributions of the track in the system. In this case, there is no

unstable mode (with positive real part) using the reference data in Table 3.
The bifurcation curves are represented in Fig. 10. One unstable mode appears when friction coefficient µ reaches

a critical value at which the complex modes frequencies coalesce. This critical µ is about 0.94 without any wheel
damping and µ = 0.58 with wheel damping. The corresponding unstable frequency is 3391 Hz and with the mode
shape presented in Fig. 11.
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Figure 10: Bifurcation curves in the case with rigid track (black line: with wheel damping, blue line: without wheel
damping)

Even if the frequency of this unstable mode gets close to the axial wheel mode with 6 nodal diameters and 0 nodal
circle (3419Hz), the mode shape is significantly different. In order to find the contributions of the free wheel modes in
this unstable complex mode, the Normalized Modal Assurance Criterion (MAC) [43] between wheel normal modes
and this unstable complex mode is calculated. The expression of the MAC used here is given by Eq. (16) in which
Φcomplex is the unstable complex mode and Φw

i
is a free normal wheel mode.

MAC(Φw
i
,Φcomplex) =

|(Φw
i
)TMwΦcomplex|2

|Φw
i

TMwΦw
i
||ΦT

complex
MwΦcomplex|

(16)
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Figure 11: Unstable mode shape with the rigid track

With this criterion, five natural wheel modes are found to be involved in the unstable complex mode: the radial
mode (r,5) of frequency 3280 Hz, the ”double” axial modes (a,1,1) of frequency 3356 Hz and the ”double” axial
modes (a,0,6) of frequency 3420 Hz. The contribution of the axial modes (a,0,6) is the greatest.

Concerning the instability mechanism, it is firstly found that the form of the bifurcation curve is similar to classical
mode coupling curves, given for instance by Hoffman [14]. Therefore, the instability mechanism is mode coupling.
Moreover, there is a strong contribution of several wheel modes in the unstable mode.

2.6.2. Flexible track
With the flexible track, the results change radically. Fig. 12 shows four unstable modes (with positive real part)

obtained using the reference data in Table 3. The frequency of these unstable complex modes are 334, 918.3, 1671
and 3418 Hz respectively which get close to the frequencies of the 4 axial wheel modes with (2,3,4,6) nodal diameters
and 0 nodal circle (Figure 13).
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Figure 12: Divergence rate of the complex modes with the flexible track

The first three modes shapes are close to the 3 axial wheel modes with (2,3,4) nodal diameters and 0 nodal circle
respectively (Fig. 13a, Fig. 13b and Fig. 13c). This result is coherent with the experimental observation that the squeal
fundamental frequencies correspond to axial wheel modes with zero nodal circles, in agreement with the literature
review [3, 4]. Like in the case with a rigid track, five natural wheel modes are involved in the fourth complex mode
(Figure 13d).

Bifurcations curves
The bifurcation curves of the unstable complex modes in the case with flexible track are presented in Fig. 14.

The critical friction from which the complex modes become unstable are respectively 0.06, 0.1, 0.22 and 0.3 for the
unstable complex modes (a,0,2), (a,0,3), (a,0,4) and (a,0,6).
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(a) Mode (a,0,2) (b) Mode (a,0,3)

(c) Mode (a,0,4) (d) Mode (a,0,6)

Figure 13: Unstable modes shapes with the flexible track

For the first three unstable modes (a,0,2), (a,0,3) and (a,0,4), the form of the bifurcation curves that seems to be
linear is not the same as the form of the bifurcation curves in case of mode coupling [14]. Moreover, the zoom near
the unstable frequency (a,0,3) in Fig. 15 does not show coalescence of any frequencies. Results are similar for the
unstable modes (a,0,2) and (a,0,4). Actually, one can imagine that these instabilities are not due to mode coupling.
According to Ding et al. [24], this instability is due to coupling between the normal and tangential components of the
single wheel mode when the rail dynamics is included.

On the other hand, the bifurcation curves in Fig. 14d shows a coupling between two complex modes. However,
there is no perfect coalescence between the two frequencies due to the system damping.

Effect of the rail lateral dynamics
In the case with the rail dynamics, one can determine separately the role of the rail vertical and lateral dynamics.

In Eq. (8), the rail lateral dynamics can be neglected by eliminating the term Φr
y. With the data from the reference

case, Fig. 16 shows that the instability does not depend on the lateral flexibility of the rail. The rail vertical dynamics
is therefore the most important characteristic for the occurrence of instability. Ding et al. [24, 31] stated that the rail
dynamics can change the flexibility of the normal contact, which affects the level of coupling. With our results, one
can also conclude more specifically that only the rail vertical dynamics changes the flexibility of the normal contact.

In this section, it is found that instabilities change radically with the flexible track compared to the rigid track.
The unstable modes with (2,3,4,6) nodal diameter and 0 nodal circle are found in the case of flexible track, which
is consistent with experimental observations [3, 4, 17]. Concerning the instability mechanisms, with the rigid track,
mode coupling is responsible for instabilities. With the flexible track, mode coupling and coupling between the normal
and tangential components of a single wheel mode combining with the track vertical dynamic can coexist.

In order to explain the second type of instabilities, Ding et al. [31] recently developed a 2-DOF model in which
the wheel is represented by a single mode and the track vibration behavior in the vertical direction is simplified as
a mass, a spring, or a damper. For the damper case, there is no mode-coupling and the evolution of the bifurcation
curve is linear. On the other hand, for the mass case, mode coupling is considered responsible for these instabilities.
A question stands out concerning the exact equivalent behavior of an infinite rail (mass or damper) responsible for
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Figure 16: Bifurcation curves of unstable complex modes with and without the lateral flexibility of the rail
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these instabilities. This is the main reason that in the following section, a reduced model allowing to explain the kind
of instabilities is developed. The results obtained by this reduced model are then compared with those obtained by the
full model.

3. Clarification of the effect of rail vertical phase response in railway curve squeal generation

3.1. Description of the model

In the previous section, it is found that the coupling between a single wheel mode and the rail vertical dynamics can
lead to instability. This instability occurs without falling friction nor mode coupling, which are the two mechanisms
considered in most models to simulate friction-induced vibrations. Considering a single wheel mode combined with
the track vertical dynamics seems to be sufficient to obtain this type of instability. This is studied through a simplified
model as shown in Fig. 17.

wheel mode

Hertz's stiffness k
H

Track complex stiffness k
r

Δ Vy

Y

Z

ft
fn

Figure 17: Simple 1-DOF model for instabilities due to the rail vertical phase response

The mechanical system is represented by one wheel mode of natural pulsation Ω, damping factor ξw and contact
modal amplitudes Φw

z and Φw
y , coupling with an Hertz’stiffness kH representing the contact [32] and an equivalent

complex stiffness kr representing the track vertical dynamics. This track complex stiffness kr is obtained by:

kr(ω) =
iω

Vc(ω)
(17)

where Vc(ω) is the vertical mobility due to a vertical force at the contact point (Eq. (14)).
It is worth to note that the imaginary part of complex stiffness kr is non-zero and represents a phase shift in the

contact point mobilities of the rail. This imaginary part may be considered as a damper equivalent to the behavior of
an infinite track. This damper is mainly due to the phase shift of the propagating wave but also to structural damping
effects [32].

The equivalent stiffness kv is defined as the series springs combining the Hertz’s stiffness kH and the track vertical
complex stiffness kr:

kv =
kHkr

kH + kr
(18)

The dynamic vertical and lateral contact forces fn and ft are calculated from the full sliding condition:

fn = −kvuw
n (19a)

ft = µ fn sign(sy) (19b)

where uw
n = −Φw

z q is the vertical displacement at the contact point in the local frame of the wheel. q denotes the
unknown generalized coordinate corresponding to the wheel mode. sy = sy0 is the lateral creepage of the wheel.
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Under the above assumptions, the linearized equations of the system is written:

q̈ + 2ξwΩq̇ + Ω2q = −Φw
z fn + Φw

y ft (20)

This equation is written in the modal basis as in section section 2. However, this modal basis includes only a wheel
mode.

3.2. Stability analysis

By assuming a harmonic dependence for all dynamic variables X such that X = Xo(ω)eiωt, Eq. (20) becomes:

(−ω2 + 2iωξwΩ + Ω2)q = −Φw
z fn + Φw

y ft (21)

Combining with Eq. (19), Eq. (21) leads to an eigenvalue equation:

(
−ω2 + 2iωξwΩ + Ω2 + Kc

)
q = 0 (22)

where
Kc =

(
Φw

z − µsign(sy0)Φw
y

)
kvΦw

z (23)

is the complex stiffness due to the contact, the friction, the wheel modal amplitudes and the rail vertical dynamics.
The imaginary part of this complex stiffness Kc results from the imaginary part of the rail stiffness. In other words, it
results from the damping and the propagative waves of the rail. An equivalent viscous damping can be introduced:

cc(ω) =
Imag(Kc)

ω
(24)

where Imag(•) denotes respectively the imaginary part of (•) .
This damping can be expressed by a modal damping factor:

ηc(ω) =
cc

2Ω
(25)

Fig. 18 shows the vertical mobility of the wheel and the track on the contact point (x = 0). The rail vertical
mobility does not vary so much near the natural frequency of the wheel. The rail dynamic complex stiffness at the
contact point is therefore supposed to be almost constant near the natural frequency of the wheel such that:

kr(0, ω) ' kr(0,Ω) (26)
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Figure 18: Comparison of rail and wheel vertical mobilities at the contact point (Reference amplitude: 1 m/s/N)
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Thus, near the natural frequency of the considered wheel mode, we have: ηc(ω) u ηc(Ω) and Eq. (22) becomes:

(
−ω2 + 2iωξcΩ + Ω2 + Real(Kc)

)
q = 0 (27)

where the total damping factor ξc is thus given by:

ξc = ξw + ηc (28)

Eq. (27) gives:

ω = iξcΩ ±
√
−ξ2

c Ω2 + Ω2 + Real(Kc) (29)

The unknown generalized coordinate corresponding to the wheel mode q is given by:

q = qoeiωt = qoe−ξcΩte±i
√
−ξ2

c Ω2+Ω2+Real(Kc)t (30)

where qo is the amplitude of q.
The unstable frequency is given by:

funstable =

√−ξ2
c Ω2 + Ω2 + Real(Kc)

2π
(31)

The divergence rate of the coupled complex mode can be defined using the real and imaginary terms in Eq. (29):

DvR =
−ξcΩ√−ξ2

c Ω2 + Ω2 + Real(Kc)
(32)

Stability criterion
The sign of damping factor ξc (Eq. (28)) is the key factor for the stability of the system. If this damping factor is

negative, the divergence rate is positive and the wheel/rail system becomes unstable. If the wheel mode damping ξw

is sufficiently greater than the negative damping ηc, instabilities do not occur.
Looking at Eq. (23), it is clear that this may occur for sufficiently high value of µ > |Φw

z /Φ
w
y | in the case where

the sign of (sy0) is the same as the sign of the product ΦzΦy. However a numerical application has to be performed in
order to evaluate if this negative damping is sufficient to destabilize the system in realistic cases, i.e. −ηc > ξ

w.

3.3. Numerical application

In this section, the results of stability analysis of the wheel/rail system for the reference case obtained from the
Eqs. (31) and (32) for all wheel modes are firstly presented. The bifurcation curves (effect of friction coefficient) then
allow for analysis of the instability mechanism.

3.3.1. Reference case analysis
The reference case with the kinematic parameters listed in Table 3 is considered. A divergent rate in Eq. (32) is

calculated for all computed wheel modes using ηc values given by Eq. (25). Results given on Fig. 19 for sy0 > 0,
kH = 1260 MN/m and µ = 0.3 show that only three unstable modes are found (ξ < 0) which correspond to the three
axial wheel modes without nodal circle (a,0,2), (a,0,3) and (a,0,4), with natural frequencies 334 Hz, 919 Hz and 1670
Hz respectively. The divergent rates corresponding to these three mode are 0.48%, 0.42% and 0.13%. These positive
divergent rates traduce the fact that negative damping ηc added by the frictional contact with the rail is greater than
the modal damping factor (ξ = 0.01% for these modes). These unstable modes are the same as the three first modes
found in the previous section. Thus, the kind of instabilities in a single wheel mode coupling with the track vertical
complex stiffness can be reproduced though an 1-DOF model. As expected for this 1-DOF model, the unstable mode
(a,0,6) found in the previous section due to the modes coupling is not found. This result is coherent with the fact that
the fundamental frequencies correspond to axial wheel modes with zero nodal circles from literature review [3, 4] and
the result of the previous section.
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Figure 19: Divergence rates obtained with the 1-DOF model in the reference case

3.3.2. Bifurcation curves
While the other parameters are maintained constant, the bifurcation curves of the unstable modes are presented in

Fig. 20. The critical friction coefficient from which the system becomes unstable are respectively 0.06, 0.08, 0.15 for
the wheel modes (a,0,2), (a,0,3) and (a,0,4). In comparison with the results of the previous section, the critical friction
coefficients for the unstable modes are not so different (µ = 0.06, µ = 0.09 and µ = 0.22 respectively).

Fig. 20 shows the linear evolution of the divergence rate of the unstable modes since the relation between the
imaginary part of Kc and µ is linear (Eq. (23)). The results obtained by this model are similar to the results obtained
by the FEM model developed in the previous section. Thus, it can be concluded that the imaginary part of the track
vertical complex stiffness is responsible for the instabilities of a single wheel mode.

In this section, the mechanism which explains instabilities in a single wheel mode coupling with the track vertical
dynamic is clarified by an 1-DOF model. It is found that instability represented by a negative damping is introduced
in the system due to the imaginary part of the track vertical complex stiffness. The system becomes unstable if the
natural wheel damping is inferior to this negative damping. Obviously, there is no mode coupling when using this
model. That is the major difference between this 1-DOF model and the 2-DOF model developed by Ding et al. [31].

4. Conclusion

The present works dealt with the problematic of curve squeal of railway systems. The aim was to make a contri-
bution to the study of instability mechanisms leading to curve squeal.

A stability analysis of wheel/rail rolling contact in the case of lateral full sliding was proposed in order to investi-
gate the instability mechanisms. A point contact model with linearized Hertzian normal law and Coulomb’s friction
law is used in all the parts. The interaction model firstly uses full wheel and rail modal bases. It was found that even
with a constant Coulomb friction, instabilities can occur because of the coupling between normal and tangential dy-
namics in wheel/rail systems. This coupling can involve two wheel modes (mode coupling) or only one wheel mode
(among axial modes with 2 to 4 nodal diameters and 0 nodal circle) when the rail dynamics is included. It has been
shown that the last case corresponds to a specific and original mechanism. These results are coherent with experimen-
tal observations (modal shapes, frequencies, parametric influences, etc.). The rail vertical flexibility is found to play
an important role in the instability occurrence without ”falling friction” nor without ”mode-coupling”.

This role has secondly been clarified with a simple model in which the wheel is represented by one mode and the
track by a vertical complex stiffness. With this model, it was found that the imaginary part of the complex stiffness of
the rail, induced by the phase shift of the propagating wave but also by pad and rail damping plays a critical role in
the instability mechanism. The combination of friction and phase shift induces a negative damping, which may then
destabilize the system, leading to self-sustained vibration and squeal noise.

In comparison with existing models, this work has given one major originality. A specific mechanism has been
found and explained by proposing an appropriate simple 1-DOF model. Results obtained with the simplified model
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Figure 20: Bifurcation curves of the unstable complex modes for the 1-DOF model
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show good agreement with those obtained with the finite element model in terms of unstable frequencies. This
mechanism shows the crucial role of the track on the stability of wheel/rail system in curve. It opens several mitigation
solutions which are not only concentrated on the wheel but also on the track. In addition to the increase of the damping
of the wheel (Eq. (28)), to reduce the squeal occurrence, the decrease of the negative damping introduced by the track
dynamics can be performed by reducing the friction coefficient at the contact zone, the imaginary part of the equivalent
stiffness combining the contact stiffness and the track vertical complex stiffness or the wheel dynamics (Eq. (23)). An
important prospect of this work is an experimental validation of the mechanisms highlighted in this work. For the
mode coupling mechanism, ”simple experiments” can be designed with a two components frictional system (as for
example in: Bigoni et al. ’s experiments [44, 45]). But to validate experimentally the 1-DOF model proposed here, a
question that stands out is how to represent a complex stiffness, which introduces a negative damping in the system.
It is not simple and needs a new kind of experiment.
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