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Paul-Baptiste Rubioa, Ludovic Chamoina,∗, François Loufa
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Abstract

The work introduces new advanced numerical tools for data assimilation in structural mechanics. Considering

the general Bayesian inference context, the proposed approach performs real-time and robust sequential

updating of selected parameters of a numerical model from noisy measurements, so that accurate predictions

on outputs of interest can be made from the numerical simulator. The approach leans on the joint use of

Transport Map sampling and PGD model reduction into the Bayesian framework. In addition, a procedure

for the dynamical and data-based correction of model bias during the sequential Bayesian inference is set up,

and a procedure based on sensitivity analysis is proposed for the selection of the most relevant data among a

large set of data, as encountered for instance with full-field measurements coming from digital image/volume

correlation (DIC/DVC) technologies. The performance of the overall numerical strategy is illustrated on

a specific example addressing structural integrity on damageable concrete structures, and dealing with the

prediction of crack propagation from a damage model and DIC experimental data.

Keywords: Data assimilation, Bayesian inference, Model reduction, Modeling error, Real-time simulations,

Full-field measurements, Uncertainty quantification
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1. Introduction

Data assimilation for model updating has become a common practice in structural mechanics activities.

It enables to produce relevant numerical simulations that are as close as possible to the reality, and conse-

quently that enable to predict at best the behavior of physical systems of interest. The procedure is usually

performed from a set of experimental observations which are assimilated in a single shot, as for the iden-5

tification of material constitutive laws for instance, but recent applications also lean on the sequential (in

time) assimilation of data obtained on-the-fly. In particular, this latter approach is a key concept of Dynamic

Data Driven Application Systems (DDDAS) in which a continuous interaction between in situ experimental

data and simulation tools is implemented for control purposes [6]. In such a context, the numerical model

constantly needs to precisely describe the evolving physical system, so that a real-time dynamical updating10
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of model parameters is required inside the retroactive control loop.

It is well-known that the determination of model parameters from indirect and noisy observations usually

leads to ill-posed inverse problems. In order to address this issue, and directly take the various uncertainty

sources (modeling error, measurement noise,..) into account, a convenient and powerful stochastic framework

based on Bayesian inference can be employed [10, 23, 22]. It constitutes a natural regularization procedure15

in which a probability density, obtained from the Bayes formula, is assigned to the set of parameters to be

identified. These parameters are thus considered as random variables and the result of the inference is the

associated probability density function (pdf), so that assimilation uncertainties may be further propagated

through the model. However, a well-known drawback of Bayesian inference is its computational complex-

ity which makes real-time simulations and sequential assimilation some difficult tasks. Indeed, the inverse20

approach requires solving the numerical model usually described by PDEs for many combinations of the

parameters, which is a costly multi-query process. Furthermore, the posterior pdfs have to be explored to

derive useful information such as mean, standard deviation, maximum, or marginals, which requires the

computation of multi-dimensional integrals over the parameter space. This is classically performed using

Markov Chain Monte-Carlo (MCMC) [10] or Sequential Monte-Carlo [1] methods which are also computa-25

tionally intensive [17]. Consequently, the use of Bayesian inference remains nowadays intractable in real-time

applications such as those envisioned for DDDAS.

In this work, we first present a new formulation of Bayesian inference which is compatible with real-time

sequential model updating. It is based on the joint use of two advanced numerical techniques inside the30

Bayesian framework. First, and as an alternative to Monte-Carlo techniques, Transport Map sampling [7] is

introduced to simplify the post-processing of posterior pdfs. It defines a deterministic application between

a posterior probability measure to be sampled and a simple reference probability measure (e.g. standard

normal distribution) [14, 21], so that all computations (sampling, numerical integration, . . . ) can be per-

formed in a straightforward manner from this latter measure. The construction of the application is based35

on a mapping with polynomial structure and results in the solution of a minimization problem. Transport

Map sampling goes with convenient sampling error estimates and clear convergence criteria. Furthermore,

the natural composition of transport maps is particularly suited to sequential data assimilation.

Second, we resort to model reduction by means of the Proper Generalized Decomposition (PGD) technique [4]

to highly lower the computation time. This technique describes the multi-parametric model solution by40

means of a modal representation with separated variables and explicit dependency on model parameters.

Constructed in an offline phase, the PGD solution is then used at two levels in the online phase of the

Bayesian data assimilation procedure. On the one hand, due to a straightforward model evaluation for any

parameter set, it is employed to compute likelihood functions associated with posterior pdfs [2, 19] and prop-

agate uncertainties on outputs of interest at low cost. On the other hand, the PGD representation yields45

explicit gradient and Hessian information, which yields a large speed-up in the computation of transport
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maps [20].

In order to further increase robustness, we also propose here a procedure to correct model bias during

the sequential Bayesian inference. This procedure is based on the introduction of a data-based enrichment50

term, constructed from a comparison between the predicted model outputs and the actual data along the

assimilation process. The model enrichment is defined dynamically and in a stochastic setting; it is propagated

in time by means of specific extrapolation procedures. We mention that the proposed approach can be viewed

as a stochastic version of some preliminary works conducted in a deterministic context [13, 5].

Eventually, and in order to circumvent technical issues when a large amount of experimental data is55

available (as in the case of full-field measurements coming from digital image/volume correlation (DIC/DVC)

technologies), we address the topic of data selection. A selection of the most relevant data for the model

updating purpose is here performed by means of sensitivity analysis, using information directly available in

the offline phase.

The overall numerical strategy which is proposed leads to an attractive and very efficient approach to60

address real-time, robust, and sequential data assimilation. Its performance is here illustrated on a specific

application in the context of structural integrity for large-scale structures. The objective in this application

is the real-time prediction of crack propagation (e.g. final crack length, or failure probability) in concrete

beams by means of a PGD-reduced damage model and experimental data sequentially provided by DIC

measurements.65

The paper is structured as follows: Bayesian data assimilation and posterior sampling using the Transport

Map framework are presented in Section 2; PGD model order reduction and its benefits in the present context

are explained in Section 3; the procedure for model bias correction is detailed in Section 4; data selection is

addressed in Section 5; numerical results are reported in Section 6; eventually, conclusions and prospects are70

drawn in Section 7.

2. Transport Map sampling in Bayesian data assimilation

2.1. Basics on Bayesian inference

The purpose of Bayesian inference is to characterize the posterior pdf π(p|dobs) of a d-dimensional vector

of model parameters p ∈ P by means of indirect noisy measurements dobs. In this context, the Bayesian

formulation of the inverse problem reads [10]:

π(p|dobs) =
1

C
π(dobs|p).π0(p) (1)

where C =

∫
π(dobs|p).π0(p)dp is a normalization constant, π0(p) is the prior pdf that is related to the

a priori knowledge on the parameters (i.e. before the assimilation of data dobs), and π(dobs|p) is the so-

called likelihood function. This latter function corresponds to the probability for the model M to predict
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observations dobs given a value of the parameter set p. With the classical assumption of additive measurement

noise, with pdf πmeas, the likelihood function reads:

π(dobs|p) = πmeas(d
obs −M(p)) (2)

and requires multiple runs of the model in order to get M(p).

In the case of sequential assimilation of measurements dobs
i at time points ti, i ∈ {1, ..., Nt}, the Bayesian

formulation is given by considering the prior at time ti as the posterior at time ti−1:

π(p|dobs
1 , ...,dobs

i ) ∝

 i∏
j=1

πtj (dobs
j |p)

 .π0(p) (3)

with πtj (dobs
j |p) = πmeas

(
dobs
j −M (p, tj)

)
for a given set of measurements dobs

j , and with the same assump-

tion on measurement noise as before. We highlight that in the previous formulations, no assumption is made75

on the pdfs or on the model.

From the implicit expression of π(p|dobs) (or π(p|dobs
1 , ...,dobs

i )), additional exploration with quantities

of interest such as means, variances, or first-order marginals, is in practice operated and exploited. These

quantities, which are based on posterior pdf sampling and large-dimension integrals, are classically computed80

using Monte-Carlo integration-based techniques such as Markov Chain Monte-Carlo (MCMC). However, such

multi-query procedures are much time consuming and incompatible with real-time computations; we thus

propose an alternative approach in the following section.

2.2. Transport Map sampling

2.2.1. Principle85

Transport Map sampling originates from pioneering works dealing with optimal transport [24] which were

later adapted to Bayesian inference with effective computation tools [21]. The general idea is to build a

deterministic mapping M between a reference probability measure νρ (associated with pdf ρ) and a target

measure νπ (associated with pdf π), the purpose being then to perform a change of variables such that:∫
gdνπ =

∫
g ◦Mdνρ (4)

In this framework, samples drawn according to the reference pdf ρ can be thus transported by means of the

mapping M in order to become samples drawn according to the target pdf π (Figure 1). In the same way, a

quadrature rule for ρ can be transported to a quadrature rule for π. For the considered Bayesian inference

context, the target pdf π corresponds to the posterior pdf π(p|dobs), while a standard normal Gaussian pdf

is chosen as the reference pdf ρ.

From the reference pdf ρ, the purpose is therefore to build the map M : Rd → Rd such that:

νπ ≈M]νρ = ρ ◦M−1|det∇M−1| (5)
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where ] denotes the push forward operator. To quantify the difference between νπ and M]νρ, the Kullback-

Leibler (K-L) divergence DKL is introduced:

DKL(M]νρ||νπ) = Eρ

[
ln

νρ

M−1] νπ

]
=

∫
P

[log(ρ(p))− log([π ◦M ](p))− log(|det∇M(p)|)] ρ(p)dp (6)
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Figure 1: Illustration of the Transport Map principle for sampling a target pdf.

2.2.2. Computation of the map

The map M is searched among Knothe-Rosenblatt rearrangements (i.e lower triangular and monotonic

maps). This particular choice of structure is motivated by the properties of unique minimizer of (6), optimality

with weighted quadratic cost, and computational feasibility [14, 21]. The map M is thus parameterized as:

M(p) =


M1(a1

c ,a
1
e, p1)

M2(a2
c ,a

2
e, p1, p2)

...

Md(adc ,a
d
e , p1, p2, ..., pd)

 (7)

with Mk(akc ,a
k
e ,p) = Φc(p)akc+

∫ pk

0

(Φe(p1, ..., pk−1, θ)a
k
e)2dθ. Functions Φc and Φe are Hermite polynomials

associated with coefficients ac and ae to be set. With such a parameterization, the optimal map M is obtained

by minimizing the K-L divergence (6). Using a specific quadrature rule (ωi,pi)
N
i=1 for the pdf ρ (Gaussian

quadrature usually), the associated minimization problem reads:

min
a1,...,d
c ,a1,...,d

e

N∑
i=1

ωi
[
−log(π̄ ◦M(a1,...,d

c ,a1,...,d
e ,pi)− log(|det∇M(a1,...,d

c ,a1,...,d
e ,pi))|)

]
(8)

where π̄ is the non-normalized version of the target pdf. This problem is fully deterministic and can be solved

using classical algorithms (such as BFGS) with the computation of derivatives (gradient, Hessian) of π̄(p).

Once the map M is obtained, the quality of the approximation M]νρ of the measure νπ can be assessed
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through the convergence criterion εσ (variance diagnostic, see [21]) defined as:

εσ =
1

2
Varρ

[
ln

νρ

M−1] νπ

]
(9)

Therefore, an adaptive strategy regarding the order of the map can be derived from the criterion εσ in

order to reach a prescribed error tolerance. It is fruitful to notice that the numerical cost associated with the

computation of εσ is very low as integration is performed on the reference pdf ρ and with the same quadrature90

rule as the one used in the computation of the K-L divergence.

2.2.3. Sequential data assimilation with transport maps

In the case of sequential inference (assimilation of new data dobs
i at each time point ti), Transport Map

sampling beneficially exploits the Markov structure of the posterior pdf (3) to yield a computation time

which is almost constant for each assimilation procedure. Indeed, instead of being fully computed, the map

between the reference pdf ρ and the posterior pdf at time ti is obtained by composition of low-order maps:

(M1 ◦ .... ◦Mi)] ρ(p) = (M c
i )] ρ(p) ≈ π(p|dobs

1 , ...,dobs
i ) (10)

The mapM1 represents the coupling between the pdf ρ(p) and the first posterior pdf π(p|dobs
1 ) ∝ πt1(dobs

1 |p).π(p).

Then, each map Mi, i ∈ {2, ..., Nt}, is computed between ρ and the pdf π∗i defined as:

π∗i (p) = πti(d
obs
i |M c

i−1(p)).ρ(p) (11)

and corresponding to a posterior pdf affected by an inverse transformation using maps already computed for

all previous assimilation steps.

The schematic principle of the sequential computation of transport maps is given in Figure 2. We mention that95

for the assimilation of the first data set dobs
1 , an additional linear map L is computed (Laplace approximation).

This linear transformation step, which acts as a normalization of the parameter space, enables to build an

intermediate pdf that is closer to the standard normal reference pdf (in the sense that it has approximatively

zero mean and identity covariance matrix) which improves convergence in the computation of transport maps

Mi.100

3. Use of PGD model order reduction

3.1. Basics on PGD

Due to the increasing number of high-dimensional approximation problems in engineering activities, model

reduction techniques have been the object of a growing interest in research and industry to keep such problems

tractable. Here we deal with model reduction techniques that use low-rank tensor formats, and which

are prominent tools for the effective computation and representation of high-dimensional solutions. We

focus on an appealing technique based on low-rank canonical format and referred to as Proper Generalized

Decomposition (PGD), which was introduced and successfully used in many applications of computational

6
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Figure 2: Schematic principle of sequential inference with transport maps.

mechanics [4]. Contrary to POD, the PGD approximation does not require any knowledge on the solution.

It operates in an iterative strategy in which basis functions (or modes) are computed on the fly, by solving

eigenvalue problems.

In the classical PGD framework, the reduced model is directly built in an offline phase from the global weak

formulation of the problem of interest. It leads to an approximate solution um (PGD representation at order

m) of the exact model solution u, with a separated form [4]:

um(x, t,p) =

m∑
k=1

Λk(x)λk(t)

d∏
i=1

αik(pi) (12)

where x, t, and p are space, time, and parameter coordinates, respectively. This solution can then be easily

evaluated online, computing products and sums of mono-parameter functions.

3.2. PGD in Bayesian inference105

In the formulation (3), the posterior pdf can be explicitly expressed as a function of parameters p only

when the model is also explicit with respect to p. However, in most engineering applications, the model is

derived from some Partial Differential Equations (PDEs) with implicit dependency on parameters p. This

usually requires the full computation of the model solution for a many values of the parameter set p, which

is a costly procedure not compatible with real-time constraints.

In order to circumvent this issue, the PGD technique can be advantageously employed. Indeed, once the

PGD approximation um(x, t,p) is built, an explicit formulation of the non-normalized posterior pdf can be
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derived. Owing to the observation operator O, the set of observables d(p, t) = O (um(x, t,p)) is extracted

from the PGD field um(x, t,p), with explicit dependency on p. Therefore, the non-normalized posterior pdf

π̄ reads (considering sequential data assimilation here):

π̄
(
p|dobs

1 , ...,dobs
i

)
=

i∏
j=1

πmeas

(
dobs
j − d (p, tj)

)
.π0(p) (13)

which leads to cost-effective evaluations of this latter pdf from sampling methods [2, 19].

On the other hand, having available a PGD solution is an interesting asset to perform uncertainty quan-

tification and propagation. Considering a quantity of interest (QoI) q defined from the operator Q applied

on the model solution u, an approximation of q with explicit dependency on p can be obtained by applying

the operator Q to the PGD solution:

q(p) ≈ Q (um(x, t,p)) (14)

Once measurements have been assimilated with Bayesian inference, parameter samples pk (k ∈ {1, ...,K})
can be drawn from the posterior pdf, and associated QoI samples qk (k ∈ {1, ...,K}) can be computed in a

straightforward manner as qk = q(pk). Therefore, the pdf of q can be easily obtained (using for instance a110

kernel density estimation (KDE) from samples qk) and post-processed for design or control purposes.

3.3. Transport Map sampling with PGD models

An additional benefit of PGD model reduction can be found in the sampling procedure using transport

maps and described in Section 2. We remind (see Section 2.2) that the computation of transport maps leans

on the minimization of the functional defined in (8). With the PGD formulation, partial derivatives of the

model solution with respect to parameters p can be directly and explicitly recovered as:

∂num
∂pnj

(x, t,p) =

m∑
k=1

Λk(x)λk(t)
∂nαjk
∂pnj

(pj)

d∏
i=1
i6=j

αik(pi) (15)

then stored in the offline phase. Parameter modes αik being usually described by means of finite element

functions, the derivations are thus performed on one-dimensional shape functions. Furthermore, owing to

the PGD representation with separated variables, cross-derivatives can be computed from combinations of115

univariate mode derivatives.

As a result, first- and second-order derivatives of the pdf π̄ are easily accessible which enables the effective

(fast convergence), and at low cost, solution of the minimization problem (8) by means of dedicated algorithms

using gradient or Hessian information (BFGS, trust-region, . . . ). This represents a much better option for

the computation of transport maps compared to concurrent approaches that use function information alone120

to solve (8) (as in the simplex method).
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4. Correction of model bias

4.1. General idea

In the classical Bayesian inference formulation, the forward model M that is evaluated in the likelihood

function is supposed to be exact in the sense that, once model parameters are updated, numerical outputs125

should be consistent (no bias) with experimental observations. However, engineering applications are very

often associated with modeling bias due to the difficulty in representing the complexity of physical phenom-

ena of interest. In the present context of stochastic data assimilation, the inaccuracy of the model can have

a major impact on the quality of the posterior pdf (e.g. the posterior mean may diverge in the case of

sequential data assimilation). In order to keep a robust approach, it is thus of prime importance to address130

this issue. Some recent works proposed first model correction strategies, as in [3] where modeling error com-

puted between low- and high-fidelity models (and thus known a priori) is introduced to improve the Bayesian

formulation. Nevertheless, quantifying modeling error or assessing it by means of error estimates requires

the definition of a high-fidelity model, which is often unreachable or unknown.

Here, we propose an alternative strategy in which the corrective modeling error term that is integrated in135

the Bayesian formulation is directly defined from the data. This data-based strategy shares similarities with

those developed in the PBDW method [13] or in the definition of hybrid twins [5], even though it is here

implemented in a stochastic framework.

We introduce the stochastic estimation residual B, defined at the assimilation time point ti as:

B(xobs, ti) = dobs
i − emeas −M(xobs, ti,p) (16)

xobs represents the vector of spatial coordinates of the measurement points, and emeas is the additive mea-

surement noise. This residual, which represents the discrepancy between data and model, is fully computable

after data assimilation at time ti. Its pdf is obtained from a straightforward propagation of uncertainties on

emeas and p.

In the context of sequential Bayesian inference, we decide to take into account at time ti+1 information

obtained at time ti on the discrepancy between model and data, by considering the corrected model output

Mcorr defined as:

Mcorr(xobs,p, ti+1) =M(xobs,p, ti+1) + B̂i→i+1(xobs) (17)

where the model bias term B̂i→i+1(xobs) is taken as the extrapolation at time ti+1 of the estimation residual

B(xobs, ti) computed at time ti. Therefore, the likelihood function at time ti+1 reads:

π(dobs
i+1|p) = πB̂(dobs

i+1 −M(xobs,p, ti+1)) (18)

where πB̂ is the pdf associated with the extrapolated model bias B̂i→i+1.140
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4.2. Extrapolation procedure

Several techniques may be used to extrapolate the model bias over an assimilation time step. A simple

one would be to linearly extrapolate the mean and standard deviation of the residual vector B(xobs, ti),

independently at each observation point of xobs, and approximate the pdf πB̂ by a set of individual Gaussian

pdfs. However, a drawback of this procedure is that it relies on data alone without any physical consideration,

so that it may lead to inconsistent results. We prefer here using a more global extrapolation technique that

also involves the model being supposed to provide an informative representation of the studied physics, with

limited model bias. This way, physics is taken into account and measurement noise is filtered by the model.

We first introduce the matrices of mean and standard deviation of the model bias, defined at assimilation

time ti as:

Bmean =
[
mean

(
B(xobs, t1)

)
, ...,mean

(
B(xobs, ti)

)]
Bstd =

[
std
(
B(xobs, t1)

)
, ..., std

(
B(xobs, ti)

)] (19)

with mean(.) and std(.) the operators that compute the mean and standard deviation of a random variable

using a quadrature rule. These matrices are thus constructed from the collection of mean and standard

deviation vectors of B(xobs, tj), defined in (16) and which have the size of xobs (potentially large, as for

full-field measurements obtained with DIC/DVC). The extrapolation is then performed from space and time

SVD modes of Bmean and Bstd. In other terms, the SVD decompositions such that:

Bmean = UmeanDmeanVTmean ; Bstd = UstdDstdVTstd (20)

are computed. Vectors Umean and Ustd (resp. Vmean and Vstd) that compose Umean and Ustd (resp. Vmean

and Vstd) represent the space (resp. time) dependency of the model bias. Then, the mean and standard

deviation of the extrapolated vector B̂i→i+1(xobs) at time ti+1 are computed using linear extrapolations

V̂mean and V̂std of SVD vectors Vmean and Vstd, respectively. Eventually, the pdf of B̂i→i+1(xobs) is145

recovered as a multidimensional Gaussian distribution.

We mention that truncation is usually applied in this extrapolation procedure, so that only the first SVD

modes are in practice used. Furthermore, in order to avoid the increase of computation and storage costs

along the sequential data assimilation, and thus keep a numerical strategy which remains compatible with

the real-time simulation constraint, the so-called Sequential Karhunen-Loeve (SKL) algorithm [18] is used.150

It enables the fast SVD decomposition of a matrix [M[1,i−1] Mi] obtained from the horizontal concatenation

of matrices M[1,i−1] and Mi, knowing the SVD decomposition of M[1,i−1]. The algorithm is based on a QR

decomposition in order to retrieve the span of the SVD modes already computed. In the present case, M[1,i−1]

corresponds to the collection of means or standard deviations of the model bias computed until time ti−1,

while Mi corresponds to the mean or standard deviation of the model bias computed at time ti.155

4.3. Detection of a model bias with model evidence

The normalization constant C =

∫
π(dobs|p).π0(p)dp = π(dobs) involved in (1) is also an indicator,

denoted model evidence, on the quality of the model. It can be used in practice for model selection in order
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to determine which model among a class of models is the most likely to have generated the data. Indeed,

considering N models {M1, ...,MN} with each modelMk depending on the parameter set pk, the posterior

pdf that Mk generated the data dobs is:

π(Mk|dobs) =
π(dobs|Mk).π(Mk)∑N
k=1 π(dobs|Mk).π(Mk)

(21)

where π(Mk) is the prior pdf on the model and π(dobs|Mk) is the integrated likelihood function of Mk.

This latter pdf is computed by marginalization:

π(dobs|Mk) =

∫
π(dobs,pk|Mk)dpk =

∫
π(dobs|pk,Mk).π(pk|Mk)dpk = Ck (22)

where Ck is the model evidence associated to the Bayesian inference performed with the model Mk.

Therefore, in the case where the prior pdfs π(Mk), k ∈ {1, ..., N}, are equal, the Bayes factor Fij between

two models Mi and Mj reads:

Fij =
π(Mi|dobs)

π(Mj |dobs)
=
Ci
Cj

(23)

and indicates, when Fij > 1 (resp. Fij < 1), that the model Mi is more (resp. less) likely than the model

Mj to produce the considered data dobs. An empirical interpretation of the Bayes factor is given by the

Jeffreys scale of evidence [9].

In the present context, the evolution of model evidence C can be monitored along the sequential data assim-160

ilation process in order to identify when the model M becomes less reliable. In the case where the model

evidence drops drastically (within a prescribed range), the correction of model bias proposed in Section 4.1

is implemented. Consequently, the model correction procedure is used only when necessary.

The computation of the model evidence is not straightforward in practice. In classical sampling methods

that aim at characterizing the posterior pdf, this quantity is indeed not directly available. However, when

using Transport Map sampling, the model evidence can be interpreted as the distance between the reference

pdf ρ and the posterior pdf pulled-back by the transport map M (see [7]):

C = exp
(
Eρ
[
log
(
T−1] π

)
− log(ρ)

])
(24)

This quantity is easy to compute as a quadrature rule with respect to ρ is supposed to be known.165

Another advantage of Transport Map sampling in sequential data assimilation, as detailed in Section 2.2.3,

is that if the model is found to be inaccurate in a given time range, the corresponding maps can be removed

in order to retrieve the error committed in the estimation of model parameters. Missed measurements can

then be re-assimilated once the model bias is corrected.

5. Data selection for effective data assimilation170

We consider here the framework of full-field measurements obtained from the Digital Image Correlation

(DIC) technique [8]. In such a framework, rich experimental information is available but it may be difficult to
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handle and post-process in the context of real-time Bayesian data assimilation. Indeed, as measurements are

compared with model outputs, large data sets require more complex computations in the inference procedure.

We propose here a numerical strategy that circumvents this difficulty by filtering the large amount of data175

and keeping the most relevant ones alone.

5.1. DIC principles

The purpose of DIC is to identify a displacement field u(x) that links two gray level pictures, a reference

picture f(x) and a deformed picture g(x), x representing here the pixel coordinates. Invoking the local

gray-level conservation between f and g, and considering a global DIC approach applied over the whole

measurement zone (Region Of Interest or ROI) made of a large number Np of pixels, the field u(x) is

determined by minimizing the following nonlinear correlation residual:

1

Np

∑
x∈ROI

(f(x)− g(x + u(x)))
2

(25)

For mechanical regularization purposes, the displacement field is expressed in a given FE basis {ψn}, i.e.

u(x) =
∑
n

unψn(x) = ΨT (x)U.

To solve (25), the first-order Taylor expansion g(x+u(x)) ≈ g(x)+u(x).∇f(x) is employed, and an iterative

construction of u(x) is performed by minimizing:∑
x∈ROI

(
f(x)− g̃(x)−∇f · δu(k)(x)

)2
(26)

where g̃(x) = g(x + u(k)(x)) is the updated deformed image, and δu(k) = u(k+1) − u(k) is the correction at

iteration k. The minimization of (25) thus comes down to the successive solution of linear systems of the

form MDICδU
(k) = b

(k)
DIC with:

(MDIC)mn =
∑

x∈ROI
∇f(x)ψm(x) · ∇f(x)ψn(x) ; (b

(k)
DIC)m =

∑
x∈ROI

(f(x)− g̃(x))∇f(x)ψm(x) (27)

The vector b
(k)
DIC is the residual vector updated at each iteration k, while MDIC is a symmetric positive

matrix which is computed once for all as it only depends on the reference picture f and the chosen basis

{ψn}.180

Measurement uncertainty is a crucial aspect when dealing with data assimilation, and Bayesian inference

supposes that the pdf on measurement error is known. In connection with this point, the previously described

global DIC method provides a clear estimation of the measurement noise. Indeed, assuming a white noise ef

with zero mean and variance γ2f affecting both pictures f and g, and noticing that the resulting noise e on185

the measured dofs U reads e = M−1DIC
∑

x∈ROI
2efΨ

T {∇f}, it is straightforward that mean(e) = 0 and that

the covariance matrix on measurement noise is Ce = mean(e ⊗ e) = 2γ2fM
−1
DIC . As M−1DIC is not diagonal,

the DIC measurement noise is spatially correlated; the DIC matrix MDIC thus highlights spatial correlations

in the measurement noise due to the picture texture and the chosen FE basis.
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5.2. Selection of DIC data from sensitivity fields190

In the context of model updating, the relevance of data is indicated by their sensitivity with respect to

parameters of interest. Considering a modelM(p), the sensitivity of the model output to a given parameter

pj in p reads Sj(x,p) = ∂u(x,p)/∂pj (for time-dependent problems, the mean value in time t� may be

chosen to compute sensitivity quantities). We notice that Sj can be easily approximated from the computed

PGD representation (12), as:

Sj(x,p) ≈ ∂um(x, t�,p)

∂pj
=

m∑
k=1

Λk(x)λk(t�)
∂αjk(pj)

∂pj

d∏
i=1
i 6=j

αik(pi) (28)

Cross-sensitivities Sij(x,p) = ∂2u(x,p)/∂pi∂pj are calculated the same way.

The sensitivity quantities can thus be computed a priori, in the offline phase of data assimilation and once

for all, before being used to select the location of the most sensitive measurements for parameter identification.

In order to achieve this latter target in the context of DIC, and to take DIC measurement noise into account,195

it is chosen to weight the sensitivity fields Sj by the measurement sensitivity (given by the matrix MDIC)

which represents the signal-to-noise ratio. We thus define new sensitivity fields SDICj as SDIC
j = MDICSj ;

this way, the measurement uncertainties are propagated to the sensitivity fields. Fields SDICj are in practice

computed by projecting fields Sj on the DIC mesh.

Once fields SDICj are obtained, they are evaluated for a reference value of p, and the selection of most sensitive200

data is merely performed by considering the nodes on which the field magnitude is the higher. In the case of

multi-parameter identification, several options can be chosen such as considering the products of individual

sensitivity fields, or the minimal/maximal sensitivity among those obtained with dimensionless parameters.

6. Illustrative application: real-time prediction of structural integrity for concrete structures

In this section, we illustrate the overall data assimilation methodology which was set up in the previous205

sections. The target application is a real test-case that involves a large-scale concrete beam with initial crack

submitted to a bending loading. It is instrumented with DIC measurement devices in order to predict crack

propagation, and possibly the collapse of the structure, using real-time Bayesian data assimilation associated

with a damage model.

6.1. Experimental campaign210

The considered experimental test is a three-point bending test on a concrete specimen (Figure 3). The

specimen is a prismatic 840 mm× 100 mm× 100 mm beam notched at mid-span on 20% of its height. It is

supported on the bottom side by two steel cylinders, steel plates being inserted between the cylinders and

the beam to prevent indentation due to stress concentration. A controlled displacement uimp is prescribed

on the top side of the specimen by a tensile test machine equipped with an hydraulic actuator. The upper215
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support of the test machine is fixed, and a load cell measures the reaction force on this support.

After three adjustment cycles which are carried out in order to fill all gaps related to positioning, a monotonic

increasing displacement is imposed at the rate of 3 × 10−3 mm/s until the total fracture of the specimen is

observed. The associated load/displacement curve, measured by the load cell and a LVTD sensor, is shown

in Figure 3.

0 0.25 0.5 0.75 1 1.25
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1,000

2,000
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L
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)

Figure 3: Front view of the experimental setting (left), registered load/displacement curve (center), and measured DIC displace-

ment field in the central part of the beam (right).

220

The test is instrumented with DIC technology, full-fields measurements being performed on the central

part of the specimen (Figure 3). For this purpose, a painted speckle pattern is sprayed on the considered

surface of the concrete beam, and LED panels are added in order to adjust the exposition and contrast of

the picture. Furthermore, a prism including a 45 degree-oriented mirror is placed under the notch in order

to be able to use DIC on the bottom side with the same camera. That way, the reflection of the bottom225

of the beam is in the camera axis and the crack opening is visible. DIC pictures are taken every 5 s. The

Corelli software [12] is then used to post-process the pictures by building a FE mesh with linear triangle

elements in the zone of interest. We notice that the in situ DIC measurements are used here for sequential

data assimilation, even though the experimental test is not performed with real-time post-processing due to

practical constraints.230

Figure 3 shows an illustration of the displacement field (x coordinate) measured from DIC at an advanced

damage state of the specimen during the test. The crack inside the specimen is clearly visible owing to the

observed discontinuity in the experimental displacement field.

6.2. Mathematical model and PGD numerical approximation

In agreement with the experimental setting, a mathematical model is defined on a 3D domain and with

boundary conditions detailed in Figure 4. The material behavior is based on an isotropic damage elastic

model adapted from [16] (the crack closing behavior is not considered here). It is described by means of the

following constitutive relations:

σ = (1− d)Cε ; d(Y,Ad, Y0) = 1− 1

1 +Ad(Y − Y0)
(29)

14



400 mm

4 mm

1
0

0
 m

m

8
0

 m
m

420 mm 420 mm

400 mm

uimp

Prescribed displacement in the y direction

Null displacement in the x and y directions

Null displacement in the z direction

Null displacement in the y direction

Figure 4: Geometry and boundary conditions for the model problem (top), and mesh and boundary conditions used for the

computation of the PGD solution (bottom).

in which:235

• σ (resp. ε) is the Cauchy stress tensor (resp. linearized strain tensor)

• C is the Hooke tensor

• d is the scalar damage variable

• Y =
1

2
〈ε〉+ : C : 〈ε〉+ is the released energy rate, 〈ε〉+ denoting the positive part of ε

• Y0 is the initial threshold on energy rate for damage initiation240

• A is a scalar brittleness parameter that drives the post-peak behavior

Consequently, the damage law depends on parameters Y0 and Ad which will be later inferred in real-time from

DIC measurements during the sequential data assimilation process. The influence of these two parameters

is shown in Figure 5 by considering the response σt = f(εt) to a unidirectional traction test, with σt the

traction stress component and εt the longitudinal strain component.245

Following the works on the formulation of multi-parametric nonlinear PGD models (see [25]), an approx-

imate PGD solution of the previous mathematical model is computed in the offline phase. Its expression at

order m reads:

um(x, t, Y0, Ad) =

m∑
k=1

Λk(x)λk(t)α1
k(Y0)α2

k(Ad) (30)

The computation is performed using the LATIN-PGD algorithm [11]. In this context, the geometry is

discretized with linear cubic (Q8) elements. The displacement uimp is prescribed as a linearly increasing

loading from 0 to 4 × 10−4 m; it is applied through 100 loading steps. The reference values for material
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Figure 5: Influence of the damage law parameters Y0 (left, for fixed Ad) and Ad (right, for fixed Y0).

parameters are set to E = 30 GPa (Young modulus), ν = 0.23 (Poisson ratio), Y ref
0 = 216 J.m−3, and

Aref
d = 2.25 × 10−3 J−1.m3; they stem from an educated guess using experimental campaigns on similar250

materials. The variability of damage parameters is chosen to be centered on the reference values (Y ref
0 , Aref

d )

with a 50% variation magnitude. The dimensionless quantities Ȳ0 = Y0/Y
ref
0 and Ād = Ad/A

ref
d are introduced

for comparison purposes.

An accurate PGD approximation is obtained with m = 6 modes. The corresponding space modes Λk(x),

time modes λk(t), and parameter modes α1
k(Ȳ0) and α2

k(Ād) are shown in Figures 6 and 7. All modes except255

time modes are normalized, which explains the decrease in the magnitude of time modes when m increases

(the contribution of each PGD then becomes smaller and smaller). We also notice that the first PGD mode

corresponds to a full elasticity mode as the corresponding parameter modes (α1
1, α

2
1) are unit functions.

6.3. Data assimilation with synthetic measurements

6.3.1. Sequential updating of damage law parameters260

From the PGD model detailed above, we now implement the data assimilation strategy based on Transport

Map sampling and PGD model reduction described in Sections 2 and 3. Dimensionless parameters Ȳ0 and

Ād are thus sequentially updated within the Bayesian framework. Consequently, at each assimilation time ti

and from data dobs
j , 1 ≤ j ≤ i, the following posterior pdf is estimated:

π(Ȳ0, Ād|dobs
1 , . . . ,dobs

i ) ∝
i∏

j=1

π(dobs
j |Ȳ0, Ād).π0(Ȳ0, Ād) (31)

Data should in practice correspond to some mesh dofs computed from DIC. However, for validation purposes,

they are here simulated from the PGD model. 30 nodes are randomly chosen as measurement points in the

central part of the beam (see Figure 8), and displacement data at these nodes are obtained with parameter

values Y0 = Y ref
0 and Ad = Aref

d (i.e. Ȳ0 = Ād = 1). A Gaussian white noise with a standard deviation of

10−6 m is then added to those displacements in order to simulate the DIC measurement noise.265

The results in terms of sequentially obtained marginals along the assimilation process are shown in

Figure 9. The prior pdf π(Ȳ0, Ād) is chosen as a Gaussian distribution with mean (0.9, 1.1) and covariance
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(a) Spatial mode 1 in the x direction (b) Spatial mode 1 in the y direction

(c) Spatial mode 2 in the x direction (d) Spatial mode 2 in the y direction

(e) Spatial mode 3 in the x direction (f) Spatial mode 3 in the y direction

(g) Spatial mode 4 in the x direction (h) Spatial mode 4 in the y direction

Figure 6: Representation of the first spatial modes.

matrix 0.2 I. We observe that the obtained marginals have a large width during the first assimilation time

steps, due to the fact that the structure is then in its undamaged elastic regime so that displacement data

give very poor information on damage parameters. However, maxima of the marginals at the final time give270

the estimation (Ȳ0, Ād) = (1.04, 1.00) of the parameters, which is very close to the reference values. We also

observe that the convergence in the estimation of Ȳ0 is slower than that for Ād, due to different parameter

sensitivities. At the final time, the standard deviation of the marginal on Ȳ0 is 0.041 while it is 0.022 for the

marginal on Ād.

The associated computation costs are also given in Figure 9. On the one hand, the dashed line corresponds to275

the CPU time required to compute each transport map using the explicit formulation of the functional alone

(zero-order derivative) in the solution of the minimization problem (8). On the other hand, the solid line

refers to computations using the explicit formulation of both functional and its gradient (first-order derivative)

computed thanks to the PGD representation (30). In addition, the bar chart indicates the final map order

which is required at each assimilation step in order to achieve the given tolerance on the variance diagnostic280

(εσ = 10−3). Results clearly show that using the functional gradient highly speeds up the computation of

the transport maps, especially when the map order becomes large.
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Figure 7: Representation of the first time modes (left), parameter Ȳ0 modes (center), and parameter Ād modes (right).

Figure 8: Location of the nodes considered as measurement points.

We can also explain the changes of map order occurring at time points 32, 36, 38 and 39. During the

first time steps, the structure is in its undamaged elastic regime (data thus do not provide any knowledge

on the parameters) so that the posterior pdfs remain very close to the prior Gaussian pdf and first-order285

transport maps are sufficient to represent the mapping with the reference standard normal pdf. Between

time points 30 and 40, the change in the posterior pdf is large as the structure is subjected to a nonlinear

damage behavior. Therefore, higher-order maps are necessary to represent the mapping between consecutive

posterior pdfs. After this critical stage, and due to short time steps, the evolution of the posterior pdf is

smooth and first-order transport maps can be reused.
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Figure 9: Successive posterior marginals on Ȳ0 (left) and Ād (center), and cost for transport map computation (right), along

the data assimilation process.

290

6.3.2. On-the-fly prediction of the crack length

Once the posterior pdfs on parameters are updated at each assimilation time point, uncertainties can be

propagated trough the PGD model in order to predict the behavior of the system, in terms of some model

outputs, for future times. The output which is considered here is the crack length lT at final time T .
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In order to do the link between the PGD damage model and fracture mechanics, a kinematic bridge is built.295

It involves the elastic solution of a beam, with similar geometry and boundary conditions as previously, but

in which a vertical crack with variable length l is inserted. We assume that the crack is initiated in the right

corner of the notch. Different FE meshes with ndof dofs are created (their topology depends on the value of

l) and the corresponding elastic solutions with prescribed unitary displacement are computed in the offline

phase. In the present study, the crack length range varies from l = 0 mm to l = 80 mm, and it is discretized300

in 80 points so that 80 elastic computations are performed. Figure 10 shows some of the obtained solutions

for the particular crack lengths l = 0 mm, l = 25 mm, and l = 75 mm.

Figure 10: Elastic solution in terms of x-component of the displacement field for crack lengths l = 0 mm (left), l = 25 mm

(center), and l = 75 mm (right).

A meta-model is then constructed, still in the offline phase, from the 80 available snapshots. For this

purpose, snapshots are stored in a matrix Y = {Y1, ...,Y80} with Yj ∈ Rndof the displacement vector for the

elastic solution j, and the SVD of Y is computed as Y = UDVT . U = {U1, ...,Undof
} is a ndof × ndof matrix,

V = {V1, ...,V80} is a 80 × 80 matrix, and D is a ndof × 80 diagonal matrix containing singular values σj ,

j ∈ {1, ..., 80}. By truncating the SVD decomposition to NSVD modes, the displacement field uSVD(x, l) in

the structure with respect to the crack length l can be approximated as:

uSVD(x, l) =

NSVD∑
k=1

σkuk(x)vk(l) (32)

where functions uk(x) and vk(l) are interpolations obtained from vectors Uk and Vk, respectively. The first

six spatial SVD modes uk(x) are shown in Figure 11, and the corresponding parameter SVD modes vk(l)305

(weighted by the mode magnitude σk) are shown in Figure 12. We observe that a SVD truncation is relevant

after a few modes (as singular values σk rapidly decrease to zero), that the first two SVD modes correspond

to the kinematics with a full-length crack, and that the other SVD modes can be seen as localized stitching

patches acting along the crack.

310

From the previous SVD meta-model, the PGD approximation (30), and the continuously updated pdfs

on Y0 and Ad, the final crack length lT can be estimated in a stochastic sense. The associated pdf reads:

π(lT ) = πu(uSVD(lT )).π0(lT ) (33)
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(a) Spatial mode 1 (b) Spatial mode 2 (c) Spatial mode 3

(d) Spatial mode 4 (e) Spatial mode 5 (f) Spatial mode 6

Figure 11: Spatial SVD modes in terms of x-component of the displacement field.
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Figure 12: Weighted parameter SVD modes associated to the parameter l.

where π0(lT ) is the prior pdf (based on a priori knowledge on lT ), and πu(uSVD(l)) is the likelihood function

obtained by the propagation of uncertainties on parameters Y0 and Ad through the PGD model evaluated

at time T and at the considered measurement points (i.e. um(xobs, T, Y0, Ad)). Such a propagation is in

practice performed efficiently using the additional use of inverse transport maps [15].

Choosing the prior pdf π0(lT ) as a Gaussian pdf with mean 0.04 and standard deviation 0.013, results on315

the sequential estimation of lT by means of successive posterior pdfs π(lT ) are reported in Figure 13. We

observe that during the first time steps, the estimation of the final crack length lT is very coarse, with a

large variance, then it improves and converges to a mean estimation lT = 0.0372 and a maximum a posteriori

estimation lT = 0.0376. In addition, the cumulative computation time required to perform both parameter

inference and output prediction is given in Figure 13. The blue part corresponds to the CPU time associated320

with the updating of parameters (Y0, Ad), while the red part corresponds to the CPU time associated with

the estimation of lT . We notice that all iterations can be performed in less than 5 s (on a standard laptop)
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which is the duration between two successive picture acquisitions. Therefore, the approach can be considered

as real-time in the present context.
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Figure 13: Successive posterior pdfs on the output lT (left), and total computation cost at each time step (right).

6.4. Correction of model bias325

Keeping the same data assimilation process as in the previous section, a model bias is now introduced by

means of a non-negligible truncation error in the PGD representation um used to perform Bayesian inference.

We choose m = 3, keeping synthetic data computed from an accurate PGD model with m = 6. The obtained

results in terms of successive marginals for parameters Ȳ0 and Ād are given in Figure 14. We observe that

the influence of the model bias remains limited during the first time steps, due to the fact that only the first330

PGD mode has a contribution in the undamaged elastic regime, but it later becomes important, leading to

shifted marginals and wrong estimation of the model parameters (means are not even converging).

Figure 14: Posterior marginals on dimensionless parameters Ȳ0 (left) and Ād (right). The color map indicates the correspondence

with assimilation time points.
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To correct the model bias, we implement the procedure proposed in Section 4. The bias is estimated at

the 30 measurement points (i.e. 60 dofs) and the stochastic correction is computed by the extrapolation of335

the SVD modes for residual mean and variance. Here, only two SVD modes are kept to represent the model

correction. The results obtained with this correction of the model bias are given in Figure 15. We observe

that the proposed model correction procedure highly improves the quality of the sequential model updating,

eliminating the effect of model bias in the posterior pdfs. Information on model evidence is also displayed

in Figure 15, comparing evolutions for the reference data assimilation (performed with m = 6) and for the340

biased data assimilation (performed with m = 3) with or without model bias correction. All evolutions

are smoothed with a moving average filter. We observe that the model evidence slowly drops off from the

reference value when using a 3-mode PGD model without any correction. Adding the correction improves

the model evidence except in the first time steps when the model bias is the lowest (as mostly measurement

noise is then extrapolated).
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Figure 15: New posterior marginals on dimensionless parameters Ȳ0 (left) and Ād (center) obtained after model bias correction,

and evolution of the smoothed model evidences (right).

345

6.5. Selection of most relevant DIC measurements

In this section, we investigate the procedure proposed in Section 5 in order to select the most relevant

data among all full-field DIC measurements available. For convenience reasons and to keep notations clear,

we denote p1 = Ȳ0 and p2 = Ād. The first step is to compute sensitivity fields Si = ∂u/∂pi (i ∈ {1, 2}); this

is performed in the offline phase and from the PGD model as:

S1(x) =

∣∣∣∣∣
m∑
k=1

Λk(x)λk(t�)
∂α1

k

∂Ȳ0
(Ȳ �0 )α2

k(Ā�d)

∣∣∣∣∣ ; S2(x) =

∣∣∣∣∣
m∑
k=1

Λk(x)λk(t�)α1
k(Ȳ �0 )

∂α2
k

∂Ād
(Ā�d)

∣∣∣∣∣ (34)

where t�, Ȳ �0 , and Ā�d are mean values of time t and parameters Ȳ0 and Ād, respectively. In addition, the

cross-sensitivity field S12 = S1×S2 is defined in order to get an average sensitivity of the model with respect

to both parameters. Indeed, when identifying strictly independent parameters, the data selected with respect
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to the sensitivity of one parameter may be insensitive to the other parameters.350

Figure 16 shows the sensitivity fields in both directions x (horizontal) and y (vertical).

(a) Sensitivity field S1 in the x direction (b) Sensitivity field S1 in the y direction

(c) Sensitivity field S2 in the x direction (d) Sensitivity field S2 in the y direction

(e) Sensitivity field S12 in the x direction (f) Sensitivity field S12 in the y direction

Figure 16: Visualization of the sensitivity fields.

From the computation of sensitivity fields, the most relevant DIC data are selected from weighted fields

SDIC
i = MDICSi (i ∈ {1, 2, 12}). Figure 17 shows the map of the field SDIC

12 . The brighter nodes correspond to

measurements points with the higher sensitivity for the objective of parameter updating under measurement

uncertainties. The 30 most sensitive dofs among all the DIC dofs are then selected and represented in355

Figure 17. These are all located on the right-hand side of the structure which is the area with the larger

horizontal displacement. This set of locations is highly non-symmetric due to the boundary conditions

applied in the mathematical model (the x-component of the displacement field being imposed to zero on the

left boundary of the structure).

Figure 17: Sensitivity SDIC
12 along the x-direction (left) and the y-direction (center), and selected 30 most sensitive dofs (right).
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7. Conclusions360

We presented a new numerical strategy for real-time Bayesian data assimilation, mixing Transport Map

sampling and reduced-order modeling (PGD) tools. It was complemented with procedures for data selection,

correction of model bias, and uncertainty propagation. The overall strategy, resorting to computations

performed in an offline phase, leads to an effective approach in engineering activities. It was here implemented

and illustrated on a real-life test dealing with crack propagation in a concrete beam equipped with in-situ365

DIC measurements. Based on its innovative and attractive aspects, the proposed strategy should pave the

way for future research works on the topic.
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