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ABSTRACT 

        Recent works towards the development of Ge-rich SiGe photonic integrated circuits for on-chip mid-IR 

spectroscopy will be presented. First, the demonstration of ultra-wideband passive circuits will be discussed, 

followed by the first proofs of concepts towards the realization of efficient wideband active devices. The 

combination of on-chip integrated spectrometers with on-chip mid-IR sources will provide a solid basis for the 

development of a competitive mid-IR integrated platform from 3 to 15 µm wavelength. 
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1. INTRODUCTION 

 

Mid-infrared (mid-IR) integrated photonics undergoes a growing interest, for applications in mid-IR 

spectroscopy or free-space telecommunications. Silicon photonics presents strong advantages for integrated 

photonics as it benefits from reliable and high-volume fabrication to offer high performance, low cost, compact, 

low-weight and low-power-consumption photonic circuits, which can be particularly interesting for mid-IR 

spectroscopic sensing systems that need to be portable and cost effective  [1,2]. Among the different materials 

available in silicon photonics, Germanium (Ge) and Silicon-Germanium (SiGe) alloys with a high Ge 

concentration are noticeable because of the wide transparency window of Ge up to 15 µm [3]. Furthermore, a large 

increase of the non-linear refractive index of Si1-xGex alloys has been predicted for Ge concentrations x larger than 

0.8 [4]. 

In this context, we will review our recent works towards the development of Ge-rich SiGe photonic integrated 

circuits for mid-IR wavelengths. The Ge-rich SiGe platform will be presented first, with the demonstration of 

ultra-wideband passive circuits. In a second part the strategy for the development of active devices based on non-

linear effects will be presented. 

 

2. GE-RICH SIGE PLATFORM FOR MID-INFRARED  

Ge-rich SiGe materials have been used for a long time in Si photonics, for optical modulation and 

photodetection [5]. Due to the differences in lattice constants and thermal expansion coefficient between Si and 

Ge, graded buffer layers have been proposed and used to realize fully relaxed virtual substrates with a low density 

of threading dislocations suitable for the growth of Ge quantum wells with high crystalline quality. While this 

integration scheme was initially developed for near-IR wavelength range, to demonstrate electro-absorption 

modulator and photodetector for telecom and data com applications [6], the extension of this approach for mid-IR 

wavelength range has been proposed. The use of graded based SiGe layers and Ge-rich SiGe alloys can provide 

definite advantages for mid-IR integrate photonics. Indeed, a gradual increase of the Ge content in the SiGe graded 

buffer allows a smooth increase of the refractive index, thus confining the optical mode in the Ge-rich part of the 

epitaxial structure. Low-loss optical waveguides are thus expected, potentially up to λ = 15 μm, as the refractive 

index gradient allows to push the optical mode far from the Si substrate where absorption begins to be prohibitive 

beyond λ ~ 8.5 µm. Furthermore, confining light in Ge-rich Si1-xGex is also beneficial for non-linear based devices, 

as an increase of the non-linear refractive index n2 has been demonstrated when x is larger than 80% [7]. Finally 

the use of SiGe alloys allows tailoring the light propagation properties by playing on the gradient shape and layers 

composition. The dispersion and the modal confinement can thus be engineered very precisely. 

As a first proof-of-concept of the potential of this new platform for mid-IR photonics, the first waveguide 

design that was investigated uses a 2 µm-thick Si0.2Ge0.8 layer on a 11 µm- thick linearly graded Si1−xGex substrate 

from Si to Si0.21Ge0.79. This structure directly comes from previous work at near-IR wavelengths [6]. The 

waveguide design is shown in Fig 1(a). The vertical confinement is allowed by the refractive index profile (Fig 1 

(b)) which increases linearly in the graded layer according to the Ge concentration. Low-energy plasma-enhanced 

chemical vapor deposition was used to grow the Si1−xGex material, with a typical growth rate of 5–10 nm/s. The 
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waveguides were then patterned using lithography followed by inductively coupled plasma etching. The etching 

depth was 4 μm, and the waveguide width was 4 μm, allowing a good confinement of the fundamental TE and TM 

modes. As a key building block for the development of the mid-IR photonics platform, Mach-Zehnder 

Interferometers (MZI) have been demonstrated [8]. The asymmetric MZI have been designed with 3 mm long 

arms and arm length differences of 48 µm, 87 µm and 149 µm, and Multimode Interference (MMI) coupler and 

splitter. The characterization of the different MZIs in both polarizations is reported in Fig 1(c). Interestingly large 

extinction ratios of at least 10 dB between 5.5 µm and 8.6 µm wavelength are obtained for both TE and TM 

polarizations. In all the characterized structures the expected decrease of the free spectral range (FSR) with the 

increase of arm length difference ΔL and the increase of the FSR with the increase of the wavelength are observed. 

The unique broadband properties of the MZI and corresponding MMI are explained to be due to the vertical 

refractive index gradient in the graded Si1-xGex substrate. Finally, while the reported wavelength range is limited 

by the available experimental set-up, numerical simulations indicate that the MZI operation can be extended up to 

11 µm wavelength, being limited only by the MMI coupler bandwidth. 

 
Figure 1. (a) first waveguide design; (b) refractive index profile along the vertical direction ; (c) transmission of the Mach Zehnder 

interferometers for different length difference between both arms, from 48 to 149 µm, in TE (left column) and TM (right column) 

3. TOWARDS ACTIVE DEVICES  

As a next step towards a complete integrated platform for spectroscopic applications, active devices such as 

wideband supercontinuum sources can be envisioned. While it has been previously demonstrated that Ge-rich SiGe 

alloys present a large non-linear Kerr refractive index n2, optimising light confinement is a key parameter to 

achieve efficient non-linear based devices. From the initial waveguide design, two additional epitaxial layer 

designs have been proposed to increase light confinement. The three platforms are then compared in Fig 3, where 

(a) refers to the former waveguide reported in Fig. 1, the platform (b) corresponds to a reduction of waveguide 

thickness by using a 6 µm graded layer from pure Si to pure Ge, and the platform (c) is based on two graded layers, 

first a 3 µm-thick layer from Si to Si0.5Ge0.5 followed by a 1 µm-thick graded layer from Si0.5Ge0.5 to pure Ge. All 

three platforms have been investigated in terms of propagation losses, and the results are reported in Fig 2. 

Interestingly low propagation losses between 2 and 3 dB/cm are obtained with platforms (a) and (b), while the 

platform (c) provides prohibitive losses in the longer wavelength range, which can be correlated to an increase of 

the overlap of the optical mode with Si and Si-rich SiGe layer, which could be responsible for such increase of the 

propagation losses at long wavelengths [9]. 

 

 
Figure 2. Different SiGe platforms investigated in this work (a) 11µm thick graded buffer followed by 2µm-thick Si0.2Ge0.8, as shown in Fig 1 

; (b) 6µm thick graded layer from Si to Ge ; (c) double graded buffer layer : 3µm thick graded layer from Si to Si0.5Ge0.5 followed by 1µm 
thick graded layer from Si0.5Ge0.5 to Ge . Refractive index profile, illustration of mode confinement increases when the waveguide thickness 

decreases, and comparison of the propagation losses determined experimentally by a non-destructive cut-back technique. 



  From this work it was possible to conclude that the platform (b) based on a 6 µm-thick SiGe graded layer from 

pure Si to pure Ge is the most promising one for active devices. The waveguide has thus been engineered to 

evaluate the possibility to generate a supercontinuum [10]. In addition to the good modal confinement, a flat 

anomalous dispersion in a wide spectral range is required. The final design is reported in Fig 3 (a). The waveguide 

width and etching depth are 4 µm. The optimized confinement of the optical mode which is always located in the 

upper part of the waveguide, overlapping with the Ge-rich part of the SiGe graded buffer waveguide is illustrated 

by the calculation of the modal effective area (Fig 3.(b)). The spectral dispersion characteristics of quasi-TE and 

quasi-TM polarizations are reported in Fig 3.(c). Both polarizations provide broadband anomalous dispersion over 

a 1.4 octave spanning, having the quasi-TM mode an almost flat profile with a maximum value of ≈ 14 ps/nm/km. 

Finally the value of n2 as a function of the wavelength and for different Ge fraction of Si1-xGex alloys has been 

used to calculate the effective nonlinear parameter (γeff) of graded Si1-xGex waveguides (Fig 3 (e)). A maximum 

value of γeff ≈ 10 W-1m-1 is obtained at λ = 3 µm, and decreases down to ~ 0.6 W-1m-1 for λ = 8 µm. The comparison 

of these values with previously reported experimental demonstrations [11] on different platforms provide an 

optimistic foreseeable future for the development of supercontinuum sources using such waveguide design. 

 

Figure 3. (a). Waveguide design for a supercontinuum source (b) optical mode effective area as a function of the 

wavelength; (c) dispersion properties showing flat anomalous dispersion; (d) non-linear Kerr refractive index n2 as 

a function of the wavelength and for different Ge fractions; (e) effective non-linear parameter of the optical mode.  

4. CONCLUSION 

Recent works towards the development of Ge-rich SiGe photonic integrated circuits for mid-IR wavelength range 

have been reported. While passive devices have demonstrated good operation properties, current challenges are 

the demonstration of active devices based on non-linear effects. The design of a wideband supercontinuum source 

paves the way towards the demonstration of a complete mid IR photonic platform for spectroscopic applications. 
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