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Abstract Modelling of rough frictional interfaces is of-

ten based on asperity models, in which the individual

behaviour of individual microjunctions is assumed. In

the absence of local measurements at the microjunction

scale, quantitative comparison of such models with ex-

periments is usually based only on macroscopic quan-

tities, like the total tangential load resisted by the in-

terface. Recently however, a new experimental dataset

was presented on the onset of sliding of rough elas-

tomeric interfaces, which includes local measurements

of the contact area of the individual microjunctions.

Here, we use this more comprehensive dataset to test

the possibility of quantitatively matching the measure-

ments with a model of independent asperities, enriched

with experimental information about the area of mi-

crojunctions and its evolution under shear. We show

that, despite using parameter values and behaviour laws

constrained and inspired by experiments, our model

does not quantitatively match the macroscopic mea-

surements. We discuss the possible origins of this fail-

ure.
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1 Introduction

The mechanical behaviour of contact interfaces between

rough solids is crucial to understand their tribologi-

cal properties. The rough contact mechanics commu-

nity has been developing models in two main directions

(see [1] for a recent review). First, asperity models in

which the contact interface is divided into well-defined

microjunctions actually carrying the normal and tan-

gential loads applied to the contacting solids [2–4]. Each

microjunction is ascribed a set of individual properties

(e.g. its height, radius of curvature or friction coeffi-

cient) necessary to apply some assumed behaviour laws

(e.g. any contact [5] or friction law [6]) when submitted

to an external stimulus. The macroscopic behaviour of

the interface is then the emerging, collective response

of the population of microjunctions [7–9]. Second, con-

tinuum models in which the input quantity is the full

topography of the rough surfaces, and an exact solu-

tion of the unilateral contact and friction problem is

seeked [10–12], again under some assumptions on the

interfacial behaviour, concerning e.g. elasticity, friction

and adhesion.

Each approach can be used to produce two types

of results, either deterministic or statistical. Determin-

istic results are obtained for a given topography (for

continuum models) or a given set of model parame-

ters (for asperity models, including the properties of

each microjunction) and are thus specific to those in-

put data. They are relevant for quantitative comparison

with a particular experiment. In contrast, statistical re-

sults are the expected results of a large number of de-

terministic calculations performed on statistically sim-

ilar random surfaces. In asperity models, statistical re-

sults are obtained when using probability density func-

tions (pdfs) of the microjunction properties [13–15]. In
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Fig. 1 Experiments that our model attempts to reproduce.
(a) Sketch of the experimental setup. (b) Typical segmented
image of the interface showing individual microcontacts in
white. P=6.40N. (c) Concurrent time evolutions of the tan-
gential force Q (red) and the area of real contact (blue), for
P=3.10N. (d) Area of real contact as a function of the tan-
gential force, for the same data as in (c).

continuum models, they are usually obtained using the

power spectrum density (psd) of the topographies under

study [16]. In the following, we aim at finding a quan-

titative match with a specific set of measurements, so

we will consider deterministic results.

Both asperity and continuum models have been widely

explored in the context of rough contacts under purely

normal load, with a recent study explicitly comparing

the relative merits of the two approaches [17]. Several

studies aimed at a quantitative comparison between de-

terministic model results and local, microjunction level

measurements (see e.g. [18,19]). In contrast, to our best

knowledge, such comparisons have not been reported

in the case of sheared multicontacts. Here we will at-

tempt to build an asperity model able to quantitatively

match recent measurements performed on the incipient

tangential loading and onset of sliding of a rough elas-

tomer slab in contact with a smooth glass plate [20,21]

(Fig. 1a). Those measurements (see a typical example

in Fig. 1c,d) are particularly interesting and constrain-

ing for models because, in addition to the macroscopic

loads on the interface, they include the evolution under

shear of the individual contact areas and shapes of the

many microjunctions forming the interface (Fig. 1b).

In section 2, we describe the asperity model and pro-

vide the experimental constraints on the model param-

eters in section 3. Quantitative comparisons between

the model and measurements are given in section 4,

while in section 5 we discuss the possible reasons for

the absence of good matching between the two.

2 Model description

We consider the frictional interface between a slider of

mass M and a track. The tangential displacement of the

slider, X(t), is assumed to obey the following equation

of motion:

MẌ +MηẊ = kL(vt−X) − F, (1)

where M is the slider’s mass, kL is the stiffness of the

loading spring through which the slider is pulled at con-

stant velocity v, η is a viscous parameter, the dot in-

dicates the time derivative, and F is the resistive force

due to interfacial friction.

We assume that the interface is a multicontact made

of N independent individual microjunctions, each re-

sisting a force fi, so that F =
∑N
i=1 fi. Each micro-

junction can be in either of two states. First, a pinned

state during which the junction acts like a (non-linear)

elastic spring of stiffness ki, so that fi = ki(X(t)− xi),

with xi the slip displacement of the junction with re-

spect to the track (e.g. xi = 0 as long as junction i

has never been slipping). When a threshold force fsi
is reached, the junction enters a slipping state, during

which fi = ε fsi. ε < 1, so that fsi and ε fsi are the

analogs, at the junction level, of a static and a dynamic

friction force, respectively.

The mechanical behaviour of individual junctions

is inspired by experimental observations made on the

same setup and materials in contact as in Fig. 1a, but

when the rough slab is replaced by a single smooth

sphere [20–22]. The resulting sphere/plane contact is

assumed to be representative of an individual micro-

junction within a multicontact like that of Fig. 1b. Those

experiments, carried out both for large normal loads [21]

and for small (even negative) normal loads [22], have

shown that, under increasing shear, the initially circu-

lar contact shrinks anisotropically and becomes increas-

ingly ellipse-like. As shown in [21] the shrinking minor

axis of the ellipse is parallel to the shear loading di-

rection, while the variations of the major axis (in the

direction orthogonal to shear) can be neglected.

Defining `‖i and `⊥i the size of an elliptic micro-

junction along and orthogonal to shear, respectively,

we can define its area as Ai = π
4 `‖i`⊥i. Following [23],

the stiffness of the contact along the shear direction is

ki =
π
2 `⊥iE

(1 + ν)
[
K(e) − ν

e2

(
K(e) −E(e)

)] , (2)

with E and ν being the Young’s modulus and Poisson’s

ratio of the material that constitutes the microjunc-

tions, e =

√
1 −

`2‖i
`2⊥i

is the excentricity of the junction,
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Fig. 2 Left axis: time evolution of the contact area Ai of 5
typical microjunctions in the experiment at P=4.01 N. Right
axis: concurrent evolution of the tangential force Q.

K and E are the elliptic integrals of the first and second

type, respectively.

Assuming that each microjunction is initially circu-

lar, we can define the common initial value, `0i, of `⊥i

and `‖i from the initial area A0i as `0i =
√

4A0i

π . As al-

ready mentioned, `⊥i varies negligibly under shear, so

we will consider that `⊥i = `0i at all times. The evolu-

tion of `‖i is then deduced from the shear-induced area

reduction reported in [20]:

Ai = A0i − αb
1

Ap0i
f2i , (3)

with αb and the exponent p two constant parameters of

the model. The junction size along the shear direction

is thus simply `‖i = 4Ai

π`0i
.

For each microjunction, Eq. (3) is used from the

beginning of the experiment, when fi assumed to be 0,

up to when the junction first starts to slip (when fi =

fsi). At that instant, Ai takes the value Asi = A0i −
αb

1
Ap

0i
f2si. For later times, based on the observation

of the typical behaviour of Ai during the experiments

of [20] (see Fig. 2), we assume that Ai always remains

equal to Asi.

In contrast, the force resisted by a microjunction

can vary with time after the first onset of slipping.

When the slider’s velocity, Ẋ(t), gets smaller than a

minimum value Ẋmin = cmin× v, with cmin a scalar pa-

rameter, we assume that all the slipping contacts will

repin, with a position xi = X−εfsi/ki. Doing so, at re-

pinning, there is no force discontinuity, as the repinning

force ki(X − xi) is equal to the slipping force εfsi.

Following [20], the threshold force fsi at which the

microjunction starts to slip is assumed proportional to

its area at the same instant, i.e. fsi = σAsi, with σ the

frictional shear strength of the contact.

The algorithm used to solve the model numerically

is provided in Appendix A.

3 Experimental constraints

In order to quantitatively compare the model results

with the multicontact experiments reported in [20,21],

we need to feed the model with parameter values based

on the measurements. In the following list, we first pro-

vide all constant parameter values that are directly ac-

cessible experimentally, with the error bars when rele-

vant.

– M = M0 + M1, where M0=100 g is the mass of

the slider and M1=0, 55, 111, 215, 308, 552 g an

additional mass, for the 6 experiments performed.

All masses are given at ±1g.

– kL=9200±200 N/m [20].

– v=0.1 mm/s.

– E=1.6±0.1 MPa [20]. This value and the associated

error bar are the mean value and standard deviation

over 32 estimates using 5 different spherical PDMS

samples prepared in the same conditions.

– ν is assumed to be equal to 0.5, as is classically done

for elastomers.

– the A0i are extracted from the initial image (for

Q=0), segmented as described in [20].

– N is also extracted form the same segmented image.

– σexp=0.23±0.02 MPa [20], is the experimental value

of the frictional shear strength of the interface, de-

termined from a linear fit of (As, Qs) for the 6 exper-

iments. Qs is the macroscopic static friction (peak)
force and As is the total area of real contact at the

same instant. We will discuss below how the value

of σ in the model is related to σext.

There are three model parameters which cannot be

directly measured in experiments: η, ε and cmin.

η is introduced to enable energy dissipation in the

system, thus avoiding spurious oscillations of the slider.

However, the value of η should not be too large, be-

cause it would prevent the possibility of stick-slip in

the model. We found that stick-slip exists up to η be-

tween 180 and 200, but for those large values, the initial

stick-slip cycles are significantly different from the ex-

periments. In practice, we found that

η = 100 (4)

is a good compromise between oscillation reduction and

a reasonable reproduction of the stick-slip sequence.

The results are rather insensitive to the precise value of

η, since η=50 gives virtually identical results.
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ε has a leading order control on the amplitude and

period of the tangential force fluctuations during stick-

slip. Systematic tests of the model for various values of

ε led us to choose

ε = 0.90. (5)

In particular, this value is sufficiently small to enable

stick-slip for all 6 normal loads (as observed experimen-

tally), while reproducing reasonably well the amplitude

and period of the stick-slip sequences in all cases.

Note that in the model, if there was no stick-slip, the

steady-state sliding friction force would be
∑N
i=1 εσAsi

(all microjunctions are in their slipping state). In order

for this value to match the macroscopically measured

value Qs = σexpAs, one has to impose that

σ =
σexp
ε
, (6)

and this is what we do in the following.

Our tests showed that the value of cmin has no im-

pact on the results as far as it is sufficiently small. For

instance, simulations with cmin=10−5 are essentially

undistinguishable from those using 0.01. The reason is

that, when
∣∣∣Ẋ(t)

∣∣∣ crosses the value cmin× v, the veloc-

ity drop is so fast that the time at which the crossing

occurs is almost independent on the value of cmin. In

our calculations, we will use

cmin = 0.01. (7)

Extracting values for p and αb in Eq. (3) requires

fitting the power law relationship between the individ-

ual area reduction parameters, αi, and the initial areas,

A0i, presented in Fig. 3 of [20]. Such a fitting is actually

difficult due to the large dispersion of the data, as can

be inferred from the large difference in total area decay

of microjunctions 1 to 3 in Fig. 2, although they start

with almost identical areas. A fit letting both αb and

p as fitting parameters gives 95% confidence error bars

as large as 600% for the optimum value for αb, which is

not a viable option. We then tried to fix the value of p

and fit the data with αb being the only fitting parame-

ter. We found that the quality of the fit (quantified by

its R2 value) was essentially independent of p (as long

as it is not too different from the value 3/2 proposed

in [20]), preventing any objective choice of p.

Based on those tests, we decided to fix p=3/2, and

look for the value of αb that produces the best agree-

ment between the area decay predicted by the model

and that measured in the experiments. To do that,

we fitted both the experimental and model version of

the curve A(Q) by a quadratic function of the form

A = A0 − αQ2. A0 being the same in the model as in

the experiment (because A0 =
∑N
i=1A0i), the fitting

procedure enable identification of an αb which provides

an exact match between the two quadratic decays. We

found αb=0.45 10−15 m5/N2 for the experiment with

the smallest normal load, and αb=1.00 10−15 m5/N2

for the experiment with the largest normal load. We

then adopted the average value between both, αb=0.725

10−15 m5/N2, as a constant to be used for all experi-

ments.

4 Quantitative comparison

We run the model of section 2 with the parameter values

described in section 3, for the 6 different PDMS/glass

multicontact experiments reported in [20]. Figure 3 com-

pares the measured time evolution of the area of real

contact and tangential force to their corresponding model

predictions. To facilitate comparison, the time origin of

the experimental data has been offset by the amount

necessary to superimpose the measured and predicted

force curves in the central portion of their initial in-

crease. Note that the initial non-linear increase of the

measured force is due to the non-vanishing bending

stiffness of the steel wire used to pull the slider, when it

first bends around a pulley before a significant tension

arises along the wire. The apparent difference between

the measured and predicted values of the initial area of

real contact is due to the above mentioned time offset:

the initial predicted value exactly corresponds to the

measured value from the first image, but the latter im-

age now corresponds to a negative time and is thus not

shown in the figure. The observed difference is of the

order of the area measurement noise, presumably due

to temporal fluctuations in the illumination and noise

in the camera’s sensor.

Figure 4 then shows the evolution of the area of

real contact as a function of the tangential force, for

both the measured and predicted data. This figure is

similar to Fig. 2A in [20], but shows all measurements

points rather than just 1 of 130. Note that the stick-slip

is responsible for the accumulation of nearly horizon-

tal cycles close to the minimum area/maximum force

point of each curve. Also note that the model forces

can transiently exceed the value σexpA, but always re-

main smaller than σA =
σexp

ε A, as expected.

5 Discussion

Although other combinations of model ingredients may

have been proposed, we believe that our model incor-

porates all of the currently available knowledge on the

system that we tried to reproduce. As such, it can be

seen as the most comprehensive independent asperities
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Fig. 3 Direct comparison between measurements and model
predictions, for two typical experiments with either P=1.53N
(a) or P=3.10N (b). Time evolutions of the measured
(dashed, black) and predicted (solid, blue) area of real con-
tact, and of the measured (dashed, magenta) and predicted
(solid, red) tangential force.

model of shear multicontacts so far, to be used for de-

terministic comparison with the experiments of [20,21].

Most of the model parameters (M , kL, v, E, ν,

A0i, N , σexp) take their value directly from the mea-

surements. Three adjustable parameters have been sys-

tematically varied to choose the most relevant value:

cmin has no effect on the results, while η and ε have

been adjusted to reproduce at best the stick-slip regime.

Ideally, p and αb should not be adjustable, but the

dispersion in the experimental estimates of αi is such

that their values were not sufficiently constrained. In

practice, the value of p was chosen equal to the one

suggested from experiments incorporating not only mi-

crojunctions within multicontacts, but also millimet-

ric smooth sphere/plane individual contacts [20]. The

value of αb was then adjusted to best match the overall

decay of real contact area during the incipient loading

of the interface.

Fig. 4 Real area of contact vs tangential force for the 6 ex-
periments. Black (blue) curves show the measured (predicted)
data. The red line has slope 1

σexp
and passes through the ori-

gin.

With those values, the time evolution of the tan-

gential load Q is quite well reproduced (see Fig. 3). In

particular, the slope of the incipient loading is correct,

which suggests that the stiffness used for the individ-

ual microjunctions is also correct. In contrast, the time

evolution of the real contact area is not satisfactory.

Of course, the total amplitude of the real area decay,

from the initial contact to macroscopic sliding, is cor-

rect, because we start from the measured initial value

(
∑N
i=1Ai0), and we adjusted αb to get the correct final

value. So we argue that the quality of the comparison

between the model and experimental results can only

be assessed through the shape of the real area decay.
And as can be seen from Fig. 4, while the shape of the

experimental curves A(Q) is essentially quadratic, that

of the model curves is much more linear (except from

the very beginning, when all microjunctions are pinned

and thus decay quadratically according to Eq. (3)). We

emphasize that this linear shape is a very robust feature

of our model, because we found that the predictions

are essentially unaffected by changes in the model as-

sumptions (elliptic vs circular microjunctions, Eq. (3)

applied at all times or only before the first depinning

event) and in the parameter values (for values of η and

ε enabling stick-slip or not).

What could be the reason for the failure of our

model to reproduce the evolution of the real contact

area? The main model ingredient responsible for this

evolution is Eq. (3). The first possibility is that, de-

spite the evidence brought in [20,21], the anisotropic

area reduction under shear would not follow a single

behaviour law at all junction scales, from millimeter-

to micrometer-sized junctions. This possibility is indeed
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suggested by a recent adhesion-based model of sheared

sphere/plane junctions [24], where the authors find that

the exponent p varies systematically, for a given sphere,

with the normal load applied, and hence the initial area.

Here we did not try to apply the model of [24], because

it would require the knowledge of the characteristic ra-

dius of curvature of and normal load on each individual

microjunction. In contrast, experimental measurements

only provide a combination of both quantities, through

the area of the microjunction.

We now argue that the solution to the failure of our

model will presumably be much more complex than a

mere improvement of the form of Eq. (3). The problem

may very well be that the predicted individual force fi is

significantly different from the one that really applies on

the microjunction. This is substantiated by Fig. 2 which

shows the time evolution of the contact area of various

microjunctions. Two of them (4 and 5) were selected to

show that the time window over which the area decay

occurs can be very different: microjunction 4 has not

started to shrink yet when the decay of microjunction

5 is already complete. This observation suggests that

the individual tangential forces f4 and f5 evolve very

differently during the experiment, although they have

very similar initial areas and are submitted to the same

tangential displacement of the glass substrate. We spec-

ulate that such a difference may be the result of elastic

interactions between microjunctions, with junctions in

a crowed neighbourhood evolving differently from those

far from neighbouring junctions.

Those interactions are ignored in our model of inde-

pendent microjunctions. We thus believe that, in order

for an asperity model to have a chance to quantitatively

match experiments like those considered here, tangen-

tial elastic interactions must be accounted for to de-

scribe the shear behaviour of individual microjunctions.

Such improved models may incorporate those tangen-

tial interactions in ways similar to models already devel-

oped for the normal interactions during normal loading

of rough surfaces (see e.g. [3,25,26,7,8]).

6 Conclusion

We developed an independent asperity model for the in-

cipient loading and onset of sliding of dry multicontact

interfaces between a rough elastic solid and a smooth

rigid surface. We used it to attempt the first determin-

istic comparison with experiments which, in addition

to the macroscopic loads and displacements, also con-

siders the individual areas of the many microjunctions

forming the interface.

The main outcome is that, although we did our best

to incorporate experimentally-based behaviour laws, pa-

rameter values and initial conditions into the model,

it fails to quantitatively reproduce the measurements

of [20,21]. We argue, based on observations at the mi-

crojunction scale, that future asperity models should, in

order to hope for success, incorporate a description of

the tangential elastic interactions between microjunc-

tions.

Nevertheless, we anticipate that asperity-based fric-

tion models, although accounting for tangential elas-

tic interactions, may suffer from the same limitations

as their counterparts for purely normal contact (see

e.g. [17]), and may still be unsuccessful to quantita-

tively match friction experiments. We thus urge for the

concurrent development of continuum models suitable

to reproduce friction experiments like those of [20,21].
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A Integration of the equation of motion of the

slider

Integration scheme for the differential equation giving X(t)
Equation (1) is integrated by a second order Leapfrog

algorithm.

γ(t) = Ẍ(t) =
1

M

[
kL(vt−X)−

N∑
i=1

fi

]
− ηẊ (8)

is the acceleration of the slider at the beginning of an inte-
gration step. γ(t = 0) has to be calculated at the start of
the simulation. In our case, we start with X(t = 0) = 0 and
Ẋ(t = 0) = 0 so that γ(t = 0) = 0.

Let dt be the time step. The algorithm first updates X(t)
according to:

X(t+ dt) = X(t) + dt Ẋ(t) +
1

2
dt2 γ(t). (9)

With this updated value of X we calculate the new accel-
eration γ(t + dt). In the second stage of the algorithm Ẋ is
updated according to

Ẋ(t+ dt) = Ẋ(t) +
1

2
dt
(
γ(t) + γ(t+ dt)

)
, (10)

and then everything is ready for the next step starting at
t+ dt.

To properly select dt we calculate the elasticity constant
ki for each contact at the start of the simulation. The fre-
quency of oscillation of the slider of mass M under the to-

tal force of the contacts is Ω0 =
√

(
∑N
i=1 ki)/M and the

corresponding period is T0 = 2π/Ω0. The calculation uses
dt = T0/Ct with Ct = 104. The exact value of dt depends on
the experiment, but a typical value is dt = 1µs. This value



Onset of sliding of elastomer multicontacts: failure of a model of independent asperities to match experiments 7

is sufficiently small with respect to all the frequencies enter-
ing in the dynamics of the slider so that even a second or-
der algorithm gives a very good numerical accuracy. We have
however run some calculations with a 4th order Runge-Kutta
method [27], which is significantly slower, but has errors that
decay as dt4, to check the accuracy of our calculations.

Algorithm of the subroutine which calculates γ
To compute γ(t+dt),X(t+dt) and xi are known. The main

point is to compute all the forces fi on the junctions. The
state of each junction is recorded with two flags: θi records
its instantaneous state, θi = 1 for a pinned junction, θi = 0 for
a slipping junction, and hi keeps track its history, hi = 1 for
a junction which has never been slipping switches to hi = 0
the first time the junction starts to slip, when fi ≥ fsi.

The program scans all the junctions and performs the
following steps:

– Compute fi for each junction

? if hi = 1 the area of the junction depends on fi accord-
ing to Eq. (3), which determines `‖i and then ki

[
Ai(fi)

]
according to Eq. (2). Thus

fi = ki
[
Ai(fi)

] (
X(t+ dt)− xi

)
(11)

gives an equation for fi. It is too complex to be solved
analytically. We solve it by an iterative process, using a
dichotomy method starting from the value of fi from the
previous step. Once fi is known we update Ai(fi), ki(Ai)
and fsi = σAi for further steps.

? if hi = 0
– if θi = 1 the junction is pinned but Ai is fixed, as well

as ki(Ai), and they are known from previous iterations
so that fi = ki

(
X(t)− xi

)
.

– if θi = 0 the junction is slipping. fi = εfsi.
– Check for transitions in the junction state

– if θi = 1 (pinned junction) then if fi ≥ fsi the junction
starts to slip so that θi switches to 0, fi = εfsi. hi
switches to 0 if it was still equal to 1.

– if θi = 0 (slipping junction), if |Ẋ(t)| < cmin × v the
junction repins, θi switches to 1 and we set xi = X −
εfsi/ki so that the junction starts in the pinned state
with fi = εfsi.

Once all junctions have been scanned and all fi are deter-
mined, we can compute γ from Eq. (8).
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