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Simulation of motor unit action potential recordings
from intramuscular multichannel scanning
electrodes

Akhmadeev Konstantin, Tianyi Yu, Eric Le Carpentier, Yannick Aoustin, Dario Farina, Fellow, IEEE

Abstract—Multichannel intramuscular EMG (i(EMG) record-
ings provide information on motor neuron behaviour, mus-
cle fiber (MF) innervation geometry and, recently, have been
proposed as means for establishing human-machine interfaces.
Objective: in order to provide a reliable benchmark for com-
putational methods applied to such recordings, we propose a
simulation model for iEMG signals acquired by intramuscular
multi-channel electrodes. Methods: we propose a number of
modifications to the existing iIEMG simulation methods, such
as farthest point sampling for more uniform motor unit in-
nervation centers distribution in the muscle cross-section, fiber-
neuron assignment algorithm, motor neuron action potential
propagation delay modelling and a linear model for multichannel
recordings simulation. The proposed approach is also extended
to gradually shifting (scanning) electrodes. Results: we provide
representative applications of this model to the validation of
methods for the estimation of motor unit territories, and for
iEMG decomposition. Moreover, we extend this model to a
full multichannel iEMG simulator using classical linear EMG
modelling and existing approaches to the generation of motor
neuron discharge sequences. Conclusions: the obtained simulation
model provides physiologically accurate MUAPs across entire
motor unit territories and for various electrode configurations.
Significance: it can be used for the development and evaluation
of mathematical methods for multichannel iEMG processing and
analysis.

Index Terms—EMG modelling, multichannel EMG, motor unit
modelling, farthest point sampling.

I. INTRODUCTION

TRAMUSCULAR EMG (GEMG) modelling supports the

interpretation of the iEMG signal generation in human
muscles. It permits to variate the parameters of both the
motor neuron (MN) pool and the muscle fibers in order to
test and validate iIEMG-based computational methods, such as
decomposition and motor unit (MU) territory estimation.

Different applications require simulation models of different
complexities. For example, iEMG decomposition algorithms
have been often tested using signals simulated with phe-
nomenological EMG models [1]. These approaches involve
the convolution of experimental or simulated MN spike trains
with experimental motor unit action potentials (MUAPs) and
provide known spike trains and adjustable levels of additive
noise. However, they lack the modelling of the neuromuscular
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TABLE I
MAIN ACRONYMS AND NOTATIONS

iIEMG Intramuscular EMG

MN Motor neuron

MF Muscle fiber

MU Motor unit

MNAP Motor neuron action potential
SFAP Single fiber action potential
MUAP Motor unit action potential

NMJ Neuromuscular junction

FPS Farthest point sampling

L Length of the muscle

A Area of the muscle cross-section
N, F, B, P, D Total numbers of MNs (MUs), MFs, axon

branches, observation points and electrode tra-
jectory nodes

Indices designating a specific MN (MU), MF,
axon branch and observation point

‘ms " fs by 'p

F,, Bn Numbers of MFs and axon branches in n-th
MU

Sn, Qn Size and innervation area of n-th motor neu-
ron

drp(t) SFAP of f-th MF in observation point p

Dy (t) MUAP of n-th MN in observation point p

yp(t) EMG signal in observation point p

Ygr(t) EMG signal in multichannel electrode E; this

and other symbols in bold designate matrices
and vectors, instead of scalars

jitter, morphological variability of MUAPs, noise generated by
distant MUs, and electrode geometry.

Compared to the phenomenological approach, biophysical
modelling of iIEMG includes the calculation of each single
fiber action potential (SFAP) as a function of the fibers’
morphology and of the electrode’s relative position. This
approach provides an infinitely wide dictionary of MUAPs,
permits to take into consideration the electrode position and
the neuromuscular jitter. Moreover, biophysical EMG simu-
lation can be complemented by a force generation model in
order to establish a complete model of the muscle electrical
and mechanical responses [2], [3]. In this paper, we present a
new biophysical MUAP simulation model.

In this paper, we target the simulation of MUAPs recorded
by modern multichannel intramuscular electrodes, such as
those described in [4]. This objective requires the biophysical
approach to simulation, including modelling of the motor unit
(MU) territories, neuromuscular junctions (NMJ) locations,
and muscle fiber (MF) parameters. We also extend our ap-
proach to the modelling of gradually shifting intramuscular
electrodes for the simulation of scanning recordings and
evaluation of iEMG decomposition techniques.



Previous simulation models of iEMG have not been specif-
ically developed for multichannel recordings since these
recordings have been so far not common. Particularly, ex-
isting models [5], [6], [7] use constant distributions for the
locations of the MN innervation centers and of MFs, which
results in their non-uniform scattering in the muscle cross-
section. Additionally, approach presented in [5] assigns an
exact number of MFs to a motor neuron, forcing innervation of
fibers at large distances from the theoretical innervation zone.
While these issues minimally influence the surface or single-
channel localized intramuscular recordings, we observed that
it drastically affects the multichannel and scanning ones.

We have also observed that existing distributions of axial
locations of the NMJs [5], [6] result in a large scattering of
single fiber action potentials (SFAP) propagation delays. This
causes MUAP waveforms to be too complex in the multi-
channel simulations and to vary too quickly in the scanning
recordings.

In order to address these issues we propose a new modelling
approach that modifies several aspects of previous modelling
works, while preserving some of their properties [5], [8], [9],
[7].

In comparison with existing approaches, specific novelties
of our method are: 1) a new way to generate MFs coordinates
and MN innervation centers; 2) controllable and robust method
for fiber-neuron assignment; 3) an improved model of the ter-
minal arborization of motor neuron axons; 4) multichannel and
scanning electrode modelling. Although the proposed model
focuses on the simulation of MUAPs, it can be easily extended
to a full iEMG generation. This requires an appropriate motor
neuron pool model for the spike trains generation, such as that
presented in [6].

The remainder of this article is organized as follows. MFs
and innervation centers distributions in the muscle cross-
section are presented in section II-A. Next, the fiber-neuron
assignment procedure is described in section II-A3. Section
II-B4 explains the modelling of terminal arborizations and of
MN action potential (MNAP) propagation delays. Finally, the
simulation of MUAPs recorded by multichannel and scanning
electrodes is described in section II-C6. Examples that demon-
strate the performance of the proposed sub-models will be
presented both in the Methods (II) and Results (IIT) sections.

II. METHODS
A. Model of the MF distribution and innervation

1) Distribution of innervation centers in the cross-section
of the muscle: We assume that innervation centers of the
motor neurons are distributed uniformly in the muscle cross-
section. This assumption was also made in previous works on
EMG simulation [6], [7]. Their authors propose to draw the
innervation centers from a constant distribution over muscle
cross-section. The issue arising from this approach is that con-
stant distribution does not guarantee the resulting innervation
centers to be uniformly scattered in the muscle cross-section.

We propose to use the farthest point sampling (FPS) [10],
[11] instead of drawing from the constant distribution. FPS is a
family of algorithms that fill a 2D domain by iteratively adding
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Fig. 1. Innervation centers of N=100 motor neurons (magnitude R=50) across
the cross-section area of the muscle; circles are drawn to illustrate the sizes
of corresponding MN (and not their innervation areas).

points that are maximally distant from the already added ones
and from the region’s borders. The FPS algorithms also permit
to specify an arbitrary density function over the region [10],
[11], [12].

The aforementioned property of FPS algorithms allows us to
maximally disperse the motor neurons’ innervation centers in
the muscle cross-section. Moreover, by generating innervation
centers in the order of decreasing motor neurons’ sizes, we
obtain a distribution in which the territories of motor neurons
with similar sizes are as distant from each other as possible.
As an example, Figure 1 shows that the innervation centers
of different sizes evenly fill the muscle cross-section. We note
that this property promotes the uniformity for distributions
of the parameters that depend on MN size, e.g. muscle fiber
diameters, a problem that was addressed in [13], [14]. Alterna-
tively, motor neurons can be assigned in a randomized order,
if the simulation strategy includes no specific assumptions on
the innervation geometry.

2) Distribution of fibers in the cross-section of the muscle:
Similarly to [5], [7], [15], MFs are modeled as straight parallel
lines oriented along the z-axis, with their extremities located in
the tendon regions, while the muscle is modeled as a cylinder.

The distribution of MFs in the muscle cross-section (zy-
plane) should be uniform and, preferably, should take into con-
sideration the diameters of fibers. In previous works [6], [7],
the fibers’ locations were drawn from a constant distribution
within the corresponding motor unit territory. As it was noted
above, this method, combined with previous approaches for
innervation centers generation, does not guarantee the global
uniformity in the entire muscle cross-section. Alternatively, in
[5] MFs were positioned prior to the generation of innervation
centers in the nodes of a regular rectangular grid.

We propose to generate the MFs locations using the FPS
algorithm, prior to the generation of innervation centers, in
order to obtain a distribution with guaranteed uniformity in the
entire muscle cross-section. Figure 2 provides a comparison of
the locations generated by this method with those drawn from
the constant distribution. In our simulation we use constant
MF density of 400 fibers per mm?, however, FPS additionally
permits to impose a specific local density for each point of
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Fig. 2. MFs distribution in a 1-mm?

distribution (a) and by FPS (b).

area, generated by drawing from constant

the region.

3) Fiber-neuron assignment: We establish a randomized
procedure in which fibers are assigned to motor neurons
according to the following variables: the expected number
of fibers innervated by the neuron, fiber’s proximity to the
innervation center and presence of neighboring fibers already
assigned to that motor neuron. For each neuron-fiber pair,
the probability of assignment is represented by a score that
combines influences of each of these factors:

Pr(n) ~ Pyt Pi(xg.yp) - Pi(i, fine) (1)

where Pf(n) is the score that characterizes the probability
of f-th fiber to be assigned to n-th neuron; P denotes the a
priori probability of assignment, P¢ denotes the distribution of
fiber’s coordinates around n-th motor neuron, and Pg(n, fime)
is an indicator function returning O if any of n. closest
neighbors of f-th fiber is already assigned to n-th unit, and 1
otherwise.

The pseudocode of the fiber assignment algorithm is pre-
sented in Algorithm 1. Let us consider each multiplier in (1)
in a detailed way.

4) A priori probability of assignment: The number of MFs
innervated by a motor neuron is proportional to its size.
We calculate the a priori probability P? of muscle fiber
innervation in the following way:

Pi—

ZnZI Sn

where s, is the size of the n-th motor neuron which can

be modeled using an exponential distribution for recruitment
thresholds, as proposed in [6].

5) Distribution of MF coordinates around an innervation
center: We assume that the innervation territories of MNs are
circular; this assumption is common for EMG simulation mod-
els and is supported by experimental data [16]. We model the
Pg as a symmetrical two-dimensional Gaussian distribution:

2

11 x—pd )+ (y—p,)?
PO y) = L. o | B )"+ (Y — 1)
" S, 2mod 20512

(3)
where x and y are coordinates of the muscle fiber; mean 1 is
coincident with the innervation center of n-th motor neuron;
S, is an out-of-border coefficient (see explanation below in
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Fig. 3. Number of fibers innervated by each motor neuron for a muscle
with radius of 5 mm, 31400 fibers, N=100 neurons and magnitude of size
distribution sy /s1=50. Red curve: model, according to motor neuron sizes;
bar plot: proposed assignment procedure.

this section); standard deviation 09 = a,,/wC is proportional
to the MN’s innervation area a,, with scattering coefficient C.

We assume that innervation areas of MNs are proportional
to their sizes, with a scaling factor A/k: a,, = s, /sn - A/k,
where A is the area of the muscle cross-section. The value
of k sets up the area of the largest MN as a fraction of the
muscle cross-section area: k = A/ay. The value of k varies
across muscles. In our simulation, we have chosen a value
of k=4. The value of the scattering coefficient C' regulates
the tightness of the Gaussian distribution of fibers around the
innervation center. We calculate it assuming that a,, is the area
of 0.99 confidence circle for corresponding distribution, giving
us C' = inv-x?(0.99,2) = 9.21.

Out-of-border coefficient .S,, takes into consideration the
fact that innervation areas of some motor neurons may exceed
the muscle border, which, in reality, should not make them
innervate less MFs than required by their size. .S,, is calculated
as a double integral of the original Gaussian distribution in (3)
above the domain corresponding to the muscle cross-section.
Thus, the probability P¢ sums to 1 while integrating over the
muscle region. Considering the classification proposed in [13],
this approach can be assigned to uniform-augmented territory
placement.

6) Adjacency of fibers innervated by same motor neuron:
Due to the phenomenon of self-avoidance in the arborizations
of MNs axons [17], MFs of the same motor unit rarely lie
next to each other. This fact is reflected in equation (1) by
using an additional factor P%(n, f,n.), which equals to zero
if at least one of the n. closest fibers is already innervated by
n-th motor neuron.

The value of n. also regulates the scattering of MNs’ fibers
across the muscle cross-section. We suggest n. = 5 for a
regular modelling strategy. This choice prevents the formation
of dense clusters of fibers innervated by the same MN, while
authorizing a limited adjacency.

7) Results of the MFs innervation modelling: In order to
demonstrate the results of the fiber innervation model, we
simulated a muscle of 10 mm in diameter with a mean
fiber density of 400/mm?, resulting in approximately F=34000
fibers. It was innervated by N=100 motor neurons with mag-
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Fig. 4. Innervation territories of MNs from the same simulation as in Figure
3, drawn as convex hulls of innervated fibers coordinates; a random subset
of 50 out of 100 MN is shown to avoid clutter. Points of the same color as
borders represent the innervated MFs’ locations.

Algorithm 1 Fiber assignment procedure

1: while not all fibers are assigned do
2:  w = zeros(N,1);

3 f = random non-assigned fiber;
4:  for each motor neuron n do

5 calculate P2, P¢, P4,

6: wy, < P%. PJ . P

7. end for

8:  assign fiber f to a random neuron n with weight w,;
9: end while

nitude of size distribution sy /s1=50. The resulting numbers
F,, of innervated fibers per motor neuron are shown in Figure
3. This distribution follows very closely the one imposed by
the model F,, = F -5,/ S0, 5.

The resulting innervation areas also lie close to their model-
imposed values. They can be calculated both as areas of con-
vex hulls or areas of 0.99 confidence ellipsoids. An example
of resulting innervation territories’ forms is provided in Figure
4.

B. Model of the axon branching

A neuromuscular junction is a biological interface between
a single muscle fiber and its innervating motor neuron axon.
In order to innervate all its fibers, an axon splits into smaller
branches, forming a complex and uneven tree structure with
neuromuscular junctions at its leaves [17].

The motor neuron action potential (MNAPS) originates in
the soma of the MN and propagates along the MN axon
branches until reaching each of the innervated MFs. The
lengths of the paths to each fiber vary due to the scattering
of the neuromuscular junctions in the muscle. This causes
the scattering of MNAP propagation delays, which affects the
morphology of the MUAPs. As concluded in [16], temporal
dispersion of the MUAPs is to a larger extent due to the spatial
dispersion of the NMJs than to the differences in conduction
velocities of the fibers.

In this section, we will show how our simulation model
calculates the coordinates of neuromuscular junctions and
MNAP propagation delays.

MN axon

Branch First branching point

Bri Br2 Brg

11
N/

Terminal
arborization

Neuromuscular
junctions

Terminal
arborization root

Fig. 5. Structure of motor neuron axon branching, modeled as a tree with
a single bifurcation, where the axon is the root and neuromuscular junctions
are the leaves. Leaves are organized into terminal arborizations Br; using
k-means clustering of fiber positions in the cross-sectional plane.

1) Structure of the axon branching model: A MN axon
can be represented as a root of a tree structure that splits into
several branches of smaller radii. This process is then repeated
several times within each branch until each muscle fiber is
reached.

In our model, we suppose that split is done only twice
(see Figure 5). Thus, each muscle fiber and its neuromuscular
junction are assigned not only to a motor neuron but to a
specific branch of its axon. We establish such a model in order
to constrain the complexity of MUAPs while providing phys-
iologically correct distributions of NMJs along the muscles.

2) Fiber-branch assignment: We assume that the number
of branches is proportional to the MU’s size and that its
value defines the number of phases in its action potential. The
following expression provides the numbers of branches/phases
that correspond to the experimental action potentials for small
motor units (1-2 phases) as well as for the largest ones (4-6
phases):

B, =1+ [In(s,/s1)] “4)

where s, is size of n-th motor unit and |-] stands for rounding
to the nearest integer.

For each motor unit, in order to assign each MF to a specific
branch, we first define the number B, of branches using
equation (4) and then run the k-means clustering algorithm
over the motor unit’s fibers coordinates in the cross-sectional
plane, looking for B,, clusters. In this case, k-means seeks for
B,, groups of closely-located MFs of the MU. Then the MFs
of each group are assigned to a single axon branch.

3) Coordinates of neuromuscular junctions: In the muscle
cross-section (zy-plane), the NMIJs coincide with their MFs.
Along the z-axis, the assignment of the MFs to specific axon
branches permits to generate a multi-modal distribution of the
NMIJs (see Figure 6). Such distribution has an advantage over
previously used uniform or unimodal Gaussian distributions
[5] in terms of MUAP waveforms, especially in case of large
MUs, where unimodal distributions tend to excessively scatter
the SFAP delays, leading to the generation of abnormally
polyphasic MUAPs.

Figure 6 demonstrates the distribution of MFs of two
different branches in the cross-sectional area (left), as well
as the densities of their neuromuscular junctions along the z-
axis (right). These densities are modeled as Gaussian clusters
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Fig. 6. Neuromuscular junction z-coordinates distribution model: combination
of Gaussians scattered across end-plate zone, each associated with a cluster
of MFs in the muscle cross-section.

with mean values scattered across the z-axis of the muscle,

and standard deviations much smaller than the muscle length.
We calculate mean values ., and standard deviations o, of

intra-cluster densities using the following model:

n N
/tfz ~4g (L/27 O"n) y On = Qp +b;¢ : Zsk/ZSk
k=1

k=1
" N (5
UZ = ay + by - Zsk/Zsk
k=1

k=1

where parameters a,,, b,, a4, b, in combination with fiber and
axon conduction velocities define the dispersion of the MNAP
propagation delays, and, thus, the duration of MUAPs.

In order to obtain an initial estimate of these parameters,
we impose the largest and the smallest MUs to have MUAPs
with durations of 2.5 ms and 7.5 ms respectively. Considering
mean conduction velocities of their fibers to be 2500 mm/s and
5000 mm/s [9], we can approximately calculate the necessary
span of their neuromuscular junctions, giving correspondingly
lmin = 6.25 mm and [,,,, = 37.5 mm. We also assume that
the standard deviation of the cluster centers o,, is larger than
the intra-cluster deviation 0¥ since a MUAP usually contains
several distinct phases. In simulation, we have found that it
is convenient to set d, = 0,,/0® to 4. Finally, we note that
the span of neuromuscular junctions along the z-axis for n-th
motor unit can be roughly calculated as 3(o,, + 0?).

These considerations give us the following system of equa-
tions:

S(CL;L +a0) :lmina

3(a +aa+b +bg :lmaxa

( 12 14 ) (6)
bu/bs = do,

CLM/CLU = do;

solution of which for d, = 4 gives a, = 0.4, b, = 2.1,
a, = 1.7, b, = 8.3 (all in millimeters). We should consider
these values as upper estimates, since MUAPs’ lengths are also
influenced by MNAP propagation delays (see Section II-B4
for details) which were not yet taken into account. According
to our observations and for MNAP propagation delays listed
in Section II-B4, a set a; = 0.25, b = 1, a, = 1, b, =
2.5 produces MUAPs with physiologically correct forms and
duration.

4) Delay of MNAP propagation: Once all the MFs of a
motor unit are assigned to their branches and the z-coordinates
of NMIJs are generated, we can calculate the delays of MNAP
propagation towards each junction. We divide the lengths of
each segment of the axon (see Figure 5) by their propagation
velocities, thus, the delay for f-th fiber assigned to b-th branch
of n-th motor unit is:

), — @}

e —ahl

dy @)

Uy Ut
where

. a:; are coordinates of the neuromuscular junction of f-th
fiber in k-th branch of n-th motor unit.

. azz are coordinates of the terminal arborization root at the
k-th branch of the n-th motor neuron’s axon, calculated
as mean of the neuromuscular junctions positions:

Nk )
z =2
f=1

e x¢ are coordinates of the first branching point of n-th
motor unit, which is calculated as the mean of arboriza-

tion roots:
K,
c __ b
Ty = E Ty
k=1

o vy is MNAP propagation velocity in a branch of the motor
neuron axon;

« v; is MNAP propagation velocity in a terminal arboriza-
tion of the motor neuron axon;

We assume that branches’ propagation velocities are much
smaller than that of the axon due to their smaller diameter and
the absence of myelination in case of terminal arborization.
Values that we used in our model are: v, = 10 m/s, v; = 1 m/s
(for comparison, typical propagation velocity of an MN axon
is 50 m/s). To our best knowledge, there is yet no experimental
data on v; and vy in the literature.

C. MUAP and EMG simulation
1) Muscle fiber action potential modelling: In order to
simulate single fiber action potentials (SFAPs) we define a
potential induced in an observation point by an elementary
current source located at a narrow fiber’s slice at coordinate z
[18], [9]:
d 1.
%=1 T3 2
V2o o, + (zp — 2)

40,

where

e I, is an elementary current source;

e z and z, are locations of the elementary current source
and of the observation point respectively;

o 1 is radial distance between the muscle fiber and the
observation point;

e d is the diameter of the muscle fiber; values of the
diameters are modeled as proposed in [5];

e 0, and o, are radial and axial conductivities of the muscle
tissue (0.063 S/m and 0.33 S/m respectively [9]);
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Fig. 7. Effect of propagation delays of MNAPs (dy) and SFAPs (dy) on
resulting motor unit action potential.

During contraction, transmembrane current sources are con-
tinuously distributed along the fiber rather than being concen-
trated in certain points. Let us denote this distribution, at time
t, as I(z,t). The potential ¢,(t) at the observation point p,
generated by this distribution can be calculated as convolution

[9]:
op(t) = / h(zp — 2)I(z,t)dz )

In order to model the transmembrane current distribution
I(z,t), we use the approach proposed in [8] (see their equation
(17)), which was also recently implemented in another EMG
simulation model [7]. The intracellular action potential model
from [9] was used, as suggested in [19].

2) Motor unit action potential modelling: Action potential
of a MU is modeled as a linear sum of its muscle fibers” SFAPs
[5]. Taking in consideration the delays and neuromuscular
jitter in axon branches (see also Figure 7 for illustration):

F,
Op(t) = dpplt —dy — Q) (10)
f=1

where ®,,,(¢) is the MUAP of n-th motor unit, observed in
point p; F,, is number of fibers innervated by this motor
unit; ¢¢,(t) is SFAP of f-th muscle fiber of n-th motor
unit, observed in point p; dy is the delay between the MNAP
discharge and its arrival to the neuromuscular junction of the
fiber (see expression (7)); ¢ is a neuromuscular delay caused
by jitter, randomly drawn for each muscle fiber and for each
new realization of ®;,.

Delays caused by neuromuscular jitter are of the order of
s [20]. In order to be able to simulate their influence on the
SFAPs, while using reasonable sampling frequencies, we use
sub-sample waveform shifting presented in [21].

3) EMG in a single observation point: EMG is modeled
as a linear sum of contributions from all MUs [22], while
the contributions are convolutions of spike trains and MUAPs.
We formulate the expression for simulated EMG, acquired in
observation point p, in a similar way:

N card(Uy,)

=3 S @yt~ Uu)
k=1

n=1

Y

where y,(t) is the simulated EMG signal in observation point
p, Uy, is a vector of spikes’ time instants for n-th motor neuron;
and k is the index of a spike in U,.

4) EMG in a single-channel electrode: Due to the fact that
a metallic electrode is a conductor, the electric potential is
constant across its volume. Its value can be approximated
by an average field in the observation points adjacent to the
electrode [5]. Therefore, a SFAP detected by an electrode can
be calculated as an integral of the potential ¢(t) over the
electrode’s surface. Due to the linearity of (10) and (11), the
same applies to MUAPs and the overall signal detected by the
electrode.

In our model, we approximate the recording surface by a
number of elements with an observation point associated to the
center of each element. The electrode potential is, thus, equal
to the sum of element potentials weighted by their areas. Thus,
iEMG signal recorded by an electrode is a linear combination
of the signals in the observations points:

tep] - y?.(.t) —EY(t) (12)
yp(l)

where e, is area of the electrode’s element associated to
p-th observation point, its sign depends on the polarity of
corresponding amplifier input; y,(¢) is EMG signal calculated
at observation point p using equation (11); in following, E and
Y (t) will be referred to as electrode matrix and observation
vector. See examples in the appendix.

MUAP recorded by electrode E can be easily obtained using
(11) and (12) while setting U,, = {0}:

D,,1(¢)
D,,0(t)

YE(t) = [:l:(—;’l :|:€2

g = [+e1 *eo +ep]- =E®,(t) (13)

D, p(t)
This holds as well of the following equations of multichan-
nel and scanning recordings.
5) EMG in a multichannel electrode: Calculation of a

multichannel EMG signal can be conveniently represented by
a stack of electrode matrices E (12):

E; | [w(t)
Yet) = | 22| |20 —EY( (14)
Enm| [yp(t)

6) Modelling of EMG in a shifting electrode: Shifts can
be modeled as a combination of translations and rotations of
the electrode along a specified trajectory in the muscle. This
trajectory can be approximated by a number of nodes D linked
by successive rigid transformations.

The current position of the electrode on the trajectory curve
can be specified by a continuous path parameter 0 < A <
D — 1, where D denotes the overall number of nodes in the
trajectory.

The signal, as a function of the current position of the
electrode, can be calculated as follows:



)
Y2(t)

Ye(t,\) = E [I;(A) Io(\) ... In(\)] (15)

YD (1)

where Ig =1-§(\ — (d — 1)), 6(+) is Dirac delta function
and T is identity matrix of size P; Y9(t) is the observation
vector in the trajectory node d.

The signal acquired in positions located between the tra-
jectory nodes can be linearly interpolated, given a sufficiently
fine trajectory sampling. One can express the signal acquired
in a specific position A on the trajectory:

Y(t)
Yg(t,\) =E [il(A) () .. iD(A)} Ym(t) (16)
YP(t)

where Ig()\) is a weighted identity matrix determined as
following:

Iq(\) =TI -max [0, 1 —|d—1— [ (17)

Kernel (17) is equal to one when A = d — 1 (i.e. when
calculating the signal exactly in trajectory node d) and linearly
weights the neighbouring nodes d and d+1 when d—1 < A\ <
d. An example of a MUAP captured by a fine-wire electrode,
that moved transversally to the MFs, is shown in Figure 8.

Path parameter A can be a function of force or time since
usually electrode shifts occur due to either muscle deformation
during contraction or other factors that can be described as
functions of time.

ITI. SIMULATION RESULTS

In order to demonstrate the capabilities of the proposed
model, we provide several examples of how it can be applied
to the simulation of experimental studies.

A. Multichannel MUAP example

To assess the performance of the proposed multichannel
MUAP modelling, we establish a simulation case showed in
Figure 8: an array of 16 equidistant electrodes spaced by
1 mm gap was inserted into the muscle at the angle of 30
degrees to the fibers. This array simulates recently proposed
intramuscular electrodes for human studies [4]. In total, 15
channels were obtained by consecutive differentiation of the
signals in the electrodes. We have chosen a MU for which the
center of the territory lied close to the electrodes. The length
of the muscle in this simulation was 50 mm, and the end-plate
zone was positioned around the center of the muscle, as stated
in formula (5). The array was placed in one of the halves of
the muscle and didn’t cross the MU’s end-plate zone.

From Figure 8, we notice several relevant results. First, the
amplitudes of the MUAPs are inversely proportional to the
distance between the channel’s observations points and the
center of the MU’s territory. Second, the centers of energy
of the MUAPs shift to the right as the distance between the
channel and the end-plate increases, due to the simulation of
SFAP conduction. Third, the transformations between MUAPs
in neighboring channels are consistent and MUAPs have
physiologically correct durations (approximately 5 ms).
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L

Ch 14
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Fig. 8. Lower half: multichannel array of 16 equidistant electrodes spaced by
1 mm gap, inserted into the muscle at the angle of 30 degrees to the fibers.
Consecutive differentiation is applied to the multichannel signal, providing
15 differential channels. Upper half: MUAPs in each of the resulting 15
differential channels. All MUAP plots have the same vertical axis scale. The
black round markers designate the trigger time, same for all the MUAP plots.
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Fig. 9. A scan simulated with a two-point differential electrode which was
shifted transversally along a 10 mm-long trajectory across the territory of
a MU. Black dots on the right plane are 1 mm increments of the electrode
position, for which the MUAPs (black solid lines) are calculated. Intermediate
values of MUAPs are obtained using scanning and interpolation formula (16).

B. Single MU territory scanning simulation

Equation (16) permits to simulate a ”scan” of a motor unit
territory. An example is presented in Figure 9 where a MUAP
is shown at 10 equidistant nodes positioned along a straight
trajectory that goes across a large MU’s territory through
its center. The overall duration of the generated MUAP is
approximately 5 ms. This result is qualitatively in agreement
with experimental observations [23], [24].

C. MUs territory assessment

The multichannel MUAP model permits to simulate the
studies that aim at the estimation of MUSs’ innervation ter-
ritories. As an example, here we have simulated a procedure
that is similar to a previous experimental study [25]. More
specifically, we have simulated a 10-mm long array of 11
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(a) Location of the innervation territories of detectable
MUs in the cross-section of the muscle. Black dots -
electrode locations, numbers - indices of MUs, colored
lines - territories’ borders.
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Fig. 10. Results of territory assessment simulation. Colors between figures
are matched for easier correspondence.

equally spaced intramuscular electrodes, making ten channels
with consecutive differentiation, inserted to a 10-mm wide
muscle at an angle of 90° to the fibers. The diameters of the
territories are estimated as the number of the channels where
the MUAP’s peak was four times greater than the standard
deviation of the baseline noise [26], [25]. The SNR was set
to 15 dB in this study. Only MUs with recruitment thresholds
that are below of 50% MVC were considered for the analysis.
In order to establish this limit, contraction force was calculated
using the model proposed in [6].

From Figure 10, the estimated diameters generally correlate
with their true values. However, this simulation highlights
the fact that, for most of the MUs, the electrode array does
not cross the center of their innervation territories, which
results in an underestimation of the diameters (e.g., see MUs
40, 43, 55 in Figure 10). Also, we note that this technique
limits the estimated diameters to be multiples of the inter-
electrode distance and, thus, has low resolution. The proposed
simulation model can be used to test and evaluate more
complex approaches to MU territory assessment based on
multichannel iEMG decomposition.

D. Multichannel iEMG decomposition

Finally, we present the results of the application of a
decomposition algorithm to the simulated signals. In order

to generate an iEMG signal for decomposition, we have
implemented the motor neuron pool model proposed in [6].

A linear array of five electrodes (1-mm interelectrode dis-
tance) with consequent differentiation, providing four iEMG
channels, was used for this simulation. We measured the
average power of the simulated signal in all channels at
maximal net excitation in order to obtain a reference value for
calculation of the standard deviation o of the additive noise.
MUAPs whose maximal absolute value exceeded 40 in at least
one of the four channels were considered detectable and their
MUs were included to the annotation of the signal. The SNR
in all channels was set to 15dB and a trapezoidal contraction
reaching 20% MVC was generated.

The simulated EMG signal was decomposed by MTL,
the multichannel version of the algorithm proposed in [27],
[28]. We have compared the simulated annotation with the
decomposition provided by MTL. The decomposition was
evaluated using classification phase sensitivity and positive
predictivity [29] averaged across 11 detected MUs, which
resulted in, respectively, 0.93 4+ 0.04 and 0.97 4 0.03.

This result shows that MUAPs simulated by the proposed
model are conform to the feature extraction phase of a
common existing decomposition algorithm. They also fit its
multichannel model, providing results that are consistent in
terms of the sensitivity and positive predictivity rates.

IV. DISCUSSION AND CONCLUSION

We have described a new model for MUAP simulation that
includes the possibility to simulate multichannel intramuscular
electrodes, their arbitrary positioning, and gradual shifting
during acquisition. The model also includes new methods
for establishing uniform distributions of muscle fibers and
innervation centers in the muscle cross-section, for tuning the
fiber-neuron assignment, and for controlling the complexity of
the MUAPs.

While the model has several parameters to tune, these
parameters are designed to reflect the physiology of the motor
system and thus can be selected according to known phys-
iological variables. We suggest that the proposed approach,
being simple and physiology-based, provides greater flexibility
of simulation configurations than previous models, especially
in cases when different electrode types and placements are of
interest.

This model can be used to simulate a wide range of
experimental studies and computational methods, such as
for MU territory estimation, conduction velocity assessment,
denervation, and reinnervation. A full i(EMG simulation has
also been obtained by convolution of the modelled MUAPs
with spike trains provided by a previous model of the motor
neuron pool behaviour. This extension can be used for the
assessment of decomposition algorithms in terms of their
robustness towards the MUAPs variations.

In conclusion, we proposed a new model for the simulation
of invasive multi-channel EMG recordings that have a wide
range of potential applications in the test of computational
methods applied to intramuscular EMG signals. The corre-
sponding code can be accessed in the authors’ online reposi-
tory [30].



APPENDIX A
EXAMPLES OF THE ELECTRODE MATRIX FOR BASIC
SIMULATION CASES

[7]

[8]

A fine wire electrode can be approximated by a pair of

points with equal areas. In the case of bipolar acquisition, the

[9]

resulting signal is equal to the difference between potentials

observed in the two points (see expression (12)):

(10]
Y1 (t) [11]
Ye(t)=1|1 -1]-
e(t) = ] {yz(t)}

Signal acquired by an array of point electrodes with con- [12]
secutive differentiation can be represented as follows (see
expression (14)): [13]

-1 1 0 0] [v1(t)
Yi(t) = 0o -1 1 0| [y2(t) [14]
0 -1 1 yp (t)

Assuming that the electrode’s trajectory is approximated by

[15]

only two nodes, an EMG signal from a fine-wire electrode,

before the shift (A = 0) and after the shift (A = 1) can be

(16]

expressed as (see equation (15)):

Yg(t,0) =

T

1 y! 3] 07
-1 |y )
0 Y3 ) [18]
0 Y3 (t )

[19]

where the lower index of y corresponds, as previously, to the

electrode element, while its upper index denotes the trajectory

[20]

node.
Applying expression (16) to the previous example, we can

calculate the signal acquired at 1/4-th of the way (A = 0.25):

[1]

[2]

[3]

[4]

[5]

[6]

21]
T
0.75 17 [y} (t)
—0.75|  [yk(1)
025 | |y3(t)
—0.25] |y3(t)

[22]

Yg(t,0.25) =
(23]
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