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PENCILS OF NORM FORM EQUATIONS AND A

CONJECTURE OF THOMAS.

F. AMOROSO, D. MASSER, U. ZANNIER

Abstract. We introduce a new method to deal with families of norm form
equations. These generalize the Thue equations studied first by Thomas
using Baker’s Method (which however we do not use here). We show that
for all large integer values of the parameter t, every solution over Z arises
from specializing a solution over Z[T ] by T = t. The results are completely
effective.

1. Introduction

This article is concerned with norm form equations. Classically these are
usually considered to have the shape

(1.1) Norm(x0ξ
(0) + · · ·+ xd−1ξ

(d−1)) = n

where the norm is from the number field Qξ(0) + · · ·+Qξ(d−1) to Q, and the
unknowns x0, . . . , xd−1 may be subject to homogeneous linear conditions
over Q (the case x2 = · · · = xd−1 = 0 is usually called a Thue equation

in x0, x1). But here we will allow ξ(0), . . . , ξ(d−1) to depend on an integer

parameter t. For example with d = 2 and ξ(0) = 1, ξ(1) =
√
t we see the

general Pell equation

(1.2) x2 − ty2 = 1.

We will then solve the resulting norm form equation uniformly for all suffi-
ciently large positive integers t (in fact this cannot be done for (??) above).

Our method is new, and it uses in an essential way the main result of our
paper [?], i. e. height bounds for the solutions of equations in a multiplicative
torus, varying in a pencil.

The main theme goes back to Emery Thomas [?] and diophantine equa-
tions with a parameter t, together with his concept of “stably solvable”
[?] (p.320). This says roughly that if t is a sufficiently large positive inte-
ger, then all integer solutions come from “functional solutions” which are
obtained by replacing t in the equation by a variable T and solving the
resulting equation in the polynomial ring Z[T ].

A highlight example is given by a family of Thue equations due to Thomas
himself [?] (p.322). Let d ≥ 3 and A1(T ), . . . , Ad−1(T ) ∈ Z[T ] be monic
polynomials of degrees satisfying

0 < deg(A1) < · · · < deg(Ad−1).
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We consider the polynomial

ΦT (X,Y ) = X(X −A1(T )Y ) · · · (X −Ad−1(T )Y ) + Y d.

We are interested in the diophantine equation Φt(x, y) = 1, to be solved
in t, x, y ∈ Z. Observe that ΦT (X,Y ) = 1 has trivial functional solutions,
namely

(X,Y ) = (1, 0), (0, 1), (A1(T ), 1), . . . , (Ad−1(T ), 1).

Thomas [?, Conjecture 1] (p.322) conjectures that the only solutions of
Φt(x, y) = 1 are given by specializations of the above functional solutions,
provided that t is a sufficiently large natural integer. He proves his conjec-
ture for d = 3 under some assumptions on the growth of A1 and A2. Later
on, Heuberger [?, Theorem 1] (p.377), proves the conclusion of Thomas’s
general conjecture, under some quite involved degree conditions. Their re-
sults are obtained essentially as an application of Baker’s estimates for linear
forms in logarithms, as for the case of fixed Thue’s equations; various devices
allow to treat the equations uniformly in the integer parameter t.

Surprisingly enough, Ziegler [?] (p.291) found a functional counterexample
to Thomas’s conjecture. If A1(T ) = T and A2(T ) = T 4 + 3T , then

X(T ) = T 9 + 3T 6 + 4T 3 + 1, Y (T ) = T 8 + 3T 5 + 3T 2

is a solution of X(X −A1Y )(X −A2Y ) + Y 3 = 1.
In the same paper, Ziegler considers the equation ΦT (X,Y ) = a for

d = 3 and proves some counting results (see also [?] for possibilities to
improve these). He shows this has no nontrivial functional solutions when
deg(A2) > 34 deg(A1). Then he generalizes in [?, Theorem 1] (p.724) this
last result to an arbitrary degree d, showing that there are no nontrivial
functional solutions if deg(Ad−1) > cd deg(Ad−2) for an explicit cd ∈ N.

See also Waldschmidt’s recent survey article [?], including an account of
work by Levesque and himself.

In this paper we develop a new approach to treat families of norm form
equations. We do not use Baker’s Method, applying instead a recent spe-
cialization theorem of the authors [?]. This allows us to prove that, under
suitable assumptions, all solutions of a norm form diophantine equation
come from a specialization of T to t of functional solutions of the equation
obtained by replacing t with T throughout. For instance for Thomas’s cubic
equation we get, as a corollary of Theorem ??, the following stronger version:

Theorem 1.1. Let A,B,C be distinct in Z[T ]. Then there is an effective
finite set (possibly empty) of functional solutions X,Y in Z[T ] of

(1.3) (X −AY )(X −BY )(X − CY ) + Y 3 = 1

and an effective t0 with the following property. If the integer t ≥ t0 then
every diophantine solution x, y of

(1.4) (x−A(t)y)(x−B(t)y)(x− C(t)y) + y3 = 1
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satisfies x = X(t), y = Y (t) for some functional solution.

By Ziegler’s result [?, Theorem 1] (p.291), Theorem ?? confirms Thomas
conjecture for d = 3, under the assumption deg(A2) > 34 deg(A1), which is
weaker than the Heuberger condition on the degrees or Thomas’s original
growth condition.

Because we do not use Baker’s Method, we are able to treat more general
norm form equations, which are liable to lead to S-unit equations with many
terms (on the functional level see (??),(??) for example). These are usually
handled with the Subspace Theorem (see [?], Section VI, p.153, Theorem
1F), but that is often lacking in effectivity. By contrast, our method always
yields effective results. In [?] (p.2604) we treated

(1.5) x3 − (t3 − 1)y3 = 1

(see also the explanation at the end of this section) but already things are
not quite trivial for the special Pell equation

(1.6) x2 − (t2 − 1)y2 = 1.

Form = 0, 1, 2, . . . we have the well-known functional solutionsX = Xm(T ), Y =
Ym(T ) given by

(
√
T 2 − 1 + T )m + (−

√
T 2 − 1 + T )m

2
=

[m/2]∑
µ=0

(
m

2µ

)
(T 2 − 1)µTm−2µ,

(
√
T 2 − 1 + T )m − (−

√
T 2 − 1 + T )m

2
√
T 2 − 1

=

[(m−1)/2]∑
µ=0

(
m

2µ+ 1

)
(T 2−1)µTm−1−2µ

in Z[T ]. And in fact for t large enough it is not hard to prove that the
integer solutions of (??) are given by

(x, y) = (±Xm(t),±Ym(t)) (m = 0, 1, 2, . . .)

for independent signs (this is probably classical and holds even for all t 6= 0
in Z). Such a result is surely in the spirit of “stably solvable” even though
there are infinitely many functional solutions.

Our main result is Theorem ?? (with its generalization Theorem ??). In
fact we allow in (??) non-linear algebraic conditions on x0, . . . , xd−1, even
themselves involving the parameter t.

We work out two more examples where we also find all the functional
solutions.

First, we can escape from Thue equations like (??); for example when t
is large enough the only integer solutions of

(1.7) x3 − (t3 − 1)y3 + 3(t3 − 1)xy + (t3 − 1)2 = 1

(which cannot be linearly transformed into something homogeneous) are
given by

(x, y) = (t2, 2t), (t2,−t).
Second, we can even escape from binary equations; for example when t is

large enough the only integer solutions of

(1.8) x4 − (t4 − 1)y4 + (t4 − 1)2z4 − 2(t4 − 1)xz(xz − 2y2) = 1
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are given by a “Pell family”

(x, y, z) = (±Xm(t2), 0,±Ym(t2)) (m = 0, 1, 2, . . .)

together with 12 “sporadic”

(±t,±1, 0), ±(t2,±2t, 1), ±(4t6 − 5t2,±4t,−4t4 − 1)

all with independent signs.
Here it is worth noting that the equation

(1.9) x5 + (t5 − 1)y5 + (t5 − 1)2z5 + 5(t5 − 1)xyz(xz − y2) = n

was considered by Baker [?, Corollary 3] (p.695), who showed using Padé

approximations to (1− t−5)1/5 that if t > 1011 then

max{|x|, |y|, |z|} < t2500n2

which perhaps suggests functional solutions, at least for n = 1. It is not
clear if our methods apply to (??) for n = 1, but if they did, then they
would probably allow an extra variable in (??).

Let us illustrate our method with (??). We already explained (??) in [?]

with the units x − ξty and ηt = t − ξt in Q(ξt) for ξt = (t3 − 1)1/3. With
(??) we find instead that x− ξty + ξ2t is a unit and

(1.10) x− ξty + ξ2t = ηmt

for some integer m. Taking conjugates and eliminating x, y with the usual
Siegel Identity we get

(1.11) (t− ξt)m + ω(t− ωξt)m + ω2(t− ω2ξt)
m = 3ξ2t

with ω = e2πi/3 (see also the functional version (??) below). This is a
four-term S-unit equation. With (??) the 3ξ2t is absent and so only three
terms remain. Then the more traditional approach with linear forms in
logarithms could have been used. It would already show that |m| is bounded
independently of t. In general, linear forms in logarithms do not apply to
things like (??). We note however that (??) for each fixed m is likely to
determine t. An obstacle is when (??) holds identically in t, and one can
verify that this leads back to a functional solution.

Now (??) may be compared to

(1.12) ξm + (1− ξ)m + (1 + ξ)m = 1

for a general algebraic ξ. When the (1 + ξ)m is absent, already Beukers
[?] had shown using Padé approximation that the absolute height of ξ is
bounded above independently of m 6= 1 (the case m = 1 gives a kind of
functional solution).

In [?] we imitated Thue’s Method of constructing “almost Padé approx-
imations” using Siegel’s Lemma. If there are no functional obstacles, then
these indeed lead to bounds for the height of (for example) t − ξt in (??),
and so also for the height of t which is of course |t| = t. We had already
observed that the general method is effective (and that Denz [?] found an
explicit bound for the height of ξ in (??) independently of any m). It even
works for arbitrarily many terms, but then a somewhat involved descent is
required.
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For (??) it is tempting to reach for the Subspace Theorem but as men-
tioned that is not effective. However the functional analogue is effective,
and in principle it can be used to find all the functional solutions.

2. Main Results

Let P ∈ Z[T,X] be an irreducible polynomial, monic of degree d in X,

and let ξ ∈ Q(T ) be one of its roots. We write K = Q(T, ξ) and K̂ for its
normal closure over Q(T ).

We shall consider various intermediate extension Q(T ) ⊆ L ⊆ K̂ corre-
sponding to (smooth models of) projective curves, denoted CL. For such a
field L and for t ∈ N (we exclude the finitely many ramified ones from our
discussion1) we choose once and for all a point pL,t on CL(Q) above t in such
a way that pL,t is above pL′,t if L′ is another intermediate extension with
L′ ⊆ L. This pL,t defines a place of a field L; more precisely a place v of

L corresponds to deg(v) geometric points of CL(Q), conjugates by Galois
action. These choices define a specialization map which sends u ∈ L to
ut := u(pL,t) ∈ Q. We denote by Lt := Q(pL,t) the specialized field, i. e. the
residue field of L by the place defined by pL,t. Thus Lt = {ut |u ∈ L}.

Our basic parametric equation is

(2.1) Norm(x0 + x1ξt + · · ·+ xd−1ξ
d−1
t ) = 1

to be solved in integers x0, . . . , xd−1 as the integer parameter t varies. As
mentioned above, when t is not present, one obtains the so-called “norm
form” equation by further restricting (x0, x1, . . . , xd−1) to lie in a fixed
proper vector space of Qd. But here we shall allow subspaces - and even
subvarieties - of Q(t)d. As in the work of Thomas, our emphasis is on special-
izations of the parameter to sufficiently large integers t; and we can clearly
assume t > 0.

For t ∈ N large the numbers r1 and 2r2 of real and imaginary immersions
of the number field Q(ξt) are both constants. This can be seen looking at
sign changes, see Lemma ??. As usual, we let r = r1 + r2 − 1.

We make the following

Assumption 2.1.

(1) There exist multiplicatively independent elements u1, . . . , ur of Z[T, ξ]∗.
(2) Suppose u is in Z[T, ξ]∗ and the algebraic number v is in the group

generated by the conjugates of u. Then v is a root of unity.

The most stringent part is (1), which however is basic to the context that
we are studying. Part (2) is more of a technical nature. We will see just
after the proof of Lemma ?? that it suffices to check (2) for u in the group
generated by u1, . . . , ur.

Note that (Z[T, ξ]∗)t ⊆ Z[ξt]
∗. Under our assumptions, the index [Z[ξt]

∗ :
(Z[T, ξ]∗)t] is finite for large t (see Lemma ??(1)), and moreover uniformly
bounded (see Theorem ??). Let us assume in addition Z[ξt]

∗ = (Z[T, ξ]∗)t.

1These, arising from the vanishing of the discriminant of P with respect to X, must be
excluded for instance to ensure the isomorphism ??.
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As a first consequence of the specialization theorem [?, Theorem 1.3]) (p.2601)
we get:

Theorem 2.2. Let us assume ??. Let W ⊆ Ad be a proper subvariety
defined over Q(T ). Then there exists an effective t0 > 0 such that for t ≥ t0
with

Z[ξt]
∗ = (Z[T, ξ]∗)t,

the solutions (x0, . . . , xd−1) ∈Wt(Z) of

(2.2)

d∏
j=1

(x0 + x1σj(ξt) + · · ·+ xd−1σj(ξt)
d−1) = 1

are specializations of functional solutions X = (X0, . . . , Xd−1) ∈ W (Z[T ])
of

(2.3)

d∏
j=1

(X0 +X1σj(ξ) + · · ·+Xd−1σj(ξ)
d−1) = 1.

For a Thomas equation of degree d ≥ 3, the result [?, Theorem 2.1] (p.6)
of Halter-Koch, Lettl, Pethö and Tichy implies (under some minor condi-
tions) that if t is sufficiently large and Q(ξt) is a primitive extension, then ξt,
ξt−A1(t), . . ., ξt−Ad−2(t) generate a subgroup of uniformly bounded rank
of Z[ξt]

∗. And their result [?, Theorem 3.1] (p.7) implies that primitivity
holds for almost all choices of the parameter (in the sense of thin sets).

Here we prove a uniform bound for the index valid for all sufficiently large
t.

Theorem 2.3. Let us assume ??. Then, there exist effective t1, I ∈ N such
that [Z[ξt]

∗ : (Z[T, ξ]∗)t] ≤ I for t ≥ t1.

The proof is delicate since we have to consider some degenerate cases
(corresponding to intermediate fields in the extension K/Q(T ) above). It
requires the following lower bound for the standard absolute logarithmic
Weil height h for non-torsion elements in Z[ξt]

∗.

Theorem 2.4. Let us assume ??. Then, there exist effective t1 and c > 0
such that for t > t1 and any non-torsion η ∈ Z[ξt]

∗ we have

h(η) ≥ c log t.

Theorem ?? allows us to prove a completely (i. e. without assumption
on the index) effective description of the solutions of the norm form equa-
tion (??) at the price of a more technical statement. Let σ1, . . . , σd be the
Q(T )-immersions of K := Q(T, ξ) in an algebraic closure K and consider

the linear isomorphism Ψ: K
d → K

d
be the linear isomorphism

Ψ(X) =
( d−1∑
i=0

Xiσ1(ξ)
i−1, . . . ,

d−1∑
i=0

Xiσd(ξ)
i−1).

Theorem 2.5. Let us assume ??. Let l = lcmt≥t1 [Z[ξt]
∗ : (Z[T, ξ]∗)t] and

W ( Ad be a subvariety defined over Q(T ). Then there exists an effective
t2 ∈ N such that for t ∈ N, t ≥ t2, the solutions (x0, . . . , xd−1) ∈ Wt(Z)
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of (??) are specializations of functional solutions X = (X0, . . . , Xd−1) ∈
W (K) of (??) satisfying moreover

(2.4) Ψ−1
(
Ψ(X)l

)
∈ Z[T ]d.

Note that lcmt≥t1 [Z[ξt]
∗ : (Z[T, ξ]∗)t] in the above theorem is well defined

and can be effectively bounded by Theorem ??.
Let’s come back to the index. The following question arises naturally:

Problem 2.6. Does there exist a t1 ∈ N such that Z[ξt]
∗ = (Z[T, ξ]∗)t for

t ≥ t1?

By Theorem ??, a positive answer to this question would give a simple
description of the solutions of the norm form equation (??).

Our results raise three more questions.
First, can one determine the structure of the functional solutions? Most

likely this is possible (and effectively) through the machinery of the function
field abc (or better abcd . . .) theorems, as hinted in Section ?? (see also Mason
[?] as well as [?] a bit later); in another article we investigate this in a more
general context.

Second, can one determine the solutions when t is “small”? For the
Thomas equations and Thue examples in general we can use linear forms in
logarithms, but it is not clear if this works for (??). Actually that is a curve
of genus 1, so the results of Baker and Coates [?] (p.595) apply. However this
would not work for analogues of (??) of degree 4, where one would expect
genus 3.

And (??) is a surface (and with an extra variable even a three-fold);
further the Padé methods are unlikely to work, as Baker’s condition t > 1011

suggests.
Third, as noted already in [?], the original Thomas Conjecture can be ex-

tended to equations coming from so-called Ankeny-Brauer-Chowla “ABC”
number fields. This is also punningly suggested by our notation in Theorem
??. But can one extend this Theorem in a similarly complete way? A good
test case would be

(X −AY )(X2 +BXY + CY 2) + Y 3 = 1

assuming that B2 − 4C < 0 for all sufficiently large T = t > 0. We already
treated the case A = B = T,C = T 2 in (??).

3. Notations and auxiliary results

Let, as in the previous section P ∈ Z[T,X] be an irreducible polynomial,

monic of degree d in X and ξ ∈ Q(T ) one of its roots. We recall that
K = Q(T, ξ).

Lemma 3.1. For large t ∈ N, the number r1(t) of real immersions of the
number field Q(ξt) is constant.

Proof. This is an easy consequence of Sturm’s Theorem on the number of
distinct real roots, located in an interval, of a square-free polynomial. Let
us consider P as a polynomial with coefficients in Q(T ) and perform the
Sturm’s sequence Pi with P0 = P , P1 = P ′ and, for i ≥ 1, Pi+1 be the
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remainder of the euclidean division between Pi and Pi+1. Then, for each i
and for large t > 0, the specialization at t of P is square-free and the sign
of the specialization at t of the leading coefficient of Pi is constant, proving
that the number of real roots of x 7→ P (t, x) does not depend on t.

�

According to this lemma, we let r1 and 2r2 the numbers of real and imag-
inary immersions of Q(ξt) (for t ∈ N sufficiently large), and r = r1 + r2 − 1.

For the next lemma, we need the main result of [?], which we state in
the following somewhat modified version. We take an irreducible algebraic
curve C defined over Q, embedded in some affine space with associated
(logarithmic) height h on C(Q), defined with say supremum norms.

Theorem 3.2. Let Γ be a finitely generated subgroup of Q(C)∗ such that
the only constants in Γ are roots of unity. Then there exists an effective
h0 = h0(Γ) such that, for t ∈ C(Q) with h(t) > h0, the restriction to Γ of
the evaluation at t is an isomorphism onto its image Γt.

Proof. We first remark that the restriction is defined outside a finite set
and thus for t of sufficiently large height. We fix basis elements γ(1), . . . , γ(k)

of Γ/Γtors. Since the only constants in Γ are roots of unity, γ(1), . . . , γ(k)

are multiplicatively independent modulo constants. By [?, Theorem 1’
(p.1120)], there exists an effective h0 > 0 such that if h(t) > h0 then the spe-

cializations γ
(1)
t , . . . , γ

(k)
t are multiplicatively independent. Let now γ ∈ Γ

such that γt = 1. Write γ = ζ(γ(1))m1 · · · (γ(k))mk where ζ is a root of unity.

Then 1 = γt = ζ(γ
(1)
t )m1 · · · (γ(k)t )mk . If h(t) > h0 then γ

(1)
t , . . . , γ

(k)
t are

multiplicatively independent, and thus ζ = 1, m1 = · · · = mk = 0, which
implies γ = 1.

�

Note that the units in Z[T, ξ]∗ form a finitely generated group. We shall
apply Theorem ?? to various group Γ which are image of subgroups of
Z[T, ξ]∗ by homomorphisms, and thus also finitely generated.

Lemma 3.3. Let us assume ??. For t ∈ N sufficiently large (effectively)
the following holds:

(1) rankZ[ξt]
∗ = rank (Z[T, ξ]∗)t = rankZ[T, ξ]∗ = r.

(2) Kt = Q(ξt) and [Kt : Q] = d.
(3) Let E/Q(T ) be a subextension of K/Q(T ). Then [Et : Q] = [E : Q(T )].
(4) The group generated by u1, . . . , ur in Assertion ??(1) is of finite index

in Z[T, ξ]∗.

Proof. To prove (1), let s1 ≤ r1 be the number of real roots of the irre-
ducible factor (over Q) of P (t,X) vanishing at ξt, whereas let 2s2 be the
number of complex non-real roots, so s2 ≤ r2. By the above inequalities and
by the easier part of Dirichlet’s theorem, rankZ[ξt]

∗ ≤ s1 + s2 − 1 ≤ r. By
Assumption ??(1), rankZ[T, ξ]∗ ≥ r. Since Assumption ??(2) implies that
the only constants in Z[T, ξ]∗ are roots of unity, Theorem ??, shows that
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rank (Z[T, ξ]∗)t = rankZ[T, ξ]∗. Moreover (Z[T, ξ]∗)t ⊆ Z[ξt]
∗. Putting all

these inequalities together,

r ≤ rankZ[T, ξ]∗ = rank (Z[T, ξ]∗)t ≤ rankZ[ξt]
∗ ≤ s1 + s2 − 1 ≤ r.

Thus rankZ[ξt]
∗ = rank (Z[T, ξ]∗)t = rankZ[T, ξ]∗ = r (and r1 = s1,

r2 = s2).

The argument above shows that [Q(ξt) : Q] = s1 + 2s2 = r1 + 2r2 = d.
Since Q(ξt) ⊆ Kt and [Kt : Q] ≤ [K : Q(T )] = d we have Kt = Q(ξt). This
proves (2).

The equality of the degree in (3) for an arbitrary subextension E/Q(T )
follows as a consequence of (2), taking into account that if the degree drops
on specializing E, the same would happen for K.

To see (4) we know from (1) that the group generated by u1, . . . , ur has
the same rank as Z[T, ξ]∗. So it suffices to prove that the torsion of the latter
is bounded. But ξ has a Puiseux series, say at T =∞, whose coefficients lie
in a number field. Thus any root of unity in Z[T, ξ]∗ must lie in this field
and therefore in its finite torsion group.

�

Remark 3.4.
(i) Let σ1, . . . , σd be the Q(T )-immersions of K in an algebraic closure K.

By (2) we can identify σ1, . . . , σd with the Q-immersions of Q(ξt) in Q by

letting σi(
∑
ajξ

j
t ) =

∑
aj(σiξ)

j
t for a0, . . . , ad−1 ∈ Q.

(ii) Let E be as in (3) and let u be a primitive element for E over Q(T ), i. e.
E = Q(T, u). Then obviously Q(ut) ⊆ Et and we may not have equality.
Note however that equality holds2 for sufficiently large t, but “sufficiently
large” may now depend on the chosen primitive element u . We shall prove
a uniform version for units in Proposition ??.

(iii) Assertion (4) enables us in Assumption ??(2) to restrict to u in the
group generated by u1, . . . , ur.

The next result will be useful in checking this Assumption ??(2) for the
various examples.

Lemma 3.5. Let us assume that ??(1) holds. Assume further that the

Puiseux series at T = ∞ of the roots ξ(1), . . . , ξ(d) of P (T,X) are Laurent
series with coefficients in k where k is the rational field or an imaginary
quadratic field. Then assertion ??(2) holds.

Proof. By ??(1), there exist multiplicatively independent u1, . . . , ur ∈
Z[T, ξ]∗. Let u be a monomial in u1, . . . , ur and v be an algebraic num-
ber in the group generated by the conjugates of u. As already noted

2We have equality for t which are not a root of the discriminant of 1, u, . . ., u[E:Q(T )]−1.
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(after the proof of Lemma ??), it is enough to show that v is a root of

unity. Note that v ∈ k, since the Puiseux series at T = ∞ of ξ(1), . . . , ξ(d)

are Laurent series with coefficients in k. On the other hand, the conju-
gates of u±1i are in Z[T, ξ(1), . . . , ξ(d)] (since ui are units) and a fortiori in

R := Ok[T, ξ(1), . . . , ξ(d)]. The same holds for v. Since O∗k is a set of roots
of unity, it is enough to show that

R ∩ k = Ok.

We choose a basis v1 = 1, v2, . . . , vδ of the k(T )-vector space

k(T, ξ(1), . . . , ξ(d)).

Then, there exists non-zero F ∈ Z[T ] such that

F ·R ⊆ Ok[T ] +Ok[T ]v2 + · · ·+Ok[T ]vδ.

Let z ∈ R ∩ k. A “Landau trick” with z, z2, z3, . . . shows that z lies in Ok.
Namely, for all j ∈ N we have zj ∈ R ∩ k and, by the linear independence
of v1, . . . , vδ, we deduce that zjF ∈ Ok[T ]. Thus z ∈ Ok.

�

4. Proofs of Theorems ?? and ??

The main ingredient in the proof of theorems ?? and ?? is the special-
ization theorem [?, Theorem 1.3] (p.2601), which we recall for the reader’s
convenience.

Let F be the function field of an algebraic curve C defined over Q. Given
a subgroup Γ of Gd

m defined over F we say that Γ is constant-free if its image

Γ′ by any surjective homomorphism Gd
m → Gm satisfies Γ′ ∩Q∗ = Γ′tors.

Theorem 4.1 ([?], Theorem 1.3 (p.2601)). Let Γ ⊂ Gd
m(F) be a finitely

generated constant-free subgroup and let V be a subvariety of Gd
m defined

over F. Then the points t ∈ C(Q), such that for some γ ∈ Γ \ V the value
γt is defined and lies in Vt, have bounded height.

We now prove Theorem ??. Let us first recall the relevant notations. Let,
as in Remark ??(i), σ1, . . . , σd be the Q(T )-immersions of K := Q(T, ξ) in
an algebraic closure K, which we identify with the Q-immersions of Q(ξt)

in Q. Let Ψ: K
d → K

d
be the linear isomorphism

Ψ(X) =
( d−1∑
i=0

Xiσ1(ξ)
i−1, . . . ,

d−1∑
i=0

Xiσd(ξ)
i−1).

We remark that for t ∈ N sufficiently large the specialized map Ψt : Q
d → Qd

,

Ψt(x) =
( d−1∑
i=0

xiσ1(ξt)
i−1, . . . ,

d−1∑
i=0

xiσd(ξ)
i−1
t

)
.

is still an isomorphism.
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We consider a solution x = (x0, . . . , xd−1) ∈Wt(Z) of (??). Then

η := x0 + x1ξt + · · ·+ xd−1ξ
d−1
t

is a unit of Z[ξt]. By assumption Z[ξt]
∗ = (Z[T, ξ]∗)t, thus η ∈ (Z[T, ξ]∗)t

and there exists γ ∈ Z[T, ξ]∗ such that η = γt. Let γ = (σj(γ))j=1,...,d which
is in the finite rank subgroup

Γ = {(σ1(u), . . . , σd(u)) | u ∈ Z[T, ξ]∗}
of (K

∗
)d. A typical element v in the image Γ′ of Γ by a surjective homo-

morphism Gd
m → Gm lies in the group generated by some σ1(u), . . . , σd(u).

So by Assumption ??(2) v is a root of unity as soon as it is an algebraic
number. This proves that Γ is constant-free.

We have x = Ψ−1t (γt) and thus X := Ψ−1(γ) specializes to x. Moreover
X ∈ Z[T ]d (since γ is stable by the Galois action), NormK

Q(T )(γ) = ±1 and

the sign + holds since Xt = x, i. e. Norm(η) = 1 and X satisfies (??). Thus
we cannot have X ∈W .

We denote by V the intersection of Ψ(W ) with Gd
m. Observe that V 6= Gd

m

since W is a proper subvariety of Ad. By the previous discussion, γ = ψ(X)
is not in V and3 γt = ψt(x) ∈ Vt. Theorem ?? then asserts that h(t) is
bounded, hence (t being in N) t is bounded.

�

We now prove Theorem ??. The proof is similar to the proof of Theo-
rem ??. First recall that, by Theorem ??, [Z[ξt]

∗ : (Z[T, ξ]∗)t] is uniformly
bounded for t ≥ t1. Thus l = lcmt≥t1 [Z[ξt]

∗ : (Z[T, ξ]∗)t] is well defined and
can be effectively bounded.

Let t ∈ N large enough. We consider a solution x = (x0, . . . , xd−1) ∈
Wt(Z) of (??). Then

η := x0 + x1ξt + · · ·+ xd−1ξ
d−1
t

is a unit of Z[ξt] of norm 1 and ηlt ∈ (Z[T, ξ]∗)t. Let us assume that x is not

a specialization of a functional solutions X ∈ W (Q(T )) of (??) satisfying
Ψ−1

(
Ψ(X)l

)
∈ Z[T ]d.

We modify the argument of the proof of Theorem ?? as follow. Let
lt := [Z[ξt]

∗ : (Z[T, ξ]∗)t]. We select an algebraic function γ such that
γlt ∈ Z[T, ξ]∗ and we extend the specialization Ξ 7→ Ξt in such a way that
γt = η. For j = 1, . . . , d we also extend σj to K(γ) in such a way that
σj(γ)t = σj(η) for j = 1, . . . , d and we denote γ = (σj(γ))j=1,...,d. Then γ is
in the finite rank group

Γl = {γ | γlt ∈ Γ}
which remains constant-free as Γ. Let X := Ψ−1(γ) ∈ K

d
and ω :=

σ1(γ) · · ·σd(γ). Then ωlt = NormK
Q(T )(γ

lt) = ±1. Since γt = u and

Norm(u) = 1 we have ω = 1. Thus X is a solution of (??) which spe-
cializes to x = Ψ−1t (γt). Since γlt is stable by the Galois action, we have

3We can assume xi 6= 0; otherwise, replace W by a subvariety.
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Ψ−1
(
Ψ(X)lt

)
= Ψ−1(γlt) ∈ Z[T ]d. Since lt | l we deduce that Ψ−1

(
Ψ(X)l

)
∈

Z[T ]d. Thus X 6∈ W . This proves that γ is not in V and γt ∈ Vt. By
Theorem ??, t is bounded.

5. Proof of theorems ?? and ??

To prove Theorem ?? we need some more technical results. Let E/Q(T )
be a subextension of K/Q(T ) of degree d′ > 1. Remark that E ∩Q[T, ξ] is a
finitely generated torsion-free module of rank d′ over the principal domain
Q[T ], and therefore there exists a Q[T ]-basis, ω(1), . . . , ω(d′). To prove the
lower bound for the height in Theorem ?? we first relate the discriminant
of the order Z[ξt] ∩ Et with the discriminant (ideal) of (E ∩ Q[T, ξ])/Q[T ].
This will allow to get, in Proposition ??, a lower bound for the maximum
(in absolute value) conjugate of a generator η ∈ Z[ξt] ∩ Et of Et/Q.

Lemma 5.1. Let us assume ?? and let t ∈ N be sufficiently large. Let
E/Q(T ) be a subextension of K/Q(T ). We consider the Q(T )-vector space

V = {(c0, . . . , cd−1) ∈ Q(T )d | c0 + c1ξ + · · ·+ cd−1ξ
d−1 ∈ E}.

and we let Vt be the vector space over Q obtained by specializing at t the
elements of V (those defined at t). Then

(5.1) Vt = {(b0, . . . , bd−1) ∈ Qd | b0 + b1ξt + · · ·+ bd−1ξ
d−1
t ∈ Et}.

Thus dimQ Vt = [E : Q(T )].

Proof. To prove the non trivial inclusion “⊇” in (??), let (b0, . . . , bd−1) ∈
Qd be a vector in the set on the right, i. e. such that the specialization of

v := b0 + b1ξ + · · ·+ bd−1ξ
d−1 ∈ K0

is in Et. Then vt = ut for some u ∈ E regular at t. We write

u = c0 + c1ξ + · · ·+ cd−1ξ
d−1, ci ∈ Q[T ].

Thus (c0, . . . , cd−1) ∈ V and

u− v = (c0 − b0) + (c1 − b1)ξ + · · ·+ (cd−1 − bd−1)ξd−1 ∈ K0

specializes at 0. Let m ∈ Z be the least integer such that (T − t)m(ci − bi)
are all regular at t. Thus the specializations (T − t)m(ci−bi) at t are defined
and not all zero. Let us assume by contradiction that at least one of the
(ci − bi)’s does not vanish at t. Then m ≥ 0 and (T − t)mu specializes

to 0 at t. This gives a non trivial Q-linear combination of 1, ξt, . . . , ξd−1t

vanishing, contrary to assertion (2) of Lemma ??. This shows that bi = ci(t)
for i = 0, . . . , d− 1 as desired.

By Lemma ??(2) [Et : Q] = [E : Q] for t ∈ N sufficiently large. Thus (??)
implies dimQ Vt = [Et : Q] = [E : Q].

�
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Lemma 5.2. Let us assume ?? and let t ∈ N be sufficiently large. Let
E/Q(T ) be a subextension of K/Q(T ) of degree d′ and choose a Q[T ]-basis

ω(1), . . . , ω(d′) of E ∩Q[T, ξ]. Then there exists an integer δ 6= 0 such that

δ(Z[ξt] ∩ Et) ⊆ Zω(1)
t + . . .+ Zω(d′)

t .

Proof. Let V and Vt as in the statement of Lemma ?? and let Λ := V ∩
Q[T ]d which is a free Q[T ]-module of rank d′. Hence, defining c(1), . . . , c(d

′) ∈
Q[T ]d by

ωi = c
(i)
0 + c

(i)
1 ξ + · · ·+ c

(i)
d−1ξ

d−1, i = 1, . . . , d′,

we have that actually c(1), . . . , c(d
′) is a basis of Λ over Q[T ]. Note that Λ

is saturated4 in Q[T ]d. Since Q[T ] is principal, the d × d′ matrix having

the transposition of c(1), . . . , c(d
′) as column vectors may be completed5 to

a d × d matrix Γ with entries in Q[T ] and determinant 1. We also remark

that for t large enough, the specialization c
(1)
t , . . . , c

(d′)
t remain Q-linearly

independent; thus by Lemma ?? they form a basis for Vt/Q.

Let now η ∈ Z[ξt]∩Et. Then we can write η = a0 + a1ξt + . . .+ ad−1ξ
d−1
t

with a = (a0, . . . , ad−1) ∈ Zd. Since η ∈ Et, we have that a ∈ Vt, so

a =
∑d′

i=1 bic
(i)
t , with bi ∈ Q. This means that, letting x be the transpose

of a and y whose of (b1, . . . , bd′ , 0, . . . , 0), we have

x = Γty.

Inverting this equation yields y = Γ−1t x, and now the conclusion follows
because x has integer coordinates and Γ−1t has rational entries with denom-
inator bounded independently of t, since det Γ = 1 and since the entries of
Γ are fixed polynomials in Q[T ].

�

Proposition 5.3. Let us assume ?? and let t ∈ N be sufficiently large.
Let E/Q(T ) be a subextension of K/Q(T ) of degree d′ > 1. Then for any
generator η ∈ Z[ξt]∩Et of Et/Q, the maximum (in absolute value) conjugate
of η over Q is

≥ c0|t|
1

d′(d′−1)

in absolute value, for some c0 > 0 independent of η and t.

Proof. Let ω(1), . . . , ω(d′) be a Q[T ]-basis of E ∩ Q[T, ξ]. Lemma ??, ap-
plied to ηj , j = 0, 1, . . . , d′ − 1, implies that

δηj = c1jω
(1)
t + . . .+ cd′jω

(d′)
t ,

for a certain integer δ 6= 0 independent of t and η, and suitable integers cij .
Conjugating these equations d′ = [Et : Q] times we obtain a matrix equa-
tion δU = ΩC, where the rows of U are the conjugates of the row vector

(1, η, . . . , ηd
′−1), where Ω has row vectors the conjugates of (ω

(1)
t , . . . , ω

(d′)
t )

4This is because Λ is the intersection of Q[T ]d with Q(T )d and Q(T ) is the fraction
field of Q[T ].

5This amounts to completing c(1), . . . , c(d
′) to a Q[T ]-basis of Q[T ]d, and for this it

suffices to lift a basis of Q[T ]d/Λ to Q[T ]d.
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and where C is the matrix of the cij . Taking determinants we obtain

δd
′
detU = det Ω detC.
Now, detC is a nonzero integer (since η generates Et/Q), whereas (det Ω)2

is the value at t of a nonconstant polynomial, a generator of the discriminant
(ideal) of (E ∩ Q[T, ξ])/Q[T ] (this is nonconstant because d′ > 1 so there

must be ramification at some finite point). Hence |detU | � |t|1/2, and now
the conclusion follows at once.

�

To prove Theorem ?? we also need a uniform statement of Remark ??(ii)
for units u ∈ Z[T, ξ]∗. We first recall some basic fact on decomposition
groups in function fields extensions.

Let L/Q(T ) be a normal extension. Corresponding to t and the chosen
point pL,t of CL we have a decomposition group

∆t = ∆(pL,t) ⊂ Gal(L/Q(T )).

Recall that this is the subgroup of Gal(L/Q(T )) which stabilizes the Galois
orbit of pt over Q (and thus fixes the place corresponding to this Galois
orbit).

For non ramified points the group ∆t is isomorphic (see [?, Proposition
20] (p.21) and [?, Theorem 3.8.2] (p.131)) to the Galois group of Lt/Q, the
isomorphism being given by

(5.2)
∆t → Gal(Lt/Q)

σ 7→ σ̃

where

σ̃(ut) = σ(u)t

for u ∈ L.

We can now prove our uniform version of Remark ??(ii).

Proposition 5.4. Let us assume ??(2). For t ∈ N sufficiently large (effec-
tively) and for µ ∈ Z[T, ξ]∗ we have Q(T, µ)t = Q(µt).

Proof. Let K̂ be the normal closure of K over Q(T ) and let E = Q(T, µ).
It is clear that µt ∈ Et. We have to prove that Et ⊆ Q(µt), or equivalently

by Galois Theory, that Gal(K̂t/Q(µt)) fixes Et. Let σ ∈ Gal(K̂t/Q(µt)) ⊆
Gal(K̂t/Q). We identify σ to an element of the decomposition group ∆t =
∆(p

K̂,t
).

Thus µt = σ(µt) = σ(µ)t. Let γ := µσ(µ)−1 which stays in the finite rank
subgroup

Γσ = {uσ(u)−1 | u ∈ Z[T, ξ]∗}.
A typical element v ∈ Γσ lies in the group generated by the conjugates of
some u ∈ Z[T, ξ]∗. So by Assumption ??(2) v is a root of unity as soon
as it is an algebraic number. This shows that the only constants in Γσ are
roots of unity. Since γ specializes at 1, by Theorem ?? we have σ(µ) = µ
provided that t is sufficiently large (w.r.t. the finite number of subgroups

Γτ with τ ∈ Gal(K̂/Q), and thus uniformly in µ). But then σ fixes E and
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σ ∈ ∆t∩Gal(K̂/E). Thus σ fixes Et, the fixed field in K̂t of ∆t∩Gal(K̂/E)

(viewed as a subgroup of Gal(K̂t/Q)).

�

We will use this proposition coupled with the following remark :

Lemma 5.5. Let F/E be a finite extension of number fields. Let α ∈ F
such that E = Q(αm) for some m ≥ 1. Then there exists an integer m0,
bounded in terms only on the degree [F : Q], such that E = Q(αm0).

Proof. We define m0 as the least positive integer such that αm0 ∈ E. Then
m0 |m and Q(αm0) ⊆ E = Q(αm) ⊆ Q(αm0). Hence Q(αm) = Q(αm0).
Moreover, since α is a root of Xm − αm ∈ E[X] we have NormF

E(α) = ζαδ

where δ = [F : E] and where ζ is a m-th root of unity. Since ζ is in F , its
order k is bounded in terms on [F : Q]. This proves that αδk ∈ E. Since
m0|δk, the conclusion follows. �

Proof of Theorem ??. Let t be large enough and η ∈ Z[ξt]
∗ be non

torsion. To get a lower bound for h(η), write η = a0 + a1ξt + . . .+ ad−1ξ
d−1
t

with a0, . . . , ad−1 ∈ Z and let u = a0 + a1ξ + . . . + ad−1ξ
d−1 ∈ Z[ξ] (note

that u may still depend, in a non-algebraic way, on t). For large t we
have rankZ[ξt]

∗ = rank (Z[T, ξ]∗)t = r by Lemma ??(1). Thus the index
lt := [Z[ξt]

∗ : (Z[T, ξ]∗)t] is finite. By definition of index, we have ηlt =
µt ∈ (Z[ξ, T ]∗)t for some µ ∈ Z[ξ, T ]∗ (possibly still depending on t). Let
E = Q(T, µ). Note that d′ := [E : Q(T )] > 1 (otherwise µ ∈ Z[ξ, T ]∗ ∩
Q(T ) = Z[T ]∗ = {±1} and hence η is torsion, contrary to our assumption).
By Proposition ?? Et = Q(µt) = Q(ηlt). By Lemma ??, Q(ηlt) = Q(ηm0)
for some m0 bounded only in term of [Q(η) : Q] and thus independently of
t. By Proposition ??, we have

h(η) = h(ηm0)/m0 ≥ c log t.

�

Remark 5.6. It would be interesting to extend Theorem ?? to arbitrary
non constant elements η ∈ Z[ξt], not necessarily units. The obstruction in
applying our method depends on the fact that Q(η) is not necessarily the
specialization Lt of a subextension L/Q(T ) of K/Q(T ). This holds under

stronger assumptions, e.g. if [K̂t : Q(T )] = [K̂ : Q], which ensures that

Gal(K̂t/Q(T )) ∼= Gal(K̂/Q).

We can now prove our uniform bound for the index.

Proof of Theorem ??. We denote by c1, c2, c3 positive constants de-
pending only on the algebraic function ξ. For large t we have rankZ[ξt]

∗ =
rank (Z[T, ξ]∗)t = r by Lemma ??(1). Thus the index lt := [Z[ξt]

∗ : (Z[T, ξ]∗)t]
is finite. The logarithmic embedding L : K∗ → Rr provides an isomorphism
of Z[ξt]

∗/Z[ξt]
∗
tors with a lattice. It is easy to see that the euclidean norm of

a unit η in K is at least (d/4
√
r)h(η), and clearly the norm is zero if η is

torsion. Thus by Minkowki’s Theorem, there exists a non-torsion η ∈ Z[ξt]
∗

such that

h(η) ≤ c1Vol(Z[ξt]
∗)1/r = c1(Vol((Z[T, ξ]∗)t)/lt)

1/r.
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Let γ(1), . . . , γ(r) ∈ Z[T, ξ]∗ be a basis modulo torsion. By Theorem ??

γ
(1)
t , . . . , γ

(r)
t is a basis of (Z[T, ξ]∗)t modulo torsion. We have h(γ

(j)
t ) ≤

c2 log t, since γ(1), . . . , γ(r) have been fixed independently of t. Thus

Vol((Z[T, ξ]∗)t) ≤ h(γ
(1)
t ) · · ·h(γ

(r)
t ) ≤ cr2(log t)r

and

(5.3) h(η) ≤ c3(log t)/l
1/r
t .

From (??) and from Theorem ?? we get c log t ≤ c3(log t)/l
1/r
t which shows

that lt ≤ (c3/c)
r is bounded independently of t.

�

6. Proof of Theorem ??

We shall need the following

Lemma 6.1. The Puiseux series at T =∞ of the solutions X of

(X −A)(X −B)(X − C) + 1 = 0

are Laurent series with coefficients in Q.

Proof. We note first that if a, b, c are distinct integers then f(x) = (x −
a)(x− b)(x− c) + 1 has a zero z with

|z − a| ≤ 9

|a− b||a− c|
.

This is trivial if p = |a−b||a−c| ≤ 9, as the product of the zeroes of f(y+a)
is 1. If p ≥ 10 we use Rouché with g(x) = f(x)−1, because on |x−a| = 5/p
we have |f − g| = 1 while

|g| ≥ 5

p

(
|a− b| − 5

p

)(
|a− c| − 5

p

)
≥ 5

p

|a− b|
2

|a− c|
2

=
5

4
.

Now we apply this with a, b, c the values of A,B,C at t > 0 large enough.
We find a zero α = α(t) with α − A(t) → 0 as t → ∞. Similarly β, γ with
β −B(t)→ 0, γ − C(t)→ 0.

These mean that there must be Puiseux series with principal partsA,B,C;
as those are different they are a complete set. If one of them was a series in
T−1/e for some (minimal) e ≥ 2, then applying a non-trivial element of the

Galois group of C(T 1/e) over C(T ) would induce a non-trivial permutation;
also impossible from the principal parts. So they are Laurent series. Finally
applying the Galois group of Q over Q to the coefficients shows in a similar
way that they are in Q.

�

For Ziegler’s example A = 0, B = T,C = T 4 + 3T we find indeed

A− 1

T 5
+

3

T 8
− 8

T 11
+

22

T 14
− 65

T 17
+ · · · ,

B +
1

T 5
− 2

T 8
+

3

T 11
− 3

T 14
+

9

T 17
+ · · · ,

C − 1

T 8
+

5

T 11
− 19

T 14
+

65

T 17
− 213

T 20
+ · · ·
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even with coefficients in Z (this does not always happen).

Back to the general proof. For t > 0 sufficiently large, the valuesA(t), B(t), C(t)
are different, and it is easily seen that there is a fixed permutation of A,B,C
such that A(t) < B(t) < C(t). Thus r0 = B(t) − A(t), s0 = C(t) − A(t)
satisfy 1 ≤ r0 ≤ s0 − 1.

If for all large t we have r0 = s0 − 2 then C −B = 2 and (??) reduces to
x′(x′−2y)(x′+ ry) + y3 = 1 with x′ = x−B(t)y. For large t we have r0 > 0
large and so it comes down to

(6.1) x(x− 2y)(x+ ty) + y3 = 1.

We could not find this in the literature, but it can be handled in the same
way as (??) and (??). Thus we postpone the details until section 7. We did
not work out the functional solutions, but Yuri Bilu very kindly found for
t = 116 the solutions

(x, y) = (1, 0), (0, 1), (2, 1), (−116, 1), (3393262, 1700241)

of which the last is perhaps unexpected.
Similarly if for all large t we have r0 = s0 − 1 then it comes down to

x(x− y)(x+ ty) + y3 = 1

which is treated by Mignotte and Tzanakis [?] (p.49) - there one must replace
(y, n) by (−y, t− 1). Here for t > (3.67)1032 the solutions are

(1, 0), (0, 1), (1, 1), (−t, 1), (1, t− 1)

of which the last is not among the “obvious” ones.
Thus we may assume 1 ≤ r0 ≤ s0−3. In this case Theorem 3.9 of Thomas

[?] (p.39) tells us that the polynomial z(z−r0)(z−s0)+1 is irreducible over
Q and that for any zero z0 the pair z0, z0 − r0 is a system of fundamental
units for the cubic field Q(z0). As this field is real, the unit group is in fact
generated by −1, z0, z0 − r0.

We are going to apply Theorem ?? with

P (T,X) = (X −A)(X −B)(X − C) + 1

the formal norm of X− ξ. It is easy to see that this is irreducible over Q(T )
unless A,B,C are congruent modulo Z; but in that case we can take them
all in Z and then Theorem ?? is trivial.

We first check Assumption ??(1). We can take u1 = ξ − A, u2 = ξ − B
in part ??(1). A multiplicative relation would specialize to one between
ξt−A(t), ξt−B(t); but these are z0, z0−r0 above, so independent. Therefore
??(1) is proved. On the way we see that (Z[T, ξ]∗)t, already in Z[ξt]

∗ which
in turn is generated by −1, ξt −A(t), ξt −B(t), is in turn inside (Z[T, ξ]∗)t.
Therefore Z[ξt]

∗ = (Z[T, ξ]∗)t as required for Theorem ??.
Now Assumption ??(2) follows from Lemma ??; by Lemma ?? we may

take k = Q.
Finally our diophantine equation reduces to Norm(x−ξty) = 1 and there-

fore we can apply Theorem ?? with W defined by the vanishing of the co-
efficient of ξ2t .
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7. Examples

We first treat (??). We will apply Theorem ?? with P (T,X) = X3 −
(T 3 − 1) and

(7.1) ξ = (T 3 − 1)1/3 = T − 1/3

T 2
− 1/9

T 5
− 5/81

T 8
− 10/243

T 11
− · · · .

We start by finding Z[ξt]
∗. It contains ξt − t and sits in R so the only roots

of unity are ±1. We proceed to show that Z[ξt]
∗ is generated by −1 and

ξt − t.
If not, then it would contain η = (ξt−t)1/l for some integer l ≥ 2. Writing

η = a+ bξt + cξ2t with coefficients in Z, taking conjugates and solving for c
we would get |c| � t−3/2 with absolute implied constant. So c = 0 for large

enough t. Similarly |b| � t−1/2 so b = 0. This leaves us with η = a = ±1
an absurdity.

We now proceed to check Assumption ??. We can take u1 = ξ − T in
part ??(1); and as before we find easily Z[ξt]

∗ = (Z[T, ξ]∗)t.
As for part ??(2), we can again apply Lemma ??, this time with k = Q(ω)

for ω = exp(2πi/3).
Finally (??) reduces to Norm(x− ξty+ ξ2t ) = 1 and so we can again apply

Theorem ??.
It remains to check that the only X,Y in Z[T ] with

(7.2) X3 − (T 3 − 1)Y 3 + 3(T 3 − 1)XY + (T 3 − 1)2 = 1

are (X,Y ) = (T 2, 2T ), (T 2,−T ).
For this we need to know the generic unit group Z[T, ξ]∗. We will show

that it is generated by −1 and ξ − T in line with the specialized situa-
tion. Here we could apply Theorem ??; but the following argument is more
elementary and seems more natural.

Let A+Bξ + Cξ2 be such a unit, with coefficients in Z[T ]. Specializing,
we obtain for each large integer t an integer m(t) and a sign ε(t) such that

(7.3) A(t) +B(t)ξt + C(t)ξ2t = ε(t)(ξt − t)m(t).

As |ξt − t| � t−2 (again with absolute implied constant) we see by making
t→∞ that m(t)� −1. Taking a conjugate gives

A(t) +B(t)ωξt + C(t)ω2ξ2t = ε(t)(ωξt − t)m(t).

Now making t→∞ we see that also m(t)� 1.
Therefore passing to an infinite subsequence we can assume that ε = ε(t)

and m = m(t) are independent of t. But now both sides of (??) are fixed
Laurent series that coincide at infinitely many t. Therefore they coincide
identically in T . Thus A + Bξ + Cξ2 = ε(ξ − T )m and we have found the
desired generators.

Now factorizing the left-hand side of (??) we find

(7.4) X − Y ξ + ξ2 = ε(ξ − T )m

with its conjugates

X − Y ωξ + ω2ξ2 = ε(ωξ − T )m,

X − Y ω2ξ + ωξ2 = ε(ω2ξ − T )m.
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Eliminating X,Y using the Siegel identities gives z0, z1, z2 in C with

(7.5) z0(ξ − T )m + z1(ωξ − T )m + z2(ω
2ξ − T )m = ξ2.

At this point we could apply Corollary I (p.427) or Corollary II (p.428) of
[?], but there are annoying non-degeneracy conditions to be checked as well
as a genus to be calculated. Admittedly Theorem B (p.431) simplifies the
non-degeneracy condition. But we can also use the basic argument of [?]
directly. Thus (??) says that (ξ−T )m, (ωξ−T )m, (ω2ξ−T ), ξ2 are linearly
dependent over C. Therefore their Wronskian W vanishes identically. When
the m− 2 power of (ξ− T )(ωξ− T )(ω2ξ− T ) = −1 is ignored, a calculation
gives (up to sign)

W = m2(m− 1)(m+ 1)(m− 2)
(

(m− 5)T 3 − m

2
+ 1
)
ρ

for some fixed ρ 6= 0 in C(T, ξ) independent of m. It follows at once that
m = −1, 0, 1, 2. Now (??) is clearly impossible for m = 0, 1; and for
m = 2 we get ε(T 2 − 2Tξ + ξ2) leading to (T 2, 2T ) and for m = −1 we get
−ε(T 2+Tξ+ξ2) leading to (T 2,−T ). This completes the treatment of (??).

We next treat (??) which turned up during the proof of Theorem ??. We
use Theorem ?? with P (T,X) = X(X − 2)(X + T ) + 1. We can take

(7.6) ξ = −T − 1

T 2
+

2

T 3
− 4

T 4
+

10

T 5
− 26

T 6
+

68

T 7
− 183

T 8
+ · · · .

with conjugates

ξ′ =
1/2

T
+

1/8

T 2
− 3/16

T 3
− 19/128

T 4
+

31/256

T 5
+

201/1024

T 6
− 139/2048

T 7
− · · · ,

ξ′′ = 2− 1/2

T
+

7/8

T 2
− 29/16

T 3
+

531/128

T 4
− 2591/256

T 5
+

26423/1024

T 6
− · · · .

Now Z[ξt]
∗ contains ξt and ξt − 2, and again the only roots of unity are ±1.

We proceed to show (for the usual large t) that the first two are independent
and together with −1 generate Z[ξt]

∗.
The independence follows from Theorem ??, because a relation z = ξm(ξ−

2)n in C implies by (??) that

z = (−T + · · · )m (−2 + · · · )n

so m = 0; however ξ − 2 is not in C so n = 0.
Let η1, η2 be generators of Z[ξt]

∗ modulo torsion, and write l for the index
of the group generated by ξt and ξt − 2 in Z[ξt]

∗. Then

ηl1 = ±ξm1
t (ξt − 2)n1 , ηl2 = ±ξm2

t (ξt − 2)n2 .

Further the lattice Λ = Z(m1, n1) +Z(m2, n2) has determinant l2/l = l. By
Minkowski (as in the proof of Theorem ??) there is non-zero (m,n) in Λ
with

(7.7) |m|+ |n| ≤
√

2l.

Thus there is η 6= ±1 in Z[ξt]
∗ with

(7.8) η = ±ξm/lt (ξt − 2)n/l.
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We find

(7.9) |η| � t|m|/l, |η′| � t|m|/l, |η′′| � t|n|/l

all � t
√

2/l. Writing η = a + bξt + cξ2t in the usual way, taking conjugates
and using (??) shows now

(7.10) |c| � t−1+
√

2/l.

Thus c = 0 as soon as l ≥ 3. Now using just η = a+ bξt, η
′ = a+ bξ′t we get

also |b| � t−1+
√

2/l so also b = 0 as soon as l ≥ 3; and then a contradiction.
If l = 2 there are exactly three possibilities for Λ, namely

(7.11) Z(1, 0) + Z(0, 2), Z(0, 1) + Z(2, 0), Z(1, 1) + Z(0, 2).

In the first two cases we can get |m| + |n| = 1 <
√

2l and (??) now gives
c = 0 and then b = 0.

In the last case we can take (m,n) = (1, 1) and now (??) gives again c = 0
and then b = 0.

Thus we have determined Z[ξt]
∗; and since u1 = ξ, u2 = ξ − 2 are in

Z[T, ξ]∗ this shows Z[ξt]
∗ = (Z[T, ξ]∗)t as usual.

We next check Assumption ??; part (1) is already done.
For part (2) we could again apply Lemma ??. This finally disposes of

(??) and so completes the proof of Theorem ??.
We turn now to (??), again using Theorem ?? this time with P (T,X) =

X4 − (T 4 − 1) and

(7.12) ξ = (T 4 − 1)1/4 = T − 1/4

T 3
− 3/32

T 7
− 7/128

T 11
− 77/2048

T 15
− · · · .

Now Z[ξt]
∗ contains ξt − t and −ξt − t, and again the only roots of unity

are ±1. We proceed to show (for the usual large t) that the first two are
independent and together with −1 generate Z[ξt]

∗.
The independence follows again from Theorem ??, because a relation

z = (ξ − T )m(−ξ − T )n in C implies by (??) that

z =

(
−1/4

T 3
+ · · ·

)m
(−2T + · · · )n

so n = 3m; however (ξ − T )(−ξ − T )3 is not in C so m = 0.
Let η1, η2 be generators of Z[ξt]

∗ modulo torsion, and write l for the index
of the group generated by ξt − t and −ξt − t in Z[ξt]

∗. Then as above we
find non-zero (m,n) in Λ with (??), and then η 6= ±1 in Z[ξt]

∗ with

(7.13) η = ±(ξt − t)m/l(−ξt − t)n/l.
Writing η = a+bξt+cξ2t +dξ3t in the usual way, taking conjugates and using
(??) shows now

(7.14) |d| � t−3+
√

2/l, |c| � t−2+
√

2/l, |b| � t−1+(|m|+|n|)/l ≤ t−1+
√

2/l.

Thus d = c = b = 0 as soon as l ≥ 3; and then a contradiction.
If l = 2 we still get d = c = 0. In the first two cases of (??) we can get

|m|+ |n| = 1 <
√

2l and (??) now gives also b = 0.
In the last case we can take (m,n) = (1, 1) and now (??) gives

a+ bξt = ±(ξt − t)1/2(−ξt − t)1/2.
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But |ξt − t| � t−3 so |a + bξt| � t−1. Taking a single conjugate with −ξt
gives similarly |a − bξt| � t−1 and so again b = 0 (and even a = 0 into the
bargain).

Thus we have determined Z[ξt]
∗; and since u1 = ξ − T, u2 = −ξ − T are

in Z[T, ξ]∗ this shows Z[ξt]
∗ = (Z[T, ξ]∗)t as usual.

We next check Assumption ??; part (1) is already done, and part (2)
follows as before from Lemma ?? now with k = Q(i),

Finally (??) reduces to Norm(x + ξty + ξ2t z) = 1 and so we can again
apply Theorem ??.

Thus we must now find all X,Y, Z in Z[T ] with

(7.15) X4 − (T 4 − 1)Y 4 + (T 4 − 1)2Z4 − 2(T 4 − 1)XZ(XZ − 2Y 2) = 1.

We first prove that Z[T, ξ]∗ is generated by −1, ξ−T,−ξ−T . Again we could
appeal to Theorem ?? but we use something more elementary. Specializing
such a unit A+Bξ + Cξ2 +Dξ3 gives

A(t) +B(t)ξt + C(t)ξ2t +D(t)ξ3t = ε(t)(ξt − t)m(t)(−ξt − t)n(t)

much as before. Making t → ∞ gives −3m(t) + n(t) � 1. With conjugate
−ξt we get m(t)−3n(t)� 1. And with conjugate iξt we get m(t)+n(t)� 1.
Drawing a picture we see that |m(t)|+ |n(t)| � 1; or, for a bad artist,

−8m(t) = 3(−3m(t) + n(t)) + (m(t)− 3n(t))� 1

4m(t) = (m(t)− 3n(t)) + 3(m(t) + n(t))� 1

and similarly for n(t).
So now the argument above with subsequences and Laurent series does

the trick.
Next (??) implies

(7.16) X + Y ξ + Zξ2 = ±(ξ − T )m(−ξ − T )n.

Taking conjugates and eliminating X,Y, Z gives now the linear dependence
of
(7.17)
(ξ−T )m(−ξ−T )n, (−ξ−T )m(ξ−T )n, (iξ−T )m(−iξ−T )n, (−iξ−T )m(iξ−T )n

over C. This time the Wronskian comes out as (up to sign)

(m− n)2(c0T
8 + c1T

4 + c2)ρ

with ρ 6= 0 in C(T, ξ) independent of m,n, where

c0 = 64mn(m− 1)(n− 1), c1 = −c0
and

c2 = (m2 − 2mn+ n2 −m− n)(m2 − 2mn+ n2 − 3m− 3m+ 2).

First m = n leads to

X + Y ξ + Zξ2 = ±(ξ2 − T )m

which with the conjugate−ξ shows that Y = 0. And then with the conjugate
iξ we find

±X =
(ξ2 − T 2)m + (−ξ2 − T 2)m

2
= Xm(T 2),
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±Y =
(ξ2 − T 2)m − (−ξ2 − T 2)m

2ξ2
= Ym(T 2),

in Z[T ] (and we may restrict to m ≥ 0 by making the two signs independent).
It remains to explore c0 = c1 = c2 = 0; and these are easily seen to imply

for (m,n) the nine possibilities

(0, 0), (1, 0), (0, 1), (2, 0), (0, 2); (1, 5), (5, 1); (1, 3), (3, 1).

For (X,Y, Z) the first five lead to

(±1, 0, 0), (±T,±1, 0), ±(T 2,±2T, 1)

with independent signs (of which the first is the above for m = 0). The next
two lead to

±(4T 6 − 5T 2,±4T,−4T 4 − 1);

and the last two give no solutions. This completes the treatment of (??).

�
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