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Abstract

Defining words in a textual context is a
useful task both for practical purposes and
for gaining insight into distributed word
representations. Building on the distribu-
tional hypothesis, we argue here that the
most natural formalization of definition
modeling is to treat it as a sequence-
to-sequence task, rather than a word-to-
sequence task: given an input sequence
with a highlighted word, generate a con-
textually appropriate definition for it. We
implement this approach in a Transformer-
based sequence-to-sequence model. Our
proposal allows to train contextualization
and definition generation in an end-to-end
fashion, which is a conceptual improve-
ment over earlier works. We achieve state-
of-the-art results both in contextual and
non-contextual definition modeling.

1 Introduction

The task of definition modeling, introduced by
Noraset et al. (2017), consists in generating the
dictionary definition of a specific word: for in-
stance, given the word “monotreme” as input, the
system would need to produce a definition such
as “any of an order (Monotremata) of egg-laying
mammals comprising the platypuses and echid-
nas”.1 Following the tradition set by lexicogra-
phers, we call the word being defined a definien-
dum (pl. definienda), whereas a word occurring in
its definition is called a definiens (pl. definientia).

Definition modeling can prove useful in a vari-
ety of applications. Systems trained for the task
may generate dictionaries for low resource lan-
guages, or extend the coverage of existing lexico-
graphic resources where needed, e.g. of domain-
specific vocabulary. Such systems may also be

1Definition from Merriam-Webster.

able to provide reading help by giving definitions
for words in the text.

A major intended application of definition mod-
eling is the explication and evaluation of dis-
tributed lexical representations, also known as
word embeddings (Noraset et al., 2017). This eval-
uation procedure is based on the postulate that the
meaning of a word, as is captured by its embed-
ding, should be convertible into a human-readable
dictionary definition. How well the meaning is
captured must impact the ability of the model
to reproduce the definition, and therefore embed-
ding architectures can be compared according to
their downstream performance on definition mod-
eling. This intended usage motivates the require-
ment that definition modeling architectures take as
input the embedding of the definiendum and not
retrain it.

From a theoretical point of view, usage of word
embeddings as representations of meaning (cf.
Lenci, 2018; Boleda, 2019, for an overview) is
motivated by the distributional hypothesis (Harris,
1954). This framework holds that meaning can be
inferred from the linguistic context of the word,
usually seen as co-occurrence data. The context
of usage is even more crucial for characterizing
meanings of ambiguous or polysemous words: a
definition that does not take disambiguating con-
text into account will be of limited use (Gadetsky
et al., 2018).

We argue that definition modeling should pre-
serve the link between the definiendum and its con-
text of occurrence. The most natural approach to
this task is to treat it as a sequence-to-sequence
task, rather than a word-to-sequence task: given
an input sequence with a highlighted word, gener-
ate a contextually appropriate definition for it (cf.
sections 3 & 4). We implement this approach in
a Transformer-based sequence-to-sequence model
that achieves state-of-the-art performances (sec-
tions 5 & 6).
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2 Related Work

In their seminal work on definition modeling, No-
raset et al. (2017) likened systems generating def-
initions to language models, which can naturally
be used to generate arbitrary text. They built a
sequential LSTM seeded with the embedding of
the definiendum; its output at each time-step was
mixed through a gating mechanism with a feature
vector derived from the definiendum.

Gadetsky et al. (2018) stressed that a definien-
dum outside of its specific usage context is am-
biguous between all of its possible definitions.
They proposed to first compute the AdaGram vec-
tor (Bartunov et al., 2016) for the definiendum,
to then disambiguate it using a gating mechanism
learned over contextual information, and finally
to run a language model over the sequence of
definientia embeddings prepended with the disam-
biguated definiendum embedding.

In an attempt to produce a more interpretable
model, Chang et al. (2018) map the definiendum
to a sparse vector representation. Their architec-
ture comprises four modules. The first encodes the
context in a sentence embedding, the second con-
verts the definiendum into a sparse vector, the third
combines the context embedding and the sparse
representation, passing them on to the last module
which generates the definition.

Related to these works, Yang et al. (2019)
specifically tackle definition modeling in the con-
text of Chinese—whereas all previous works
on definition modeling studied English. In a
Transformer-based architecture, they incorporate
“sememes” as part of the representation of the
definiendum to generate definitions.

On a more abstract level, definition modeling
is related to research on the analysis and evalu-
ation of word embeddings (Levy and Goldberg,
2014a,b; Arora et al., 2018; Batchkarov et al.,
2016; Swinger et al., 2018, e.g.). It also relates
to other works associating definitions and em-
beddings, like the “reverse dictionary task” (Hill
et al., 2016)—retrieving the definiendum knowing
its definition, which can be argued to be the oppo-
site of definition modeling—or works that derive
embeddings from definitions (Wang et al., 2015;
Tissier et al., 2017; Bosc and Vincent, 2018).

3 Definition modeling as a
sequence-to-sequence task

Gadetsky et al. (2018) remarked that words are

often ambiguous or polysemous, and thus gener-
ating a correct definition requires that we either
use sense-level representations, or that we disam-
biguate the word embedding of the definiendum.
The disambiguation that Gadetsky et al. (2018)
proposed was based on a contextual cue—ie. a
short text fragment. As Chang et al. (2018) notes,
the cues in Gadetsky et al.’s (2018) dataset do not
necessarily contain the definiendum or even an in-
flected variant thereof. For instance, one train-
ing example disambiguated the word “fool” using
the cue “enough horsing around—let’s get back to
work!”.

Though the remark that definienda must be dis-
ambiguated is pertinent, the more natural formula-
tion of such a setup would be to disambiguate the
definiendum using its actual context of occurrence.
In that respect, the definiendum and the contextual
cue would form a linguistically coherent sequence,
and thus it would make sense to encode the con-
text together with the definiendum, rather than to
merely rectify the definiendum embedding using a
contextual cue. Therefore, definition modeling is
by its nature a sequence-to-sequence task: map-
ping contexts of occurrence of definienda to defi-
nitions.

This remark can be linked to the distributional
hypothesis (Harris, 1954). The distributional hy-
pothesis suggests that a word’s meaning can be
inferred from its context of usage; or, more suc-
cinctly, that “you shall know a word by the com-
pany it keeps” (Firth, 1957). When applied to def-
inition modeling, the hypothesis can be rephrased
as follows: the correct definition of a word can
only be given when knowing in what linguistic
context(s) it occurs. Though different kinds of
linguistic contexts have been suggested through-
out the literature, we remark here that senten-
tial context may sometimes suffice to guess the
meaning of a word that we don’t know (Lazaridou
et al., 2017). Quoting from the example above, the
context “enough around—let’s get back to
work!” sufficiently characterizes the meaning of
the omitted verb to allow for an approximate def-
inition for it even if the blank is not filled (Taylor,
1953; Devlin et al., 2018).

This reformulation can appear contrary to the
original proposal by Noraset et al. (2017), which
conceived definition modeling as a “word-to-
sequence task”. They argued for an approach
related to, though distinct from sequence-to-
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sequence architectures. Concretely, a specific en-
coding procedure was applied to the definiendum,
so that it could be used as a feature vector during
generation. In the simplest case, vector encoding
of the definiendum consists in looking up its vector
in a vocabulary embedding matrix.

We argue that the whole context of a word’s us-
age should be accessible to the generation algo-
rithm rather than a single vector. To take a more
specific case of verb definitions, we observe that
context explicitly represents argument structure,
which is obviously useful when defining the verb.
There is no guarantee that a single embedding,
even if it be contextualized, would preserve this
wealth of information—that is to say, that you can
cram all the information pertaining to the syntactic
context into a single vector.

Despite some key differences, all of the previ-
ously proposed architectures we are aware of (No-
raset et al., 2017; Gadetsky et al., 2018; Chang
et al., 2018; Yang et al., 2019) followed a pattern
similar to sequence-to-sequence models. They all
implicitly or explicitly used distinct submodules to
encode the definiendum and to generate the defini-
entia. In the case of Noraset et al. (2017), the en-
coding was the concatenation of the embedding
of the definiendum, a vector representation of its
sequence of characters derived from a character-
level CNN, and its “hypernym embedding”. Gadet-
sky et al. (2018) used a sigmoid-based gating mod-
ule to tweak the definiendum embedding. The ar-
chitecture proposed by Chang et al. (2018) is com-
prised of four modules, only one of which is used
as a decoder: the remaining three are meant to
convert the definiendum as a sparse embedding,
select some of the sparse components of its mean-
ing based on a provided context, and encode it into
a representation adequate for the decoder.

Aside from theoretical implications, there is an-
other clear gain in considering definition modeling
as a sequence-to-sequence task. Recent advances
in embedding designs have introduced contextual
embeddings (McCann et al., 2017; Peters et al.,
2018; Devlin et al., 2018); and these share the par-
ticularity that they are a “function of the entire sen-
tence” (Peters et al., 2018): in other words, vector
representations are assigned to tokens rather than
to word types, and moreover semantic information
about a token can be distributed over other token
representations. To extend definition modeling to
contextual embeddings therefore requires that we

devise architectures able to encode a word in its
context; in that respect sequence-to-sequence ar-
chitectures are a natural choice.

A related point is that not all definienda are
comprised of a single word: multi-word expres-
sions include multiple tokens, yet receive a single
definition. Word embedding architectures gener-
ally require a pre-processing step to detect these
expressions and merge them into a single token.
However, as they come with varying degrees of se-
mantic opacity (Cordeiro et al., 2016), a definition
modeling system would benefit from directly ac-
cessing the tokens they are made up from. There-
fore, if we are to address the entirety of the lan-
guage and the entirety of existing embedding ar-
chitectures in future studies, reformulating defini-
tion modeling as a sequence-to-sequence task be-
comes a necessity.

4 Formalization

A sequence-to-sequence formulation of definition
modeling can formally be seen as a mapping be-
tween contexts of occurrence of definienda and
their corresponding definitions. It moreover re-
quires that the definiendum be formally distin-
guished from the remaining context: otherwise
the definition could not be linked to any particular
word of the contextual sequence, and thus would
need to be equally valid for any word of the con-
textual sequence.

We formalize definition modeling as mapping to
sequences of definientia from sequences of pairs
〈w1, i1〉, . . . , 〈wn, in〉 , where wk is the kth word
in the input and ik ∈ {0, 1} indicates whether the
kth token is to be defined. As only one element
of the sequence should be highlighted, we expect
the set of all indicators to contain only two ele-
ments: the one, id = 1, to mark the definiendum,
the other, ic = 0, to mark the context; this entails
that we encode this marking using one bit only.2

To treat definition modeling as a sequence-to-
sequence task, the information from each pair
〈wk, ik〉 has to be integrated into a single repre-

2Multiple instances of the same definiendum within a sin-
gle context should all share a single definition, and therefore
could theoretically all be marked using the definiendum indi-
cator id = 1. Likewise the words that make up a multi-word
expression should all be marked with this id indicator. In this
work, however, we only mark a single item; in cases when
multiple occurrences of the same definiendum were attested,
we simply marked the first occurrence.
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sentation ~markedk:

~markedk = mark(ik, ~wk) (1)

This marking function can theoretically take any
form. Considering that definition modeling uses
the embedding of the definiendum ~wd = e(wd), in
this work we study a multiplicative and an additive
mechanism, as they are conceptually the simplest
form this marking can take in a vector space. They
are given schematically in Figure 1, and formally
defined as:

~marked×k = ik × ~wk (2)
~marked+k = e(ik) + ~wk (3)

The last point to take into account is where to
set the marking. Two natural choices are to set it
either before or after encoded representations were
obtained. We can formalize this using either of the
following equation, with E the model’s encoder:

~marked after
k = mark(ik, E( ~wk))

~marked before
k = E(mark(ik, ~wk)) (4)

4.1 Multiplicative marking: SELECT

The first option we consider is to use scalar multi-
plication to distinguish the word to define. In such
a scenario, the marked token encoding is

~marked×k = ik × ~wk (2)

As we use bit information as indicators, this
form of marking entails that only the representa-
tion of the definiendum be preserved and that all
other contextual representations are set to ~0 =
(0, · · · , 0): thus multiplicative marking amounts
to selecting just the definiendum embedding and
discarding other token embeddings. The contex-
tualized definiendum encoding bears the trace of
its context, but detailed information is irreparably
lost. Hence, we refer to such an integration mech-
anism as a SELECT marking of the definiendum.

When to apply marking, as introduced by eq. 4,
is crucial when using the multiplicative marking
scheme SELECT. Should we mark the definiendum
before encoding, then only the definiendum em-
bedding is passed into the encoder: the resulting
system provides out-of-context definitions, like in
Noraset et al. (2017) where the definition is not
linked to the context of a word but to its definien-
dum only. For context to be taken into account

~r1 ~r2 ~r3 ~r4 ~r5

~I ~
we
ar ~a ~

ti
e ~.

(a) SELECT: Select-
ing from encoded items.
Items are contextualized
and the definiendum is
singled out from them.

~r1 ~r2 ~r3 ~r4 ~r5

~I
+
~C

~
we
ar

+
~C

~a
+
~C

~
ti
e
+
~D

~.
+
~C

(b) ADD: Additive mark-
ing in encoder. Context items
and definiendum are marked
by adding dedicated embed-
dings.

Figure 1: Additive vs. multiplicative integration

under the multiplicative strategy, tokens wk must
be encoded and contextualized before integration
with the indicator ik.

Figure 1a presents the contextual SELECT

mechanism visually. It consists in coercing the
decoder to attend only to the contextualized rep-
resentation for the definiendum. To do so, we en-
code the full context and then select only the en-
coded representation of the definiendum, dropping
the rest of the context, before running the decoder.
In the case of the Transformer architecture, this is
equivalent to using a multiplicative marking on the
encoded representations: vectors that have been
zeroed out are ignored during attention and thus
cannot influence the behavior of the decoder.

This SELECT approach may seem intuitive and
naturally interpretable, as it directly controls what
information is passed to the decoder—we care-
fully select only the contextualized definiendum,
thus the only remaining zone of uncertainty would
be how exactly contextualization is performed. It
also seems to provide a strong and reasonable bias
for training the definition generation system. Such
an approach, however, is not guaranteed to excel:
forcibly omitted context could contain important
information that might not be easily incorporated
in the definiendum embedding.

Being simple and natural, the SELECT approach
resembles architectures like that of Gadetsky et al.
(2018) and Chang et al. (2018): the full en-
coder is dedicated to altering the embedding of the
definiendum on the basis of its context; in that, the
encoder may be seen as a dedicated contextualiza-
tion sub-module.
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4.2 Additive marking: ADD

We also study an additive mechanism shown in
Figure 1b (henceforth ADD). It concretely con-
sists in embedding the word wk and its indicator
bit ik in the same vector space and adding the cor-
responding vectors:

~marked+k = e(ik) + ~wk (3)

In other words, under ADD we distinguish the
definiendum by adding a vector ~D to the definien-
dum embedding, and another vector ~C to the re-
maining context token embeddings; both markers
~D and ~C are learned during training. In our imple-
mentation, markers are added to the input of the
encoder, so that the encoder has access to this in-
formation; we leave the question of whether to in-
tegrate indicators and words at other points of the
encoding process, as suggested in eq. 4, to future
work.

Additive marking of substantive features has its
precedents. For example, BERT embeddings (De-
vlin et al., 2018) are trained using two sentences
at once as input; sentences are distinguished with
added markers called “segment encodings”. To-
kens from the first sentence are all marked with
an added vector ~segA, whereas tokens from sec-
ond sentences are all marked with an added vector
~segB . The main difference here is that we only

mark one item with the marker ~D, while all others
are marked with ~C.

This ADD marking is more expressive than the
SELECT architecture. Sequence-to-sequence de-
coders typically employ an attention to the input
source (Bahdanau et al., 2014), which corresponds
to a re-weighting of the encoded input sequence
based on a similarity between the current state of
the decoder (the ‘query’) and each member of the
input sequence (the ‘keys’). This re-weighting
is normalized with a softmax function, produc-
ing a probability distribution over keys. However,
both non-contextual definition modeling and the
SELECT approach produce singleton encoded se-
quences: in such scenarios the attention mecha-
nism assigns a single weight of 1 and thus de-
volves into a simple linear transformation of the
value and makes the attention mechanism useless.
Using an additive marker, rather than a selective
mechanism, will prevent this behavior.

5 Evaluation

We implement several sequence to sequence mod-
els with the Transformer architecture (Vaswani
et al., 2017), building on the OpenNMT library
(Klein et al., 2017) with adaptations and modifi-
cations when necessary.3 Throughout this work,
we use GloVe vectors (Pennington et al., 2014)
and freeze weights of all embeddings for a fairer
comparison with previous models; words not in
GloVe but observed in train or validation data and
missing definienda in our test sets were randomly
initialized with components drawn from a normal
distribution N (0, 1).

We train a distinct model for each dataset. We
batch examples by 8,192, using gradient accumu-
lation to circumvent GPU limitations. We opti-
mize the network using Adam with β1 = 0.99,
β2 = 0.998, a learning rate of 2, label smooth-
ing of 0.1, Noam exponential decay with 2000
warmup steps, and dropout rate of 0.4. The pa-
rameters are initialized using Xavier. Models were
trained for up to 120,000 steps with checkpoints at
each 1000 steps; we stopped training if perplexity
on the validation dataset stopped improving. We
report results from checkpoints performing best on
validation.

5.1 Implementation of the Non-contextual
Definition Modeling System

In non-contextual definition modeling, definienda
are mapped directly to definitions. As the source
corresponds only to the definiendum, we conjec-
ture that few parameters are required for the en-
coder. We use 1 layer for the encoder, 6 for the de-
coder, 300 dimensions per hidden representations
and 6 heads for multi-head attention. We do not
share vocabularies between the encoder and the
decoder: therefore output tokens can only corre-
spond to words attested as definientia.4

The dropout rate and warmup steps number
were set using a hyperparameter search on the
dataset from Noraset et al. (2017), during which
encoder and decoder vocabulary were merged for
computational simplicity and models stopped af-
ter 12,000 steps. We first fixed dropout to 0.1
and tested warmup step values between 1000 and

3Code & data are available at the following URL:
https://github.com/TimotheeMickus/onmt-selectrans.

4In our case, not sharing vocabularies prevents the model
from considering rare words only used as definienda, such as
“penumbra” as potential outputs, and was found to improve
performances.
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10,000 by increments of 1000, then focused on the
most promising span (1000–4000 steps) and ex-
haustively tested dropout rates from 0.2 to 0.8 by
increments of 0.1.

5.2 Implementation of Contextualized
Definition Modeling Systems

To compare the effects of the two integration
strategies that we discussed in section 4, we imple-
ment both the additive marking approach (ADD,
cf. section 4.2) and the alternative ‘encode and
select’ approach (SELECT, cf. section 4.1). To
match with the complex input source, we de-
fine encoders with 6 layers; we reemploy the
set of hyperparameters previously found for the
non-contextual system. Other implementation de-
tails, initialization strategies and optimization al-
gorithms are kept the same as described above for
the non-contextual version of the model.

We stress that the two approaches we compare
for contextualizing the definiendum are applicable
to almost any sequence-to-sequence neural archi-
tecture with an attention mechanism to the input
source.5 Here we chose to rely on a Transformer-
based architecture (Vaswani et al., 2017), which
has set the state of the art in a wide range of
tasks, from language modeling (Dai et al., 2019)
to machine translation (Ott et al., 2018). It is
therefore expected that the Transformer architec-
ture will also improve performances for definition
modeling, if our arguments for treating it as a se-
quence to sequence task are on the right track.

5.3 Datasets
We train our models on three distinct datasets,
which are all borrowed or adapted from previous
works on definition modeling. As a consequence,
our experiments focus on the English language.
The dataset of Noraset et al. (2017) (henceforth
DNor) maps definienda to their respective defini-
entia, as well as additional information not used
here. In the dataset of Gadetsky et al. (2018)
(henceforth DGad), each example consists of a
definiendum, the definientia for one of its mean-
ings and a contextual cue sentence. DNor contains
on average shorter definitions than DGad. Defini-
tions inDNor have a mean length of 6.6 and a stan-
dard deviation of 5.78, whereas those inDGad have
a mean length of 11.01 and a standard deviation of
6.96.

5For best results, the SELECT mechanism should require
a bi-directional encoding mechanism.

Chang et al. (2018) stress that the dataset DGad
includes many examples where the definiendum
is absent from the associated cue. About half of
these cues doe not contain an exact match for the
corresponding definiendum, but up to 80% con-
tains either an exact match or an inflected form of
the definiendum according to lemmatization by the
NLTK toolkit (Loper and Bird, 2002). To cope with
this problematic characteristic, we converted the
dataset into the word-in-context format assumed
by our model by concatenating the definiendum
with the cue. To illustrate this, consider the ac-
tual input from DGad comprised of the definien-
dum “fool” and its associated cue “enough hors-
ing around—let’s get back to work!”: to convert
this into a single sequence, we simply prepend
the definiendum to the cue, which results in the
sequence “fool enough horsing around—let’s get
back to work!”. Hence the input sequences of
DGad do not constitute linguistically coherent se-
quences, but it does guarantee that our sequence-
to-sequence variants have access to the same input
as previous models; therefore the inclusion of this
dataset in our experiments is intended mainly for
comparison with previous architectures. We also
note that this conversion procedure entails that our
examples have a very regular structure: the word
marked as a definiendum is always the first word
in the input sequence.

Our second strategy was to restrict the dataset
by selecting only cues where the definiendum (or
its inflected form) is present. The curated dataset
(henceforth DCtx) contains 78,717 training ex-
amples, 9,413 for validation and 9,812 for test-
ing. In each example, the first occurrence of the
definiendum is annotated as such. DCtx thus dif-
fers from DGad in two ways: some definitions
have been removed, and the exact citation forms
of the definienda are not given. Models trained
on DCtx implicitly need to lemmatize the definien-
dum, since inflected variants of a given word are to
be aligned to a common representation; thus they
are not directly comparable with models trained
with the citation form of the definiendum that
solely use context as a cue—viz. Gadetsky et al.
(2018) & Chang et al. (2018). All this makes
DCtx harder, but at the same time closer to a
realistic application than the other two datasets,
since each word appears inflected and in a spe-
cific sentential context. For applications of def-
inition modeling, it would only be beneficial to
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take up these challenges; for example, the output
“monotremes: plural of monotreme”6 would not
have been self-contained, necessitating a second
query for “monotreme”.

5.4 Results
We use perplexity, a standard metric in definition
modeling, to evaluate and compare our models.
Informally, perplexity assesses the model’s confi-
dence in producing the ground-truth output when
presented the source input. It is formally defined
as the exponentiation of cross-entropy. We do not
report BLEU or ROUGE scores due to the fact that
an important number of ground-truth definitions
are comprised of a single word, in particular in
DNor (≈ 25%). Single word outputs can either
be assessed as entirely correct or entirely wrong
using BLEU or ROUGE. However consider for in-
stance the word “elation”: that it be defined either
as “mirth” or “joy” should only influence our met-
ric slightly, and not be discounted as a completely
wrong prediction.

DNor DGad DCtx

Noraset et al. 48.168 45.620 –
Gadetsky et al. – 43.540 –
Non-contextual 42.199 39.428 48.266
ADD – 33.678 43.695
SELECT – 33.998 62.039

Table 1: Results (perplexity)

Table 1 describes our main results in terms of
perplexity. We do not compare with Chang et al.
(2018), as they did not report the perplexity of
their system and focused on a different dataset;
likewise, Yang et al. (2019) consider only the Chi-
nese variant of the task. Perplexity measures for
Noraset et al. (2017) and Gadetsky et al. (2018) are
taken from the authors’ respective publications.

All our models perform better than previous
proposals, by a margin of 4 to 10 points, for a
relative improvement of 11–23%. Part of this im-
provement may be due to our use of Transformer-
based architectures (Vaswani et al., 2017), which
is known to perform well on semantic tasks
(Radford, 2018; Cer et al., 2018; Devlin et al.,
2018; Radford et al., 2019, eg.). Like Gadet-
sky et al. (2018), we conclude that disambiguat-
ing the definiendum, when done correctly, im-
proves performances: our best performing contex-

6Definition from Wiktionary.

tual model outranks the non-contextual variant by
5 to 6 points. The marking of the definiendum
out of its context (ADD vs. SELECT) also impacts
results. Note also that we do not rely on task-
specific external resources (unlike Noraset et al.,
2017; Yang et al., 2019) or on pre-training (unlike
Gadetsky et al., 2018).

Our contextual systems trained on the DGad
dataset used the concatenation of the definiendum
and the contextual cue as inputs. The definien-
dum was always at the start of the training exam-
ple. This regular structure has shown to be use-
ful for the models’ performance: all models per-
form significantly worse on the more realistic data
of DCtx than on DGad. The DCtx dataset is in-
trinsically harder for other reasons as well: it re-
quires some form of lemmatization in every three
out of eight training examples, and contains less
data than other datasets, only half as many exam-
ples as DNor, and 20% less than DGad.

The surprisingly poor results of SELECT on the
DCtx dataset may be partially blamed on the ab-
sence of a regular structure in DCtx. Unlike DGad,
where the model must only learn to contextual-
ize the first element of the sequence, in DCtx the
model has to single out the definiendum which
may appear anywhere in the sentence. Any infor-
mation stored only in representations of contextual
tokens will be lost to the decoders. The SELECT

model therefore suffers of a bottleneck, which is
highly regular in DGad and that it may therefore
learn to cope with; however predicting where in
the input sequence the bottleneck will appear is
far from trivial in the DCtx dataset. We also at-
tempted to retrain this model with various settings
of hyperparameters, modifying dropout rate, num-
ber of warmup steps, and number of layers in the
encoder—but to no avail. An alternative explana-
tion may be that in the case of theDGad dataset, the
regular structure of the input entails that the first
positional encoding is used as an additive marking
device: only definienda are marked with the posi-
tional encoding ~pos(1), and thus the architecture
does not purely embrace a selective approach but
a mixed one.

In any event, even on the DGad dataset where
the margin is very small, the perplexity of the ad-
ditive marking approach ADD is better than that
of the SELECT model. This lends empirical sup-
port to our claim that definition modeling is a non-
trivial sequence-to-sequence task, which can be
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better treated with sequence methods. The stabil-
ity of the performance improvement over the non-
contextual variant in both contextual datasets also
highlights that our proposed additive marking is
fairly robust, and functions equally well when con-
fronted to somewhat artificial inputs, as in DGad,
or to linguistically coherent sequences, as in DCtx.

6 Qualitative Analysis

filch to seize
grammar the science of language
implosion a sudden and violent collapse

(a) Handpicked sample

sediment to percolate
deputation the act of inciting
ancestry lineage

(b) Random sample

Table 2: Examples of production (non-contextual
model trained on DNor)

A manual analysis of definitions produced by
our system reveals issues similar to those dis-
cussed by Noraset et al. (2017), namely self-
reference,7 POS-mismatches, over- and under-
specificity, antonymy, and incoherence. Annotat-
ing distinct productions from the validation set,
for the non-contextual model trained on DNor,
we counted 9.9% of self-references, 11.6% POS-
mismatches, and 1.3% of words defined as their
antonyms. We counted POS-mismatches whenever
the definition seemed to fit another part-of-speech
than that of the definiendum, regardless of both of
their meanings; cf. Table 2 for examples.

For comparison, we annotated the first 1000
productions of the validation set from our ADD

model trained on DCtx. We counted 18.4% POS

mismatches and 4.4% of self-referring definitions;
examples are shown in Table 3. The higher rate of
POS-mismatch may be due to the model’s hardship
in finding which word is to be defined since the
model is not presented with the definiendum alone:
access to the full context may confuse it. On the
other hand, the lower number of self-referring def-
initions may also be linked to this richer, more var-
ied input: this would allow the model not to fall

7Self-referring definitions are those where a definiendum
is used as a definiens for itself. Dictionaries are expected to
be exempt of such definitions: as readers are assumed not to
know the meaning of the definiendum when looking it up.

back on simply reusing the definiendum as its own
definiens. Self-referring definitions highlight that
our models equate the meaning of the definiendum
to the composed meaning of its definientia. Sim-
ply masking the corresponding output embedding
might suffice to prevent this specific problem; pre-
liminary experiments in that direction suggest that
this may also help decrease perplexity further.

As for POS-mismatches, we do note that the
work of Noraset et al. (2017) had a much lower
rate of 4.29%: we suggest that this may be due to
the fact that they employ a learned character-level
convolutional network, which arguably would be
able to capture orthography and rudiments of mor-
phology. Adding such a sub-module to our pro-
posed architecture might diminish the number of
mistagged definienda. Another possibility would
be to pre-train the model, as was done by Gadetsky
et al. (2018): in our case in particular, the encoder
could be trained for POS-tagging or lemmatization.

Lastly, one important kind of mistakes we ob-
served is hallucinations. Consider for instance this
production by the ADD model trained on DCtx,
for the word “beta”: “the twentieth letter of the
Greek alphabet (κ), transliterated as ‘o’.”. Nearly
everything it contains is factually wrong, though
the general semantics are close enough to deceive
an unaware reader.8 We conjecture that filtering
out hallucinatory productions will be a main chal-
lenge for future definition modeling architectures,
for two main reasons: firstly, the tools and met-
rics necessary to assess and handle such hallucina-
tions have yet to be developed; secondly, the input
given to the system being word embeddings, re-
search will be faced with the problem of ground-
ing these distributional representations—how can
we ensure that “beta” is correctly defined as “the
second letter of the Greek alphabet, transliterated
as ‘b’”, if we only have access to a representa-
tion derived from its contexts of usage? Integra-
tion of word embeddings with structured knowl-
edge bases might be needed for accurate treatment
of such cases.

8On a related note, other examples were found to contain
unwanted social biases; consider the production by the same
model for the word “blackface”: “relating to or characteris-
tic of the theatre”. Part of the social bias here may be blamed
on the under-specific description that omits the offensive na-
ture of the word; however contrast the definition of Merriam
Webster for blackface, which includes a note on the offen-
siveness of the term, with that of Wiktionary, which does not.
Cf. Bolukbasi et al. (2016); Swinger et al. (2018) for a dis-
cussion on biases within embedding themselves.
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Error type Context (definiendum in bold) Production
POS-mismatch her major is linguistics most important or important
Self-reference he wrote a letter of apology to the hostess a formal expression of apology

Table 3: Examples of common errors (ADD model trained on DNor)

7 Conclusion

We introduced an approach to generating word
definitions that allows the model to access rich
contextual information about the word token to be
defined. Building on the distributional hypothe-
sis, we naturally treat definition generation as a
sequence-to-sequence task of mapping the word’s
context of usage (input sequence) into the context-
appropriate definition (output sequence).

We showed that our approach is competitive
against a more naive ‘contextualize and select’
pipeline. This was demonstrated by compari-
son both to the previous contextualized model by
Gadetsky et al. (2018) and to the Transformer-
based SELECT variation of our model, which dif-
fers from the proposed architecture only in the
context encoding pipeline. While our results are
encouraging, given the existing benchmarks we
were limited to perplexity measurements in our
quantitative evaluation. A more nuanced seman-
tically driven methodology might be useful in the
future to better assess the merits of our system in
comparison to alternatives.

Our model opens several avenues of future ex-
plorations. One could straightforwardly extend it
to generate definitions of multiword expressions
or phrases, or to analyze vector compositionality
models by generating paraphrases for vector repre-
sentations produced by these algorithms. Another
strength of our approach is that it can provide the
basis for a standardized benchmark for contextual-
ized and non-contextual embeddings alike: down-
stream evaluation tasks for embeddings systems
in general either apply to non-contextual embed-
dings (Gladkova et al., 2016, eg.) or to contextual
embeddings (Wang et al., 2019, eg.) exclusively,
redefining definition modeling as a sequence-to-
sequence task will allow in future works to com-
pare models using contextual and non-contextual
embeddings in a unified fashion. Lastly, we also
intend to experiment on languages other than En-
glish, especially considering that the required re-
sources for our model only amount to a set of pre-
trained embeddings and a dataset of definitions, ei-
ther of which are generally simple to obtain.

While there is a potential for local improve-
ments, our approach has demonstrated its abil-
ity to account for contextualized word meaning
in a principled way, while training contextualized
token encoding and definition generation end-to-
end. Our implementation is efficient and fast,
building on free open source libraries for deep
learning, and shows good empirical results. Our
code, trained models, and data will be made avail-
able to the community.
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