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A model of competition between plasmid-bearing and plasmidfree organisms in a chemostat with a lethal external inhibitor was proposed in a survey of Hsu and Waltman, Such models are relevant to commercial production by genetically altered organisms in continuous culture. This paper provides a complete and rigorous analysis of the asymptotic behavior of the governing equations. By means of operating diagrams, we describe the asymptotic behavior of the model with respect to those operating parameters. Some examples are given to illustrate the mathematical results.

Introduction

The chemostat is an important laboratory apparatus used for the continuous culture of micro-organisms. Competition for single and multiple resources, evolution of resource acquisition, and competition among micro-organisms have been investigated in ecology and biology using chemostats [START_REF] Hoskisson | Continuous culture making a comeback?[END_REF][START_REF] Monod | La technique de culture continue. Théorie et applications[END_REF][START_REF] Monod | Recherches sur la croissance des cultures bactériennes[END_REF]. A detailed mathematical description of competition in the chemostat may be found in [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Smith | The theory of the chemostat: Dynamics of microbial competition[END_REF].

Genetically altered organisms are used in biotechnology to manufacture a product (e.g., the production of insulin or protein). The alteration is accomplished by the introduction of DNA into the cell in the form of a plasmid. In chemostat Models where the competitors are plasmid-bearing (genetically altered) and plasmid-free organisms, the plasmid can be lost in reproduction, creating a better competitor (one which does not carry the metabolic load imposed by the plasmid). To deal with this, an additional piece of genetic material is added to the plasmid, one that codes for resistance to an inhibitor, and the inhibitor is added to the reactor, competition between plasmid-bearing and plasmid-free organisms is extensively studied in the literature see [START_REF] Hsu | Global analysis of a model of plasmid-bearing plasmid-free competition in a chemostat[END_REF][START_REF] Hsu | Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor[END_REF][START_REF] Hsu | A model of the effect of anti-competitor toxins on plasmid-bearing, plasmid-free competition[END_REF][START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF].

In this paper we consider the model introduced by Hsu and Waltman [START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF], where plasmid-free x and plasmid-bearing y organisms compete for a single limiting resource S in the presence of an external inhibitor p (i.e. not produced by one of the competitors), which is lethal to the plasmid-free organism, while the other can take it up with no deleterious effect, Thus we think of the plasmid-bearing as detoxifying the environment. The model introduced in [START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF] (see Section 8,model x = [ m1S K1+S -D -γp]x + q m2S K2+S y y = [(1 -q) m2S K2+S -D]y p = (p 0 -p)D -δp K+p y

(1.1)

with the initial condition S(0) ≥ 0, x(0) > 0, y(0) > 0 and p(0) ≥ 0. The biological parameters of the model are m 1 , m 2 , δ, K 1 , K 2 , K, β, γ, and q. The meaning and units of these parameters are given in Table 6. In particular the constant q represents The probability that a plasmid is lost in reproduction. These are called biological parameters since they depend on the organisms, substrate and inhibitor considered. These parameters are measurable in the laboratory. In contrast, the operating parameters are the input concentration of the nutrient S 0 , the input concentration of the inhibitor p 0 and the dilution rate D of the chemostat. These parameters are called operating parameters since they are under the control of the experimenter.

The authors of [START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF] rescaled the biological and operating parameters of the model, creating a 'standard' environment in which the operating parameters are fixed to the value 1. This rescaling is often used in the mathematical literature on the chemostat [START_REF] Smith | The theory of the chemostat: Dynamics of microbial competition[END_REF]. The authors presented some results on the boundary equilibria and shown that the model has a unique positive equilibrium of coexistence. However the model was not fully analyzed, nor was the operating diagram presented.

A useful contribution of the mathematical analysis of a chemostat model, is to give to the engineers the operating diagram which is the bifurcation diagram for which the values of the biological parameters are fixed, and the behavior of the model is discussed with respect to the operating parameters. The operating diagram has the operating parameters as its coordinates and the various regions defined in it correspond to qualitatively different dynamics. As it was noticed by Smith and Waltman [16, p. 252], the operating diagram is probably the most useful answer for the discussion of the behavior of the model with respect to the parameters. This diagram shows how robust or how extensive is the parameter region where coexistence occurs, where the coexistence equilibrium is stable and where it is unstable. This bifurcation diagram is very useful to understand the model from both the mathematical and biological points of view, and is often constructed both in the biological literature [START_REF] Lenski | Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics[END_REF][START_REF] Pavlou | Computing operating diagrams of bioreactors[END_REF][START_REF] Vayenas | Chaotic dynamics of a microbial system of coupled food chains[END_REF] and the mathematical literature [START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF][START_REF] Dellal | Global analysis of a model of competition in chemostat with internal inhibitor[END_REF][START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF].

The organization of this paper is as follows. In Section 2, we present the model and some properties of its solutions. In Section 3, we discuss the existence together with the local and global asymptotic stability of equilibria. In Section 4, we present the operating diagrams. In Section 5, we consider examples and we give numerical simulations. A discussion follows in Section 6.

Mathematical model

The model of the chemostat with a lethal external inhibitor [START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF], we consider here is of the form

         S = (S 0 -S)D -f 1 (S) x β -f 2 (S) y β x = [f 1 (S) -D -γp]x + qf 2 (S)y y = [(1 -q)f 2 (S) -D]y p = (p 0 -p)D -g(p)y (2.1)
The so-called functional responses f i , i = 1, 2, represent the specific growth rates of the competitors and the function g represents the absorption rate of the external inhibitor relative to y.

The model (1.1) considered in [START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF], is obtained by considering in (2.1) the following functional responses, and absorption rate

f 1 (S) = m 1 S K 1 + S , f 2 (S) = m 2 S K 2 + S and g(p) = δp K + p (2.2)
In this paper, we consider the general model (2.1) without restricting ourselves to the special case of Monod functions of growth rates of the competitors f i and of absorption rate of inhibitor g given in (2.2). We suppose only that f i , i = 1, 2, and g in system (2.1) are C 1 -functions satisfying the following conditions:

(H1) For i = 1, 2, f i (0) = 0 and f i (S) > 0 for all S ≥ 0. (H2) g(0) = 0 and g (p) > 0 for all p ≥ 0.

Since y = 0 is a solution surface of (2.1), and S = DS 0 > 0 at S = 0, x ≥ 0 at x = 0 and p = Dp 0 > 0 at p = 0, then all solutions of (2.1) with positive initial condition rests positive.

If we consider Σ = βS + x + y, then we obtain

Σ = D(βS 0 -Σ) -γpx ≤ D(βS 0 -Σ), Σ(0) = βS(0) + x(0) + y(0).
Thus βS(t) + x(t) + y(t) ≤ Σ ≤ βS 0 + c 1 exp(-Dt) Same thing for p, i.e. p(t) ≤ p 0 + c 2 exp(-Dt) considering what preceded, we get the following proposition, Proposition 2.1. For non-negative initial conditions, all solutions of system (2.1) are bounded and remain non-negative for all t > 0. Moreover, for any ε > 0 the compact set

Ω ε = {(S, x, y, p) ∈ R 4 : S ≥ 0, x ≥ 0, y ≥ 0, 0 ≤ p ≤ p 0 + ε, βS + x + y ≤ βS 0 + ε}
is positively invariant and globally attracting for (2.1).

Remark 2.2. The above proposition insures that any positive equilibria E c = (S c , x c , y c , p c ) would belong to Ω 0 , with S c < S 0 , because x c > 0, y c > 0 and βS c + x c + y c ≤ βS 0 .

Existence and local stability of equilibria

Hereafter we use the following conditions and notations: for functions f i , i = 1, 2, and g in (2.1), conditions (H1) and (H2) hold. From (H1) it is deduced that

f i is a bijective (hence invertible) function from [0, +∞) into [0, m i ) where m i = sup S>0 f i (S) = f i (+∞). Using the inverse functions f -1 1 : I 1 → R + and f -1 2 : I 2 → R + , I 1 = [0, f 1 (+∞)) and I 2 = [0, f 2 (+∞))
, we define the break-even concentrations, see Fig. 1(a):

λ 2 (D) = f -1 2 D 1 -q , λ + (D, p 0 ) = f -1 1 (D + γp 0 ) (3.1)
Note that λ 2 = 0 is defined for

D ∈ I c = (0, D) with D = (1 -q)f 2 (+∞), and λ + is defined for (D, p 0 ) such that D + γp 0 ∈ I 1 . Let p * (D) = f1(λ2)-D γ
, and p = max{p * , 0}. We define the function K by

K(p, D, p 0 ) = W 1 (p, D, p 0 )W 2 (p, D), for p ∈ (p, p 0 ] where, W 1 (p, D, p 0 ) = D(p 0 -p) g(p) and W 2 (p, D) = 1 1 -q [ qf 1 (λ 2 ) γ(p -p * ) +1]. Using (H2),
for all p ∈ (p, p 0 ) we have K(p, D, p 0 ) > 0, K (p, D, p 0 ) < 0 and lim p→ p K(p, D, p 0 ) = +∞, K(p 0 , D, p 0 ) = 0. Therefore, when λ 2 < S 0 (see Remark 2.2), the equation K(p, D, p 0 ) = β(S 0 -λ 2 ) in p admits a unique solution that we denote p c , see Fig. 1 • The washout equilibrium E 0 = (S 0 , 0, 0, p 0 ), that always exists.

(b). Hence K(p c , D, p 0 ) = β(S 0 -λ 2 ) (3.2) D D D+γp 0 λ2 λ + S (1 -q)f 2 f 1 (a) β S 0 -λ2 p p 0 (b) K p pc
• The equilibrium E 1 = (λ + , x, 0, p 0 ) of extinction of plasmid bearing organism y, where x = Dβ(S 0 -λ + )

D+γp 0 and λ + is given by (3.1). This equilibrium exists if and only if λ + < S 0 .

• The unique coexistence equilibrium E c = (λ 2 , x c , y c , p c ), where λ 2 (respectively p c ) given by (3.1) (respectively by (3.2) ) and y c , x c are given by

y c = W 1 (p c , D, p 0 ), x c = qDy c γ(1 -q)(p c -p * ) (3.3)
This equilibrium exists if and only if λ 2 < min{λ + , S 0 }.

Proof. The steady states of (2.1) are the solutions of the set of equations

         0 = (S 0 -S)D -f 1 (S) x β -f 2 (S) y β 0 = [f 1 (S) -D -γp]x + qf 2 (S)y 0 = [(1 -q)f 2 (S) -D]y 0 = (p 0 -p)D -g(p)y (3.4)
Therefore, besides the washout equilibrium E 0 = (S 0 , 0, 0, p 0 ) where both populations are extinct, that always exists, (2.1) has the following types of equilibria:

• E 1 = (S 1 , x 1 , 0, p 1 ), where the second population is extinct and x 1 > 0.

• E c = (S c , x c , y c , p c ), where both populations survive: x c > 0, y c > 0.

The components S = S 1 , x = x 1 and p = p 1 of the boundary equilibrium E 1 are the solutions of (3.4) with x > 0 and y = 0, that is p 1 = p 0 and

D(S 0 -S 1 ) = f 1 (S 1 )x 1 β (3.5) f 1 (S 1 ) = D + γp 0 (3.6)
Therefore, from (3.6) we have S 1 = λ + , where λ + is given by (3.1). Then, using (3.5) we deduce that x 1 = Dβ(S 0 -λ + ) D + γp 0 . This equilibrium exists if and only if

x 1 > 0, that is λ + < S 0 .
The components of E c = (λ 2 , x c , y c , p c ), a positive equilibrium of (2.1), are the solutions of (3.4) with x > 0 and y > 0. Hence, (1

-q)f 2 (S c ) = D, that is S c = λ 2 ,
where λ 2 is given by (3.1) and

(S 0 -λ 2 )D = f 1 (λ 2 ) x c β + f 2 (λ 2 ) y c β (3.7) (f 1 (λ 2 ) -D -γp c )x c = -qf 2 (λ 2 )y c (3.8) (p 0 -p c )D = g(p c )y c (3.9) 
From (3.9) we have y c = W (p c ), replacing this in (3.8) gives

x c = -qf 2 (λ 2 )W 1 (p c ) (f 1 (λ 2 ) -D -γp c )
we replace x c , y c and f 2 (λ 2 ) by D 1 -q in (3.7), we obtain

(S 0 -λ 2 )Dβ = f 1 (λ 2 )x c + f 2 (λ 2 )y c = -qDf 1 (λ 2 )W 1 (p c ) (1 -q)(f 1 (λ 2 ) -D -γp c ) + DW 1 (p c ) (1 -q)
Which is equation (3.2), therefore p c , (respectively y c and x c ) are given by (3.2) (respectively (3.3)). Hence, a positive equilibrium E c of system (2.1), if it exists, is unique.

Let us study the condition of existence of E c . We first note that from equation (3.7) we get,

S 0 > λ 2 (3.10)
moreover, from (3.8) and (3.9), we obtain p < p c and p c < p 0 respectively.

f 1 (λ 2 ) -D γ = p * ≤ p < p 0 ⇔ f 1 (λ 2 ) < D + γp 0 = f 1 (λ + ) (3.11) Using H1 (f 1 is increasing), i.e. λ 2 < λ + (3.12)
Tacking into account (3.10), (3.12), we conclude finally that E c exists if and only if λ 2 < min(λ + , S 0 ).

Remark 3.2. We can see that we have the following equivalence

p(D) < p 0 ⇔ λ 2 (D) < λ + (D, p 0 )
this will be important in constructing the operating diagram.

3.2.

Global stability of boundary equilibria. In this section we prove some results on the global asymptotic stability of the boundary equilibria of (2.1) using the theory of asymptotic autonomous systems [START_REF] Thieme | Convergence results and a poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[END_REF].

Theorem 3.3.

(1) If S 0 < min{λ 2 , λ + }, then the washout equilibrium E 0 of system (2.1) exists and is globally asymptotically stable.

(2) If λ + < S 0 < λ 2 , then the boundary equilibrium E 1 of system (2.1) exists and is globally asymptotically stable with respect to solutions with x(0) > 0.

Proof.

(1) From proposition 2.1, we have for any 0 < ε 1 there is t(ε) large enough such that S(t) < S 0 + ε 2 , ∀t > t(ε), let 0 < ε ≤ min{λ 2 -S 0 , λ + -S 0 }, then for t > t(ε) we have

S(t) < min{λ 2 , λ + } - ε 2 thus (1-q)f 2 (S(t))-D < (1-q)(f 2 (λ 2 -ε 2 )-f 2 (λ 2 )) = α 1 (ε) < 0, ∀t > t(ε)
, from the y equation we obtain lim t→∞ y(t) = 0, which means that lim t→∞ p(t) = p 0 , then the limiting behavior of x is governed by the equation (2) If λ + < S 0 < λ 2 , then using the same argument as before lim t→∞ y(t) = 0, and lim t→∞ p(t) = p 0 , and the limiting system becomes

x = [f 1 (S) -D -γp 0 ]x < [f 1 (λ + - ε 2 ) -f 1 (λ + )]x where α 2 (ε) = [f 1 (λ + -ε 2 ) -f 1 (λ + )] < 0, ∀t > t(ε).
S = (S 0 -S)D -f 1 (S) x β x = [f 1 (S) -D -γp 0 ]x (3.13)
We conclude that (see [5, Chap. 2]), lim t→+∞ (S(t), x(t)) = (λ + , x), and that system (3.13) does not have periodic orbits, combining what preceded with Corollary 4.3 in [START_REF] Thieme | Convergence results and a poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[END_REF] yielding lim t→+∞ ((S(t), x(t), y(t), p(t)) = E 1 .

3.3.

Local stability of equilibria. The Jacobian matrix for the linearization of (2.1) at an equilibrium point E c = (λ 2 , x c , y c , p c ) takes the form

M =        m 11 m 12 -D β(1 -q) 0 m 21 m 22 qD 1 -q m 24 m 31 0 0 0 0 0 m 43 m 44        , (3.14) 
with 

m 11 = -D - f 1 (λ 2 ) β x c - f 2 (λ 2 ) β y c , m 12 = - f 1 (λ 2 ) β m 21 = f 1 (λ 2 )x c + qf 2 (λ 2 )y c , m 22 = f 1 (λ 2 ) -D -γp c , m 24 = -γx c m 31 = (1 -q)f 2 (λ 2 )y c , m 43 = -g(p c ), m 44 = -D -g (p c )
A 3 (A 1 A 2 -A 3 ) > A 2 1 A 4 (3.15)
where A 1 , A 2 , A 3 , A 4 and are defined by:

A 1 = - i =3 m ii , A 4 = -m 12 m 24 m 43 m 31 + Dm 31 m 44 1 -q (qm 12 + m 22 ) A 3 = -Dm 31 1 -q (m 44 + m 12 + m 22 ) + m 11 m 22 m 44 -m 12 m 21 m 44 A 2 = (m 22 + m 44 )m 11 -m 12 m 21 + m 22 m 44 + Dm 31 1 -q (3.16)
Proof. At washout equilibrium E 0 = (S 0 , 0, 0, p 0 ), the Jacobian matrix takes the

triangular form M 0 = A B 0 C A = -D -f1(S 0 ) β 0 f 1 (S 0 ) -D -γp 0 , B = -f2(S 0 ) β 0 qf 2 (S 0 ) 0 , C = (1 -q)f 2 (S 0 ) -D 0 -g(p 0 ) -D .
The eigenvalues of M 0 are those of matrices A and C, that is to say, -D (with multiplicity 2), f 1 (S 0 ) -D -γp 0 and (1 -q)f 2 (S 0 ) -D. Then, the equilibrium E 0 is LES if and only if f 1 (S 0 ) < D + γp 0 and (1 -q)f 2 (S 0 ) < D, or equivalently, λ + > S 0 and λ 2 > S 0 . Suppose that the equilibrium E 1 exists, that is λ + < S 0 . At E 1 the Jacobian matrix takes the triangular form

M 1 = A B 0 C where A = -D -f 1 (λ + )x -f1(λ + ) β f 1 (λ + )x 0 , B = -f2(λ + ) β 0 qf 2 (λ + ) -γ x , C = (1 -q)f 2 (λ + ) -D 0 -g(p 0 ) -D
The eigenvalues of M 1 are those of matrices A and C, that is to say -D and (1 -q)f 2 (λ + ) -D, which are the eigenvalues of C, together with the eigenvalues of A. Since Trace(A) < 0, Det(A) > 0 the eigenvalues of A always have a negative real part. Therefore E 1 is LES if and only if (1 -q)f 2 (λ + ) < D, or equivalently, λ + < λ 2 .

At E c , the variational matrix M is given by (3.14). Thus the characteristic polynomial of M c is given by

λ 4 + A 1 λ 3 + A 2 λ 2 + A 3 λ + A 4 = 0
where A 1 , A 2 , A 3 , A 4 are given in (3.16). Since A 1 , A 2 , A 4 > 0, then by the Routh-Hurwitz criterion [START_REF] Coppel | Stability and Asymptotic Behavior of Differential Equations[END_REF], E c is LES if and only if 1. Existence and local asymptotic stability of equilibria of system (2.1).

A 3 (A 1 A 2 -A 3 ) > A 2 1 A 4 (3.17) Equilibria Existence Local exponential stability E 0 Always S 0 < min(λ + , λ 2 ) E 1 λ + < S 0 λ + < λ 2 E c λ 2 < min(λ + , S 0 ) A 3 (A 1 A 2 -A 3 ) > A 2 1 A 4 Table
We summarize the results on existence and local stability of equilibria of (2.1), given by Propositions 3.1 and 3.4, in Table 1 above. We observe that E 0 is LES if and only if E 1 and E c do not exist, and when E c and E 1 both exist, E 1 is unstable. We conclude that there is only one and only one equilibrium which is stable.

In order to construct the operating diagram, we need to formulate the existence and stability conditions operating parameters, for that we have the following proposition, Proposition 3.5. Let F 1 defined by

F 1 (D, p 0 , S 0 ) = A 3 (A 1 A 2 -A 3 ) -A 2 1 A 4 (3.18)
and considering Remark. 3.2, Table . 2.1 could be rewritten in terms of the operating parameters in the following way

Equilibria Existence Local exponential stability E 0 Always D > max(f 1 (S 0 ) -γp 0 , f 2 (S 0 )) E 1 D < f 1 (S 0 ) -γp 0 p 0 < p(D) E c f 2 (S 0 ) > D & p(D) < p 0 F 1 (D, p 0 , S 0 ) > 0 Table 2.
Existence and stability of equilibrium points of (2.1), with respect to the operating parameters D, S 0 and p 0 . The function F 1 , is defined by (3.18).

Operating diagrams

Our aim now is to describe the operating diagram. The boundaries of the regions in the operating diagram are surfaces where bifurcations occur. In order to construct the operating diagram of the system one must compute these boundaries. Using Prop. 3.5, these boundaries are the following surfaces of the (D, S 0 , p 0 )-space. The subset Γ 1 = (D, p 0 , S 0 ) :

D = f 1 (S 0 ) -γp 0 (4.1)
is the border to which E 1 exists. The subset

Γ 2 = (D, p 0 , S 0 ) : D = f 2 (S 0 ), p(D) < p 0 (4.2)
is the border to which E c exists. The subset

Γ 3 = (D, p 0 , S 0 ) : p 0 = p(D), D < f 2 (S 0 ) (4.3)
is the border to which E 1 is stable and E c is exists. The subset

Γ 4 = D, p 0 , S 0 : F 1 (D, p 0 , S 0 ) = 0, f 2 (S 0 ) > D, p(D) < p 0 (4.4)
is the border to which E c is stable.

Boundary Color Equation in p 0 , S 0 -plane, with It is difficult to represent the regions of existence and stability of the equilibrium points in the three dimensional space (D, p 0 , S 0 ). For this reason we will fix D and show the regions of existence and stability in the operating plane (p 0 , S 0 ). The (a) (b) 3 divide the operating plane (p 0 , S 0 ) into at most six regions labeled J 0 , J 1 , J S 2 , J U 2 , J S 3 and J U 3 . Some of the regions may be empty. The existence and stability of the equilibrium points in the regions of these diagrams are shown in Table 4. curves Γ i , i = 1..3 separate the operating plane (p 0 , S 0 ) into four regions, labeled J 0 , J 1 , J 2 , J 3 , as illustrated by Fig. 2(a). In the case where the curve Γ 4 is not empty, two additional regions can appear, J U 2 and J U 3 , such that E c is LES in J S Proposition 4.1. The behavior of the system in each of the six regions J 0 , J 1 , J S 2 , J U 2 , J S 3 , and J U 3 is given in Table 4. 

D ∈ I c fixed Γ 1 blue Graph of S 0 = f -1 1 (D + γp 0 ) Γ 2 black
J 0 J 1 J 2 J 3 p 0 S 0 p(D) λ 2 Γ 1 Γ 2 Γ 3 J 0 J 1 J S 2 J U 2 J S 3 J U 3 p 0 S 0 p(D) λ 2 Γ 1 Γ 2 Γ 3 Γ 4
Regions J 0 J 1 J S 2 J U 2 J S 3 J U 3 E 0 S U U U U U E 1 S U U E c S U S U

Illustrative examples

Let us fix as an example the functions f 1 , f 2 and g, as in [START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF] given by (2.2), let D = (1 -q)f 2 (+∞) = (1 -q)m 2 (see Section 3) the maximal value of D for which the positive equilibrium could exist. The values of the biological parameters are given in Table 5. Table 5. Biological parameters values used in the numerical computations shown in the figures. The yield is β = 1, The last column of the table shows the value of D such that E c exists for D ∈ (0, D).

Case m 1 m 2 K 1 K 2 δ K γ q Figures D 1 
The first case is illustrated in Fig. 3 which corresponds to the biological parameters given in Table . 5 (case 1) and D = 1, This diagram shows that the region of instability of E c (i.e. J U

3 ) is a bounded set in the (p 0 , S 0 ) plane, we can also see that the region J U 2 (the region where both E 1 and E c exist and are unstable) is empty. Fig. 3(b) shows the positive equilibrium E c corresponding to the case (p 0 , S 0 ) = (1, 1.7) (respectively (p 0 , S 0 ) = (1, 2)) is stable, (respectively unstable) which is also confirmed in Fig. 4(a) (respectively Fig. 4(b)).

The parameter's values of case 2 in Table . 5 are the same which are used in [START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF] (see Table . 5, Case 4 of the mentioned paper), taking q very small (i.e q = 0.0005) means that this is perturbation of the model studied in [START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF] (model (2.1) with q = 0), and as pointed out in [START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF] the local behavior of those two systems is similar for small perturbation as illustrated in Fig. 5 compared to Fig. 10 in [START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF]. In Fig. 5(b) (for D = 0.013) the region J U 2 is nonempty, in fact simulations seems to suggest that the region J U 2 is unbounded (which was proved rigorously in [START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF] when q = 0). The third set of values for the biological parameters are in case 3 Table 5, the operating diagram presented Fig. 6 (a) corresponding to D = 1.584, illustrates the case when J 1 is empty, and J 2 is not, because in this case p * = -7 * 10 -5 (i.e p = 0), and the fact that D = 1.584 < sup so is J 2 ). In both cases of Fig. 6, the positive equilibrium is always stable when it exists.

J S 3 J U 3 p 0 S 0 (a) J 0 J 1 J 2 S1 J S 3 J U 3 p 0 S 0 ( 

Conclusions and concluding remarks

In this work we have studied the model (1.1) of competition between plasmidbearing and plasmid-free in the chemostat with an external lethal inhibitor introduced in [START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF] by considering the model (2.1) with general growth rate functions of competitors and absorption rate of external inhibitor. Our mathematical analysis

Figure 1 .

 1 Figure 1. (a): Definitions of λ 2 = λ 2 (D), D = (1 -q)f 2 (+∞), and λ + = λ + (D, p 0 ). (b): Definition of p c = p c (D, p 0 , S 0 ) satisfying K(p c , D, p 0 ) = β S 0 -λ 2 (D) .

3. 1 .

 1 Existence of equilibria. The existence of equilibria of system (2.1) is stated by the following result: Proposition 3.1. Assume that (H1) and (H2) are satisfied. System (2.1) has the following equilibria:

  t), x(t), y(t), p(t)) = E 0 .

Table 3 .

 3 Horizontal line S 0 = λ 2 (D) for p 0 > p(D) Γ 3 green Vertical line p 0 = p(D) for S 0 > λ 2 (D) Γ 4 red Curve of equation F 1 (D, p 0 , S 0 ) = 0 Boundaries of the regions in the operating diagram. The color code is used in Figs. 2, 3, 5, 6.

Figure 2 .

 2 Figure 2. Illustrative operating diagrams for D fixed: The curves Γ i , i = 1 • • • 4 defined in the Table3divide the operating plane (p 0 , S 0 ) into at most six regions labeled J 0 , J 1 , J S 2 , J U 2 , J S 3 and J U 3 . Some of the regions may be empty. The existence and stability of the equilibrium points in the regions of these diagrams are shown in Table4.

2 and J S 3

 3 and unstable in J U 2 and J U 3 (see Fig 2(b)). As a corollary of Prop. 3.5 we obtain the following result.

b)Figure 3 .

 3 Figure 3. The biological parameters values are given in Table 5, Case 1. (a): The operating diagram for D = 1. (b): A zoom showing the instability of E c when p 0 = D = 1, S 0 = 2, and its stability when S 0 = S 1 = 1.7.

Figure 4 .

 4 Figure 4. The biological parameters values are given in Table 5, Case 1, and p 0 = D = 1. (a): Time course for S 0 = S 1 = 1.7 (E c is stable). (b): Time course for S 0 = 2 (E c is unstable).

S>0 f 1 Figure 5 .Figure 6 .

 156 Figure 5. The biological parameters values are given in Table 5, Case 2. (a): Operating diagram corresponding to the case D = 0.01. (b): Operating diagram corresponding to the case D = 0.013.

  y c The equilibrium E 0 is LES if and only if S 0 < min{λ 2 , λ + }. • The equilibrium E 1 , if it exists, has at least three dimensional stable manifolds and is LES if and only if λ + < λ 2 . • The equilibrium E c , if it exists, is LES if and only if

	Proposition 3.4. Assume that (H1) and (H2) are satisfied. The stability of equi-
	libria of (2.1) is as follows:
	•

Table 4 .

 4 Existence and stability of equilibrium points in the regions of the operating diagram, shown in Figs. 2.
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of the model has revealed several possible behaviors : Prop. 3.5 provides a complete theoretical description of the outcome of competition.

A reasonable and practical way of describing the limiting behavior of the system is to study the existence and bifurcation of the equilibria with respect of the operating parameters S 0 , p 0 , and D, since the engineer can easily control these parameters.

The region J 0 is where the washout equilibrium exists and is stable, J 1 is the region for which the equilibrium where the plasmid-bearing organism washes out of the chemostat, the most important regions in the operating diagrams are the regions J 2 and J 3 of existence for the positive equilibrium, the union J U 2 and J U 3 is where the positive equilibrium is unstable, this region of instability was rigorously described [START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF] for q = 0, in the sense that we are able to know if it is empty, bounded, or unbounded depending on D (with the help of figures in the (D, p 0 ) plane), which is not possible in this case, because in [START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF], only x c depended on S 0 , so that by viewing the Routh-Hurwitz condition as a third degree polynomial in x c with coefficients depending on D and p 0 only, we were able to describe the instability region by studying the coefficients, but for q = 0 it is not possible because first we need to solve the equation (3.2) involving all the operating parameters.

In the case where p is less or equal to 0 (see Fig. 6), the instability region was found to be empty in all our simulations, it would be interesting if we can prove that rigorously, this will be considered with more details in a future work.