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Abstract. Modal separation logics are formalisms that combine modal
operators to reason locally, with separating connectives that allow to
perform global updates on the models. In this work, we design Hilbert-
style proof systems for the modal separation logics MSL(⇤, h6=i) and
MSL(⇤,3), where ⇤ is the separating conjunction, 3 is the standard
modal operator and h6=i is the di↵erence modality. The calculi only use
the logical languages at hand (no external features such as labels) and
take advantage of new normal forms and of their axiomatisation.

1 Introduction

Separation logics with epistemic flavour. Modal logic [7,8] is a family of
languages extending propositional logic with operators to describe and reason
about di↵erent modes of truth. Such operators are usually called modalities.
For instance, this family includes deontic (for permissions and obligations),
epistemic (to reason about knowledge) and temporal modalities. On the other
hand, separation logic [30,29] is a family of assertion languages originally conceived
to perform Hoare-style verification [26] of programs with mutable data structures.
The key components of separation logic are its non-classical connectives, that
allow us to reason about updates of the models. For example, the formula � ⇤  
uses the separating conjunction ⇤, which requires to split a model into two disjoint
pieces, one satisfying � and the other one satisfying  . Over the last years, several
approaches combining modal and separation logics have appeared. In most cases,
the modal and the separation dimensions are orthogonal (see e.g. [12,9,13]),
allowing us to design decision procedures by combinations of procedures from
each dimension. However, recently, combinations of such operators interpreted
over the same structures have been considered, see e.g. [17,18]. In this way, the
underlying modal relational structure can be seen as a model from separation
logic: states can be seen as memory locations, and edges can be seen as links
between these locations.

These e↵orts on combining separation and modal logics witness the numerous
attempts to use separation logic in di↵erent contexts. When interpreted on sets,
separation logic can be used to model some particular phenomena in belief
revision [25]. It can be combined with modalities from epistemic logic to capture
reachable states (see the epistemic logic for resources introduced in [13]). Epistemic



2 Demri, Fervari, Mansutti

separation logic [15], where models have equivalence relations representing possible
worlds, has been extended in [14] with public announcements. Lastly, in [28]
operators from temporal and separation logics are combined, allowing to express
both temporal and spatial conditions in search control knowledge for AI planning
(see also [10]). From a logical perspective, modal operators to perform updates
on a relational model can be seen as weaker versions or variants of separating
connectives, since they all have similar e↵ects: updating the model (by adding,
removing or changing some feature of the model) while evaluating a formula. For
example, consider the sabotage modal logic SML introduced in [34] (see [24] for
application in formal learning theory). SML is an extension of the basic modal
language with a so-called sabotage operator which deletes one arrow of the model
when it is evaluated. This operator can be seen as a weak version of the separating
conjunction that separates only one edge from the rest of the model (see [18] for
details). Other examples of dynamic logics used to describe graph evolution in
games can be found in [33,3] (see also [16]).

Due to their ability to perform updates on a relational model, designing proof
methods for such logics is known to be a non-trivial task. As a matter of fact, no
proof system without features external from the logical language is known for the
above-mentioned logics. For instance, there exist tableaux-based procedures to
check satisfiability of sabotage logics [2,4] but model updates are handled with
labels. Moreover, the rules in these calculi are quite complex, and they are far
from providing a good understanding of the logics. On the other hand, there are
no Hilbert-style calculi, as it is extremely challenging to axiomatise these logics
that do not satisfy the uniform substitution rule (see e.g. [3]).

Our motivations. We pursue a research program about modal separation logics
to better understand the computational complexity of their decision problems
and to design proof systems, such as Hilbert-style calculi. These calculi have
clearly an historical value but also provide essential means to grasp what are
the core validities and rules of the logical formalisms, see a recent illustration
in [1]. It should be noted that not all modal separation logics admit finite
axiomatisation, see e.g. [18], and sometimes, the axiomatisation of abstract
separation logics requires the need for external features such as nominals or
labels, see e.g. [11,27]. In this work, we adopt a puristic approach to design
Hilbert-style proof systems for the very logical language without any external
help. In the context of modal separation logics, this is a requirement that happens
to be rewarding for understanding their expressive power, considering that such
logics freely mix modal operators and separating connectives having global e↵ects.

Our contribution. We design sound and complete Hilbert-style proof systems
for the modal separation logics MSL(⇤,3) and MSL(⇤, h6=i) [18], where ⇤ is the
separating conjunction, 3 is the standard modal operator and h6=i is the di↵erence
modality. In both cases, we provide a syntactical treatment to the semantical
abstractions used to decide such logics in [18], leading to NP-completeness.
Each formula is shown equivalent to a Boolean combination of core formulae:
simple formulae of the logic expressing elementary properties about the models.
More precisely, each elementary property consists of a “modal part” (describing
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partially the structure of the model), and a “size part” (related to the number of
edges). Thus, we show how to introduce axioms to transform every formula into
a Boolean combination of core formulae, together with axioms to deal with these
simple formulae. This result borrows some ideas from the Gaifman’s Theorem
in first-order logic [21], which states that every first-order sentence is logically
equivalent to a Boolean combination of so-called local formulae. A similar strategy
is also followed for axiomatising dynamic epistemic logics [36,35,37] with the
introduction of reduction axioms. In this technique, it is essential to translate
each formula containing a dynamic operator into a formula without it, by using
provably equivalent formulae. Then, completeness follows from the completeness
of the system for the ‘basic’ language (see also a similar approach for the linear µ-
calculus in [20]). In our case, another di�culty arises as we also have to design an
axiomatisation for such Boolean combinations. The proof system for MSL(⇤,3)
(§3) uses partially the standard machinery for modal logic, but it is a bit di↵erent
from the axiomatisation for the modal logic Alt1, i.e., the modal logic over
deterministic frames, characterised by the axiom 3p ) 2p (see e.g. [5]). For
MSL(⇤, h6=i) (§4), the modal part extends results from [32] to infinite models (a
peculiarity of modal separation logics as the set of locations is infinite). These
constructions give us an exact characterisation of the properties that can be
expressed on each logic. Moreover, it is also remarkable to have axiomatisations for
these two NP-complete logics, since the full logic MSL (including the separating
implication) is not (finitely) axiomatisable [18].

2 Preliminaries about modal separation logics

We briefly recall the definition of the modal separation logic MSL(⇤,3, h6=i)
introduced in [18]. Let PROP = {p, q, . . .} be a countably infinite set of proposi-
tional symbols. Formulae of the logic MSL(⇤,3, h6=i) are defined by the grammar:

� ::= > | p | emp | ¬� | � _ � | 3� | h6=i� | � ⇤ �,
where p 2 PROP (as usual ?def

= ¬>). A model is a tuple M = hN,R,Vi such
that

– the set of locations is the set of natural numbers N,
– R ✓ N⇥N is finite and weakly functional (a.k.a. deterministic, i.e. (l, l0) 2 R

and (l, l00) 2 R imply l0 = l00) and,
– V : PROP ! P(N) is a valuation.

In the rest of the document, by ‘functional’, we mean ‘weakly functional’. Since
separation logics are interpreted on structures representing heaps [6], this explains
why in the models, the domain is N (an infinite set of locations), and the
accessibility relation is finite and functional (formal relationships with separation
logics can be found in [18, §2.2]). The models M1 = hN,R1,Vi and M2 =
hN,R2,Vi are disjoint if R1 \R2 = ;; when this holds, M1 ]M2 denotes the
model corresponding to the disjoint union of M1 and M2. Given M = hN,R,Vi
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and l 2 N, the satisfaction relation |= is defined below (we omit standard clauses
for Boolean connectives):

M, l |= p
def, l 2 V(p) M, l |= emp

def, R = ;
M, l |= 3�

def, M, l0 |= �, for some l0 2 N such that (l, l0) 2 R

M, l |= h6=i� def, M, l0 |= �, for some l0 2 N such that l0 6= l

M, l |= �1 ⇤ �2 def, hN,R1,Vi, l |= �1 and hN,R2,Vi, l |= �2,
for some partition {R1,R2} of R.

The semantics for the modal operators and the separating connectives is
the standard one, see e.g. [7,30]. The restriction of MSL(⇤,3, h6=i) without the
modal operator 3 (resp. h6=i) is denoted by MSL(⇤, h6=i) (resp. MSL(⇤,3)). It is
established in [18] that the satisfiability problems for MSL(⇤,3) and MSL(⇤, h6=i)
are NP-complete whereas the problem for MSL(⇤, h6=i,3) is Tower-complete1.

To illustrate the expressive power of MSL(⇤,3), let us define loop1, which
states that the model consists of a single reflexive edge at the evaluation point:

¬emp ^ ¬(¬emp ⇤ ¬emp) ^33>.

Moreover, it is possible to define the formula loop2, that interpreted on a location
l, states that the model contains exactly a loop of length 2 visiting l:

(¬emp ⇤ ¬emp) ^ ¬(¬emp ⇤ ¬emp ⇤ ¬emp) ^333>^

¬(¬emp ⇤333>) ^ ¬3(¬emp ⇤333>).

Notice that ⇤ is associative. Obviously, these properties cannot be expressed in
the modal logic Alt1.

So, in this paper, we aim at providing Hilbert-style axiomatisations for
MSL(⇤,3) and MSL(⇤, h6=i), which amounts to characterise syntactically the set
of valid formulae by means of a proof system. By contrast, the complexity results
from [18] are obtained semantically, without any proof-theoretical analysis.

3 Axiomatising MSL(⇤,3) with core formulae

In this section, we define a proof system for MSL(⇤,3), namely HMSL(⇤,3). To
do so, we introduce a set of core formulae that are simple formulae capturing
essential properties. As shown later on, every MSL(⇤,3) formula is logically
equivalent to a Boolean combination of core formulae. However, as every core
formula is shown to be an MSL(⇤,3) formula, we can derive an axiomatisation of
MSL(⇤,3) by axiomatising Boolean combinations of core formulae. So, we define
three sets of axioms and inference rules: (1) those dedicated to the propositional
logic of core formulae, (2) those that, given a Boolean combination of core
formulae �, allow to derive a Boolean combination of core formulae that is
equivalent to 3� (a property called herein 3-elimination, see Lemma 6), and

1 The class Tower is the class of problems of time complexity bounded by a tower of
exponentials, whose height is an elementary function of the input. See [31] for details.



Axiomatising Logics with Separating Conjunction and Modalities 5

(3) those that, given two Boolean combinations of core formulae �1,�2, allow to
derive a Boolean combination of core formulae that is equivalent to �1 ⇤ �2 (a
property called herein ⇤-elimination, see Lemma 9).

Core formulae for MSL(⇤,3). Core formulae are divided into two families:
a set of size formulae that express properties about the size of the model (i.e.
the number of edges) and a set of graph formulae describing the shape of the
model that is observable from the current location. As the relation R in models
is weakly functional, the number of distinct shapes is limited, ranging from lasso
shapes to segments with dead-end.

Let us introduce expressions of the form size � � that hold true whenever
R has at least � elements (the symbol � always refers to a natural number
throughout the paper). A size literal is a formula of the form size � � or
¬size � �. Every Boolean combination of size literals is a size formula. We also
use size = � as an abbreviation for size � � ^ ¬size � �+1. At this stage, it
is worth noting that size � � should be understood as a built-in atomic formula
enriching the logical language for MSL(⇤,3). However, as it will quickly appear
below, size � � can be characterised with a formula of MSL(⇤,3) and later on
in the document, such occurrences of size � � should be understood as mere
abbreviations. The same distinction applies to the graph formulae defined below.

Graph formulae describe the shape of a portion of the model, partly inspired
from the semantical notion of abstract frame from [18, §4.1] but with constraints
on propositional variables. Formally, every graph formula is an expression derived
from the non-terminal G of the grammar below:

` := > |?| p | ¬p Q := ` | Q ^Q G := |Q,..., Qi | |Q,..., Q] | |Q,..., Q,..., Q ,

where p 2 PROP, and G must contain at least one conjunction Q. By slightly
abusing the standard terminology, expressions of the form ` are called literals . A
conjunction Q is contradictory whenever ? occurs in Q or there is some p such
that both p and ¬p occur in Q. Note that Q is contradictory i↵ Q is unsatisfiable.
By convention, contradictory conjunctions are denoted by Q?. A graph formula
is contradictory if at least one of its conjunctions is contradictory. Note also
that the semantics for graph formulae shall guarantee that a graph formula is
contradictory i↵ it is unsatisfiable.

Since we are working on weakly functional and finite relations, graph formulae
represent paths satisfying a conjunction of literals Q at each position. A formula
of the form |Q1,..., Qni expresses that there exists a path of length n in which all
the locations are distinct of each other, and we do not know whether it continues
after. The formula |Q1,..., Qn] states that there is a path of length n� 1, all the
locations are distinct, and the last location has no successor. Finally, the formula

of the form |Q1,..., Qi,..., Qn expresses that there is a path of size n� 1 with all
distinct locations, and there is a loop from the location in position n and the one
in the position i (lasso shape). Sometimes, we write |Q1,..., Qn? to refer to graph
formulae of any kind. Furthermore, we write |Q,..., Q0?(n) to express that the last
argument Q0 of the corresponding graph formula is at position n. For example,
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|>,...,>](5) stands for |>,>,>,>,>]. Lastly, we write ](|Q1,..., Qn?) to denote
the graph size of |Q1,..., Qn? defined as follows:

](|Q1,..., Qni) def
= n ](|Q1,..., Qn])

def
= n�1 ](|Q1,..., Qi,..., Qn )

def
= n.

Given M = hN,R,Vi and l 2 N, the relation |= is extended to core formulae:

M, l |= size � �
def, card(R) � �

M, l |= |Q1,..., Qni def, there are distinct l1,..., ln+1 s.t. l=l1Rl2R...Rln+1,
and for all j 2 [1, n], M, lj |= Qj

M, l |= |Q1,..., Qn]
def, there are distinct l1,..., ln s.t. l=l1Rl2R...Rln,

R(ln) = ; and for each j2 [1, n], M, lj |= Qj

M, l |= |Q1,..., Qi,..., Qn
def, there are distinct l1,..., ln s.t. l=l1Rl2R...lnRli

and for all j 2 [1, n], M, lj |= Qj .

Below, we establish that every core formula has a logically equivalent counterpart
in MSL(⇤,3) (Lemma 1). This is an essential property as these formulae are
the building blocks of the axiomatisation of MSL(⇤,3). Consequently, we obtain
that our axioms are only made of MSL(⇤,3) formulae, with no need for external
properties or extra machinery such as nominals or labels.

For every core formula  , we define its extension ext( ) in MSL(⇤,3).

– ext(size � 0)
def
= > and ext(size � �)

def
=

� timesz }| {¬emp ⇤ · · · ⇤ ¬emp for � > 0.

– ext(|Q])
def
= Q^¬3>. For n � 2, ext(|Q1, Q2,..., Qn])

def
= Q1^3ext(|Q2,..., Qn]).

– ext(|Q1,..., Qni) def
= ext(|Q1,..., Qn,>]) ⇤ >.

– ext(|Q1,..., Qn ) is defined as the formula

> ⇤ (ext(size = n) ^3n+1> ^ (ext(|Q1,..., Qn]) ⇤ >) ^ ¬3(ext(size = 1) ⇤3n>))

where 30�
def
= � and 3i+1�

def
= 33i�. For i > 1, ext(|Q1,..., Qi,..., Qn ) is

>⇤ �ext(size = n)^3n+1>^ (ext(|Q1,..., Qn]) ⇤>)^
3i�1(ext(size = i�1) ⇤ ext(|>,...,> (n�i+1)))

�
.

Lemma 1. All the core formulae  are logically equivalent to ext( ).

From now on, for any occurrence of a core formula  , including occurrences in
the axioms or inference rules, we mean the formula ext( ) so that their provisory
status of built-in atomic formula is upgraded to a permanent abbreviation.

Hilbert-style proof system for MSL(⇤,3). To obtain an axiomatisation of
MSL(⇤,3), we start by introducing the proof system Hc dedicated to Boolean
combinations of core formulae. As MSL(⇤,3) includes the propositional logic,
Hc and all the subsequent proof systems contain the axiom schemas and modus
ponens for the propositional calculus. Throughout the paper we use standard
notations about Hilbert-style proof systems. To simplify, sometimes we will abuse
the terminology and use ‘axiom’ instead of ‘axiom schema’. The axioms whose
name is of the form G?

i (resp. S?
i ) handle graph formulae (resp. size formulae).
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We start with the axioms for size � �, its interactions with graph formulae and
one axiom schema for inconsistent graph formulae.

Axioms for size formulae and for inconsistent graph formulae

(Sc
1) size � 0

(Sc
2) size � �+1 ) size � �

(Gc
1) |Q1,..., Qn? ) size � ](|Q1,..., Qn?)

(Gc
2) ¬|..., Q?,...?

The meaning of these axioms is straightforward. For instance, the axiom (Sc
2)

states that if the accessibility relation of a model has at least �+1 elements, then
it has at least � elements. The axiom (Gc

1) states that if a model satisfies a graph
formula G then its accessibility relation cannot have less elements than its graph
size. We complete the definition of Hc with two families of axioms, involving
graph formulae. The first family (with the axioms from (Gc

3) to (Gc
13)) concerns

conjunctions of graph formulae. In particular, given two graph formulae, these
axioms allow to derive an equivalent graph formula. Similarly, the second family
(with the axioms from (Gc

14) to (Gc
16)) concerns the negation of a graph formula.

With these axioms, every negation of a graph formula is shown equivalent to a
disjunction of graph formulae. Let us begin with the first family.

Axioms for conjunction of graph formulae

(Gc
3) ¬(| . . . ](n) ^ | . . . (m))

(Gc
4) ¬(| . . . i(n) ^ | . . . ](m)) with n � m

(Gc
5) ¬(| . . . i(n) ^ | . . . (m)) with n � m

(Gc
6) ¬(| . . . ](n) ^ | . . . ](m)) with n 6= m

(Gc
7) |Q1,..., Qni ^ |Q0

1,..., Q
0
mi , |Q1 ^Q0

1,..., Qn ^Q0
n, Q

0
n+1,..., Q

0
mi with n  m,

(Gc
8) |Q1,..., Qni ^ |Q0

1,..., Q
0
m] , |Q1 ^Q0

1,..., Qn ^Q0
n, Q

0
n+1,..., Q

0
m] with n < m,

(Gc
9) |Q1,..., Qn] ^ |Q0

1,..., Q
0
n] , |Q1 ^Q0

1,..., Qn ^Q0
n]

(Gc
10) ¬(|Q1,..., Qi,..., Qn ^ |Q0

1,..., Q
0
j ,..., Q

0
m ) with n 6= m or i 6= j

(Gc
11) |Q1,..., Qi,..., Qn ^ |Q0

1,..., Q
0
i,..., Q

0
n , |Q1 ^Q0

1,..., Qi ^Q0
i,..., Qn ^Q0

n

(Gc
12) if n < i  m,

|Q1,..., Qni ^ |Q0
1,..., Q

0
i,..., Q

0
m , |Q1 ^Q0

1,..., Qn ^Q0
n, Q

0
n+1,..., Q

0
i,..., Q

0
m

(Gc
13) if i  n < m,

|Q1,..., Qni ^ |Q0
1,..., Q

0
i,..., Q

0
m , |Q1 ^Q0

1,..., Qi ^Q0
i,..., Qn ^Q0

n, Q
0
n+1,..., Q

0
m

Thanks to these axioms, any conjunction of two graph formulae is valid only
if it express properties that can be found together in a single model. For instance,

| . . . ](n) ^ | . . . (m) is clearly contradictory (see the axiom (Gc
3)), as the existence

of a loop contradicts the fact that there is a dead-end (i.e. a location without
successors). To ease the readability of the axioms for negation, we first define
some auxiliary formulae.

⇢n
def
= |>,...,>i(n) ⌧n

def
=

W
i2[1,n] |>,...,>](i) �n

def
=

W
i2[1,n]
j2[1,i]

|>,...,>
j
,...,>

(i)

In �n, the index j below > indicates that the loop begins at the j-th position.
We introduce the involution (.) on literals so that for every p 2 PROP, p

def
= ¬p,

¬p def
= p, > def

=? and ? def
= >. This development is needed since graph formulae do

not admit doubly negated literals. We write ` 2 Q to denote that ` is a literal
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occurring in Q with the same polarity. So, ¬p appearing in Q does not imply
p 2 Q. The axioms for dealing with negation are defined as follows.
Axioms for negation of graph formulae

(Gc
14) ¬|Q1,..., Qni , �n _ ⌧n _W

i2[1,n]
`2Qi

|>,..., `
i
,...,>i(n)

(Gc
15) ¬|Q1,..., Qn] , ⇢n _ ⌧n�1 _ �n _W

i2[1,n]
`2Qi

|>,..., `
i
,...,>](n)

(Gc
16) ¬|Q1,..., Qi,..., Qn , ⇢n _ ⌧n _ �n�1 _W

i2[1,n�1]
`2Qi

|>,..., `
i
...,>i(n�1)

_W
k2[1,n]\{i} |>,...,>

k
,...,>

(n)
_W

`2Qn
|>,...,>

i
,..., `

(n)

These axioms characterise the shape of the accessibility relation when one
particular shape is excluded. For example, if M, l |= ¬|>,>,>], then the path
starting from l is of length 0, 1 or greater than 2. When it is of length 2 (equal to
](|>,>,>])), it has a lasso shape. These cases are captured by the axiom (Gc

15).

Lemma 2. Every axiom in Hc is valid for MSL(⇤,3).

To show the completeness of Hc, we exploit its ability to eliminate negations
and conjunctions of graph formulae. This is enough to show that every Boolean
combination of core formulae is equivalent to a disjunction of formulae of the
form either G ^ size � � or G ^ size � � ^ ¬size � �0, where G is a graph
formula. Such formulae are called elementary shapes.

Lemma 3. Let � be a Boolean combination of core formulae. There is a dis-

junction of elementary shapes  such that `Hc �,  .

By Lemma 2, the formulae � and  in Lemma 3 are logically equivalent. We
prove that Hc is complete for the restricted case of elementary shapes.

Lemma 4. Let � be an elementary shape. � is satisfiable i↵ 6 `Hc¬�.
From this result, we can establish the completeness of Hc with respect to

Boolean combinations of core formulae. This is an essential step to get a complete
proof system for MSL(⇤,3) (its definition is to be completed in the rest of §3).
Theorem 1. A Boolean combination of core formulae � is valid i↵ `Hc�.

Proof. Let � be a Boolean combination of core formulae. By Lemma 2, `Hc �
implies that � is valid. Conversely, let us assume that � is valid and ad absurdum,
let us suppose that 6`Hc �. By propositional calculus, there exists a formula �0

in conjunctive normal form (CNF) such that the “literals” are core formulae
or their negations, and `Hc �, �0. As 6`Hc �, there is a conjunct of �0, say  ,
such that 6`Hc  . As �

0 is valid, this implies that  is valid too. By Lemma 3,
`Hc ¬ , ('1_ · · ·_'n) where '1_ · · ·_'n is a disjunction of elementary shapes
and therefore ('1 _ · · · _ 'n) is unsatisfiable. Consequently, for all i 2 [1, n], the
formula 'i is unsatisfiable and by Lemma 4, we get that `Hc ¬'i. By propositional
reasoning, we get `Hc ¬'1^ · · ·^¬'n and again by propositional reasoning using
`Hc ¬ , ('1 _ · · · _ 'n), we obtain `Hc  , which leads to a contradiction. ut
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3-elimination. We enrich Hc by adding axioms and one inference rule that
handle 3, leading to the extended proof system Hc(3) dedicated to the set of
formulae obtained by closing core formulae under Boolean connectives and 3.

Axioms and inference rule for Hc(3)

(3DISTR) 3(� _  ) , 3(�) _3( ) (G3
17) 3(|Q1,..., Qn]) , |>, Q1,..., Qn]

(S3
3 ) 3(� ^ S) , 3(�) ^ S where S is a size formula,

(G3
18) 3(|Q1, . . . , Qni) , |>, Q1,..., Qn _ |>, Q1,..., Qni

(G3
19) 3(|Q1,..., Qi,..., Qn ) , |>, Q1,..., Qi,..., Qn with i � 2,

(G3
20) 3(|Q1,..., Qn�1, Qn ) , |Qn, Q1,..., Qn�1 _ |>, Q1,..., Qn�1, Qn

Regularity rule: �)  
3�) 3 

Lemma 5. Axioms and rules in Hc(3) are valid for MSL(⇤,3).

These axioms give us some insight about the interplay between separating and
modal connectives. In the case of size formulae there is no interplay at all (see
the axiom (S3

3 )). Indeed, every condition in a formula  about the size of the
accessibility relation R carries on independently of the structure of R described
by  through modalities. However, there are interplays with respect to loops (see

e.g. the axiom (G3
18) and recall that ext(|Q1,..., Qi,..., Qn ) uses ⇤).

Lemma 6. Let � be a Boolean combination of core formulae. There is a Boolean

combination of core formulae  such that `Hc(3) 3�,  .

By Lemma 5, the formulae 3� and  in Lemma 6 are logically equivalent.

⇤-elimination. Finally, we enrich Hc by adding axioms and one inference rule
for the separating conjunction. We denote the resulting proof system by Hc(⇤).
Axioms and inference rule for Hc(⇤)
(COM) (� ⇤  ) , ( ⇤ �)
(ASSOC) (� ⇤  ) ⇤ ', � ⇤ ( ⇤ ')
(?) ¬(? ⇤�) (with ?def

= ¬size � 0)

(S⇤
4) �, (� ⇤ ¬size � 1)

(⇤DISTR) (�1 _ �2) ⇤ , (�1 ⇤ )_ (�2 ⇤ )
(G⇤

22) ¬(G1 ⇤ G2) with ](G1)⇥ ](G2) � 1
(G⇤

23) |Q1,..., Qni ⇤ �) |Q1,..., Qni
(G⇤

24) |Q1,..., Qi,..., Qn ⇤�) |Q1,..., Qi,..., Qn

(S⇤
5) size � �1+�2 ) size = �1 ⇤ size � �2

(S⇤
6) ¬size � �1 ⇤ ¬size � �2 ) ¬size � (�1+�2)

.�1 (↵1
.�↵2

def
= max(0,↵1�↵2))

(G⇤
25) |Q1,..., Qn] ⇤ size � 1 ) |Q1,..., Qn] _ |Q1,..., Qni _W

i2[1,n] |Q1,..., Qi,..., Qn

(G⇤
26) (|Q1 ^Q,..., Qn? ^ �) ⇤  , (|Q1,..., Qn? ^ �) ⇤ (|Q] ^  )

(G⇤
27) |Q1,..., Qn? ^ size � � ) (|Q1,..., Qn? ^ size = �) ⇤> with � � ](|Q1,..., Qn?)

(G⇤
28) |Q1,..., Qni ^ size � �+n ) (|Q1,..., Qn] ^ size � (�+n) .�1) ⇤ size = 1

(G⇤
29) |Q1,..., Qi,..., Qn ^ size � �+n ) (|Q1,..., Qn] ^ size � (�+n)�1) ⇤ size = 1

⇤-introduction rule: �) '
� ⇤  ) ' ⇤  

The first property to check is the soundness of Hc(⇤).
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Lemma 7. Axioms and rules in Hc(⇤) are valid for MSL(⇤,3).

Forthcoming Lemma 9 states that the separating conjunction � ⇤  of two
Boolean combinations of core formulae is equivalent in Hc(⇤) to some Boolean
combination of core formulae ', and therefore by Lemma 7, � ⇤  is also log-
ically equivalent to '. Thanks to the axioms (COM) and (⇤DISTR), the ⇤-
introduction rule and propositional reasoning, the satisfaction of such a property
amounts to check it in the restricted case of elementary shapes (see Lemma 8).

With the formula |Q1,..., Qn i we denote a formula of the form either |Q1,..., Qni
or |Q1,..., Qi,..., Qn (this excludes graph formulae of the form |Q1,..., Qn]). In
the table below, the occurrences of |Q1,..., Qn i on the left and on the right of
every double implication are for the same form, i.e. either both |Q1,..., Qni or

both |Q1,..., Qi,..., Qn (where the position i is the same). Moreover, 0  �1 < �0
1

and 0  �2 < �0
2. Finally, we write 'n to denote

'n
def
= (|Q1^Q,..., Qn]_|Q1^Q,..., Qni_Wi2[1,n] |Q1^Q,..., Qi,..., Qn )^size � �1+�2+1.

Derivable formulae about separating conjunctions of elementary shapes

• (|Q1,..., Qn i ^ size � �1) ⇤ (|Q] ^ size � �2) , |Q1 ^Q,..., Qn i ^ size � �1+�2
• (|Q1,..., Qn i ^ size � �1 ^ ¬size � �0

1) ⇤ (|Q] ^ size � �2)

, |Q1 ^Q,..., Qn i ^ size � �1+�2
• (|Q1,..., Qn i ^ size � �1) ⇤ (|Q] ^ size � �2 ^ ¬size � �0

2)

, |Q1 ^Q,..., Qn i ^ size � �1+�2
• (|Q1,..., Qn i ^ size � �1 ^ ¬size � �0

1) ⇤ (|Q] ^ size � �2 ^ ¬size � �0
2)

, |Q1 ^Q,..., Qn i ^ size � �1+�2 ^ ¬size � (�0
1+�

0
2)

.�1
• (|Q1,..., Qn] ^ size � �1) ⇤ (|Q] ^ ¬size � 1) , |Q1 ^Q,..., Qn] ^ size � �1
• (|Q1,..., Qn] ^ size � �1 ^ ¬size � �2) ⇤ (|Q] ^ ¬size � 1)

, |Q1 ^Q,..., Qn] ^ size � �1 ^ ¬size � �2
• (|Q1,..., Qn] ^ size � �1) ⇤ (|Q] ^ size � �2+1) , 'n

• (|Q1,..., Qn] ^ size � �1 ^ ¬size � �0
1) ⇤ (|Q] ^ size � �2+1) , 'n

• (|Q1,..., Qn] ^ size � �1) ⇤ (|Q] ^ size � �2+1 ^ ¬size � �0
2) , 'n

• (|Q1,..., Qn] ^ size � �1 ^ ¬size � �0
1) ⇤ (|Q] ^ size � �2+1 ^ ¬size � �0

2) ,
'n ^ ¬size � �0

1+�
0
2
.�1

Once Lemma 8 is shown, forthcoming Lemma 9 can be easily shown.

Lemma 8. The formulae listed in the table above are derivable in Hc(⇤) assuming

that for any elementary shape  of the form either G ^ size � � or G ^ size �
� ^ ¬size � �0

, we have ](G)  �, � < �0
and 6`Hc ¬ .

From Lemmata 7 and 9, we get the main result about ⇤-elimination.

Lemma 9. Let �, be Boolean combinations of core formulae. There is a Boolean

combination of core formulae ' such that `Hc(⇤) (� ⇤  ) , '.

In the proof of Lemma 9, if `Hc(⇤) ¬� or `Hc(⇤) ¬ , the axiom (?) is then
used. Otherwise, the proof amounts to prove the statement for elementary shapes
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only, which corresponds to Lemma 8. Let HMSL(⇤,3) be the Hilbert-style proof
system defined as the union of the axioms and inference rules from Hc(3) and
Hc(⇤) (with the intersection Hc) augmented with the axiom below:

(G30) p , (|pi _ |p] _ |p ) with p 2 PROP.

Theorem 2. HMSL(⇤,3) is sound and complete for MSL(⇤,3).

Proof. (sketch) We need to show that (1) the axiom (G30) is valid for MSL(⇤,3)
(easy), (2) to show that all the axioms and inference rules of HMSL(⇤,3) are
valid for MSL(⇤,3) and (3) to prove that `HMSL(⇤,3)� for every valid formula �.

The proof of (2) is a consequence of (1), Lemma 5 and Lemma 7. However, one
needs to notice that the validity of the axiom schemas and inference rules can be
deduced from the proofs of Lemma 5 and Lemma 7, even though in HMSL(⇤,3),
the metavariables �,  and ' used in the axioms and inference rules from Hc(3)
and Hc(⇤), can be safely instantiated by any formula in MSL(⇤,3).

The proof of (3) consists in showing that there is a Boolean combination of
core formulae  such that `HMSL(⇤,3) �,  (� and  are logically equivalent

by (2)). For instance, loop1 from §2 is logically equivalent to ¬size � 2 ^ |> ,

whereas loop2 is logically equivalent to ¬size � 3 ^ |>,> . These equivalences
can be derived in HMSL(⇤,3). So,  is valid and by Theorem 1, we get `Hc

 and therefore `HMSL(⇤,3)  . By propositional reasoning, we conclude that
`HMSL(⇤,3) �. It remains to prove that  exists. The proof is by structural
induction using Lemma 6, Lemma 9 and the axiom (G30). ut

4 Hilbert-style proof system for MSL(⇤, h6=i)

In this section, we present a proof system for MSL(⇤, h6=i) by using previous
developments from §3 as well as by adapting to infinite models the proof method
in [32] for axiomatising the logic of elsewhere ML(h6=i). The NP upper bound
proof for MSL(⇤, h6=i) satisfiability in [18] takes advantage of an abstraction
accounting only for the number of edges in the model (up to a value depending
linearly on the size of the input formula) and whether given a propositional
valuation (restricted to the propositional variables occurring in the input formula),
there are none, one or two locations satisfying it. The developments below propose
a syntactic characterisation for MSL(⇤, h6=i) validity that also witnesses that the
interplay between the number of edges and the constraints on the valuations
is very weak. Below, a pure separation formula is understood as a formula in
MSL(⇤, h6=i) with no occurrences of h6=i and propositional symbols, and a pure

modal formula is understood as a formula with no occurrences of ⇤ and emp. We
denote these families as MSL(⇤) and MSL(h6=i), respectively.

We design the system HMSL(⇤, h6=i) for MSL(⇤, h6=i) by the union of the
system HMSL(h6=i) for MSL(h6=i), of the system HMSL(⇤) for MSL(⇤), plus the
new axioms (h6=iSEP) and (⇤SEP).
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Axiomatising ML(h6=i) on MSL models. We introduce HMSL(h6=i) for ax-
iomatising the logic MSL(h6=i), that is designed by augmenting the Hilbert-style
system for the logic of elsewhere ML(h6=i) from [32] by an axiom expressing that
MSL(h6=i) models have an infinite number of locations (namely (INF)). For

instance, the formula hUi(p ^ [ 6=]¬p) ^ hUi(¬p ^ [ 6=]p), where [ 6=]�
def
= ¬h6=i¬�

and hUi� def
= � _ h6=i�, is satisfiable in some ML(h6=i) model with two locations

exactly whereas it is unsatisfiable for MSL(h6=i). As usual, the axiom schemas
and modus ponens for propositional calculus are part of HMSL(h6=i).
Axioms and inference rule for HMSL(h6=i)
(K) [ 6=](�)  ) ) ([ 6=]�) [ 6=] )
(B) �) [ 6=]h6=i� (ALIO) �) ([ 6=]�) [ 6=][ 6=]�)

(INF)
W

X✓{p1,...,pn}hUi( X ^ h6=i X) for every {p1, . . . , pn} ⇢fin PROP,

where  X stands for (
V

p2X p) ^ (
V

p2({p1,...,pn}\X) ¬p).

Necessitation rule: �
[ 6=]�

In HMSL(h6=i), the axiom (K) and the necessitation rule are standard for
normal modal logics, whereas the axiom (B) (resp. (ALIO)) takes care of the
symmetry (resp. the aliotransitivity) of the di↵erence relation. As the MSL(h6=i)
models are necessarily infinite (by contrast to the models for the logic of elsewhere),
we add the axiom (INF).

Lemma 10. Axioms and rules in HMSL(h6=i) are valid for MSL(h6=i).
An MSL(h6=i) model M = hN,R,Vi can be understood as the ML(h6=i) model

hN, 6=,Vi since the language MSL(h6=i) does not require to use of R to evaluate
formulae. So, in the sequel, we assume that the models for ML(h6=i) are of the
form hW, 6=,Vi, whereas those for MSL(h6=i) are the restrictions with W = N.

Lemma 11. HMSL(h6=i) is sound and complete for MSL(h6=i).
The completeness of HMSL(h6=i) is shown by adapting the completeness

proof from [32] and by taking advantage of the infinity axiom (INF).

Axiomatising MSL(⇤). We present the Hilbert-style system HMSL(⇤) for the
logic MSL(⇤). It is designed as a fragment of the Hilbert-style system HMSL(⇤,3)
from §3 by simplifying the axioms and by keeping only what is needed for MSL(⇤).
Axioms and inference rules for HMSL(⇤)
(COM) (� ⇤  ) , ( ⇤ �)
(⇤DISTR) (�1 _ �2) ⇤  , (�1 ⇤  ) _ (�2 ⇤  )
(ASSOC) (� ⇤  ) ⇤ ', � ⇤ ( ⇤ ')
(S⇤

4) �, (� ⇤ ¬size � 1)

(?) ¬(?⇤�)
(Sc

1) size � 0
(Sc

2) size � �+1 ) size � �

(S⇤
5) size � �1+�2 ) size = �1 ⇤ size � �2

(S⇤
6) ¬size � �1 ⇤ ¬size � �2 ) ¬size � (�1+�2)

.�1 (↵1
.�↵2

def
= max(0,↵1�↵2))

⇤-introduction rule: �) '
� ⇤  ) ' ⇤  



Axiomatising Logics with Separating Conjunction and Modalities 13

As MSL(⇤) is a fragment of both MSL(⇤,3) and MSL(⇤, h6=i), it should not
come as a surprise that all the axioms above were already introduced in §3. Before
proving completeness, we establish a few results about HMSL(⇤) that can be
shown along the lines of §3 but drastic simplifications apply.

Lemma 12. Axioms and rules in HMSL(⇤) are valid for MSL(⇤).
This is a consequence of the correctness for HMSL(⇤,3) (see §3), as derivability
in HMSL(⇤) implies derivability in HMSL(⇤,3).

Lemma 13. Given � in MSL(⇤), H̀MSL(⇤)�, for some size formula  .

Proving completeness is now by an easy verification.

Lemma 14. HMSL(⇤) is sound and complete for MSL(⇤).
Proof. (sketch) Soundness is from Lemma 12. It remains to establish completeness.
Let � be a formula that is valid for MSL(⇤). First, notice that the following
property holds: if H̀MSL(⇤) � , �0, then H̀MSL(⇤)  [�]⇢ ,  [�0]⇢, where the
formula  [�]⇢ stands for the formula obtained from  by replacing the formula
at the occurrence ⇢ by the formula �.

By Lemma 13, it is easy to show that there is a size formula �0 in CNF
such that H̀MSL(⇤) � , �0 in HMSL(⇤) and each conjunct of �0 contains at
most 2 size literals, and they are of distinct polarity. By Lemma 12, �0 is
also MSL(⇤) valid and therefore each conjunct is valid. If a conjunct is of the
form size � �, then � = 0 as size � � should be valid. As size � 0 = >,
we have `HMSL(⇤) size � 0. No conjunct can be of the form ¬(size � �)
as no formula of the form ¬(size � �) is valid. If a conjunct is of the form
size � � _¬(size � �0), then �0 � � as size � � _¬(size � �0) is required to
be valid. By propositional reasoning and by using (�0��) times the axiom (Sc

2), we
can conclude that `HMSL(⇤) (size � �0) ) (size � �) and therefore `HMSL(⇤)
size � � _ ¬(size � �0) by propositional reasoning. Hence, `HMSL(⇤) �0, and
since `HMSL(⇤) �, �0, by propositional reasoning, we also get `HMSL(⇤) �. ut

Putting all together: axiomatising MSL(⇤, h6=i). It is now time to define the
Hilbert-style proof system HMSL(⇤, h6=i) obtained from the calculus containing
the axioms and rules from HMSL(⇤) and HMSL(h6=i). We need however to intro-
duce two more axioms, stating that pure separation formulae can be separated
from pure modal formulae. Notice that this property has some similarities with
the separation theorem for Past LTL from [23].
Separation axioms

(h6=iSEP) h6=i(� ^  ) , (h6=i�) ^  where  is a pure separation formula
(⇤SEP) � ⇤ (�0 ^  ) , (� ⇤ �0) ^  where  is a pure modal formula

Lemma 15. Axioms and rules in HMSL(⇤, h6=i) are valid for MSL(⇤, h6=i).
Completeness of HMSL(⇤, h6=i) takes advantage of the resp. completeness of

HMSL(h6=i) and HMSL(⇤), and the fact that for all pure modal (resp. separation)
formulae �M (resp. �S), �M _ �S is valid i↵ �M is valid or �S is valid.
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Theorem 3. HMSL(⇤, h6=i) is sound and complete for MSL(⇤, h6=i).
Proof. (sketch) Soundness is from Lemma 15. Let us establish completeness. Let
� be valid for MSL(⇤, h6=i). By using the axioms (h6=iSEP) and (⇤SEP), one
can show that there is a formula �0 such that H̀MSL(⇤,h6=i) � , �0 and �0 is a
Boolean combination of formulae from MSL(⇤) [MSL(h6=i). By the validity of
the axioms and inference rules (Lemma 15), we have that �0 is MSL(⇤, h6=i) valid
as well. By propositional reasoning in HMSL(⇤, h6=i), there is �00 in CNF such
that H̀MSL(⇤,h6=i) �0 , �00 and �00 is a conjunction of disjunctions of the form
�M _ �S where �M is a pure modal formula and �S is a pure separation formula.
Again, by the validity of the axioms and inference rules, each disjunction �M _�S
is valid in MSL(⇤, h6=i).

Now, one can show that �M _ �S is valid i↵ �M is valid for MSL(h6=i) or �S
is valid for MSL(⇤). By completeness of HMSL(h6=i) and HMSL(⇤), we get that
�M _ �S is valid i↵ H̀MSL(h6=i) �M or H̀MSL(⇤) �S . This is su�cient to conclude
that H̀MSL(⇤,h6=i) �M _ �S . Consequently, for each disjunct �M _ �S of �00, we
have H̀MSL(⇤,h6=i) �M _ �S and therefore by propositional reasoning, we get that

H̀MSL(⇤,h6=i) �00. As H̀MSL(⇤,h6=i) �, �0 and H̀MSL(⇤,h6=i) �0 , �00, we get that

H̀MSL(⇤,h6=i) �. Therefore, HMSL(⇤, h6=i) is complete. ut

5 Concluding remarks

We provided an axiomatisation for the logics MSL(⇤,3) and MSL(⇤, h6=i), despite
the well-known di�culties to axiomatise logics equipped with operators that
update the models in the evaluation process. Such operators are ubiquitous in
theoretical computer science and in knowledge representation areas, and we
hope that our calculi shed some new light on their expressive power. For the
axiomatisation of MSL(⇤,3) we had to identify the core properties that can
be expressed in the logic, partially following the semantical analysis from [18].
We also had to express them in the language with the so-called core formulae.
Implicitly, the axiomatisation is divided into two parts: axioms and rules to
transform any formula of MSL(⇤,3) into a Boolean combination of core formulae
and the axiomatisation of these Boolean combinations. For the axiomatisation
of MSL(⇤, h6=i), we use a similar approach, except that we had to adapt the
axiomatisation of the logic of elsewhere from [32] to infinite models and to
implement syntactically a separation principle satisfied by MSL(⇤, h6=i). It is
worth noting that the completeness of HMSL(⇤,3) and HMSL(⇤, h6=i) does not
imply their strong completeness, as MSL(⇤) is not compact. Let us consider
X1={size � � | � 2 N}. Indeed, for both logics, X1 is unsatisfiable, since
MSL models have finite accessibility relations. Strong completeness would imply
that ? could be derived from X1. As all rules are finitary, then there is a finite
subset X ✓ X1 such that X `?, or equivalently `W

 2X ¬ . This leads to a
contradiction by the correctness of HMSL(⇤,3) and HMSL(⇤, h6=i). The same
argument can be used for other finitary proof systems, with the same set X1.

As part of future work, we aim at Hilbert-style axiomatisations for separation
logics having a notion of core formulae (see e.g. [22,19]), or for very expressive
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modal separation logics such as MSL(⇤, h6=i,3). Additionally, the expressivity
characterisation provided by core formulae appears to be handy not only as the
basic ingredient for the axiomatisations, but also for studying other problems,
such as the implementation of proof methods, or the analysis of meta-theoretical
properties of the logics.
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