
HAL Id: hal-02362403
https://hal.science/hal-02362403

Submitted on 13 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convenient One-Pot Synthesis of 1,2,3,4-Thiatriazoles
Towards a Novel Electron Acceptor for Highly-Efficient

Thermally-Activated Delayed-Fluorescence Emitters
Yangyang Qu, Piotr Pander, Audrius Bucinskas, Marharyta Vasylieva,

Yayang Tian, Fabien Miomandre, Fernando B Dias, Gilles Clavier,
Przemyslaw Data, Pierre Audebert

To cite this version:
Yangyang Qu, Piotr Pander, Audrius Bucinskas, Marharyta Vasylieva, Yayang Tian, et al.. Convenient
One-Pot Synthesis of 1,2,3,4-Thiatriazoles Towards a Novel Electron Acceptor for Highly-Efficient
Thermally-Activated Delayed-Fluorescence Emitters. Chemistry - A European Journal, 2019, 25 (10),
pp.2457-2462. �10.1002/chem.201805358�. �hal-02362403�

https://hal.science/hal-02362403
https://hal.archives-ouvertes.fr


Convenient One-Pot Synthesis of 1,2,3,4-Thiatriazoles Towards a Novel Electron Acceptor for 

Highly Efficient Thermally Activated Delayed Fluorescence Emitters 

Yangyang Qu,[a] Piotr Pander,[b] Audrius Bucinskas,[c] Marharyta Vasylieva,[d] Yayang Tian,[a] Fabien 

Miomandre,[a] Fernando B. Dias,[b] Gilles Clavier,*[a] Przemyslaw Data[b,d] and Pierre Audebert*[a] 

[a] Y. Qu, Dr. Y. Tian, Prof. F. Miomandre, Dr. G. Clavier, Prof. P. Audebert PPSM, CNRS, ENS Paris-Saclay 61 Avenue 

Président Wilson, 94235 Cachan (France) E-mail: audebert@ppsm.ens-cachan.fr gilles.clavier@ens-cachan.fr 

[b] P. Pander, Dr. F. B. Dias, Prof. P. Data Physics Department, Durham University South Road, Durham DH1 3LE 

(UK) 

[c] Dr. A. Bucinskas Department of Polymer Chemistry and Technology, Kaunas University of Technology K. 

Baršausko St. 59 Kaunas LT-51423 (Lithuania) 

[d] M. Vasylieva, Prof. P. Data Faculty of Chemistry, Silesian University of Technology M. Stzody 9, 44-100 Gliwice 

(Poland)  

Abstract: A novel and unexpected convenient one-pot synthesis of 1,2,3,4-thiatriazoles has been 

discovered meanwhile investigating on the classical tetrazine “Pinner synthesis”. The synthetic route starts 

from commercially-available nitrile derivatives and gives good to high yields (51%-80%) with no need to 

isolate any thioacylating agents. The crucial impact of the solvent on the outcome of the modified “Pinner 

synthesis” is moreover examined and discussed. Using this new synthetic route a novel donor-acceptor 

thiatriazole derivative has been prepared which exhibits prominent thermally activated delayed 

fluorescence (TADF) in both solution and film. The photoluminescence quantum yield (PLQY) in 

methylcyclohexane (MCH) and Zeonex in oxygen-free conditions were determined to be 76% and 99%, 

respectively. This work provides an efficient and practical synthetic approach to functionalized 1,2,3,4-

thiatriazole derivatives, and will noticeably facilitate the application of 1,2,3,4-thiatriazole as an electron 

acceptor in organic electronics. 

1,2,3,4-thiatriazole heterocycle was first reported in 1896 by Freund and co-workers.[1] Its structural 

assignment was firmly established in the 1950s by Lieber and co-workers.[2] A number of 1,2,3,4-

thiatriazoles were then prepared and studied during that period.[3] The chemistry of 1,2,3,4-thiatriazoles 

has been unfortunately almost forgotten for many decades thereafter. As a strong electron-deficient 

heterocycle, 1,2,3,4-thiatriazole is however potentially an excellent electron acceptor in organic donor-

acceptor materials. Due to charge-transfer (CT) states introduced in the donor-acceptor system, these 

molecules can exhibit interesting photophysical and electrochemical properties, and therefore are of 

interest in organic electronics.[4,5] though strangely, no related applications have been reported so far. 

Thermally activated delayed fluorescence (TADF) molecules have recently received significant attention 

since the first efficient TADF organic light emitting diodes (OLEDs) reported in 2012 by Adachi [6] In TADF 

molecules, the triplet excitons can be converted to the emissive singlet excitons via efficient reverse 

intersystem crossing (RISC) from the lowest triplet excited state (T1) to the lowest singlet excited state 

(S1), when their energy difference (∆EST) is small enough.[5] Most of the TADF molecules were therefore 

designed by coupling various electron donors and acceptors with a large twisting angle, to separate the 

spatial distributions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO), The aim is harvesting 100% of triplet exciton.[7] The use of purely organic TADF 

emitters however goes far beyond their use in electroluminescent devices. They can supersede metal-

complex emitters by acting as triplet sensitizers,[8] or bio-imaging dyes.[9]  These molecules with efficient 



RISC [10] count also among mechanochromic materials with switchable parameters, such as emission 

color,[11] on/off TADF[12] or interplay between TADF and prompt fluorescence.[13] Therefore, 

exploration of novel electron acceptors for TADF emitters is of clear interest to this community.  

 

Scheme 1. Overview of synthetic approaches to 1,2,3,4-thiatriazoles. 

1,2,3,4-thiatriazoles have been previously prepared by diazotization of thiohydrazides, or reaction of 

dithioates with azide ion, in high yields (Scheme 1).[3] However, both methods require preparation of 

starting thioacylating agents, which are often difficult to obtain. This increases the synthetic complexity of 

1,2,3,4-thiatriazole derivatives, especially for those with complex functional groups. As a result, no 1,2,3,4-

thiatriazole derivatives with complex functional groups have been reported so far. Therefore, developing 

practical and convenient synthetic approaches for preparing functionalized 1,2,3,4-thiatriazole derivatives 

is quite desirable. 

In this study, we report a novel convenient one-pot synthesis of 1,2,3,4-thiatriazoles directly from 

commercially available nitriles in high yields (51%-80%), with no need of isolating any thioacylating agents 

(Scheme 1). The access to the 1,2,3,4-thiatriazoles can therefore be significantly improved because oft he 

large availability of commercially available nitriles. Through this approach we have designed and 

synthesized an example of a donor-acceptor thiatriazole derivative using phenoxazine as a donor, in high 

yield (70%). This molecule exhibits excellent TADF characteristics in both solution and film. To the best of 

our knowledge, this is the first example of a highly efficient TADF emitter using a 1,2,3,4-thiatriazole as 

acceptor. 

Having a long experience in 1,2,4,5-tetrazine chemistry,[14,15] we had already noticed that the solvent 

nature can play an important role in the tetrazine forming reaction called “Pinner synthesis”.[16] For 

example, we have recently found that dichloromethane (DCM) can serve as a novel reagent in the 



synthesis of 3-monosubstituted unsymmetrical 1,2,4,5-tetrazines.[15] In this work a comprehensive study 

of solvent effect in the modified “Pinner synthesis” was performed, and we found out that the products 

of the reaction are significantly influenced by the solvent employed. 

The traditional “Pinner synthesis” is a two-step procedure starting from the formal addition of 

hydrazine to nitrile precursors in ethanol, followed by oxidation of the intermediate 1,2-dihydrotetrazine 

to afford 1,2,4,5-tetrazines.[16] It has been demonstrated later that addition of sulfur helps accelerating 

the reaction.[17] Here we used 4-bromobenzonitrile as a standard nitrile precursor to survey the effect of 

a range of solvents on this reaction. The results are summarized in Table 1. When our optimized reaction 

conditions for tetrazine synthesis (hydrazine hydrate, sulfur and heating at 90° for 1 hour in a sealed tube 

with microwave irradiation followed by oxidation), with ethanol as a solvent in the first step, was used, 

the 3,6-disubstituted symmetrical tetrazine T1 was obtained in good yield (43%) as expected. However, 

when the polar protic solvent ethanol was replaced by a non-polar (e.g., toluene, chloroform) or a slightly 

polar aprotic solvent (e.g., tetrahydrofuran (THF)), no reaction was observed and the starting nitrile agent 

was fully recovered.  

Table 1. Survey of solvents and outcomes in the modified “Pinner synthesis”(a). 

Solvent 
Dielectric 
Constant 

Products(b) 

Polar protic solvent Ethanol 25 

 

Non-polar solvent 

Toluene 2.3 SN(c) 

Chloroform 4.8 SN 

Polar aprotic solvent 

THF 7.5 SN 

Acetonitrile 37 

 

DMF 38 

 

DMSO 47 

 

(a) All reactions were carried out on a 0.5 mmol scale in 2 ml solvent. MW = microwave. (b) Yields (isolated) based 

on the nitrile precursor. (c) SN = Starting Nitrile precursor  

When the highly polar aprotic solvent acetonitrile was used, we isolated 16% of unsymmetrical 3-(4-

bromophenyl)-6-methyl-1,2,4,5-tetrazine T2 because acetonitrile acts as both solvent and second nitrile 

precursor in the reaction. In addition to the tetrazine, the unusual 1,2,3,4-thiatriazole TT1 was also 

obtained with a 9% yield. More interestingly, when using dimethylformamide (DMF) as a solvent, the yield 

of TT1 significantly increased to 41%.[18] And remarkably, when the even more polar solvent dimethyl 

sulfoxide (DMSO) was employed, the yield was optimized to as high as 74%. These findings are remarkably 

interesting because this is the first time that the 1,2,3,4-thiatriazole has been isolated using “Pinner 



synthesis”. All the reactions were performed in a one-pot procedure without isolating any thioacylating 

agents. It is worth noting that in the case of all three polar solvents (acetonitrile, DMF and DMSO) only a 

trace amount (yield below 1%) of symmetrical tetrazine T1 could also be observed.  

Formation of 1,2,3,4-thiatriazole in this reaction is assumed to process through diazotization of a 

thiohydrazide intermediate, formed in the first step, by the nitrous acid used in the second step. However, 

the detailed mechanism of formation of these thiohydrazide intermediates is still under investigation and 

it is not clear if small amounts of hydrogen sulfide are formed or not. 

The reaction with DMSO as a solvent became the most interesting to us because it provides a novel, 

convenient pathway to 1,2,3,4-thiatriazoles directly from commercially available nitrile reagents in an 

excellent yield. The reaction conditions were optimized by changing the amount of sulfur and reaction 

temperature. Probably acting both as an inducer and reactant in the reaction, the amount of sulfur is 

crucial in this reaction. Theoretically, one equivalent of sulfur should be enough to obtain the thiatriazole 

product. In those conditions the reaction already led to a reasonable yield (53%, Table S1), while slight 

excesses (1.3 equiv.) of sulfur could still improve the yield and 1.5 equiv. of sulfur gave the best yield (74%). 

The reaction temperature and time were optimized to 90 °C for 1 hour because decreasing the reaction 

temperature only resulted in prolonged reaction times to reach similar yields (Table S2). We used 

microwave heating throughout, but we have verified that running the reaction in a sealed tube with 

conventional heating worked fine as well, resulting in a similar yield (72%).  

To extend the scope of this synthetic approach, we engaged a series of nitrile substrates in our new 

one-pot synthetic approach. Thus, a series of 5-aryl-1,2,3,4-thiatriazoles were successfully prepared in 

good to high yields (51%-80%, Table 2), among which many were previously complicated to prepare.[3] 

The reactions are simple and efficient, and the nitrile substrate can contain different functional groups 

such as halogens and hydroxyl groups. Although the reaction is versatile, unfortunately, preparation of 5-

alkyl-1,2,3,4-thiatriazoles using benzyl cyanide or tert-butyl cyanide was not successful, probably due to 

instability of the thioacylating intermediates which have been described previously.[3] 

Table 2. Synthesis of 5-aryl-1,2,3,4-thiatriazoles TT1-TT9(a). 

 

 
(a) Reactions were carried out on a 0.5 mmol scale in 2 ml DMSO. Yields (isolated) based on the starting nitrile. 

 



With our convenient one-pot synthetic approach in hand, we hypothesized that it could be used to 

prepare donor-acceptor type thiatriazole derivatives using an appropriate nitrile precursor. More 

importantly, we also believed that 1,2,3,4-thiatriazole could act as a novel electron acceptor for efficient 

TADF emitters. Indeed one-pot or multicomponent synthesis of functional chromophores has received 

considerable interest both in academia and industry.[19] To our delight, donor-acceptor thiatriazole 

derivative using phenoxazine as a donor motif TT9 was easily prepared in a high yield (70%) using our 

approach. TT9 easily forms yellow crystals, which are stable and could be stored at room temperature for 

several months without noticeable degradation. The single crystal structure (Figure 1) shows a large 

twisting angle (67°) between the planes of donor and acceptor, which is desired to achieve small HOMO-

LUMO overlap and to realize a small ∆EST, and therefore efficient TADF characteristics.[4] 

 

Figure 1. Crystal structure of TT9. Hydrogen atoms are omitted for clarity. 

TT9 was further characterized by electrochemistry (Figure S8). The cyclic voltamogram in DCM display 

a reversible oxidation wave for the phenoxazine, an irreversible reduction one corresponding to the 

thiatriazole. The HOMO and LUMO energies were determined to be 5.35 eV and 3.41 eV from the onset 

of the respective waves. 

DFT based calculations were also performed on TT9. The ground state structure of the molecule shows 

an almost perpendicular twist between the phenoxazine and the thiatriazole-phenyl moieties and 

complete spatial separation of the HOMO and LUMO (Figure 2) which is an ideal situation to reach a small 

singlet-triplet energy difference. Optimization in the first singlet excited state gave a very similar geometry 

where the main difference is a flattening of the phenoxazine moiety (Figure S10). The computed ∆EST on 

this excited state optimized structure is 0.005 eV which is excellent to get efficient TADF. 

 

Figure 2. Calculated spatial distributions of the HOMO (left) and LUMO (right) of TT9. 

Photophysical studies demonstrated that TT9 indeed exhibits prominent thermally activated delayed 

fluorescence (TADF) characteristics both in solution and film. Relevant photophysical properties of TT9 are 

displayed in Figure 3 and Table 3. Like other donor-acceptor molecules, TT9 shows a clear solvatochromic 

effect (Figure 3a). It is highly emissive in non-polar media such as methylcyclohexane (MCH), Toluene (Tol) 

and Zeonex, while however very weakly emissive or non-emissive in more polar solvents (Figure S1) as is 

typical for strong charge transfer (CT) excited state systems.[20] Photoluminescence (PL) intensity of TT9 

in MCH increases 6.3-fold in degassed solution relatively to the air-equilibrated (Figure S2), indicating that 

oxygen largely influences the PL of this material. Comparison of PL decays of TT9 in air-equilibrated and 

degassed MCH (Figure S3) shows that in the latter case, a longer lifetime indicative of TADF, as well as a 

longer prompt fluorescence lifetime than in the presence of oxygen is observed. Thus oxygen apparently 



not only quenches the triplet state but also the singlet one. The ratio of the delayed fluorescence 

component to the prompt fluorescence one (DF/PF) was determined to be 2.65 from the PL decay of TT9 

in degassed MCH (Table 3). PLQY of TT9 in MCH and Zeonex in air were determined to be 12% and 65%, 

respectively. The PLQY in degassed MCH increased to 76%, and the PLQY in Zeonex under nitrogen reached 

99%. This is remarkable since many CT molecules suffer from a small radiative decay rate due to the spatial 

separation of HOMO and LUMO originating from the molecular design.[4] TT9 exhibits prominent TADF 

characteristic not only in MCH but also in Zeonex (Figure 3c, 3d) with a DF/PF ratio in the latter equal to 

2.37. Temperature dependence of delayed fluorescence recorded in Zeonex (Figure 3c) is typical of TADF 

molecules showing clearly the thermal activation of the process.[5] Interestingly, at 80 K the intensity of 

TADF is still substantial and thus phosphorescence is hardly distinguishable from delayed fluorescence 

(Figure 3b). This gives a clear indication for a ΔEST approaching zero. It is also noteworthy that the prompt 

fluorescence is completely unaffected by temperature change which indicates that it has almost no effect 

of the non-radiative decay rate of the singlet excited state. This also contributes to the high PLQY of the 

molecule. Power dependence of delayed fluorescence of TT9 is linear in both MCH and Zeonex confirming 

the TADF mechanism (Figure S6, S7). 

 

Figure 3. (a) Normalized fluorescence spectra of TT9 in MCH, Tol and Zeonex 1% (w/w) and 

normalized absorption spectrum in MCH. (b) Time-resolved spectra of TT9 in Zeonex. (c) PL decays of TT9 

in Zeonex 1% (w/w) at various temperatures. (d) PL decay of TT9 in degassed MCH at room temperature. 

 

In conclusion, we have examined and proved that the solvent plays an important role in the “Pinner 

synthesis” outcome. We have discovered a novel, convenient one-pot synthesis of 1,2,3,4-thiatriazoles 

directly from nitrile substrates in high yields (51%-80%), with no need for isolating the thioacylating agents. 

We believe that our work significantly improves access to differently functionalized 1,2,3,4-thiatriazoles. 

Using this new one-pot approach a peculiar donor-acceptor thiatriazole derivative has been synthesized 

which proved to be quite an efficient TADF emitter. This is the first example of 1,2,3,4-thiatriazole use as 

an electron acceptor for TADF emitters. Our new approach opens possibility to further develop 1,2,3,4-



thiatriazole derivatives as new families of molecules for applications in organic electronics and other 

related fields. One-pot synthesis and high reaction yields are two key factors to reduce costs in large scale 

synthesis and correlatively possible industrial applications. 

 

 

Table 3. Photophysical properties of TT9. 

Sample λPL (nm)(a) ΦPL
air/ΦPL

deg (%) τPF (ns)(d) τDF (μs)(e) DF/PF(f) 

Zeonex film 539 65/99(b) 20.4 ± 0.7 5.5 ± 0.28, 28.0 ± 1.7 2.37 

MCH Solution 505,532 12/76(c) 18.6 ± 0.6 22.2 ± 1.2 2.65 

(a) Emission maxima. (b) PLQY in air and N2 atmosphere. (c) PLQY in air-equilibrated and degassed MCH solution. (d) Prompt fluorescence 

lifetime determined from PL decay (Figure S4, S5). (e) Delayed fluorescence lifetime determined from PL decay (Figure S4, S5). (f) Ratio of 

delayed fluorescence component to prompt fluorescence one. 
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1. Experimental details 

General Methods: 

Synthesis. All chemicals were received from commercial sources and used without further 

purification. Microwave reaction was performed on a microwave synthesis reactor (Anton Paar 

Monowave 300). Thin layer chromatography (TLC) was performed on silica gel. Flash column 

chromatography purification was performed on a CombiFlash-Rf system with a variable 

wavelength UV detector. All mixtures of solvents are given in v/v ratio. NMR spectra were 

recorded on a JEOL ECS (400 MHz) spectrometer. 13C NMR spectra were proton decoupled. 

HRMS spectra were measured either on an UPLC/ESI-HRMS device (an Acquity Waters UPLC 

system coupled to a Waters LCT Premier XE mass spectrometer equipped with an electrospray 

ion source), or a Q-TOF mass spectrometer (Q-TOF 6540, Agilent) equipped with an APPI ion 

source.  

*All the 1,2,3,4-thiatriazole samples were analyzed in both ESI and APPI HRMS, but only TT9 

gave good result in ESI, and a loss of N2 was observed for all the 1,2,3,4-thiatriazole samples in 

APPI which is in accordance to the literature description on the stability of 1,2,3,4-thiatriazoles.[1] 

Nevertheless, TT9 was confirmed by both ESI HRMS and single crystal XRD measurements. 

And the NMR spectra of TT2-TT4 are in accordance to the literature values.[2] The signals shown 

between 177 and 180 ppm in 13C NMR for all the 1,2,3,4-thiatriazole samples TT1-TT9 are 

characteristic signals for C=N of 1,2,3,4-thiatriazoles. 

The single crystal of compound TT9 was obtained from slow evaporation of the mixture of 

solvents (Petroleum ether:CH2Cl2 = 1:1). The yellow colour single crystal was mounted on the 

glass capillary using glue. The crystallographic analysis was performed employing XtaLAB mini 

diffractometer (Rigaku) with graphite monochromated Mo Kα (λ = 0.71075 Å) X-ray source. The 

measurements were performed at the temperature of 293 K. The crystallographic data is 

summarized in Table S3. Packing along a-axis is presented in Figure S9. The crystallographic 

data for structure TT9 reported in this paper have been deposited in Cambridge Crystallographic 

Data Centre with CCDC no 1873600.  The copies of data can be obtained free of charge on 

application to CCDC. (The Cambridge Structural Database (CSD)- The Cambridge 

Crystallographic Data Centre (CCDC), (http://www.ccdc.cam.ac.uk/solutions/csd-

system/components/csd/). Calculations/visualizations were performed using the OLEX2[3] 

crystallographic software package except for refinement, which was performed using SHELXL.[4] 

Anisotropic thermal parameters were assigned to all nonhydrogen atoms. The hydrogens were 

included in the structure factor calculation at idealized positions by using a riding model and 

refined isotropically. 

Photophysics. Zeonex ® 480 blends were prepared from toluene solutions by the drop-cast 

method and dried in a vacuum (Zeonex ® 480 is a type of Cyclo Olefin Polymer (COP) 

developed by ZEON CORPORATION[5]). All solutions were investigated at 10-5 mol dm-3 

concentration and were degassed using five freeze/pump cycles. Absorption and emission 

spectra were collected using a UV-3600 double beam spectrophotometer (Shimadzu), and a 

Fluoromax fluorescence spectrometer (Jobin Yvon) or QePro fluorescence spectrometer (Ocean 

Optics). Photoluminescence quantum yield was recorded using an integrating sphere 

(Labsphere) coupled with a 365 nm LED light source (Ocean Optics) and a QePro fluorescence 

spectrometer (Ocean Optics). 

http://www.ccdc.cam.ac.uk/solutions/csd-system/components/csd/
http://www.ccdc.cam.ac.uk/solutions/csd-system/components/csd/


Phosphorescence, prompt fluorescence (PF), and delayed fluorescence (DF) spectra and 

decays were recorded using nanosecond gated luminescence and lifetime measurements (from 

400 ps to 1 s) using either third harmonics of a high-energy, pulsed Nd:YAG laser emitting at 

355 nm (EKSPLA) or a N2 laser emitting at 337 nm. Emission was focused onto a spectrograph 

and detected on a sensitive gated iCCD camera (Stanford Computer Optics) of sub-nanosecond 

resolution. PF/DF time-resolved measurements were performed by exponentially increasing gate 

and delay times. 

Electrochemistry. The electrochemical cell comprised of platinum electrode with a 1 mm 

diameter of working area as a working electrode, an Ag electrode as a reference electrode and a 

platinum coil as an auxiliary electrode. Cyclic voltammetry measurements were conducted at 

room temperature at a potential rate of 50 mV/s and were calibrated against 

ferrocene/ferrocenium redox couple. Electrochemical measurements were conducted in 1.0 mM 

concentrations for all cyclic voltammetry measurements. Electrochemical studies were 

undertaken in 0.1 M solutions of Bu4NPF6, 99% in DCM at room temperature. 

DFT calculations. Ground state geometry optimization was done at the B3LYP/6-31+G(d,p) 

and excited state one at the M06-2X/6-31+G(d,p) level of theory. Frequency calculations were 

done at the same levels of theory to confirm that a true minimum was obtained. TDDFT 

calculations were done on the first excited state optimized structure (M06-2X/6-311++G(d,p)) to 

compute the energies of the relaxed first singlet and triplet excited states. Solvent effect 

(cyclohexane) was included throughout the process. All calculations have been done with 

Gaussian 09 (Revision D.01).[6] Spatial distributions of the molecular orbitals were generated 

with GaussView 5.0 and the overlay of the two optimized geometries with PyMOL.[7] 

 

General procedure for synthesis of TT1-TT8 (“Pinner Synthesis” using DMSO as 

solvent) 

 

Nitrile substrate (0.5 mmol), sulfur (0.75 mmol, 24 mg) and DMSO (2 ml) were mixed together in 

a 30 ml microwave reaction tube. Hydrazine monohydrate (5 mmol, 0.25 ml) was added with 

stirring afterwards. The vessel was sealed and the reaction mixture was heated to 90 °C for 1 

hour. (Caution should be exercised due to the elevated pressure in the sealed reaction vessel 

when heating, particularly attempting scale up). Then 5 ml of CH2Cl2 and sodium nitrite (5 mmol, 

0.35 g) in 10 ml of H2O were added to the mixture. Excess acetic acid (20 mmol, 1.14 ml) was 

then added slowly at 0 °C. The reaction mixture was allowed to stir for another 1 hour at room 

temperature, and then extracted with dichloromethane. The organic phase was dried over 

anhydrous magnesium sulfate (MgSO4), filtered and concentrated under reduced pressure. The 

resulting residue was purified using flash column chromatography.  

 



TT1: A white crystalline solid was obtained after flash column chromatography (Petroleum 

ether:CH2Cl2 = 4:1) (90 mg, yield: 74%). 1H NMR (400 MHz, CDCl3, δ): 7.92 (d, J = 8.60 Hz, 2H), 

7.71 (d, J = 8.60 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl3, δ): 178.24, 133.24, 131.11, 128.21, 

125.42 ppm; HRMS-APPI [M-N2]+ m/z calcd. for [C7H4BrNS]+ 212.9248, found 212.9246.  

 

TT2[2]: A white solid was obtained after flash column chromatography (Petroleum ether:CH2Cl2 = 

4:1) (79 mg, yield: 80%). 1H NMR (400 MHz, CDCl3, δ): 8.00 (d, J = 8.60 Hz, 2H), 7.54 (d, J = 

8.60 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl3, δ): 178.12, 139.72, 131.01, 130.25, 124.96 ppm; 

HRMS-APPI [M-N2]+ m/z calcd. for [C7H4ClNS]+ 168.9753, found 168.9748. 

 

TT3[2]: A white solid was obtained after flash column chromatography (Petroleum ether:CH2Cl2 = 

3:1) (56 mg, yield: 63%). 1H NMR (400 MHz, CDCl3, δ): 7.94 (d, J = 8.20 Hz, 2H), 7.54 (d, J = 

8.20 Hz, 2H), 2.45 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3, δ): 179.34, 144.30, 130.57, 129.82, 

123.81, 21.87 ppm; HRMS-APPI [M-N2]+ m/z calcd. for [C8H7NS]+ 149.0299, found 149.0292. 

 

TT4[2]: A white solid was obtained after flash column chromatography (Petroleum ether:CH2Cl2 = 

4:1) (52 mg, yield: 64%). 1H NMR (400 MHz, CDCl3, δ): 8.07–8.01 (m, 2H), 7.66–7.51 (m, 3H) 

ppm; 13C NMR (100 MHz, CDCl3, δ): 179.32, 133.31, 129.86, 129.82, 126.45 ppm; HRMS-APPI 

[M-N2]+ m/z calcd. for [C7H5NS]+ 135.0143, found 135.0135. 

 

TT5: A white solid was obtained after flash column chromatography (Petroleum ether:CH2Cl2 = 

3:1) (47 mg, yield: 52%). 1H NMR (400 MHz, CDCl3, δ): 8.10–8.01 (m, 2H), 7.29–7.20 (m, 2H) 

ppm; 13C NMR (100 MHz, CDCl3, δ): 178.05 (s), 165.66 (d, 1JCF = 256.03 Hz), 132.15 (d, 3JCF = 

8.98 Hz), 122.88 (d, 4JCF = 3.10 Hz), 117.29 (d, 2JCF = 22.33 Hz) ppm; HRMS-APPI [M-N2]+ m/z 

calcd. for [C7H4FNS]+ 153.0048, found 153.0045. 

 

TT6: A white solid was obtained after flash column chromatography (Petroleum ether:CH2Cl2 = 

4:1) (82 mg, yield: 57%). 1H NMR (400 MHz, CDCl3, δ): 7.92 (d, J = 8.60 Hz, 2H), 7.77 (d, J = 

8.60 Hz, 2H) ppm; 13C NMR (100 MHz, CDCl3, δ): 178.48, 139.17, 130.98, 125.90, 100.58 ppm; 

HRMS-APPI [M-N2]+ m/z calcd. for [C7H4INS]+ 260.9109, found 260.9108. 

 



TT7: A white solid was obtained after flash column chromatography (Petroleum ether:CH2Cl2 = 

3:1) (88 mg, yield: 73%). 1H NMR (400 MHz, CDCl3, δ): 8.22 (t, J = 1.70 Hz, 1H), 7.97 (d, J = 

7.80 Hz, 1H), 7.74 (d, J = 7.80 Hz, 1H), 7.44 (t, J = 7.80 Hz, 1H) ppm; 13C NMR (100 MHz, 

CDCl3, δ): 177.79, 136.16, 132.36, 131.35, 128.47, 128.20, 123.80 ppm; HRMS-APPI [M-N2]+ 

m/z calcd. for [C7H4BrNS]+ 212.9248, found 212.9247. 

 

TT8: A white solid was obtained after flash column chromatography (Petroleum ether:CH2Cl2 = 

5:2) (49 mg, yield: 51%). 1H NMR (400 MHz, CDCl3, δ): 8.04 (d, J = 8.20 Hz, 2H), 7.56 (d, J = 

8.20 Hz, 2H), 4.83 (s, 2H), 1.97 (s, br, 1H) ppm; 13C NMR (100 MHz, CDCl3, δ): 179.08, 146.62, 

130.04, 127.85, 125.55, 64.56 ppm; HRMS-APPI [M-N2]+ m/z calcd. for [C8H7NOS]+ 165.0248, 

found 165.0246. 

 

Synthesis of TT9 

 

To a 250 mL two-neck round bottom flask equipped with a stir bar, 4-bromobenzonitrile (5 mmol, 

0.91 g), phenoxazine (5.5 mmol, 1.0 g), Sodium tert-butoxide (5.5 mmol, 0.53 g) and 100 ml of 

anhydrous toluene were added. The reaction mixture was degassed by bubbling through 

nitrogen for 15 min under vigorous stirring. Then Pd2(dba)3 (0.1 mmol, 92 mg) and XPhos (0.25 

mmol, 119 mg) were added and degassed for another 15 min. The reaction mixture was heated 

to 110 °C under a nitrogen atmosphere for 15 h. The reaction mixture was then cooled down to 

room temperature, extracted with dichloromethane, and dried over anhydrous magnesium 

sulfate (MgSO4). The product was purified using flash column chromatography (Petroleum 

ether:CH2Cl2= 9:1) to give 1.03 g of N9 (yield: 73%). 1H NMR (400 MHz, CDCl3, δ): 7.89 (d, J = 

8.20 Hz, 2H), 7.50 (d, J = 8.20 Hz, 2H), 6.76–6.56 (m, 6H), 5.91 (d, J = 7.80 Hz, 2H) ppm.[8] 

N9 (0.5 mmol, 142 mg), sulfur (0.75 mmol, 24 mg) and DMSO (2 ml) were mixed together in a 

30 ml microwave reaction tube. Hydrazine monohydrate (5 mmol, 0.25 ml) was added with 

stirring afterwards. The vessel was sealed and the reaction mixture was heated to 90 °C for 1 

hour. (Caution should be exercised due to the elevated pressure in the sealed reaction vessel 

when heating, particularly attempting scale up). Then 5 ml of CH2Cl2 and sodium nitrite (5 mmol, 

0.35 g) in 10 ml of H2O were added to the mixture. Excess acetic acid (20 mmol, 1.14 ml) was 

then added slowly at 0 °C. The reaction mixture was allowed to stir for another 1 hour at room 

temperature, and then extracted with dichloromethane. The organic phase was dried over 

anhydrous magnesium sulfate (MgSO4), filtered and concentrated under reduced pressure. The 

resulting residue was purified using flash column chromatography.  

TT9: A yellow crystalline solid was obtained after flash column chromatography (Petroleum 

ether:CH2Cl2 = 3:2) (120 mg, yield: 70%). 1H NMR (400 MHz, CDCl3, δ): 8.29 (d, J = 8.20 Hz, 

2H), 7.59 (d, J = 8.20 Hz, 2H), 6.78–6.59 (m, 6H), 6.01 (d, J = 7.80 Hz, 2H) ppm; 13C NMR (100 



MHz, CDCl3, δ): 178.17, 144.20, 144.02, 133.57, 132.55, 132.43, 126.34, 123.49, 122.30, 

116.04, 113.50 ppm; HRMS-APPI [M+H-N2]+ m/z calcd. for [C19H13N2OS]+ 317.0749, found 

317.0738; HRMS-ESI [M]+ m/z calcd. for [C19H12N4OS]+ 344.0732, found 344.0745.  

 

“Pinner Synthesis” using ethanol as solvent 

4-Bromobenzonitrile (0.5 mmol, 91 mg), sulfur (0.75 mmol, 24 mg) and ethanol (2 ml) were 

mixed together in a 30 ml microwave reaction tube. Hydrazine monohydrate (5 mmol, 0.25 ml) 

was added with stirring afterwards. The vessel was sealed and the reaction mixture was heated 

to 90 °C for 1 hour. (Caution should be exercised due to the elevated pressure in the sealed 

reaction vessel when heating, particularly attempting scale up). Then 5 ml of CH2Cl2 and sodium 

nitrite (5 mmol, 0.35 g) in 10 ml of H2O were added to the mixture. Excess acetic acid (20 mmol, 

1.14 ml) was then added slowly at 0 °C. The reaction mixture was allowed to stir for another 1 

hour at room temperature, and then extracted with dichloromethane. The organic phase was 

dried over anhydrous magnesium sulfate (MgSO4), filtered and concentrated under reduced 

pressure. The resulting residue was purified using flash column chromatography (CH2Cl2) to give 

T1 as a pink solid (42 mg, yield: 43%).  

 

T1[9]: 1H NMR (400 MHz, DMSO-d6, δ): 7.98 (d, J = 8.60 Hz, 4H), 7.81 (d, J = 8.60 Hz, 4H) ppm; 
13C NMR (100 MHz, DMSO-d6, δ): 167.13, 132.60, 129.59, 128.60, 125.08 ppm. 

 

“Pinner Synthesis” using acetonitrile as solvent 

4-Bromobenzonitrile (0.5 mmol, 91 mg), sulfur (0.75 mmol, 24 mg) and acetonitrile (2 ml) were 

mixed together in a 30 ml microwave reaction tube. Hydrazine monohydrate (5 mmol, 0.25 ml) 

was added with stirring afterwards. The vessel was sealed and the reaction mixture was heated 

to 90 °C for 1 hour. (Caution should be exercised due to the elevated pressure in the sealed 

reaction vessel when heating, particularly attempting scale up). Then 5 ml of CH2Cl2 and sodium 

nitrite (5 mmol, 0.35 g) in 10 ml of H2O were added to the mixture. Excess acetic acid (20 mmol, 

1.14 ml) was then added slowly at 0 °C. The reaction mixture was allowed to stir for another 1 

hour at room temperature, and then extracted with dichloromethane. The organic phase was 

dried over anhydrous magnesium sulfate (MgSO4), filtered and concentrated under reduced 

pressure. The resulting residue was purified using flash column chromatography.  

 

TT1: Petroleum ether:CH2Cl2 = 4:1 (11 mg, yield: 9%), obtained as a white crystalline solid. 

 



T2[10]: Petroleum ether:CH2Cl2 = 3:1 (20 mg, yield: 16%), obtained as a red solid. 1H NMR (400 

MHz, CDCl3, δ): 8.46 (d, J = 8.60 Hz, 2H), 7.73 (d, J = 8.60 Hz, 2H), 3.10 (s, 3H) ppm; 13C NMR 

(100 MHz, CDCl3, δ): 167.60, 163.72, 132.72, 130.83, 129.46, 127.87, 21.36 ppm. 

 

“Pinner Synthesis” using DMF as solvent 

4-Bromobenzonitrile (0.5 mmol, 91 mg), sulfur (0.75 mmol, 24 mg) and DMF (2 ml) were mixed 

together in a 30 ml microwave reaction tube. Hydrazine monohydrate (5 mmol, 0.25 ml) was 

added with stirring afterwards. The vessel was sealed and the reaction mixture was heated to 90 

°C for 1 hour. (Caution should be exercised due to the elevated pressure in the sealed reaction 

vessel when heating, particularly attempting scale up). Then 5 ml of CH2Cl2 and sodium nitrite (5 

mmol, 0.35 g) in 10 ml of H2O were added to the mixture. Excess acetic acid (20 mmol, 1.14 ml) 

was then added slowly at 0 °C. The reaction mixture was allowed to stir for another 1 hour at 

room temperature, and then extracted with dichloromethane. The organic phase was dried over 

anhydrous magnesium sulfate (MgSO4), filtered and concentrated under reduced pressure. The 

resulting residue was purified using flash column chromatography.  

 

TT1: Petroleum ether:CH2Cl2 = 4:1 (50 mg, yield: 41%), obtained as a white crystalline solid. 

 

T3[11]: Petroleum ether:CH2Cl2 = 3:1 (10 mg, yield: 8%), obtained as a red solid. 1H NMR (400 

MHz, CDCl3, δ): 10.25 (s, 1H), 8.51 (d, J = 8.70 Hz, 2H), 7.76 (d, J = 8.70 Hz, 2H) ppm; 13C 

NMR (100 MHz, CDCl3, δ): 166.12, 158.04, 132.89, 130.62, 129.82, 128.64 ppm. 

 

  



2. Supporting experimental results 

Table S1: Survey of sulfur amounts in the modified “pinner synthesis”(a). 

 

Entry S Yield (%)(b) 

1 1 equiv. 53 

2 1.3 equiv. 72 

3 1.5 equiv. 74 

4 2 equiv. 71 

(a) All reactions were carried out on a 0.5 mmol scale in 2 ml DMSO. MW = microwave. (b) Yields (isolated) based on 

the nitrile precursor. 

 

Table S2: Survey of reaction temperature and time in the modified “pinner synthesis”(a). 

 

Entry Temp., time Yield (%)(b) 

1 90 °C, 1 h 74 

2 80 °C, 1 h 59 

3 80 °C, 3 h 72 

4 70 °C, 6 h 74 

5 60 °C, 24 h 69 

(a) All reactions were carried out on a 0.5 mmol scale in 2 ml DMSO. MW = microwave. (b) Yields (isolated) based on 

the nitrile precursor. 

 

 

 
 
Table S3. Summary of crystal data and intensity collection parameters for compound TT9. 
 

 TT9 

Empirical formula C19H12N4OS 



Mol wt 342.67 

Crystal system Triclinic 

Shape Yellow block 

Space group P -1 

a / Å 7.8935(9) 

b / Å 9.7239(11) 

c / Å 11.0347(14) 

α / o 111.205(11) 

β / o 95.584(10) 

γ / o 91.415(9) 

V / Å3 784.24(17) 

Z 3 

D / g cm-3 1.458 

Temperature / K 293 

 

 

 

 

Figure S1: Absorption and photoluminescence spectra of TT9 in various solvents at room 

temperature. A characteristic behavior of the 350-500 nm absorption band indicates its charge 

transfer (CT) origin. Note: DCM and ethanol solutions are virtually non-emissive.  

 



 

Figure S2: PL spectra of TT9 in degassed and air-equilibrated MCH at room temperature. 

 

Figure S3: PL decay of TT9 in degassed and air-equilibrated MCH at room temperature. 

 



 

Figure S4: Fitted PL decay of TT9 in degassed MCH at room temperature. 

 

Figure S5: Fitted PL decay of TT9 in Zeonex in vacuum at room temperature. 

 



 

Figure S6: Power dependence of delayed fluorescence of TT9 in degassed MCH at room 

temperature. 

 

 

Figure S7: Power dependence of delayed fluorescence of TT9 in Zeonex in vacuum at room 

temperature. 
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Figure S8: Cyclic voltammetry of TT9 in DCM at room temperature. 

 

 
Figure S9. Packing in the crystal structure of compound TT9, viewed along the a-axis. 
 

 



 

  

Figure S10. Overlay of the ground state (orange) and first singlet excited state (gray) optimized 
geometries. 
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