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PENCILS OF NORM FORM EQUATIONS AND A CONJECTURE OF THOMAS

We introduce a new method to deal with families of norm form equations. These generalize the Thue equations studied first by Thomas using Baker's Method (which however we do not use here). We show that for all large integer values of the parameter t, every solution over Z arises from specializing a solution over Z[T ] by T = t. The results are completely effective.

Introduction

This article is concerned with norm form equations. Classically these are usually considered to have the shape (1.1) Norm(x 0 ξ (0

) + • • • + x d-1 ξ (d-1) ) = n
where the norm is from the number field Qξ (0) + • • • + Qξ (d-1) to Q, and the unknowns x 0 , . . . , x d-1 may be subject to homogeneous linear conditions over Q (the case x 2 = • • • = x d-1 = 0 is usually called a Thue equation in x 0 , x 1 ). But here we will allow ξ (0) , . . . , ξ (d-1) to depend on an integer parameter t. For example with d = 2 and ξ (0) = 1, ξ (1) = √ t we see the general Pell equation (1.2)

x 2 -ty 2 = 1.

We will then solve the resulting norm form equation uniformly for all sufficiently large positive integers t (in fact this cannot be done for (??) above). Our method is new, and it uses in an essential way the main result of our paper [?], i. e. height bounds for the solutions of equations in a multiplicative torus, varying in a pencil.

The main theme goes back to Emery Thomas [?] and diophantine equations with a parameter t, together with his concept of "stably solvable" [?] (p.320). This says roughly that if t is a sufficiently large positive integer, then all integer solutions come from "functional solutions" which are obtained by replacing t in the equation by a variable T and solving the resulting equation in the polynomial ring Z[T ].

A highlight example is given by a family of Thue equations due to Thomas himself [?] (p.322). Let d ≥ 3 and A 1 (T ), . . . , A d-1 (T ) ∈ Z[T ] be monic polynomials of degrees satisfying

0 < deg(A 1 ) < • • • < deg(A d-1
).
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We consider the polynomial

Φ T (X, Y ) = X(X -A 1 (T )Y ) • • • (X -A d-1 (T )Y ) + Y d .
We are interested in the diophantine equation Φ t (x, y) = 1, to be solved in t, x, y ∈ Z. Observe that Φ T (X, Y ) = 1 has trivial functional solutions, namely (X, Y ) = (1, 0), (0, 1), (A 1 (T ), 1), . . . , (A d-1 (T ), 1).

Thomas [?, Conjecture 1] (p.322) conjectures that the only solutions of Φ t (x, y) = 1 are given by specializations of the above functional solutions, provided that t is a sufficiently large natural integer. He proves his conjecture for d = 3 under some assumptions on the growth of A 1 and A 2 . Later on, Heuberger [?, Theorem 1] (p.377), proves the conclusion of Thomas's general conjecture, under some quite involved degree conditions. Their results are obtained essentially as an application of Baker's estimates for linear forms in logarithms, as for the case of fixed Thue's equations; various devices allow to treat the equations uniformly in the integer parameter t.

Surprisingly enough, Ziegler [?] (p.291) found a functional counterexample to Thomas's conjecture. If A 1 (T ) = T and A 2 (T ) = T 4 + 3T , then

X(T ) = T 9 + 3T 6 + 4T 3 + 1, Y (T ) = T 8 + 3T 5 + 3T 2 is a solution of X(X -A 1 Y )(X -A 2 Y ) + Y 3 = 1.
In the same paper, Ziegler considers the equation Φ T (X, Y ) = a for d = 3 and proves some counting results (see also [?] for possibilities to improve these). He shows this has no nontrivial functional solutions when deg(A 2 ) > 34 deg(A 1 ). Then he generalizes in [?, Theorem 1] In this paper we develop a new approach to treat families of norm form equations. We do not use Baker's Method, applying instead a recent specialization theorem of the authors [?]. This allows us to prove that, under suitable assumptions, all solutions of a norm form diophantine equation come from a specialization of T to t of functional solutions of the equation obtained by replacing t with T throughout. For instance for Thomas's cubic equation we get, as a corollary of Theorem ??, the following stronger version:

Theorem 1.1. Let A, B, C be distinct in Z[T ]. Then there is an effective finite set (possibly empty) of functional solutions X, Y in Z[T ] of (1.3) (X -AY )(X -BY )(X -CY ) + Y 3 = 1
and an effective t 0 with the following property. If the integer t ≥ t 0 then every diophantine solution x, y of

(1.4) (x -A(t)y)(x -B(t)y)(x -C(t)y) + y 3 = 1 satisfies x = X(t), y = Y (t)
for some functional solution.

By Ziegler's result [?, Theorem 1] (p.291), Theorem ?? confirms Thomas conjecture for d = 3, under the assumption deg(A 2 ) > 34 deg(A 1 ), which is weaker than the Heuberger condition on the degrees or Thomas's original growth condition.

Because we do not use Baker's Method, we are able to treat more general norm form equations, which are liable to lead to S-unit equations with many terms (on the functional level see (??),(??) for example). These are usually handled with the Subspace Theorem (see [?], Section VI, p.153, Theorem 1F), but that is often lacking in effectivity. By contrast, our method always yields effective results. In [?] (p.2604) we treated (1.5)

x 3 -(t 3 -1)y 3 = 1 (see also the explanation at the end of this section) but already things are not quite trivial for the special Pell equation

(1.6) x 2 -(t 2 -1)y 2 = 1.
For m = 0, 1, 2, . . . we have the well-known functional solutions

X = X m (T ), Y = Y m (T ) given by ( √ T 2 -1 + T ) m + (- √ T 2 -1 + T ) m 2 = [m/2] µ=0 m 2µ (T 2 -1) µ T m-2µ , ( √ T 2 -1 + T ) m -(- √ T 2 -1 + T ) m 2 √ T 2 -1 = [(m-1)/2] µ=0 m 2µ + 1 (T 2 -1) µ T m-1-2µ in Z[T ].
And in fact for t large enough it is not hard to prove that the integer solutions of (??) are given by (x, y) = (±X m (t), ±Y m (t)) (m = 0, 1, 2, . . .)

for independent signs (this is probably classical and holds even for all t = 0 in Z). Such a result is surely in the spirit of "stably solvable" even though there are infinitely many functional solutions. Our main result is Theorem ?? (with its generalization Theorem ??). In fact we allow in (??) non-linear algebraic conditions on x 0 , . . . , x d-1 , even themselves involving the parameter t.

We work out two more examples where we also find all the functional solutions.

First, we can escape from Thue equations like (??); for example when t is large enough the only integer solutions of (1.7)

x 3 -(t 3 -1)y 3 + 3(t 3 -1)xy + (t 3 -1) 2 = 1 (which cannot be linearly transformed into something homogeneous) are given by (x, y) = (t 2 , 2t), (t 2 , -t). Second, we can even escape from binary equations; for example when t is large enough the only integer solutions of (1.8)

x 4 -(t 4 -1)y 4 + (t 4 -1) 2 z 4 -2(t 4 -1)xz(xz -2y 2 ) = 1
are given by a "Pell family" (x, y, z) = (±X m (t 2 ), 0, ±Y m (t 2 )) (m = 0, 1, 2, . . .) together with 12 "sporadic" (±t, ±1, 0), ±(t 2 , ±2t, 1), ±(4t 6 -5t 2 , ±4t, -4t 4 -1)

all with independent signs.

Here it is worth noting that the equation (1.9)

x 5 + (t 5 -1)y Let us illustrate our method with (??). We already explained (??) in [?] with the units x -ξ t y and η t = t -ξ t in Q(ξ t ) for ξ t = (t 3 -1) 1/3 . With (??) we find instead that x -ξ t y + ξ 2 t is a unit and (1.10)

x -ξ t y + ξ 2 t = η m t for some integer m. Taking conjugates and eliminating x, y with the usual Siegel Identity we get

(1.11) (t -ξ t ) m + ω(t -ωξ t ) m + ω 2 (t -ω 2 ξ t ) m = 3ξ 2 t
with ω = e 2πi/3 (see also the functional version (??) below). This is a four-term S-unit equation. With (??) the 3ξ 2 t is absent and so only three terms remain. Then the more traditional approach with linear forms in logarithms could have been used. It would already show that |m| is bounded independently of t. In general, linear forms in logarithms do not apply to things like (??). We note however that (??) for each fixed m is likely to determine t. An obstacle is when (??) holds identically in t, and one can verify that this leads back to a functional solution. Now (??) may be compared to (1.12)

ξ m + (1 -ξ) m + (1 + ξ) m = 1
for a general algebraic ξ. When the (1 + ξ) m is absent, already Beukers [?] had shown using Padé approximation that the absolute height of ξ is bounded above independently of m = 1 (the case m = 1 gives a kind of functional solution).

In [?] we imitated Thue's Method of constructing "almost Padé approximations" using Siegel's Lemma. If there are no functional obstacles, then these indeed lead to bounds for the height of (for example) t -ξ t in (??), and so also for the height of t which is of course |t| = t. We had already observed that the general method is effective (and that Denz [?] found an explicit bound for the height of ξ in (??) independently of any m). It even works for arbitrarily many terms, but then a somewhat involved descent is required.

For (??) it is tempting to reach for the Subspace Theorem but as mentioned that is not effective. However the functional analogue is effective, and in principle it can be used to find all the functional solutions.

Main Results

Let P ∈ Z[T, X] be an irreducible polynomial, monic of degree d in X, and let ξ ∈ Q(T ) be one of its roots. We write K = Q(T, ξ) and K for its normal closure over Q(T ).

We shall consider various intermediate extension Q(T ) ⊆ L ⊆ K corresponding to (smooth models of) projective curves, denoted C L . For such a field L and for t ∈ N (we exclude the finitely many ramified ones from our discussion 1 ) we choose once and for all a point p L,t on C L (Q) above t in such a way that p L,t is above p L ,t if L is another intermediate extension with L ⊆ L. This p L,t defines a place of a field L; more precisely a place v of L corresponds to deg(v) geometric points of C L (Q), conjugates by Galois action. These choices define a specialization map which sends u ∈ L to u t := u(p L,t ) ∈ Q. We denote by L t := Q(p L,t ) the specialized field, i. e. the residue field of L by the place defined by p L,t . Thus L t = {u t | u ∈ L}.

Our basic parametric equation is

(2.1) Norm(x 0 + x 1 ξ t + • • • + x d-1 ξ d-1 t ) = 1
to be solved in integers x 0 , . . . , x d-1 as the integer parameter t varies. As mentioned above, when t is not present, one obtains the so-called "norm form" equation by further restricting (x 0 , x 1 , . . . , x d-1 ) to lie in a fixed proper vector space of Q d . But here we shall allow subspaces -and even subvarieties -of Q(t) d . As in the work of Thomas, our emphasis is on specializations of the parameter to sufficiently large integers t; and we can clearly assume t > 0.

For t ∈ N large the numbers r 1 and 2r 2 of real and imaginary immersions of the number field Q(ξ t ) are both constants. This can be seen looking at sign changes, see Lemma ??. As usual, we let r = r 1 + r 2 -1.

We make the following Assumption 2.1.

(1) There exist multiplicatively independent elements u 1 , . . . , u r of Z[T, ξ] * .

(2) Suppose u is in Z[T, ξ] * and the algebraic number v is in the group generated by the conjugates of u. Then v is a root of unity.

The most stringent part is (1), which however is basic to the context that we are studying. Part (2) is more of a technical nature. We will see just after the proof of Lemma ?? that it suffices to check (2) for u in the group generated by u 1 , . . . , u r .

Note that (Z

[T, ξ] * ) t ⊆ Z[ξ t ] * . Under our assumptions, the index [Z[ξ t ] * : (Z[T, ξ] * ) t ]
is finite for large t (see Lemma ??(1)), and moreover uniformly bounded (see Theorem ??). Let us assume in addition

Z[ξ t ] * = (Z[T, ξ] * ) t .
1 These, arising from the vanishing of the discriminant of P with respect to X, must be excluded for instance to ensure the isomorphism ??.

As a first consequence of the specialization theorem [?, Theorem 1.3]) (p.2601) we get: Theorem 2.2. Let us assume ??. Let W ⊆ A d be a proper subvariety defined over Q(T ). Then there exists an effective t 0 > 0 such that for t ≥ t 0 with

Z[ξ t ] * = (Z[T, ξ] * ) t , the solutions (x 0 , . . . , x d-1 ) ∈ W t (Z) of (2.2) d j=1 (x 0 + x 1 σ j (ξ t ) + • • • + x d-1 σ j (ξ t ) d-1 ) = 1 are specializations of functional solutions X = (X 0 , . . . , X d-1 ) ∈ W (Z[T ]) of (2.3) d j=1 (X 0 + X 1 σ j (ξ) + • • • + X d-1 σ j (ξ) d-1 ) = 1.
For a Thomas equation of degree d ≥ 3, the result [?, Theorem 2.1] (p.6) of Halter-Koch, Lettl, Pethö and Tichy implies (under some minor conditions) that if t is sufficiently large and

Q(ξ t ) is a primitive extension, then ξ t , ξ t -A 1 (t), . . ., ξ t -A d-2 (t) generate a subgroup of uniformly bounded rank of Z[ξ t ] * .
And their result [?, Theorem 3.1] (p.7) implies that primitivity holds for almost all choices of the parameter (in the sense of thin sets).

Here we prove a uniform bound for the index valid for all sufficiently large t.

Theorem 2.3. Let us assume ??. Then, there exist effective

t 1 , I ∈ N such that [Z[ξ t ] * : (Z[T, ξ] * ) t ] ≤ I for t ≥ t 1 .
The proof is delicate since we have to consider some degenerate cases (corresponding to intermediate fields in the extension K/Q(T ) above). It requires the following lower bound for the standard absolute logarithmic Weil height h for non-torsion elements in Z[ξ t ] * . Theorem 2.4. Let us assume ??. Then, there exist effective t 1 and c > 0 such that for t > t 1 and any non-torsion η ∈ Z[ξ t ] * we have

h(η) ≥ c log t.
Theorem ?? allows us to prove a completely (i. e. without assumption on the index) effective description of the solutions of the norm form equation (??) at the price of a more technical statement. Let σ 1 , . . . , σ d be the Q(T )-immersions of K := Q(T, ξ) in an algebraic closure K and consider the linear isomorphism Ψ :

K d → K d be the linear isomorphism Ψ(X) = d-1 i=0 X i σ 1 (ξ) i-1 , . . . , d-1 i=0 X i σ d (ξ) i-1 .
Theorem 2.5. Let us assume ??.

Let l = lcm t≥t 1 [Z[ξ t ] * : (Z[T, ξ] * ) t ]
and W A d be a subvariety defined over Q(T ). Then there exists an effective t 2 ∈ N such that for t ∈ N, t ≥ t 2 , the solutions (x 0 , . . . , x d-1 ) ∈ W t (Z) of (??) are specializations of functional solutions X = (X 0 , . . . , X d-1 ) ∈ W (K) of (??) satisfying moreover

(2.4) Ψ -1 Ψ(X) l ∈ Z[T ] d . Note that lcm t≥t 1 [Z[ξ t ] * : (Z[T, ξ] * ) t ]
in the above theorem is well defined and can be effectively bounded by Theorem ??.

Let's come back to the index. The following question arises naturally:

Problem 2.6. Does there exist a

t 1 ∈ N such that Z[ξ t ] * = (Z[T, ξ] * ) t for t ≥ t 1 ?
By Theorem ??, a positive answer to this question would give a simple description of the solutions of the norm form equation (??).

Our results raise three more questions.

First, can one determine the structure of the functional solutions? Most likely this is possible (and effectively) through the machinery of the function field abc (or better abcd . . .) theorems, as hinted in Section ?? (see also Mason [?] as well as [?] a bit later); in another article we investigate this in a more general context.

Second, can one determine the solutions when t is "small"? For the Thomas equations and Thue examples in general we can use linear forms in logarithms, but it is not clear if this works for (??). Actually that is a curve of genus 1, so the results of Baker and Coates [?] (p.595) apply. However this would not work for analogues of (??) of degree 4, where one would expect genus 3.

And (??) is a surface (and with an extra variable even a three-fold); further the Padé methods are unlikely to work, as Baker's condition t > 10 11 suggests.

Third, as noted already in [?], the original Thomas Conjecture can be extended to equations coming from so-called Ankeny-Brauer-Chowla "ABC" number fields. This is also punningly suggested by our notation in Theorem ??. But can one extend this Theorem in a similarly complete way? A good test case would be

(X -AY )(X 2 + BXY + CY 2 ) + Y 3 = 1
assuming that B 2 -4C < 0 for all sufficiently large T = t > 0. We already treated the case A = B = T, C = T 2 in (??).

Notations and auxiliary results

Let, as in the previous section P ∈ Z[T, X] be an irreducible polynomial, monic of degree d in X and ξ ∈ Q(T ) one of its roots. We recall that K = Q(T, ξ). Lemma 3.1. For large t ∈ N, the number r 1 (t) of real immersions of the number field Q(ξ t ) is constant.

Proof. This is an easy consequence of Sturm's Theorem on the number of distinct real roots, located in an interval, of a square-free polynomial. Let us consider P as a polynomial with coefficients in Q(T ) and perform the Sturm's sequence P i with P 0 = P , P 1 = P and, for i ≥ 1, P i+1 be the remainder of the euclidean division between P i and P i+1 . Then, for each i and for large t > 0, the specialization at t of P is square-free and the sign of the specialization at t of the leading coefficient of P i is constant, proving that the number of real roots of x → P (t, x) does not depend on t.

According to this lemma, we let r 1 and 2r 2 the numbers of real and imaginary immersions of Q(ξ t ) (for t ∈ N sufficiently large), and r = r 1 + r 2 -1.

For the next lemma, we need the main result of [?], which we state in the following somewhat modified version. We take an irreducible algebraic curve C defined over Q, embedded in some affine space with associated (logarithmic) height h on C(Q), defined with say supremum norms. Theorem 3.2. Let Γ be a finitely generated subgroup of Q(C) * such that the only constants in Γ are roots of unity. Then there exists an effective h 0 = h 0 (Γ) such that, for t ∈ C(Q) with h(t) > h 0 , the restriction to Γ of the evaluation at t is an isomorphism onto its image Γ t .

Proof. We first remark that the restriction is defined outside a finite set and thus for t of sufficiently large height. We fix basis elements γ (1) , . . . , γ (k) of Γ/Γ tors . Since the only constants in Γ are roots of unity, γ (1) , . . . , γ (k) are multiplicatively independent modulo constants. By [?, Theorem 1' (p.1120)], there exists an effective h 0 > 0 such that if h(t) > h 0 then the specializations γ

(1) t , . . . , γ Note that the units in Z[T, ξ] * form a finitely generated group. We shall apply Theorem ?? to various group Γ which are image of subgroups of Z[T, ξ] * by homomorphisms, and thus also finitely generated.

(k) t are multiplicatively independent. Let now γ ∈ Γ such that γ t = 1. Write γ = ζ(γ (1) ) m 1 • • • (γ (k) ) m k where ζ is a root of unity. Then 1 = γ t = ζ(γ (1) t ) m 1 • • • (γ (k) t ) m k . If h(t) > h 0 then γ (1) t , . . . , γ ( 
Lemma 3.3. Let us assume ??. For t ∈ N sufficiently large (effectively) the following holds: Proof. To prove (1), let s 1 ≤ r 1 be the number of real roots of the irreducible factor (over Q) of P (t, X) vanishing at ξ t , whereas let 2s 2 be the number of complex non-real roots, so s 2 ≤ r 2 . By the above inequalities and by the easier part of Dirichlet's theorem, rank 

(1) rank Z[ξ t ] * = rank (Z[T, ξ] * ) t = rank Z[T, ξ] * = r. (2) K t = Q(ξ t ) and [K t : Q] = d. (3) Let E/Q(T ) be a subextension of K/Q(T ). Then [E t : Q] = [E : Q(T )]. ( 
Z[ξ t ] * ≤ s 1 + s 2 -1 ≤
r ≤ rank Z[T, ξ] * = rank (Z[T, ξ] * ) t ≤ rank Z[ξ t ] * ≤ s 1 + s 2 -1 ≤ r. Thus rank Z[ξ t ] * = rank (Z[T, ξ] * ) t = rank Z[T, ξ] * = r (and r 1 = s 1 , r 2 = s 2 ).
The argument above shows that [Q(ξ t ) :

Q] = s 1 + 2s 2 = r 1 + 2r 2 = d. Since Q(ξ t ) ⊆ K t and [K t : Q] ≤ [K : Q(T )] = d we have K t = Q(ξ t ). This proves (2).
The equality of the degree in (3) for an arbitrary subextension E/Q(T ) follows as a consequence of (2), taking into account that if the degree drops on specializing E, the same would happen for K.

To see (4) we know from (1) that the group generated by u 1 , . . . , u r has the same rank as Z[T, ξ] * . So it suffices to prove that the torsion of the latter is bounded. But ξ has a Puiseux series, say at T = ∞, whose coefficients lie in a number field. Thus any root of unity in Z[T, ξ] * must lie in this field and therefore in its finite torsion group. Remark 3.4. (i) Let σ 1 , . . . , σ d be the Q(T )-immersions of K in an algebraic closure K. By (2) we can identify σ 1 , . . . , σ d with the Q-immersions of Q(ξ t ) in Q by letting σ i ( a j ξ j t ) = a j (σ i ξ) j t for a 0 , . . . , a d-1 ∈ Q.

(ii) Let E be as in (3) and let u be a primitive element for E over Q(T ), i. e. E = Q(T, u). Then obviously Q(u t ) ⊆ E t and we may not have equality. Note however that equality holds2 for sufficiently large t, but "sufficiently large" may now depend on the chosen primitive element u . We shall prove a uniform version for units in Proposition ??.

(iii) Assertion (4) enables us in Assumption ??(2) to restrict to u in the group generated by u 1 , . . . , u r .

The next result will be useful in checking this Assumption ??(2) for the various examples. Lemma 3.5. Let us assume that ??(1) holds. Assume further that the Puiseux series at T = ∞ of the roots ξ (1) , . . . , ξ (d) of P (T, X) are Laurent series with coefficients in k where k is the rational field or an imaginary quadratic field. Then assertion ??(2) holds.

Proof. By ??(1), there exist multiplicatively independent u 1 , . . . , u r ∈ Z[T, ξ] * . Let u be a monomial in u 1 , . . . , u r and v be an algebraic number in the group generated by the conjugates of u. As already noted (after the proof of Lemma ??), it is enough to show that v is a root of unity. Note that v ∈ k, since the Puiseux series at T = ∞ of ξ (1) , . . . , ξ (d) are Laurent series with coefficients in k. On the other hand, the conjugates of u ±1 i are in Z[T, ξ (1) , . . . , ξ (d) ] (since u i are units) and a fortiori in R := O k [T, ξ (1) , . . . , ξ (d) ]. The same holds for v. Since O * k is a set of roots of unity, it is enough to show that

R ∩ k = O k .
We choose a basis v 1 = 1, v 2 , . . . , v δ of the k(T )-vector space k(T, ξ (1) , . . . , ξ (d) ).

Then, there exists non-zero F ∈ Z[T ] such that

F • R ⊆ O k [T ] + O k [T ]v 2 + • • • + O k [T ]v δ .
Let z ∈ R ∩ k. A "Landau trick" with z, z 2 , z 3 , . . . shows that z lies in O k . Namely, for all j ∈ N we have z j ∈ R ∩ k and, by the linear independence of v 1 , . . . , v δ , we deduce that

z j F ∈ O k [T ]. Thus z ∈ O k .
4. Proofs of Theorems ?? and ??

The main ingredient in the proof of theorems ?? and ?? is the specialization theorem [?, Theorem 1.3] (p.2601), which we recall for the reader's convenience.

Let F be the function field of an algebraic curve C defined over Q. Given a subgroup Γ of G d m defined over F we say that Γ is constant-free if its image Γ by any surjective homomorphism

G d m → G m satisfies Γ ∩ Q * = Γ tors .
Theorem 4.1 ([?], Theorem 1.3 (p.2601)). Let Γ ⊂ G d m (F) be a finitely generated constant-free subgroup and let V be a subvariety of G d m defined over F. Then the points t ∈ C(Q), such that for some γ ∈ Γ \ V the value γ t is defined and lies in V t , have bounded height.

We now prove Theorem ??. Let us first recall the relevant notations. Let, as in Remark ??(i), σ 1 , . . . , σ d be the Q(T )-immersions of K := Q(T, ξ) in an algebraic closure K, which we identify with the

Q-immersions of Q(ξ t ) in Q. Let Ψ : K d → K d be the linear isomorphism Ψ(X) = d-1 i=0 X i σ 1 (ξ) i-1 , . . . , d-1 i=0 X i σ d (ξ) i-1 .
We remark that for t ∈ N sufficiently large the specialized map Ψ t :

Q d → Q d , Ψ t (x) = d-1 i=0 x i σ 1 (ξ t ) i-1 , . . . , d-1 i=0 x i σ d (ξ) i-1 t .
is still an isomorphism.

We consider a solution x = (x 0 , . . . , x d-1 ) ∈ W t (Z) of (??). Then

η := x 0 + x 1 ξ t + • • • + x d-1 ξ d-1 t is a unit of Z[ξ t ]. By assumption Z[ξ t ] * = (Z[T, ξ] * ) t , thus η ∈ (Z[T, ξ] * ) t
and there exists γ ∈ Z[T, ξ] * such that η = γ t . Let γ = (σ j (γ)) j=1,...,d which is in the finite rank subgroup

Γ = {(σ 1 (u), . . . , σ d (u)) | u ∈ Z[T, ξ] * } of (K * ) d . A typical element v in the image Γ of Γ by a surjective homo- morphism G d m → G m
lies in the group generated by some σ 1 (u), . . . , σ d (u). So by Assumption ??(2) v is a root of unity as soon as it is an algebraic number. This proves that Γ is constant-free.

We have x = Ψ -1 t (γ t ) and thus X := Ψ -1 (γ) specializes to x. Moreover X ∈ Z[T ] d (since γ is stable by the Galois action), Norm K Q(T ) (γ) = ±1 and the sign + holds since X t = x, i. e. Norm(η) = 1 and X satisfies (??). Thus we cannot have X ∈ W .

We denote by V the intersection of Ψ(W ) with

G d m . Observe that V = G d m since W is a proper subvariety of A d . By the previous discussion, γ = ψ(X)
is not in V and3 γ t = ψ t (x) ∈ V t . Theorem ?? then asserts that h(t) is bounded, hence (t being in N) t is bounded.

We now prove Theorem ??. The proof is similar to the proof of Theorem ??. First recall that, by Theorem ??, [Z[ξ t ] * : (Z[T, ξ] * ) t ] is uniformly bounded for t ≥ t 1 . Thus l = lcm t≥t 1 [Z[ξ t ] * : (Z[T, ξ] * ) t ] is well defined and can be effectively bounded.

Let t ∈ N large enough. We consider a solution x = (x 0 , . . . , x d-1 ) ∈ W t (Z) of (??). Then

η := x 0 + x 1 ξ t + • • • + x d-1 ξ d-1 t is a unit of Z[ξ t ] of norm 1 and η lt ∈ (Z[T, ξ] * ) t . Let us assume that x is not a specialization of a functional solutions X ∈ W (Q(T )) of (??) satisfying Ψ -1 Ψ(X) l ∈ Z[T ] d .
We modify the argument of the proof of Theorem ?? as follow. Let

l t := [Z[ξ t ] * : (Z[T, ξ] * ) t ].
We select an algebraic function γ such that γ lt ∈ Z[T, ξ] * and we extend the specialization Ξ → Ξ t in such a way that γ t = η. For j = 1, . . . , d we also extend σ j to K(γ) in such a way that σ j (γ) t = σ j (η) for j = 1, . . . , d and we denote γ = (σ j (γ)) j=1,...,d . Then γ is in the finite rank group Γ l = {γ | γ lt ∈ Γ} which remains constant-free as Γ. Let X := Ψ -1 (γ) ∈ K d and ω :=

σ 1 (γ) • • • σ d (γ). Then ω lt = Norm K Q(T ) (γ lt ) = ±1.
Since γ t = u and Norm(u) = 1 we have ω = 1. Thus X is a solution of (??) which specializes to x = Ψ -1 t (γ t ). Since γ lt is stable by the Galois action, we have

Ψ -1 Ψ(X) lt = Ψ -1 (γ lt ) ∈ Z[T ] d . Since l t | l we deduce that Ψ -1 Ψ(X) l ∈ Z[T ] d . Thus X ∈ W .
This proves that γ is not in V and γ t ∈ V t . By Theorem ??, t is bounded.

5. Proof of theorems ?? and ??

To prove Theorem ?? we need some more technical results. Let E/Q(T ) be a subextension of K/Q(T ) of degree d > 1. Remark that E ∩ Q[T, ξ] is a finitely generated torsion-free module of rank d over the principal domain Q[T ], and therefore there exists a Q[T ]-basis, ω (1) , . . . , ω (d ) . To prove the lower bound for the height in Theorem ?? we first relate the discriminant of the order

Z[ξ t ] ∩ E t with the discriminant (ideal) of (E ∩ Q[T, ξ])/Q[T ].
This will allow to get, in Proposition ??, a lower bound for the maximum (in absolute value) conjugate of a generator η ∈ Z[ξ t ] ∩ E t of E t /Q. Lemma 5.1. Let us assume ?? and let t ∈ N be sufficiently large. Let E/Q(T ) be a subextension of K/Q(T ). We consider the Q(T )-vector space

V = {(c 0 , . . . , c d-1 ) ∈ Q(T ) d | c 0 + c 1 ξ + • • • + c d-1 ξ d-1 ∈ E}.
and we let V t be the vector space over Q obtained by specializing at t the elements of V (those defined at t). Then (5.1)

V t = {(b 0 , . . . , b d-1 ) ∈ Q d | b 0 + b 1 ξ t + • • • + b d-1 ξ d-1 t ∈ E t }. Thus dim Q V t = [E : Q(T )].
Proof. To prove the non trivial inclusion "⊇" in (??), let (b 0 , . . . , b d-1 ) ∈ Q d be a vector in the set on the right, i. e. such that the specialization of

v := b 0 + b 1 ξ + • • • + b d-1 ξ d-1 ∈ K 0
is in E t . Then v t = u t for some u ∈ E regular at t. We write

u = c 0 + c 1 ξ + • • • + c d-1 ξ d-1 , c i ∈ Q[T ].
Thus (c 0 , . . . , c d-1 ) ∈ V and

u -v = (c 0 -b 0 ) + (c 1 -b 1 )ξ + • • • + (c d-1 -b d-1 )ξ d-1 ∈ K 0 specializes at 0. Let m ∈ Z be the least integer such that (T -t) m (c i -b i )
are all regular at t. Thus the specializations (T -t) m (c i -b i ) at t are defined and not all zero. Let us assume by contradiction that at least one of the (c i -b i )'s does not vanish at t. Then m ≥ 0 and (T -t) m u specializes to 0 at t. This gives a non trivial Q-linear combination of 1, ξ t , . . . , ξ d-1 t vanishing, contrary to assertion (2) of Lemma ??. This shows that b i = c i (t) for i = 0, . . . , d -1 as desired. By Lemma ??( 2)

[E t : Q] = [E : Q] for t ∈ N sufficiently large. Thus (??) implies dim Q V t = [E t : Q] = [E : Q].
Lemma 5.2. Let us assume ?? and let t ∈ N be sufficiently large. Let E/Q(T ) be a subextension of K/Q(T ) of degree d and choose a Q[T ]-basis ω (1) , . . . , ω (d ) of E ∩ Q[T, ξ]. Then there exists an integer δ = 0 such that

δ(Z[ξ t ] ∩ E t ) ⊆ Zω (1) t + . . . + Zω (d ) t .
Proof. Let V and V t as in the statement of Lemma ?? and let Λ :

= V ∩ Q[T ] d which is a free Q[T ]-module of rank d . Hence, defining c (1) , . . . , c (d ) ∈ Q[T ] d by ω i = c (i) 0 + c (i) 1 ξ + • • • + c (i) d-1 ξ d-1 , i = 1, . . . , d , we have that actually c (1) , . . . , c (d ) is a basis of Λ over Q[T ]. Note that Λ is saturated 4 in Q[T ] d . Since Q[T ]
is principal, the d × d matrix having the transposition of c (1) , . . . , c (d ) as column vectors may be completed 5 to a d × d matrix Γ with entries in Q[T ] and determinant 1. We also remark that for t large enough, the specialization c

(1) t , . . . , c (d ) t
remain Q-linearly independent; thus by Lemma ?? they form a basis for

V t /Q. Let now η ∈ Z[ξ t ] ∩ E t . Then we can write η = a 0 + a 1 ξ t + . . . + a d-1 ξ d-1 t with a = (a 0 , . . . , a d-1 ) ∈ Z d . Since η ∈ E t , we have that a ∈ V t , so a = d i=1 b i c (i)
t , with b i ∈ Q. This means that, letting x be the transpose of a and y whose of (b 1 , . . . , b d , 0, . . . , 0), we have

x = Γ t y.
Inverting this equation yields y = Γ -1 t x, and now the conclusion follows because x has integer coordinates and Γ -1 t has rational entries with denominator bounded independently of t, since det Γ = 1 and since the entries of Γ are fixed polynomials in Q[T ].

Proposition 5.3. Let us assume ?? and let t ∈ N be sufficiently large.

Let E/Q(T ) be a subextension of K/Q(T ) of degree d > 1. Then for any generator η ∈ Z[ξ t ]∩E t of E t /Q, the maximum (in absolute value) conjugate of η over Q is ≥ c 0 |t| 1 d (d -1)
in absolute value, for some c 0 > 0 independent of η and t.

Proof. Let ω (1) , . . . , ω (d ) be a Q[T ]-basis of E ∩ Q[T, ξ]. Lemma ??, ap- plied to η j , j = 0, 1, . . . , d -1, implies that δη j = c 1j ω (1) t + . . . + c d j ω (d )
t , for a certain integer δ = 0 independent of t and η, and suitable integers c ij . Conjugating these equations d = [E t : Q] times we obtain a matrix equation δU = ΩC, where the rows of U are the conjugates of the row vector (1, η, . . . , η d -1 ), where Ω has row vectors the conjugates of (ω

(1) t , . . . , ω (d ) t ) 4 This is because Λ is the intersection of Q[T ] d with Q(T ) d and Q(T ) is the fraction field of Q[T ].
5 This amounts to completing c (1) , . . . ,

c (d ) to a Q[T ]-basis of Q[T ] d
, and for this it suffices to lift a basis of

Q[T ] d /Λ to Q[T ] d .
and where C is the matrix of the c ij . Taking determinants we obtain δ d det U = det Ω det C. Now, det C is a nonzero integer (since η generates E t /Q), whereas (det Ω) 2 is the value at t of a nonconstant polynomial, a generator of the discriminant (ideal) of (E ∩ Q[T, ξ])/Q[T ] (this is nonconstant because d > 1 so there must be ramification at some finite point). Hence | det U | |t| 1/2 , and now the conclusion follows at once.

To prove Theorem ?? we also need a uniform statement of Remark ??(ii) for units u ∈ Z[T, ξ] * . We first recall some basic fact on decomposition groups in function fields extensions.

Let L/Q(T ) be a normal extension. Corresponding to t and the chosen point p L,t of C L we have a decomposition group

∆ t = ∆(p L,t ) ⊂ Gal(L/Q(T )).
Recall that this is the subgroup of Gal(L/Q(T )) which stabilizes the Galois orbit of p t over Q (and thus fixes the place corresponding to this Galois orbit).

For We can now prove our uniform version of Remark ??(ii).

Proposition 5.4. Let us assume ??(2). For t ∈ N sufficiently large (effectively) and for µ ∈ Z[T, ξ] * we have Q(T, µ) t = Q(µ t ).

Proof. Let K be the normal closure of K over Q(T ) and let E = Q(T, µ).

It is clear that µ t ∈ E t . We have to prove that E t ⊆ Q(µ t ), or equivalently by Galois Theory, that Gal(

K t /Q(µ t )) fixes E t . Let σ ∈ Gal( K t /Q(µ t )) ⊆ Gal( K t /Q).
We identify σ to an element of the decomposition group ∆ t = ∆(p K,t ). Thus µ t = σ(µ t ) = σ(µ) t . Let γ := µσ(µ) -1 which stays in the finite rank subgroup

Γ σ = {uσ(u) -1 | u ∈ Z[T, ξ] * }.
A typical element v ∈ Γ σ lies in the group generated by the conjugates of some u ∈ Z[T, ξ] * . So by Assumption ??(2) v is a root of unity as soon as it is an algebraic number. This shows that the only constants in Γ σ are roots of unity. Since γ specializes at 1, by Theorem ?? we have σ(µ) = µ provided that t is sufficiently large (w.r.t. the finite number of subgroups Γ τ with τ ∈ Gal( K/Q), and thus uniformly in µ). But then σ fixes E and Let γ (1) , . . . , γ (r) ∈ Z[T, ξ] * be a basis modulo torsion. By Theorem ?? γ

(1) t , . . . , γ (r) t is a basis of (Z[T, ξ] * ) t modulo torsion. We have h(γ (j) t ) ≤ c 2 log t, since γ (1) , . . . , γ (r) have been fixed independently of t. Thus

Vol((Z[T, ξ] * ) t ) ≤ h(γ (1) t ) • • • h(γ (r) t ) ≤ c r
2 (log t) r and (5.3) h(η) ≤ c 3 (log t)/l 1/r t . From (??) and from Theorem ?? we get c log t ≤ c 3 (log t)/l 1/r t which shows that l t ≤ (c 3 /c) r is bounded independently of t.

Proof of Theorem ??

We shall need the following Lemma 6.1. The Puiseux series at T = ∞ of the solutions X of (X -A)(X -B)(X -C) + 1 = 0 are Laurent series with coefficients in Q.

Proof. We note first that if a, b, c are distinct integers then f Now we apply this with a, b, c the values of A, B, C at t > 0 large enough. We find a zero α = α(t) with α -A(t) → 0 as t → ∞. Similarly β, γ with β -B(t) → 0, γ -C(t) → 0.

These mean that there must be Puiseux series with principal parts A, B, C; as those are different they are a complete set. If one of them was a series in T -1/e for some (minimal) e ≥ 2, then applying a non-trivial element of the Galois group of C(T 1/e ) over C(T ) would induce a non-trivial permutation; also impossible from the principal parts. So they are Laurent series. Finally applying the Galois group of Q over Q to the coefficients shows in a similar way that they are in Q.

For Ziegler's example

A = 0, B = T, C = T 4 + 3T we find indeed A - 1 T 5 + 3 T 8 - 8 T 11 + 22 T 14 - 65 T 17 + • • • , B + 1 T 5 - 2 T 8 + 3 T 11 - 3 T 14 + 9 T 17 + • • • , C - 1 T 8 + 5 T 11 - 19 T 14 + 65 T 17 - 213 T 20 + • • • Eliminating X, Y using the Siegel identities gives z 0 , z 1 , z 2 in C with (7.5) z 0 (ξ -T ) m + z 1 (ωξ -T ) m + z 2 (ω 2 ξ -T ) m = ξ 2 .
At this point we could apply Corollary I (p.427) or Corollary II (p.428) of [?], but there are annoying non-degeneracy conditions to be checked as well as a genus to be calculated. Admittedly Theorem B (p.431) simplifies the non-degeneracy condition. But we can also use the basic argument of [?] directly. Thus (??) says that (ξ -T ) m , (ωξ -T ) m , (ω 2 ξ -T ), ξ 2 are linearly dependent over C. Therefore their Wronskian W vanishes identically. When the m -2 power of (ξ -T )(ωξ -T )(ω 2 ξ -T ) = -1 is ignored, a calculation gives (up to sign)

W = m 2 (m -1)(m + 1)(m -2) (m -5)T 3 - m 2 + 1 ρ
for some fixed ρ = 0 in C(T, ξ) independent of m. It follows at once that m = -1, 0, 1, 2. Now (??) is clearly impossible for m = 0, 1; and for m = 2 we get ε(T 2 -2T ξ + ξ 2 ) leading to (T 2 , 2T ) and for m = -1 we get -ε(T 2 +T ξ +ξ 2 ) leading to (T 2 , -T ). This completes the treatment of (??).

We next treat (??) which turned up during the proof of Theorem ??. We use Theorem ?? with P (T, X) = X(X -2)(X + T ) + 1. We can take 

(7.6) ξ = -T - 1 T 2 + 2 T 3 - 4 T 4 + 10 T 5 - 26 T 6 + 68 T 7 - 183 T 8 + • • • . with conjugates ξ = 1/2 T +
= (-T + • • • ) m (-2 + • • • ) n so m = 0; however ξ -2 is not in C so n = 0.
Let η 1 , η 2 be generators of Z[ξ t ] * modulo torsion, and write l for the index of the group generated by ξ t and ξ t -2 in Z[ξ t ] * . Then Thus c = 0 as soon as l ≥ 3. Now using just η = a + bξ t , η = a + bξ t we get also |b| t -1+ √ 2/l so also b = 0 as soon as l ≥ 3; and then a contradiction. If l = 2 there are exactly three possibilities for Λ, namely (7.11) Z(1, 0) + Z(0, 2), Z(0, 1) + Z(2, 0), Z(1, 1) + Z(0, 2). In the first two cases we can get |m| + |n| = 1 < √ 2l and (??) now gives c = 0 and then b = 0.

η l 1 = ±ξ m 1 t (ξ t -2) n 1 , η l 2 = ±ξ m 2 t (ξ t -2) n 2 . Further the lattice Λ = Z(m 1 , n 1 ) + Z(m 2 , n 2 ) has determinant l 2 /l = l
In the last case we can take (m, n) = (1, 1) and now (??) gives again c = 0 and then b = 0.

Thus we have determined Z[ξ t ] * ; and since

u 1 = ξ, u 2 = ξ -2 are in Z[T, ξ] * this shows Z[ξ t ] * = (Z[T, ξ] * ) t as usual.
We next check Assumption ??; part (1) is already done. For part (2) we could again apply Lemma ??. This finally disposes of (??) and so completes the proof of Theorem ??.

We turn now to (??), again using Theorem ?? this time with P (T, X) = X 4 -(T 4 -1) and (7.12) ξ = (T 4 -1) ] * contains ξ t -t and -ξ t -t, and again the only roots of unity are ±1. We proceed to show (for the usual large t) that the first two are independent and together with -1 generate Z[ξ t ] * .

The independence follows again from Theorem ??, because a relation z = (ξ -T ) m (-ξ -T ) n in C implies by (??) that z = -1/4

T 3 + • • • m (-2T + • • • ) n
so n = 3m; however (ξ -T )(-ξ -T ) 3 is not in C so m = 0. Let η 1 , η 2 be generators of Z[ξ t ] * modulo torsion, and write l for the index of the group generated by ξ t -t and -ξ t -t in Z[ξ t ] * . Then as above we find non-zero (m, n) in Λ with (??), and then η = ±1 in Z[ξ t ] * with (7.13) η = ±(ξ t -t) m/l (-ξ t -t) n/l .

Writing η = a + bξ t + cξ 2 t + dξ 3 t in the usual way, taking conjugates and using (??) shows now In the last case we can take (m, n) = (1, 1) and now (??) gives a + bξ t = ±(ξ t -t) 1/2 (-ξ t -t) 1/2 . But |ξ t -t| t -3 so |a + bξ t | t -1 . Taking a single conjugate with -ξ t gives similarly |a -bξ t | t -1 and so again b = 0 (and even a = 0 into the bargain).

Thus we have determined Z[ξ t ] * ; and since u 1 = ξ -T, u 2 = -ξ -T are in Z[T, ξ] * this shows Z[ξ t ] * = (Z[T, ξ] * ) t as usual.

We next check Assumption ??; part (1) is already done, and part (2) follows as before from Lemma ?? now with k = Q(i),

Finally (??) reduces to Norm(x + ξ t y + ξ 2 t z) = 1 and so we can again apply Theorem ??.

Thus we must now find all X, Y, Z in Z[T ] with We first prove that Z[T, ξ] * is generated by - Next (??) implies (7.16) X + Y ξ + Zξ 2 = ±(ξ -T ) m (-ξ -T ) n .

Taking conjugates and eliminating X, Y, Z gives now the linear dependence of (7.17 

  (p.724) this last result to an arbitrary degree d, showing that there are no nontrivial functional solutions if deg(A d-1 ) > c d deg(A d-2 ) for an explicit c d ∈ N. See also Waldschmidt's recent survey article [?], including an account of work by Levesque and himself.

  k) t are multiplicatively independent, and thus ζ = 1, m 1 = • • • = m k = 0, which implies γ = 1.

4 )

 4 The group generated by u 1 , . . . , u r in Assertion ??(1) is of finite index in Z[T, ξ] * .

  (x) = (xa)(x -b)(x -c) + 1 has a zero z with |z -a| ≤ 9 |a -b||a -c| . This is trivial if p = |a -b||a -c| ≤ 9,as the product of the zeroes of f (y + a) is 1. If p ≥ 10 we use Rouché with g(x) = f (x) -1, because on |x -a| = 5/p we have |f -g| = 1 while

  , |b| t -1+(|m|+|n|)/l ≤ t -1+√ 2/l . Thus d = c = b = 0 as soon as l ≥ 3; and then a contradiction. If l = 2 we still get d = c = 0. In the first two cases of (??) we can get |m| + |n| = 1 < √ 2l and (??) now gives also b = 0.

( 7 . 15 )

 715 X 4 -(T 4 -1)Y 4 + (T 4 -1) 2 Z 4 -2(T 4 -1)XZ(XZ -2Y 2 ) = 1.

1 = -c 0 and c 2 = (m 2 -

 122 ) (ξ-T ) m (-ξ-T ) n , (-ξ-T ) m (ξ-T ) n , (iξ-T ) m (-iξ-T ) n , (-iξ-T ) m (iξ-T ) nover C. This time the Wronskian comes out as (up to sign)(m -n) 2 (c 0 T 8 + c 1 T 4 + c 2 )ρ with ρ = 0 in C(T, ξ) independent of m, n, where c 0 = 64mn(m -1)(n -1), c 2mn + n 2 -m -n)(m 2 -2mn + n 2 -3m -3m + 2).

First m = n leads to X

 to + Y ξ + Zξ 2 = ±(ξ 2 -T ) mwhich with the conjugate -ξ shows that Y = 0. And then with the conjugate iξ we find±X = (ξ 2 -T 2 ) m + (-ξ 2 -T 2 ) m 2 = X m (T 2 ),

  5 + (t 5 -1) 2 z 5 + 5(t 5 -1)xyz(xz -y 2 ) = n was considered by Baker [?,Corollary 3] (p.695), who showed using Padé approximations to (1 -t -5 ) 1/5 that if t > 10 11 then max{|x|, |y|, |z|} < t 2500 n 2

	which perhaps suggests functional solutions, at least for n = 1. It is not
	clear if our methods apply to (??) for n = 1, but if they did, then they
	would probably allow an extra variable in (??).

  non ramified points the group ∆ t is isomorphic (see [?, Proposition 20] (p.21) and [?, Theorem 3.8.2] (p.131)) to the Galois group of L t /Q, the isomorphism being given by

	(5.2)	∆ t → Gal(L t /Q) σ → σ
	where	
		σ(u t ) = σ(u) t
	for u ∈ L.	

  1, ξ -T, -ξ -T . Again we could appeal to Theorem ?? but we use something more elementary. Specializing such a unit A + Bξ + Cξ 2 + Dξ 3 givesA(t) + B(t)ξ t + C(t)ξ 2 t + D(t)ξ 3 t = ε(t)(ξ t -t) m(t) (-ξ t -t)n(t) much as before. Making t → ∞ gives -3m(t) + n(t) 1. With conjugate -ξ t we get m(t)-3n(t) 1. And with conjugate iξ t we get m(t)+n(t) 1. Drawing a picture we see that |m(t)| + |n(t)| 1; or, for a bad artist, So now the argument above with subsequences and Laurent series does the trick.

-8m(t) = 3(-3m(t) + n(t)) + (m(t) -3n(t)) 1 4m(t) = (m(t) -3n(t)) + 3(m(t) + n(t))

1

and similarly for n(t).

We have equality for t which are not a root of the discriminant of 1, u, . . ., u [E:Q(T )]-1 .

We can assume xi = 0; otherwise, replace W by a subvariety.

σ ∈ ∆ t ∩ Gal( K/E). Thus σ fixes E t , the fixed field in K t of ∆ t ∩ Gal( K/E) (viewed as a subgroup of Gal( K t /Q)).

We will use this proposition coupled with the following remark : Lemma 5.5. Let F/E be a finite extension of number fields. Let α ∈ F such that E = Q(α m ) for some m ≥ 1. Then there exists an integer m 0 , bounded in terms only on the degree [F : Q], such that E = Q(α m 0 ).

Proof. We define m 0 as the least positive integer such that α m 0 ∈ E. Then

we have Norm F E (α) = ζα δ where δ = [F : E] and where ζ is a m-th root of unity. Since ζ is in F , its order k is bounded in terms on [F : Q]. This proves that α δk ∈ E. Since m 0 |δk, the conclusion follows.

Proof of Theorem ??.

Let t be large enough and η ∈ Z[ξ t ] * be non torsion. To get a lower bound for h(η), write η = a 0 + a 1 ξ t + . . .

(note that u may still depend, in a non-algebraic way, on t). For large t we have rank Z[ξ t ] * = rank (Z[T, ξ] * ) t = r by Lemma ?? [START_REF] Amoroso | Bounded height in pencils of finitely generated subgroups[END_REF]. Thus the index

and hence η is torsion, contrary to our assumption). By Proposition ?? E t = Q(µ t ) = Q(η lt ). By Lemma ??, Q(η lt ) = Q(η m 0 ) for some m 0 bounded only in term of [Q(η) : Q] and thus independently of t. By Proposition ??, we have

Remark 5.6. It would be interesting to extend Theorem ?? to arbitrary non constant elements η ∈ Z[ξ t ], not necessarily units. The obstruction in applying our method depends on the fact that Q(η) is not necessarily the specialization L t of a subextension L/Q(T ) of K/Q(T ). This holds under stronger assumptions, e.g. if

We can now prove our uniform bound for the index. Proof of Theorem ??.

We denote by c 1 , c 2 , c 3 positive constants depending only on the algebraic function ξ. For large t we have rank Z[ξ t ] * = rank (Z[T, ξ] * ) t = r by Lemma ?? [START_REF] Amoroso | Bounded height in pencils of finitely generated subgroups[END_REF]. Thus the index l

tors with a lattice. It is easy to see that the euclidean norm of a unit η in K is at least (d/4 √ r)h(η), and clearly the norm is zero if η is torsion. Thus by Minkowki's Theorem, there exists a non-torsion

even with coefficients in Z (this does not always happen).

Back to the general proof. For t > 0 sufficiently large, the values A(t), B(t), C(t) are different, and it is easily seen that there is a fixed permutation of A, B, C

If for all large t we have r 0 = s 0 -2 then C -B = 2 and (??) reduces to x (x -2y)(x + ry) + y 3 = 1 with x = x -B(t)y. For large t we have r 0 > 0 large and so it comes down to (6.1)

x(x -2y)(x + ty) + y 3 = 1.

We could not find this in the literature, but it can be handled in the same way as (??) and (??). Thus we postpone the details until section 7. We did not work out the functional solutions, but Yuri Bilu very kindly found for t = 116 the solutions (x, y) = (1, 0), (0, 1), (2, 1), (-116, 1), (3393262, 1700241)

of which the last is perhaps unexpected.

Similarly if for all large t we have r 0 = s 0 -1 then it comes down to

x(x -y)(x + ty) + y 3 = 1 which is treated by Mignotte and Tzanakis [?] (p.49) -there one must replace (y, n) by (-y, t -1). Here for t > (3.67)10 32 the solutions are

(1, 0), (0, 1), (1, 1), (-t, 1), (1, t -1)

of which the last is not among the "obvious" ones. Thus we may assume 1 ≤ r 0 ≤ s 0 -3. In this case Theorem 3.9 of Thomas [?] (p.39) tells us that the polynomial z(z -r 0 )(z -s 0 ) + 1 is irreducible over Q and that for any zero z 0 the pair z 0 , z 0 -r 0 is a system of fundamental units for the cubic field Q(z 0 ). As this field is real, the unit group is in fact generated by -1, z 0 , z 0 -r 0 .

We are going to apply Theorem ?? with

the formal norm of X -ξ. It is easy to see that this is irreducible over Q(T ) unless A, B, C are congruent modulo Z; but in that case we can take them all in Z and then Theorem ?? is trivial. We first check Assumption ?? [START_REF] Amoroso | Bounded height in pencils of finitely generated subgroups[END_REF]. We can take u 1 = ξ -A, u 2 = ξ -B in part ?? [START_REF] Amoroso | Bounded height in pencils of finitely generated subgroups[END_REF]. A multiplicative relation would specialize to one between ξ t -A(t), ξ t -B(t); but these are z 0 , z 0 -r 0 above, so independent. Therefore ??(1) is proved. On the way we see that (Z[T, ξ] * ) t , already in Z[ξ t ] * which in turn is generated by -1, ξ t -A(t), ξ t -B(t), is in turn inside (Z[T, ξ] * ) t . Therefore Z[ξ t ] * = (Z[T, ξ] * ) t as required for Theorem ??. Now Assumption ??(2) follows from Lemma ??; by Lemma ?? we may take k = Q.

Finally our diophantine equation reduces to Norm(x-ξ t y) = 1 and therefore we can apply Theorem ?? with W defined by the vanishing of the coefficient of ξ 2 t .

Examples

We first treat (??). We will apply Theorem ?? with P (T, X) = X 3 -(T 3 -1) and

We start by finding Z[ξ t ] * . It contains ξ t -t and sits in R so the only roots of unity are ±1. We proceed to show that Z[ξ t ] * is generated by -1 and ξ t -t.

If not, then it would contain η = (ξ t -t) 1/l for some integer l ≥ 2. Writing η = a + bξ t + cξ 2 t with coefficients in Z, taking conjugates and solving for c we would get |c| t -3/2 with absolute implied constant. So c = 0 for large enough t. Similarly |b| t -1/2 so b = 0. This leaves us with η = a = ±1 an absurdity.

We now proceed to check Assumption ??. We can take u 1 = ξ -T in part ?? [START_REF] Amoroso | Bounded height in pencils of finitely generated subgroups[END_REF]; and as before we find easily

As for part ??(2), we can again apply Lemma ??, this time with k = Q(ω) for ω = exp(2πi/3).

Finally (??) reduces to Norm(x -ξ t y + ξ 2 t ) = 1 and so we can again apply Theorem ??.

It remains to check that the only X, Y in Z[T ] with (7.2)

For this we need to know the generic unit group Z[T, ξ] * . We will show that it is generated by -1 and ξ -T in line with the specialized situation. Here we could apply Theorem ??; but the following argument is more elementary and seems more natural.

Let A + Bξ + Cξ 2 be such a unit, with coefficients in Z[T ]. Specializing, we obtain for each large integer t an integer m(t) and a sign ε(t) such that (7.3) t) . As |ξ t -t| t -2 (again with absolute implied constant) we see by making t → ∞ that m(t) -1. Taking a conjugate gives

1. Therefore passing to an infinite subsequence we can assume that ε = ε(t) and m = m(t) are independent of t. But now both sides of (??) are fixed Laurent series that coincide at infinitely many t. Therefore they coincide identically in T . Thus A + Bξ + Cξ 2 = ε(ξ -T ) m and we have found the desired generators. Now factorizing the left-hand side of (??) we find (7.4)

with its conjugates

in Z[T ] (and we may restrict to m ≥ 0 by making the two signs independent). It remains to explore c 0 = c 1 = c 2 = 0; and these are easily seen to imply for (m, n) the nine possibilities (0, 0), (1, 0), (0, 1), (2, 0), (0, 2); [START_REF] Amoroso | Bounded height in pencils of finitely generated subgroups[END_REF][START_REF] Bombieri | Intersecting a curve with algebraic subgroups of multiplicative groups[END_REF], [START_REF] Bombieri | Intersecting a curve with algebraic subgroups of multiplicative groups[END_REF][START_REF] Amoroso | Bounded height in pencils of finitely generated subgroups[END_REF]; [START_REF] Amoroso | Bounded height in pencils of finitely generated subgroups[END_REF][START_REF] Baker | Integer points on curves of genus 1[END_REF], [START_REF] Baker | Integer points on curves of genus 1[END_REF][START_REF] Amoroso | Bounded height in pencils of finitely generated subgroups[END_REF].

For (X, Y, Z) the first five lead to (±1, 0, 0), (±T, ±1, 0), ±(T 2 , ±2T, 1) with independent signs (of which the first is the above for m = 0). The next two lead to ±(4T 6 -5T 2 , ±4T, -4T 4 -1); and the last two give no solutions. This completes the treatment of (??).