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The glycoprotein follicle-stimulating hormone (FSH) acts on gonadal target cells, hence

regulating gametogenesis. The transduction of the hormone-induced signal is mediated

by the FSH-specific G protein-coupled receptor (FSHR), of which the action relies on

the interaction with a number of intracellular effectors. The stimulatory Gαs protein is

a long-time known transducer of FSH signaling, mainly leading to intracellular cAMP

increase and protein kinase A (PKA) activation, the latter acting as a master regulator

of cell metabolism and sex steroid production. While in vivo data clearly demonstrate

the relevance of PKA activation in mediating gametogenesis by triggering proliferative

signals, some in vitro data suggest that pro-apoptotic pathways may be awakened

as a “dark side” of cAMP/PKA-dependent steroidogenesis, in certain conditions. P38

mitogen-activated protein kinases (MAPK) are players of death signals in steroidogenic

cells, involving downstream p53 and caspases. Although it could be hypothesized that

pro-apoptotic signals, if relevant, may be required for regulating atresia of non-dominant

ovarian follicles, they should be transient and counterbalanced by mitogenic signals

upon FSHR interaction with opposing transducers, such as Gαi proteins and β-arrestins.

These molecules modulate the steroidogenic pathway via extracellular-regulated kinases

(ERK1/2), phosphatidylinositol-4,5-bisphosphate 3-kinases (PI3K)/protein kinase B

(AKT), calcium signaling and other intracellular signaling effectors, resulting in a

complex and dynamic signaling network characterizing sex- and stage-specific gamete

maturation. Even if the FSH-mediated signaling network is not yet entirely deciphered, its

full comprehension is of high physiological and clinical relevance due to the crucial role

covered by the hormone in regulating human development and reproduction.
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INTRODUCTION

Follicle-stimulating hormone (FSH) is a glycoprotein playing a central role in mammalian
reproduction and development. In the ovary, FSH regulates folliculogenesis, oocyte selection,
and the synthesis of sex steroid hormones, thus preparing the reproductive tract for fertilization,
implantation, and pregnancy (1). In the male, this gonadotropin mediates testicular development
and spermatogenesis (2). The hormone is secreted by the gonadotrope cells of the pituitary, upon
pulsatile regulation by the hypothalamic gonadotropin-releasing hormone (GnRH) (3), and acts on
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the surface of target cells located in the gonads of both
males and females, where hormone-induced cell proliferation-
and apoptosis-linked signals are triggered. FSH displays an α

subunit, common to other gonadotropins and to thyrotropin,
and a β subunit specifically binding to its G protein-coupled
receptor (GPCR), namely FSHR (4). In silico and crystallographic
structural analyzes found also interaction between the α subunit
and FSHR, demonstrating that receptor binding is not exclusive
of the β subunit (5). Hormone binding implies conformational
changes of the receptor (6) that transduce the signal via direct
protein interactions at the plasma membrane, resulting in a
cascade of biochemical reactions that constitute an intertwined
complex signaling network (7). In this review, signaling pathways
activated in gonadal cells upon FSH binding to its membrane
receptor are discussed in detail, providing a comprehensive
view on the downstream life and death signals regulating
reproductive functions.

FSHR INTERACTION WITH MEMBRANE
RECEPTORS

The FSHR has been shown to functionally and/or physically
interact with other membrane receptors (8, 9), hence intensifying
the diversity of FSH action (10). For example, the FSHR may
exist as a unit of di/trimeric homomers (5). Interestingly,
heterodimerization of the FSHR with the luteinizing hormone
(LH) receptor (LHCGR) (11) may play a key role in regulating
the ovarian growth and selection (12), by virtue of the
physical interaction between these two receptors. Interestingly,
intracellular signals delivered by LH at the LHCGR may be
modulated by the presence of FSHR on the cell surface,
and vice versa, through the formation of receptor heteromers.
For example, unliganded co-expressed FSHR amplifies Gαq-
mediated signaling initiated at the LHCGR (13), whereas the
LHCGR may inhibit FSHR-dependent cAMP production (11).
In addition, other classes of receptors, such as tyrosine kinase
receptors, may also contribute to the modulation of FSHR
activity. The insulin-like growth factor-1 receptor (IGF-1R)
is one of those, as it appears necessary for FSH-induced
granulosa cell differentiation via a signaling cascade involving
the thymoma viral oncogene homolog 3 (AKT3) (14). Similarly,
action of the epidermal growth factor receptor (EGFR) during
granulosa cell differentiation is required for activation of ERK1/2
(15). Interestingly, the interaction between FSHR and EGFR
signaling networks was analyzed using an automated, logic-
based approach, suggesting that the ERK1/2-pathway may
be activated by EGFR-dependent signals via p38 mitogen-
activated protein kinases (MAPK) (16). Moreover, this study
confirmed that EGFR is trans-activated through FSHR-mediated
pathways involving the proto-oncogene tyrosine-protein kinase
SRC. On the other hand, EGFR signaling network overlaps,
at least in part, that of FSHR, contributing to modulation
of the ERK1/2, the phosphatidylinositol-4,5-bisphosphate 3-
kinases (PI3K)/protein kinase B (AKT), and the Janus kinase
(JAK)/signal transducer and activator of transcription protein
(STAT) pathways (16).

INTRACELLULAR FSHR SIGNAL
TRANSDUCING PARTNERS

Typically, G proteins are directly activated by the FSHR, by
splitting of the βγ dimer from the α subunit (17), that act as
regulators of intracellular enzymes, such as G protein-coupled
receptor kinases (GRKs), or adenylyl cyclase, respectively, among
many others (18). Moreover, βγ dimer was demonstrated to be
able of modulating intracellular signaling cascades (19, 20).

G protein activation is followed by FSHR phosphorylation at
the intracellular level, operated by GRKs and resulting in receptor
association with β-arrestins (21, 22). β-arrestins are scaffold
proteins (23) that mediate GPCR desensitization, recycling,
and G protein-independent signaling (24). Another direct
FSHR-interacting partner is adaptor protein, phosphotyrosine
interacting with PH domain and leucine zipper 1 (APPL1),
that is linked to the activation of the PI3K/AKT anti-apoptotic
pathway and calcium ion mobilization (25). By these means,
APPL1 might regulate the selection of the dominant follicle by
mediating the anti-apoptotic effects exerted by FSH via inhibitory
phosphorylation of forkhead homolog in rhabdomyosarcoma
(FOXO1a) (26). Interestingly, APPL1 is involved in cAMP
signaling exerted by GPCR activity in very early endosomal
compartments, hence contributing to the spatial encoding of
intracellular signaling, as shown for the LHR (27). Similarly,
GAIP-interacting protein C terminus (GIPC), a PDZ protein,
redirects the FSHR to pre-early endosomes, hence promoting
sustained, intracellular MAPK (28). Another protein directly
interacting with FSHR is the 14-3-3τ adapter protein (29), which
may contact the canonical G protein-receptor interaction site
located at the intracellular level and mediates the activation of
the AKT-pathway (30).

In the gonads, FSH-mediated signaling results in the
transcription of target genes, which include LHCGR and other
genes encoding membrane receptors, protein kinases, growth
factors, enzymes regulating steroid synthesis, genes involved in
the regulation of cell cycle, proliferation and differentiation,
apoptosis, and circadian rhythm (31–33). Despite the wide
diversity of FSH target genes, effects of gonadal stimulation
by the hormone was defined as both proliferative and anti-
apoptotic due to the positive impact on gametogenesis (34,
35) and on growth of certain cancer cells (36). Nevertheless,
pro-apoptotic functions emerged as a condition related to
FSH-mediated steroid production (37, 38). In this review,
molecular mechanisms of FSH action and their relationships
with downstream steroidogenic, life, and death signals regulating
reproduction (Figure 1) are discussed.

ACTIVATION OF THE CAMP/PKA
STEROIDOGENIC PATHWAY

While FSH is mainly known to support the maturation of
gametes via Sertoli cell nurturing functions in the male, the
hormone has steroidogenic activity in ovarian granulosa cells (4).
This action is exerted via the protein kinase A (PKA) pathway,
whose activation depends on ATP conversion into the second
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FIGURE 1 | Cross-talk between FSH-dependent steroidogenic, life, and death signals in granulosa cells. G protein subunits and β-arrestins mediate the activation of

multiple signaling pathways modulating different events downstream. Gαs protein/cAMP-related signaling are represented by orange arrows while signaling cascades

depending on other FSHR intracellular interactors are indicated by blue arrows. Steroidogenic events are mainly mediated through cAMP/PKA-pathway, which is

linked to p38 MAPK signaling, while ERK1/2 and AKT are key players for mitogenic and survival signals activation. Some pathways were omitted.

messenger cAMP by adenylyl cyclases, primary targets of the Gαs
protein subunit. The interaction between cAMP and PKA was
described several decades ago (39). Intracellular cAMP increase is
under the negative control of phosphodiesterase (PDE) enzymes,
which metabolize the second messenger into 5′AMP (40). As
mentioned above, cAMP signaling is spatially and temporally
compartmentalized within the cell (41). Versatility in cAMP-
dependent signaling depends on the expression of factors such as
the isoform of adenylyl cyclase (42), PDE (43), β-arrestins (44),
and A kinase anchoring proteins (AKAP) (45) that target the
subcellular distribution of PKA.

In Sertoli cells, cAMP binding to PKA results in the release
of PKA catalytic subunits (46) and indirectly mediates the
phosphorylation of the extracellular signal-regulated kinase 1/2
(ERK1/2) MAPK, in order to promote cell proliferation (47).
In granulosa cells, the mechanism whereby ERK is activated
likely consists in the removal of a tonic inhibition exerted
by a phosphotyrosine phosphatase on MEK1 (48), recently
identified as DUSP6 (49). An alternative mechanism consists in
the activation of ERK1/2 by β-arrestins, with a different kinetics
than G proteins (Figure 2), since it is delayed and sustained
(50). It was demonstrated that pERK1/2 is involved in both
cAMP-dependent (51) and -independent (52) steroidogenesis.
In the first case, depletion of ERK1/2 phosphorylation by
specific MEK inhibition resulted in attenuated early (10–
15min) phosphorylation of the cAMP response element-
binding protein (CREB) (51), a nuclear transcription factor
up-regulating steroidogenic enzymes in gonadal cells (53).
In this case, pERK1/2 inhibition negatively impacts on
progesterone synthesis, indicating that cAMP-dependent ERK1/2

phosphorylation plays a stimulatory role in the rapidly delivered
FSH-dependent steroidogenic signal. Interestingly, molecular
mechanisms regulating steroidogenic stimuli in the Leydig cell
may be different to those occurring in FSH-responsive cells. In
Leydig cells, steroid hormones may be produced via ERK1/2- and
CREB-dependent signaling in the absence of cAMP recruitment,
via an EGFR-regulated mechanism (52). In granulosa cells,
selective blockade of MAPK activation results in the inhibition
of FSH-dependent StAR and progesterone synthesis while
androgens to estrogen conversion by the enzyme aromatase is
enhanced (54), demonstrating a differential regulation of FSH-
induced sex steroid synthesis in target cells. Similar results were
found by treating theca cells with LH, that induced differential,
ERK1/2-dependent regulation of progesterone and androgen
production (55). However, the role of ERK1/2 in mediating
steroidogenesis is a still debated matter, since it was reported
to be inhibitory (56) while other studies demonstrated the
positive impact of the MAPK activation on the synthesis of sex
steroids (57).

ROLES OF cAMP-DEPENDENT PKA
ACTIVATION

Whereas, ERK is an indirect cytosolic target of PKA that can
affect CREB phosphorylation (51), the latter may be directly
activated upon translocation of PKA catalytic subunit in the
nucleus (48), hence inducing the transcription of CREB target
genes characterized by cAMP-response elements (CRE) within
their promoter region (53). Nuclear PKA was also shown
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FIGURE 2 | Temporal succession of FSH-dependent events across the cAMP/PKA-pathway. cAMP-related signaling involves PKA, ERK1/2, and CREB activation.

FSHR phosphorylation by GRKs occurs before β-arrestin recruitment and subsequent receptor internalization.

to phosphorylate histone H3, thus mediating FSH mitogenic
activity in granulosa cells (58, 59). These interesting observations
suggest that PKA could be endowed with a more general role in
gene transcription, by promoting chromatin remodeling through
histone H3 post-translational modifications. In addition, recent
genome-wide experiments have highlighted that FSH-responsive
genes contain far less CRE than expected in their promoters, that
are notably enriched in GATA-binding sites (32).

The wide range of PKA-dependent signaling pathways
suggests that the kinase is a master regulator of several
FSH-dependent cell functions, especially those related to
steroidogenesis and cell differentiation. However, intracellular
signaling cascades regulated by PKA do not completely overlap
those depending on FSH. For example, FSH induces p38 MAPK
activation while PKA per se does not (60).

FSH-induced cAMP production does not only lead to
activation of PKA but also of the exchange protein directly
activated by cAMP (EPAC) activation. EPAC is a relatively
newly discovered cAMP target mediating the activation of the
small GTPases RAS and RAP and resulting in the regulation of
several cell functions, such as mitogen-activated protein kinase
activation, cytoskeletal changes, and calcium homeostasis (61).
EPAC was suggested to be a modulator of EGFR expression
(62) and granulosa cell differentiation (15) in the ovary, as
well as AKT phosphorylation in Sertoli cells (63). However, the
role of EPAC in the FSH-mediated signaling cascade is not yet
completely elucidated.

REGULATION OF PROLIFERATIVE AND
PRO-APOPTOTIC SIGNALS

In gonadal cells, part of the steroidogenic process and the
proteasome are compartmentalized into different organelles,

avoiding cell collapse before adequate amount of sex steroid
hormones are produced (64). This function is likely enabled to
limit the number of follicles that can achieve ovulation and to
maintain intact the synthesis of sex steroids during the initial
steps of apoptosis. These issues reflect the connection between
intracellular signaling cascades regulating steroidogenic signals
and pro-apoptotic stimuli, whose dominance is stage-specific,
depends on several paracrine factors and is regulated via a
complex intracellular network involving cAMP and activating the
pro-apoptotic protein p53 (65). In this context, the link between
cAMP/PKA and p38 MAPK activation may provide a molecular
mechanism of apoptosis in steroidogenic cells. The role of
p38, as well as Jun N-terminal kinase (JNK), is associated to
apoptotic events in pre-ovulatory granulosa cells of primates (66),
suggesting that these enzymes could be involved in the selection
of the dominant follicle. This role would be counteracted by
pERK1/2 activation in the dominant follicle (57), confirming the
anti-apoptotic and proliferative functions mediated by this MAP
kinase. Indeed, ovarian granulosa cell death is associated with
reduced ERK1/2 activity, that is linked to phosphorylation of
BCL-2 associated agonist of cell death (BAD) protein leading to a
loss of its pro-apoptotic activity (67, 68).

PRO- AND ANTI-APOPTOTIC PATHWAYS
ARE ACTIVATED SIMULTANEOUSLY

In steroidogenic cells, apoptosis is preceded by cell rounding,
a cAMP-dependent conformational changes involving actin
filaments breakdown (69, 70) that can be prevented by selective
blockade of PKA, and also depends on p38 MAPK (71). Both
PKA and p38 MAPK may be activated by FSH in a dose-
dependent manner, resulting in cytoskeletal rearrangements
and shape changes. These data suggest that the gonadotropin
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retains both pro- and anti-apoptotic potential, exerted via
p38 MAPK and ERK1/2, respectively, and this dual action of
FSH provides an interesting point of view on gonadotropin
functioning. On the one side, the hormone induces the
synthesis of steroid hormones via the cAMP/PKA-pathway,
as a requisite for gamete growth and reproduction (72).
However, the steroidogenic signaling cascade is cross-linked to
pro-apoptotic signals occurring through p38 MAPK, activated
simultaneously and necessary for regulating steroid synthesis
(73, 74). This cross-talk was described even in the mouse
adrenal Y1 cell line, where p38 MAPK activation negatively
impacts on CREB phosphorylation and StAR activity, inhibiting
FSH-induced steroid synthesis (75). On the other side, survival
signals are provided through the PKA/ERK1/2 signaling package,
counterbalancing the pro-apoptotic effect and, to a certain extent,
even inhibiting steroidogenesis (56). While further efforts should
be performed to fully solve this question, some hints suggest
that the FSH-dependent molecular mechanism underlying cell
fate may depend on the potency and persistence of cAMP at
the intracellular levels. Indeed, proliferative signals could be
predominant at relatively low FSHR expression levels (38), due
to preferential activation of ERK1/2 signaling through β-arrestins
(38, 76). Relatively high and persistent intracellular cAMP levels
due to β-arrestin depletion or FSHR over-expression result in
caspase 3 cleavage and apoptosis (38) and this mechanism
could contribute to regulating the selection of the dominant
ovarian follicles (12). In granulosa cells, FSHR over-expression
is linked to upregulation of pro-apoptotic genes and increased
cell death, compared to cells expressing relatively low FSHR
levels (77). Thus, it is possible that proliferative signals exerted
via ERK1/2-pathway could be not sufficient to counteract the
pro-apoptotic stimulus during the early/mid-antral follicular
phase, when FSHR expression achieves maximal levels (78).
In the ovary, this situation should be dynamic and transient,
as well as the FSHR over-expression (78), follicle-specific and
stage-dependent, in order to coordinate the maturation of one
single follicle achieving ovulation while the others become
atretic. This regulatory mechanism may be juxtaposed to what
was previously described in Sertoli cell, that is assumed to be
the male counterpart of granulosa cell. In 5-day rat Sertoli
cells, the ERK1/2-pathway is stimulated by FSH upon dual
coupling of FSHR to both stimulatory Gαs and inhibitory Gαi
proteins, resulting in cyclin D1 activation and cell proliferation
(47). As cells proceed throughout the differentiation program,
FSH treatment is linked to consistent ERK1/2 inhibition and
decreased cell proliferation, while gradually stabilizing PTEN
(79). Thus, the ERK1/2 signaling pathway is a key regulator of
FSH-induced life and death signals.

PKC AND CALCIUM ION SIGNALING

Increasing evidence indicates that one of the actions exerted
by FSH consists in the activation of the protein kinase C
(PKC) pathway that is involved in expansion of the cumulus,
meiotic maturation of oocytes, and modulation of progesterone
production in the ovary (80). Cross-talk between cAMP/PKA

and PKC pathways was also described in Sertoli cells (81), where
the FSH-dependent activation of these kinases is connected to
calcium ion (Ca2+) signaling (82), resulting from intracellular
release as well as from rapid influx from T-type Ca2+ channels
(83, 84) or through a Gαh transglutaminase/PLCδ interaction
(85). In vitro experiments in transiently FSHR over-expressing
human embryonic kidney (HEK) and virally transduced human
granulosa (KGN) cells demonstrated that intracellular Ca2+

increase may occur via a molecular mechanism dependent on the
interaction between APPL-1 and FSHR, and involving inositol
1,4,5-trisphosphate (IP3) (25). Interestingly, IP3 production
dampens the expression of the aromatase enzyme, at least under
FSHR over-expression (86), suggesting an inhibitory role of the
APPL-1/IP3/Ca2+ signaling module on sex steroid synthesis.
While further studies are required to confirm these results in
the presence of physiological FSHR expression levels, these data
show that APPL-1-mediated Ca2+ signaling does not necessarily
depend on cAMP, as previously demonstrated (87). Moreover,
human PKC belongs to a superfamily of about 15 isoenzymes
activated uponGq protein-mediated production of diacylglycerol
(DAG) and/or Ca2+ by phospholipases at the intracellular
level (88). In the mouse ovary, expression of PKC isoforms
is dynamic and changes according to the developmental stage,
from pre-puberty to the adulthood, suggesting that different
isoenzymes may control specific ovarian functions, such as
follicular maturation, ovulation, and luteinization (89).

It is known that PKC counteracts the PKA-mediated
steroidogenesis through cAMP inhibition in granulosa (90, 91),
and this function was further confirmed in both mammalian
(92) and avian models (93). Moreover, PKC attenuates the Gαs
protein-dependent signaling (94, 95), as well as proteoglycan
synthesis in Sertoli cells (96). Interestingly, several reports
demonstrated an up-regulatory role of PKC in Leydig cell
steroidogenesis (97). Indeed, the enzyme is involved in the
positive modulation of cAMP, pCREB and StAR activation,
increasing the rate of steroid synthesis in the mouse Leydig MA-
10 cell line (98, 99), and in mouse primary Leydig cells (100). In
this case, PKC activation would not depend on FSH, due to the
lack of FSHR expression in Leydig cells. On the contrary, PKC
up-regulation in ovarian theca cells may be LH-dependent and
negatively impacts on androstenedione synthesis in vitro (101),
suggesting the existence of a sex-specific function of the kinase in
regulating the synthesis of sex steroids in androgenic cells.

THE pAKT ANTI-APOPTOTIC PATHWAY

FSH binding to its receptor mediates the activation of PI3K,
that are enzymes involved in the regulation of cell survival,
growth and differentiation (102). In Sertoli cells, FSH increases
phosphatase and tensin homolog deleted in chromosome 10
(PTEN) synthesis within minutes, independently of mRNA
transcription (79), but rather mediated by FSH-mediated
destabilization of several anti-PTEN miRNAs (103). PTEN
stabilization in mature rat counteracts PI3K activity, when
cell proliferation ceases prior puberty. AKT activation via
PI3K may occur through both PKA-dependent (104) and
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independent mechanisms (63), reflecting the relevance of
this kinase in modulating proliferative and anti-apoptotic
signals in steroidogenic cells. Indeed, in granulosa cells,
an interplay between AKT- and cAMP/PKA-pathway up-
regulating steroidogenesis was demonstrated (105). Moreover,
FSH-dependent activation of the AKT/mammalian target of
rapamycin (mTOR) signaling module (106), a positive regulator
of cell cycle progression and cell proliferation (107), was also
described (108–110). AKT phosphorylation was observed in
mouse granulosa cells, where the kinase induces the inactivation
of FOXO1 and expression of cyclin D2, resulting in cell
proliferation and differentiation in response to FSH (111). In
fact, recent genome-wide studies have revealed that most FSH-
responsive genes in granulosa cells are FOXO target genes (33).
New insights onto FSH-mediated protection from atresia came
from the discovery that FOXO nuclear exclusion (inhibition)
upon activation of the PIK3/AKT/mTOR signaling pathway
prevents granulosa cell autophagy (112, 113). The relevance of
pAKT activation for reproduction was highlighted by in vitro
experiments where mouse preantral follicular granulosa cells
were co-cultured with oocytes (114). The presence of granulosa
cells inhibited oocyte apoptosis via PI3K/AKT, promoting
gamete growth. Especially, AKT was described to regulate
meiotic resumption in several animal models (115–117). Finally,
the AKT pathway is a preferential target of LH (118) and its
activation is even enhanced in the presence of FSH (119, 120),
suggesting that anti-apoptotic and proliferative stimuli would be
required during the late antral follicular phase to prepare the
late stages of oocyte maturation and achieve ovulation. Taken
together, the PI3K/AKT-pathway may act in concert with mTOR
(108) regulating survival signal in the ovary. These signals are
fundamental for primordial to Graafian follicles survival, as
well as for oocyte maturation and growth. In this context, it is
reasonable that the PI3K/AKT anti-apoptotic activity mediated
through FSHR is fundamental to counteract cAMP/PKA pro-
apototic stimuli and rescue the follicle from atresia (121). In
fact, dysregulation of this signaling cascade may impair female
gametogenesis and it was described as a cause of infertility (122).
Interesting data explaining how signals delivered through the
cAMP/PKA- and PI3K/AKT-pathway are counterbalanced come
from the analysis of FSH treatment of Sertoli cells. In this model,
FSH has a dual, stage-dependent action. While the hormone
stimulates the proliferation of immature cells through activation
of PI3K/AKT-, mTOR- and ERK1/2-pathways, it preferentially
stimulates cAMP production in mature Sertoli cells, resulting in
PI3K/AKT inhibition and arrest of cell proliferation (110, 123).

While this effect is maybe due to the change of Sertoli
cell competence, where PI3K/AKT-pathway activation becomes
dependent on paracrine factors during the late stages of the
maturation (124), it provides an example of dual regulation of
life and death signals exerted by FSH.

CONCLUSIONS

FSH mediates multiple signaling pathways by binding to its
unique GPCR (125). At the intracellular level, FSH is capable
of promoting cell growth and survival opposed to steroidogenic
signals cross-linked to apoptosis, resulting in a fine-tuned
regulation of the gametogenesis and, in general, of reproduction.
In the male gonads, FSH induces proliferation of Sertoli cells
via AKT- and ERK1/2-pathways and the role of these signaling
cascades, which are proliferative and anti-apoptotic, is reflected
during folliculogenesis, oocyte maturation, and growth in the
ovary. The synthesis of steroid hormones mainly mediated by
cAMP/PKA-pathway activation is a primary endpoint in FSH
functioning in the granulosa cell during the antral stage of
folliculogenesis. Estrogens are the final products required for
proper development of the dominant follicle, at the cost of
scarifying others which become atretic. It is well known that
follicular atresia is due to lowering of FSH support. However,
in vitro data support unexpected, stage-specific pro-apoptotic
signals delivered by the hormone that may play a role in vivo and
this issue merits further investigations.
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