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INTRODUCTION

Endoderm gives rise to the gut, associated organs like the
pancreas and the liver, and to the respiratory tract. The
molecular mechanisms ensuring proper endoderm
specification and differentiation have recently been explored
and led to a two-step model, initially proposed in frogs (Yasuo
and Lemaire, 1999). In a first step, a combination of maternal
signals including the transcription factor VegT allows the
transcription of primary specification genes encoding activins,
Nodal-related factors and the transcription factor Mix1
(Clements et al., 1999; Zhang et al., 1998a). In a second step,
endoderm formation is controlled by cell-cell communication
events, regulated in part by the primary specification genes
(Yasuo and Lemaire, 1999).

In particular, similar to mesoderm, endoderm formation
relies at least on one event of induction, mediated by
extracellular signalling molecules, either released from a
neighbouring tissue, like the yolk syncytial layer (YSL) in fish,
or potentially from presumptive endodermal cells themselves
(Rodaway et al., 1999; Yasuo and Lemaire, 1999).
Overexpression and dominant interference experiments have

shown roles for TGFβ-related ligands, Vg1, activins, Nodal-
related (Ndr) molecules 1 and 2, and Derrière, as well as their
extracellular antagonists, antivin/lefty in this induction (Yasuo
and Lemaire, 1999). Analyses carried out in mice and fish have
highlighted the specific function of a Nodal signalling pathway
(Alexander and Stainier, 1999; Schier and Shen, 2000). Mouse
embryos mutant for the nodal gene and zebrafish mutants in
both the nodal-related genes cyclops(cyc) and squint(sqt) do
not develop endoderm or mesoderm (Conlon et al., 1994;
Feldman et al., 1998; Zhou et al., 1993). Conversely, a
mutation in lefty leads to embryos with an excess of
mesendodermal tissue (Meno et al., 1999). Endoderm (and
mesoderm) formation also requires the function of an EGF-
CFC factor encoded by the gene criptoin mouse and one-eyed-
pinhead(oep) in zebrafish (Ding et al., 1998; Minchiotti et al.,
2000; Schier et al., 1997; Strahle et al., 1997; Xu et al., 1999;
Zhang et al., 1998b). Mouse cripto mutants and zebrafish
embryos lacking maternal and zygotic oepexpression (MZoep
embryos) exhibit phenotypes similar to nodal mutants or
cyc;sqtdouble mutants, indicating that nodal-related genes and
cripto/oep act in the same signalling pathway (Ding et al.,
1998; Gritsman et al., 1999; Xu et al., 1999). Further
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Endoderm originates from a large endomesodermal field
requiring Nodal signalling. The mechanisms that ensure
segregation of endoderm from mesoderm are not fully
understood. We first show that the timing and dose of
Nodal activation are crucial for endoderm formation and
the endoderm versus mesoderm fate choice, because
sustained Nodal signalling is required to ensure endoderm
formation but transient signalling is sufficient for
mesoderm formation. In zebrafish, downstream of Nodal
signals, three genes encoding transcription factors (faust,
bonnie and clydeand the recently identified gene casanova)
are required for endoderm formation and differentiation.
However their positions within the pathway are not
completely established. In the present work, we show that

casanova is the earliest specification marker for
endodermal cells and that its expression requires bonnie
and clyde. Furthermore, we have analysed the molecular
activities of casanovaon endoderm formation and found
that it can induce endodermal markers and repress
mesodermal markers during gastrulation, as well as
change the fate of marginal blastomeres to endoderm.
Overexpression of casanovaalso restores endoderm
markers in the absence of Nodal signalling. In addition,
casanova efficiently restores later endodermal
differentiation in these mutants, but this process requires,
in addition, a partial activation of Nodal signalling.
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experiments in zebrafish have demonstrated that Oep/Cripto is
required as a permissive cofactor downstream of nodal-related
genes in mesoderm and endoderm formation (Gritsman et al.,
1999; Peyriéras et al., 1998).

TGFβ-related molecules act through the binding to a cell
surface type II receptor, followed by the recognition and
activation of a type I receptor that conveys the signal
intracellularly to activate specific sets of genes (Massague,
2000). Recent biochemical experiments have shown that Nodal
signals through the type II receptor ActrIIB and the type I
receptor ALK4/ActRIb or the orphan receptor ALK7, but
efficient binding of the ligands to the receptors and activation of
signalling require the binding of the extracellular EGF-CFC
protein Cripto to ALK4/ActRIb and/or ALK7 (Reissmann et al.,
2001; Yeo and Whitman, 2001). Consistent with this idea,
inactivation of the alk4/ActRIBgene led to phenotypes similar
to those observed in nodal mouse mutants (Gu et al., 1998).
Moreover, overproduction of ALK4* or Tar*, activated forms of
ALK4 or the ALK4-related zebrafish type I receptor Taram-A
(Tar), induces mesodermal and endodermal markers (Armes and
Smith, 1997; Bally-Cuif et al., 2000; Peyriéras et al., 1998;
Renucci et al., 1996; Yasuo and Lemaire, 1999). Last, ectopic
expression of Tar* changes the fate of early zebrafish
blastomeres to endoderm and rescues endoderm formation in
oep embryos, demonstrating that oep is required upstream of
Tar/ALK4/ActRIb (Gritsman et al., 1999; Peyriéras et al., 1998).

Downstream of Nodal-related signals and their receptors/co-
receptors, several types of genes control vertebrate endoderm
formation and differentiation. In frogs and fish, overexpression
and dominant interference experiments have implicated
transcription factors belonging to the Mix/milk/mixer, Bix and
Gata families, and the HMG box factor Sox17 in endoderm
induction (Hudson et al., 1997; Rosa, 1989; Henry and Melton,
1998; Ecochard et al., 1998; Lemaire et al., 1998; Weber et al.,
2000).

Zebrafish mutations affecting endoderm development have
opened the way to a definition of the genetic hierarchy by
which Nodal-related signals control this process (Alexander
and Stainier, 1999). In zebrafish, endoderm progenitors
originate from the margin of the embryo and involute soon after
the onset of gastrulation (Dickmeis et al., 2001a; Warga and
Nusslein-Volhard, 1999). Once involuted, they express sox17
and foxa2(previously known as axial/HNF3β) (Alexander and
Stainier, 1999; Strähle et al., 1993). Downstream of cyc, sqt
and oep, three genes have been defined at the molecular level
(bonnie and clyde (bon), faust (fau) and casanova(cas)) that
are required for the expression of sox17and foxa2 and for
endoderm development. The fau and bongenes require Nodal
signalling for their expression and encode a Gata5-related and
a Mixer-related protein, respectively (Kikuchi et al., 2000;
Reiter et al., 1999). Mutants in fauhave fewer endodermal cells
and bon mutants lose most of them (Reiter et al., 2001).
Overexpression of bon/mixercan induce a small number of
endodermal progenitors in cyc;sqtdouble mutants, suggesting
that bon/mixeracts downstream of Nodal signals (Kikuchi et
al., 2000). The fau/gata5and bon/mixergenes act in parallel
on endoderm formation because fau;bondouble mutants have
a stronger endodermal phenotype than single mutants and the
combination of bon/mixerand fau/gata5RNA induces more
endodermal cells than either RNA alone (Reiter et al., 2001).

The casgene is required for endoderm formation, because

cas mutants do not express any known endodermal marker
during gastrulation and do not differentiate endodermal
derivatives (Alexander et al., 1999; Alexander and Stainier,
1999). Activation of Nodal signalling by ectopic expression of
tar*, bon/mixeror fau/gata5fail to induce endoderm in cas
mutants, indicating that casis required for the action of these
Nodal signalling components (Alexander and Stainier, 1999;
Reiter et al., 2001). The casgene encodes a novel high mobility
group (HMG) protein related to Sox17 (Dickmeis et al., 2001a;
Kikuchi et al., 2001) that is expressed in endoderm-like cells
during gastrulation. Ectopic expression of cas can induce a
population of sox17-positive cells in MZoepembryos, showing
that it can act downstream of Nodal signals, although it is not
clear whether it is sufficient to ensure that the fate of early
blastomeres is changed to endoderm. In the absence of cas
activity, endodermal progenitors are respecified to mesoderm
(Dickmeis et al., 2001a).

Several genes instrumental to the formation of endoderm
have been identified but it is now essential to understand how
these genes, particularly cas, act within the Nodal signalling
pathway to ensure proper endoderm development and
differentiation. First, the precise position of casin the genetic
hierarchy controlling endoderm development and the
mechanism by which it influences the cell fate choice at the
margin remain to be defined. Second, although Nodal
signalling is essential for both endoderm and mesoderm
development, it needs to be determined whether these two
tissues have the same requirement for the duration and time of
activation of the pathway.

By restoring oepactivity at precise time points in MZoep
embryos, we first show that, in contrast to mesoderm
development, endoderm development requires sustained Nodal
signalling. Then, we show that cas is initially expressed in a
subdomain of the bon/mixer expression domain, that cas
expression requires a functional bon/mixergene and can be
induced in wild-type but not in MZoep embryos upon ectopic
bon/mixerexpression. Last, we have analysed the activities of
caswhen overexpressed in zebrafish embryos and determined
its requirements for defined components of the Nodal
signalling pathway. We show that cas can induce early
endodermal markers and repress mesodermal markers in wild-
type embryos, and can change the fate of early blastomeres to
endoderm. The casgene can also rescue early endodermal
markers missing in oepand bon/mixer embryos, but late
differentiation of endoderm requires partial activation of Nodal
signalling in addition to cas overexpression. Thus, our data
allow us to place caswithin the Nodal signalling pathway
downstream of bonand demonstrate that cascan induce an
endodermal fate and differentiation, but requires additional
elements of the Nodal signalling pathway to do so.

MATERIALS AND METHODS

Zebrafish embryos
Adults were maintained as described by Westerfield (1994). Wild-type
and mutant embryos were obtained by natural crosses of wild-type
fish and homozygous oeptz57, heterozygous bonm425or heterozygous
faus26mutant fish, respectively (Chen et al., 1996; Hammerschmidt et
al., 1996). Embryos were maintained and staged according to Kimmel
et al. (Kimmel et al., 1995).

T. O. Aoki and others
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Cripto production and purification
Recombinant Cripto protein was produced in cell strain 293 as a
histidine-tagged fusion protein lacking Cripto amino acid residues
+156 to +172 and purified from the conditioned medium by metal
chromatography.

Microinjection
Capped RNAs were synthesized with SP6 polymerase using the
mMESSAGE mMACHINE SP6 kit (Ambion) from pCS2cas,
pSP64Ttar*, pCS2gfp, pCS2nls-lacZ, pCN3Xmixer or pSport-zgata5
that carries a full length fau/gata5cDNA obtained during a screen for
Nodal-inducible genes (Dickmeis et al., 2001b). Purified RNA
solutions were injected into wild-type or mutant embryos at the 1/4-
cell stage (2 nl) or into one marginal blastomere at the 8/16-cell stage
(100 pl) with 0.1% phenol red. In some injections, gfp or nls-lacZ
RNA were added as lineage tracers. We verified that Xmixer RNA
was able to rescue endoderm markers in bonembryos.

Whole-mount in situ and immunohistochemical staining
Two-colour whole-mount in situ hybridization and
immunohistochemical staining were performed as previously
described (Hauptmann and Gerster, 1994).

Grafting experiments
Donor embryos were injected at the four-cell stage into one
blastomere with gfp(80 pg) and nls-lacZ(120 pg) RNAs as lineage
tracers, either alone or combined with tar*(1.2 pg) or cas (40 pg)
RNAs. At sphere stage, 1-20 donor (green) cells were grafted to the
margin or to the animal pole of hosts (Ho and Kimmel, 1993).
Embryos were then cultured in embryo medium with penicillin 10 U
ml–1 and streptomycin 10 µg ml–1.

RESULTS

The casanova gene is expressed within prospective
endoderm progenitor cells
The cas gene is first expressed in late blastulae (dome-30%
epiboly stage) in a group of superficial dorsal marginal cells
(Dickmeis et al., 2001a). At this stage and during the whole
gastrulation process, casis also expressed in the YSL (data not
shown). About 40 minutes later (40% epiboly), distinct cellular
tiers are discernible from vegetal to animal positions, with tier 1
corresponding to the first row of cells at the blastoderm margin
and tiers 2 and higher residing further from the margin. At this
stage, casexpressing cells occupy a superficial position within
tiers 1-4 (Fig. 1C,G,U,V). Expression is mosaic and is observed
preferentially in cells located close to the margin, with a higher
frequency on the dorsal side of the embryo. This spotted pattern
is reminiscent of the endoderm fate map established in late
blastula (40% epiboly). Indeed, marginal cells located within
tiers 1-4 are fated to become endoderm, mesoderm or both, the
probability of populating the endoderm increasing with the
proximity from the margin and from the dorsal side of the late
blastula (Dickmeis et al., 2001a; Warga and Nusslein-Volhard,
1999). Because casis required cell autonomously for endoderm
development from blastula stages on, the similarity in the early
cas expression and the expected position of endodermal
precursors strongly suggest that cas expression already
delineates some of the endodermal precursors.

At the onset of gastrulation (50% epiboly), the mosaic cas
expression pattern is maintained but cas-positive cells are
found closer to the margin and a significant proportion of the
cells are now found in deep positions, abutting the YSL,

probably as a consequence of involution movements (Fig.
1K,W). In addition, on the dorsal side of the embryo, cas is
strongly expressed in a group of marginal superficial cells,
which do not appear to involute and probably represent the so-
called forerunner cell cluster (Cooper and D’Amico, 1996;
Melby et al., 1996). During gastrulation, except for the
forerunner cells, embryonic expression is found only in cells
in a deep position, abutting the YSL, which eventually scatter
over its surface (Fig. 1O,S,X,Y). Evidence that these cells are
of endodermal nature comes from their flat, star-shaped
appearance and from their scattered distribution over the YSL
(Alexander and Stainier, 1999; Warga and Nusslein-Volhard,
1999).

To understand the spatial and temporal relationships
between cas expression and endoderm development, we
compared the cas expression pattern to those of bon/mixer,
fau/gata5 and sox17 which have important functions in
endoderm development. First, bon/mixeris expressed before
cas, at the sphere stage on the dorsal side, both in the YSL and
in a ring of marginal cells that expands at 40-50% epiboly to
generate a continuous ring encompassing six tiers of marginal
cells (Fig. 1A,E,I) (Alexander and Stainier, 1999; Kikuchi et
al., 2000). At the shield stage, expression stops (Fig. 1M,Q).
Expression of fau/gata5initiates slightly later than that of
bon/mixer(dome stage) in both the YSL and a ring of marginal
cells, in a pattern similar to bon/mixer(data not shown) (Reiter
et al., 2001; Rodaway et al., 1999). At 40% epiboly, fau/gata5
is expressed in the whole depth of the blastoderm and
encompasses four tiers from the margin (Fig. 1B,F,J). At the
end of gastrulation, fau/gata5-positive cells have adopted a
position and a shape typical of endodermal cells (Fig. 1R and
data not shown). Comparison of the cas early expression
domain with those of bon and faushows that boninitiates
expression before casand fau, and that casis expressed in a
subdomain of bon-and fau-positive cells.

The sox17gene is first expressed at 40% epiboly, in a group
of superficial dorsal marginal cells (Fig. 1D,H). This pattern is
modified at the shield stage, when two different populations of
sox17-positive cells can be observed: the forerunner cells and
a group of dorsal deep endodermal precursors (Fig. 1P). Later
on, sox17cells adopt a shape and position very similar to cas
cells (Fig. 1T). Thus, cas is expressed before sox17and in a
very similar blastodermal domain.

Expression of casrepresents an interesting basis for
understanding the molecular mechanisms leading to the cell
fate choice between mesoderm and endoderm. Both endoderm
and mesoderm require functional Nodal signalling and are
induced by Nodal signals. However, casis expressed in only a
small region of the bon/mixerand fau/gata5expression
domains before gastrulation, strongly arguing that specific
mechanisms are involved in ensuring proper differential
initiation of these markers. In particular, whereas fau/gata5,
bon/mixerand casall require and may be induced by Nodal-
related signals, additional mechanisms, yet to be defined, must
be postulated to explain the restriction of casinitiation to a few
marginal cells.

Expression of casanova requires Nodal signalling
and is induced cell autonomously upon Nodal
activation
The cas gene is not expressed in MZoep embryos and thus
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requires Nodal signalling (Dickmeis et al., 2001a). We studied
whether the transient activation of the Nodal pathway induced
by an early Oep function was sufficient to induce a normal
level of casexpression. Expression of cas was analysed in
embryos devoid of zygotic oepcontribution (Zoepembryos)
(Schier et al., 1997; Strahle et al., 1997). In late blastula (40%
epiboly) and during gastrulation, Zoeptz57 homozygous
embryos had either a dramatic reduction of the number of cas
expressing cells or no expressing cells at all within the
blastoderm (Fig. 2A-D). Thus, similar to the expression of the
endodermal markers sox17and foxa2and the endodermal
differentiation marker fkd7(foxa1) casexpression requires oep
function and Nodal signalling. However, the early transient
Nodal signalling, associated with the maternal oepexpression
is not sufficient to ensure full casexpression (Alexander and
Stainier, 1999). By contrast, previous work has shown that
most mesodermal derivatives form normally in Zoepembryos
(Schier et al., 1997; Strahle et al., 1997), indicating that

attenuated Nodal signalling is sufficient to allow mesoderm but
not endoderm formation.

Expression of caswithin the blastoderm is induced upon the
activation of the Nodal pathway by Tar* (Dickmeis et al.,
2001a). This induction could be either cell autonomous or non-
cell autonomous. To address this issue, we microinjected an
RNA encoding the lineage tracer nls-lacZ(100 pg) alone as a
control or combined with tar*RNA (1.2 pg) into early donor
embryos. At the late blastula stage (sphere stage), small groups
of cells were transferred from donor embryos to the animal pole
region of host untreated embryos, which were allowed to
develop until mid-gastrulation, fixed and stained for the
expression of casand of the lineage tracer. This showed that
tar* but not lacZinduced the expression of casin grafted cells
but not in host cells (Fig. 2E,F). Thus, consistent with the
endodermal expression of casand the autonomous induction of
endodermal progenitors by Tar*, casexpression is induced in a
cell autonomous fashion by activation of the Nodal pathway.

Endoderm formation and casanova
expression require sustained Nodal signalling
The analysis of zygotic oep mutants indicates that
attenuated Nodal signalling is not sufficient to allow
endoderm development. MZoepembryos do not
develop endoderm. We wished to know when activation
of Nodal signalling would be required to allow
endoderm development in these mutants.

MZoep embryos can be fully rescued by
microinjection of an RNA encoding a soluble form of

T. O. Aoki and others

Fig. 1.Dynamics of expression of bon/mixer, fau/gata5,
casanovaand sox17 genes in wild-type embryos at 40%
epiboly (A-H), 50% epiboly (I-L), shield (M-P) and 70-80%
epiboly (Q-T) stages. (A-D) Animal pole views; (E-T)
lateral views, dorsal to the right. At 40% epiboly, whereas
bon/mixer(A,E) and gata5/fau(B,F) are homogeneously
expressed in large marginal domains, casanovaexpression is
mosaic and preferentially restricted to the most marginal
blastomeres of the dorsal side (C,G). At this stage, sox17is
expressed only in the superficial and marginal cells of the
dorsal side (D,H). At 50% epiboly, expression patterns of
bon/mixer(I), gata5/fau(J) and sox17(L) are roughly
unchanged. The casanovapattern is still mosaic but it is
found throughout the margin and in the forerunner cells (K).
At the shield stage, bon/mixer(M) and gata5/fau(N) are
expressed in more germ ring blastomeres. Cells expressing
casanovahave begun to involute and abut the YSL, except
the forerunner cells, which remain superficial (O). The
sox17gene is expressed in deep cells abutting the YSL in
the dorsal axis (P). After the onset of gastrulation, bon/mixer
(Q) is no longer expressed, whereas fau/gata5(R), casanova
(S) and sox17(T) are expressed in the scattered endodermal
cells (arrowhead); casanova(S) and sox17(T) are still
expressed in the forerunner cells. (U,V) Close up of the
mosaic pattern of casanovaat the dorsal margin (U) and
lateral margin (V) of embryos at 40% epiboly stage (notice
the isolated blastodermal cas-positive cells (arrowheads); the
dotted lines mark the YSL-blastoderm frontier).
(W-Y) Cross sections of embryos following whole-mount in
situ hybridization with casanovaat 50% epiboly (W), shield
(X) and 70-80% epiboly stage (Y), animal pole up (arrows
point to YSL nuclei). The cas positive cells involute at the
margin, abut YSL and spread over the whole embryos with a
scattered pattern.
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Oep into their YSL (Gritsman et al., 1999), or by injecting a
purified recombinant preparation of soluble Cripto protein into
the extracellular space (Minchiotti et al., 2001; Minchiotti et
al., 2000; Reissmann et al., 2001). We reasoned that Cripto
protein injection should readily allow the initiation of Nodal
signalling in these embryos because it restored the early marker
bon/mixerin MZoepembryos within 1 hour from the injection
time (data not shown). We then tested when expression of
Cripto protein was able to rescue endoderm development in
MZoep embryos. Cripto protein or bovine serum albumin
(BSA), as a control protein solution, was injected into the
extracellular space of early to late MZoepblastula, which were
allowed to develop until mid- to late gastrula stages (70-80%
epiboly) or 30 hours postfertilization (hpf) and were probed
with the early markers cas, sox17or foxa2, or the endoderm
differentiation marker fkd7. Control injections never led to any
rescue (not shown). On the contrary, injections of soluble
Cripto protein rescued endoderm development in a dose- and
time-dependent fashion. All kinetics experiments were carried
out with 2 ng Cripto protein, a dose ten times higher than the
minimal dose required to induce full endodermal and
embryonic rescue. Four classes of embryos can be recognized
according to their degree of endodermal marker restoration.
Class I embryos cannot be distinguished from wild-type

embryos (Fig. 3B,F,J). Class II embryos have a reduction in the
number of expressing cells whereas class III exhibit a further
reduction of expressing cells (less than 50) and class IV exhibit
very few, if any, expressing cells (Fig. 3C-E,G-I,K-N). When
Cripto was injected before or at the sphere stage, full
restoration (class I) was achieved, indicating that Nodal
signalling is not essential for endoderm development before
this stage (Fig. 4A-C). Injections at dome stage led to a
noticeable shift to class II and III embryos (Fig. 4A-C).
Injections at 40-50% led to very weak rescue (Fig. 4A-C).
Similarly, analysis of fkd7expression at 30 hpf showed that
Cripto protein injection before or at the sphere stage led to full
rescue of fkd7endoderm expression, whereas injection at a
later stage led to a progressively poorer rescue (Fig. 3O-S, Fig.
4D). In these experiments, posterior mesoderm markers such
as the expression of foxa2in the axial mesoderm during
gastrulation (Fig. 3J-M, asterisk, 98%, n=42) or the marker for
differentiated somites myoDwere efficiently rescued (not
shown, 100%, n=34) up to the onset of gastrulation (40-50%
epiboly). Thus, transient Nodal signalling allowed by the
maternal oep contribution or by injection of Cripto at
pregastrula stages is sufficient to ensure mesoderm
development but sustained Nodal signalling is required to
achieve proper endoderm development.

Expression of casanova requires Bon/Mixer function
To understand in more detail the regulation of casand
endoderm development, we analysed whether cas expression
was dependent on downstream components of the Nodal
signalling pathway. The number of cells expressing cas was
dramatically reduced in the blastoderm of bon/mixerembryos
both before gastrulation (40% epiboly) and at the end of
gastrulation (tail bud) (Fig. 5C-F). Expression of caswas also
variably and slightly decreased in fau/gata5 embryos (Fig.
5A,B). Thus, cas expression requires Bon/Mixer function and,
to a lower extent, fau/gata5function. Furthermore, we tested
whether bon and/or fau/gata5 could induce casexpression in
wild-type embryos and whether bon/mixeror fau/gata5 and
cas could induce each other in MZoep embryos, in which
Nodal signalling is inactive. Expression of cas induced fau
(Dickmeis et al., 2001a) but not bon/mixerin MZoepembryos
(data not shown). On the contrary, overexpression of Xmixer
in wild-type embryos led to a robust induction of cas
expression (Fig. 5G,H). Overexpression of fau/gata5was also
able to induce casexpression but the induction appeared
weaker and more variable (data not shown). Thus our results
confirm that bon/mixerand fau act upstream of casin the
Nodal signalling pathway controlling endoderm formation
(Alexander and Stainier, 1999). However, neither Xmixernor
fau/gata5 induced cas expression in MZoepembryos (Fig.
5I,J and data not shown). We note, however, that the
combination of these two factors induced, in a small number
of MZoep embryos a few casexpressing cells, which
remained in the epiblast (Fig. 5K,L). Altogether, these results
suggest that other factors are required in addition to bonand
fau, acting downstream of Nodal signals, to specify and
maintain the proper number of casexpressing cells (Fig. 5I-L
and data not shown).

Casanova controls endoderm fate
Our understanding of casfunction for endoderm development

Fig. 2.Expression of casanovarequires Nodal signalling.
(A-D) Expression of casanovarequires zygotic contribution of oep.
(A,B) Animal pole views, dorsal to the right. (C,D) Dorsal views.
Compared with wild-type controls (A,C), casanovaendodermal
expression is not initiated or maintained in blastula (B, 40% epiboly)
nor during gastrulation (D, 70-80% epiboly) in Zoephomozygous
mutants. Expression in the forerunner cells and YSL is not affected.
(E,F) Induction of casupon Nodal signalling activation is cell
autonomous. In late blastula, a few wild-type cells expressing nls-
lacZalone or combined with tar* were transplanted to the animal
pole of a host wild-type embryo. During gastrulation (60% epiboly)
tar* expressing cells transplanted to the animal pole (brown nuclear
staining) autonomously express casanova(F; 96%, n=93) whereas
control cells do not (E; 100%, n=12).
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is still partial. Expression of casappears essential to the
endoderm versus mesoderm fate choice, but we needed to
determine whether cascould induce a consistent change of fate
of marginal cells to endoderm. To address this issue, we
injected the RNA encoding the lineage tracer green fluorescent
protein (GFP) alone, as a control, or combined with casRNA
and analysed the fate of the expressing cells with two different
strategies. In the first strategy, injections were carried out in
one marginal cell at the 16-cell stage (Bally-Cuif et al., 2000;
Peyriéras et al., 1998). Clones of control marginal cells
colonized mostly mesodermal tissues and, to a much smaller
extent, endoderm and ectoderm. For instance, dorsal clones
mostly populated the notochord, the prechordal plate and the
neuroectoderm (Fig. 6A). By contrast, dorsal clones expressing

casRNA appeared to populate the notochord and prechordal
plate less frequently, but to populate the pharyngeal endoderm
(Fig. 6D, arrowhead) and the forerunner derivatives more
frequently (Cooper and D’Amico, 1996; Melby et al., 1996).
Colonization of neuroectoderm was not affected by the
presence of cas RNA. In the second strategy, a small group of
cells from injected embryos were grafted to the margin of host
untreated blastula (sphere stage) and their fate was analysed at
24 hpf. Grafts from control cells mostly colonized mesodermal
tissues (Fig. 6B,C) but a fraction of the embryos (30%, n=17)
exhibited some grafted cells in the endoderm derivatives such
as the pharyngeal endoderm and the gut (not shown). This
fraction increased significantly (58%, n=20) when grafted cells
were derived from cas RNA injected embryos and more grafted
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Fig. 3. Rescue of endodermal markers in MZoepby Cripto protein injection at different times. (A) Experimental procedure. Synchronized
MZoepembryos were injected with Cripto protein together with rhodamine dextran as a tracer at appropriate stages (from high to 40%
epiboly). Subsequently, embryos exhibiting homogeneous rhodamine fluorescence were sorted, fixed and analysed by in situ hybridization
(B-S). (B-N) Lateral (C-E,G-I,N) or dorsal views. At 80% epiboly, four different classes of expression pattern of cas(B-E), sox17(F-I) and
foxa2(J-N) can be identified in Cripto-injected MZoepembryos. When Cripto was injected at 40% epiboly, most embryos do not express foxa2
in endodermal cells but still express it in axial mesoderm (M). (O-S) Staining of fkd7 in Cripto-injected MZoepembryos at 30 hpf. Anterior to
the left. Four classes were also defined. (O) Class I exhibits almost normal expression of fkd7 in the pharynx (white arrow) and in the gut (black
arrow). (P) Class II exhibits incomplete expression of fkd7, often lacking the pharyngeal endoderm (white arrow) but have an almost normal
expression in the gut (black arrow). Class III has only a few fkd7positive cells (Q, arrow). Class IV shows no endodermal fkd7staining (R,S).
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cells appeared to populate endoderm than control grafts (Fig.
6E,F). However, the bulk of grafted cells still populated mostly
mesodermal tissues (Fig. 6F). Thus, casexpression is sufficient
to induce some marginal cells to acquire an endodermal fate.

Expression of casanova induces endodermal
markers and represses mesodermal markers
To understand how cascauses the observed change of cell fate,
we injected casRNA or nls-lacZ RNA as a control into one
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Fig. 4.Frequency of endodermal markers rescue in MZoepby
Cripto-injection at different times, displaying the frequencies
corresponding to the four classes described in Fig. 3. Full rescue
(Class I) was predominantly observed until sphere stage. Reduction
of the number of endodermal cells expressing cas, sox17or foxa2
was observed when Cripto protein was injected at dome (Classes II
and III). At 40% epiboly, Cripto protein was not able to induce these
markers in almost all injected embryos (Class IV). Embryos probed
for foxa2show that axial mesoderm but not endoderm was rescued
when Cripto protein was injected at 40% epiboly (Fig. 3M).

Fig. 5.Expression of bon/mixeris required for casanovaexpression.
(A,B) Dorsal views, 70-80% epiboly. Compared with the control (A),
casanovais normally expressed in most faustmutant embryos, but is
sometimes slightly reduced (B). (C,D) Lateral views, 40% epiboly.
(E,F) Dorsal views, tail bud. Compared with the control (C,E), there
are many fewer caspositive cells in bonmutant embryos from late
blastula (D) to late gastrula (F). (G-J) Dorsal views, 70-80% epiboly.
Compared with the control (G,I), Xmixeroverexpression increases
the number of cells expressing casanovain wild-type embryos (H)
but not in MZoep mutants (J). (K,L) Combination of Xmixerand
fau/gata5(L, compare with control K) induces, in a few embryos
(5%, n=20), a very small number of caspositive cells, which never
reach the YSL.
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central or one marginal cell at the 8/16-cell stage in wild-type
embryos and analysed the expression of early endodermal
markers sox17, fau/gata5, foxa2 and mesodermal markers tbx6
and the Brachyury orthologue ntl (Hug et al., 1997; Schulte-
Merker et al., 1993). Overexpression of nls-lacZdid not alter
the expression of any of these markers (Fig. 6G,I,K,O,Q).
However, casexpression in marginal cells led to an increased
number of endodermal cells expressing sox17, gata5and/or
foxa2 (Fig. 6H,J,L). By contrast, ectopic expression of
endodermal markers in embryos injected in central cells was
only transient, probably reflecting the requirement for
additional marginal signals in endoderm specification (data not
shown). Induction was cell autonomous because, when cas
expressing cells were grafted to the margin of host embryos,
grafted cells but not neighbouring cells expressed the
endodermal markers (Fig. 6M,N). In addition, consistent with
the fact that, in Xenopus, endoderm specification genes
can repress mesodermal genes (Lemaire et al., 1998),cas
expression led to the downregulation of tbx6and ntlexpression
in the blastoderm (Fig. 6P,R). Because the overexpression of
the ntl homolog Xbra leads, in Xenopus, to the downregulation
of the endodermal marker mix.1 (Lemaire et al., 1998), we

also tested whether overexpression of ntl would affect cas
expression. Consistent with the above, ntl inhibited the
blastodermal expression of cas (Fig. 6S,T), suggesting that ntl
and casare involved in cross-regulatory interactions, probably
leading to the generation of mutually exclusive domains during
gastrulation. Altogether, our results on cas overexpression
show that it acts at gastrulation in marginal cells to activate
endodermal and forerunner specific genes autonomously and
to repress mesodermal specific genes.

Expression of casanova restores late differentiation
of endoderm but requires functional Nodal
signalling
We then wished to know whether casalone was sufficient to
allow an endodermal fate choice downstream of Nodal
signalling. To this aim, casRNA was injected at the 8/16-cell
stage into one marginal cell of MZoeptz57 embryos, Zoeptz57 or
bonm425 homozygous embryos. Embryos were probed during
gastrulation with the endodermal markers sox17and foxa2 or
at 24 hpf with the endoderm differentiation marker fkd7.
Expression of caswas able to restore the early endodermal
markers sox17and foxa2in MZoep, bon/mixer(Fig. 7H-O) and
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Fig. 6.Expression of casrepresses
mesodermal markers, induces
endodermal markers and can
change the fate of cells to an
endodermal identity.
(A-F) Anterior to the left, dorsal to
the top. (A,D) Clonal progeny of
one marginal blastomere injected
with gfpalone (A) or combined
with cas(D) RNA at the 16-cell
stage. At 24 hpf, expression of cas
leads to a more frequent
colonization of endodermal
territories, like pharynx
(arrowhead in D). (B-C, E-F) This
ability to change the cell fate was
confirmed by transplant
experiments. By blastula stage, a
few cells expressing only the gfp
gene (B-C) or both gfpand cas
(E-F) were transplanted to the
margin of host embryos. At 24 hpf,
cells expressing casmore
frequently became involved in
endodermal derivatives such as
pharynx (E) and gut (arrowhead in
F). Dorsal (G-H, O-P) and animal
pole (I-L, Q-R) views of shield and
75% epiboly embryos.
(G-L) Compared with the lacZ
injected siblings (G,I,K), injection
of casRNA at the 8/16-cell stage
induces expression of endodermal
markers sox17(H; 100%, n=23),
foxa2(J; 92%, n=12) and gata5
(L; 93%, n=15). (M,N) This
induction is cell autonomous, as
revealed by transplant experiments (the nuclei of grafted cells has been stained in brown by immunodetection of nuclear β-galactosidase, used
as a lineage tracer). By contrast, mesodermal markers ntl(O,P) and tbx6(Q,R) are repressed by overexpression of cas(arrowheads in P and R;
86%, n=21 and 78%, n=18, respectively). Conversely, overexpression of ntl represses casexpression at the margin (arrowhead in T, compare
with S).
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Zoep embryos (not shown). Thus, casdoes not require active
Nodal signalling or Bon/Mixer function to induce these early
endoderm markers. Because cas is induced by bon/mixerand
requires Bon/Mixer function to be expressed, this places cas
activity downstream of bon/mixerin endoderm formation.

We obtained different results when analysing the marker fkd7.
Endoderm fkd7-positive structures were efficiently restored upon
casoverexpression in Zoepembryos (Fig. 7B,E,F; 88%, n=42),
but were not in MZoepembryos (Fig. 7A,D; 11%, n=97).
Similar results were obtained with late pharyngeal endoderm
markers foxa2 and shh (data not shown).Because bon/mixer
embryos do not differentiate endoderm and bon/mixeris strongly
downregulated in MZoepembryos, this downregulation of
bon/mixercould be responsible for the failure of casto restore
late fkd7 endodermal expression. However, fkd7-positive
endodermal structures were also restored in bon/mixerembryos
overexpressing cas (Fig. 7C,G). Thus, cascan restore endoderm
differentiation in endoderm deficient mutants but this
activity requires a component activated by Nodal signalling
independently of Bon/Mixer function.

We then determined whether Nodal signalling was required
within casexpressing cells to allow endoderm differentiation.
The lineage tracer gfpRNA was injected alone or together with
cas RNA into MZoepor wild-type embryos and few or single
cells were grafted at mid-blastula stages from injected embryos
at the margin of host wild-type embryos (Fig. 8A,B). During
gastrulation and independent of the genotype or the RNA
injected, grafted cells involuted and a portion of them remained
in contact with the YSL (Fig. 8C,D), thereby adopting
the expected position of endodermal progenitors during

gastrulation. In older embryos, whereas casexpressing wild-
type cells could significantly populate endodermal derivatives
such as the gut and pharyngeal endoderm (Fig. 6),cas
expressing MZoepcells were unable to do so except very
infrequently (Fig. 8E). Thus Nodal signalling is required at
least within casexpressing cells to allow them to populate
endodermal derivatives. Altogether, our results show that cas
acts on the cell fate decision between endoderm and mesoderm
by activating early endoderm markers independently of Nodal
signalling. It also restores endoderm differentiation in
endoderm deficient mutants but this restoration requires, in
an autonomous fashion, some active Nodal signalling
independently of Bon/Mixer function.

DISCUSSION

Expression of cas and endoderm formation require
sustained Nodal signalling
We wished to determine when Nodal signalling should be
activated to ensure endoderm development. Oep function was
activated in MZoepembryos at precise time points by
microinjection of Cripto protein into the extracellular space.
Several conclusions can be drawn from these experiments.
First, consistent with the fact that embryos with only zygotic
oep contribution develop normally, reintroduction in MZoep
mutants of Oep function and Nodal signalling, after the onset
of zygotic transcription, allowed the restoration of endoderm
development (Gritsman et al., 1999). Second, the degree of
endoderm restoration was time dependent, leading to poorer

Fig. 7.Expression of casanovarescues late differentiation of endoderm and early endodermal marker expression in oepand bonmutants.
Compared with 24 hpf MZoep(A), Zoep(B) and bon(C) controls, which are deficient in endodermal structures and in the endodermal
differentiation marker fkd7, casanovaoverexpression can sometimes restore the differentiation of pharynx in MZoepmutants (D) (11%, n=97)
and efficiently restores differentiation of pharynx and gut in Zoep(E,F) (88%, n=42) and bonmutants (G) (100%, n=17), as evidenced by fkd7
expression (arrowheads). Overexpression of casanovaalso increases the number of cells expressing the early endodermal markers sox17and
foxa2in MZoep(H-K) and bon(L-O) embryos.
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rescue when Cripto was injected at progressively later stages.
In this process, the expression of casand of other endodermal
markers exhibited a strong correlation, showing that they
obeyed similar regulatory mechanisms. These results are in
good agreement with the fact that casacts upstream of sox17
and is required for the endodermal expressions of foxa2 and
fkd7 (Alexander et al., 1999; Alexander and Stainier, 1999).
Expression of casand endoderm development were fully
restored when Cripto was injected before or at the sphere stage,
demonstrating that Oep function and Nodal signalling are not
required for endoderm development before this stage in MZoep
embryos. Consistent with this idea, cyc and sqtbegin to be
expressed throughout the margin at this stage in wild-type
embryos, suggesting that endoderm formation also requires
Nodal signals from the sphere stage in wild-type embryos
(Feldman et al., 1998; Rebagliati et al., 1998; Sampath et
al., 1998). Moreover, both sqt and cyc expressions are
downregulated during this crucial period of development in
MZoep embryos, providing an explanation for the absence of
endoderm (Meno et al., 1999).

In these experiments, mesoderm and endoderm exhibited
different requirements: past the 40% epiboly stage, mesoderm
could still be restored whereas endoderm could not. Thus,
whereas transient Oep function and Nodal signalling are
sufficient for mesoderm formation, sustained Oep function is
required to ensure endoderm development. This differential
requirement for Nodal signalling in the development of
endoderm versus mesoderm was also observed upon
attenuation of Nodal signalling by overexpression of the Nodal
antagonist antivin/lefty. Antivin/lefty inhibited endoderm
formation at low doses and mesoderm formation at higher
doses (Thisse and Thisse, 1999). This different requirement for
Nodal signalling can be explained in terms of dose or time of
exposure, or both (Dyson and Gurdon, 1998; Gritsman et al.,
2000). Whatever the mechanism involved, our results clearly
show that activation of the Nodal signalling cascade at
the proper time is a crucial factor for proper endoderm
development.

The bon/mixer gene acts upstream of cas
We have examined the requirements for specific components

acting downstream of Nodal signalling. During gastrulation,
fau/gata5embryos exhibit a variable reduction in the number
of cas endodermal cells. Thus, similar to sox17, fau/gata5
appears required for the proper expression of cas. However, the
reduction in the number of cells observed is modest, suggesting
that, similar to what has been proposed for the regulation of
sox17, fau/gata5 may act in parallel with other genes,
downstream of Nodal-related genes, to control casexpression
(Reiter et al., 2001).

The bon/mixer gene is also required for casexpression.
Consistent with the requirement for bon/mixer, overexpression
of Xmixer increased the number of cas-expressing cells in
wild-type embryos. However, two sets of evidence lead us to
postulate the implication of an additional Nodal signalling
component in the induction of cas. First, bon/mixerembryos
harbour, during gastrulation, a few cas expressing cells.
Although this could mean that bonm425 is not a null allele, it
could also suggest the existence of another gene acting in
parallel to bon/mixerto induce cas. Second, and consistent
with the latter hypothesis, overexpression of Xmixercannot
induce cas expression in MZoepembryos. Thus, although
bon/mixer clearly acts upstream of casand appears to be
capable of inducing its expression, it requires additional factors
activated by Nodal-related signals to do so. Such factors
probably include fau/gata5but probably also other partners,
because combined expression of fau and Xmixeris unable to
rescue a normal number of casexpressing cells, in deep
position, in embryos deficient in Nodal signalling.

Expression of casanova is sufficient to induce early
endoderm and to repress early mesoderm markers
The overexpression of casis sufficient, in the absence of Nodal
signalling, to induce the endodermal marker sox17 (Dickmeis
et al., 2001a). This may mean either that casis a regulator of
sox17 or has a wider function in the induction and/or
differentiation of endoderm. Here, we provide the evidence
that cas has a more general role in endoderm formation,
downstream of Nodal signals. First, we show that
overexpression of cas is sufficient to induce several
endodermal markers. This induction is cell autonomous,
consistent with the fact that both cas and sox17are induced
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Fig. 8.Functional Nodal signalling is
required cell autonomously to allow Cas
to change the cell fate. (A) Experimental
procedure. MZoepor wild-type embryos
were injected with a lineage tracer (gfp
for MZoep embryos and rhodamine for
wild-type embryos) alone or combined
with casRNA. By the blastula (sphere-
dome stage), one mutant cell and one
wild-type cell were transplanted to the
margin of a wild-type host (B). During
gastrulation, both mutant and wild-type
cells, expressing casor not, involute and
remain close to or in contact with the
YSL (C,D). The dotted line indicates the
position of the margin. (E) Anterior to
the left, dorsal to the top. At 24 hpf,
MZoepcells hardly ever took part in
endodermal derivatives (only six intestinal cells in one embryo, out of 24 embryos), whereas wild-type cells expressing casfrequently
participated in the endoderm (58%, n=31; Fig. 6). Abbreviations: s, somites; y, yolk.
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autonomously by Tar* (this work) (David and
Rosa, 2001). Second, the induction of early
endodermal markers is also observed in
MZoep embryos, so cascan function in the
absence of Nodal signalling, extending our
previous results (Dickmeis et al., 2001a).
Third, the induction of early endodermal
markers by cas does not require Bon/Mixer
function. Altogether, our results show that cas
acts downstream of bonin the induction of
endodermal markers. We also show that cas
overexpression leads to the inhibition of the
expression of the mesodermal markers ntl and tbx6. Whether
the inhibition of mesoderm formation is mediated by casitself
or by a gene acting with or activated by cas remains unclear
because none of sox17, fau/gata5 andfoxa2have been reported
to inhibit mesoderm formation. Thus, consistent with the fact
that marginal cells normally fated to endoderm have their fate
changed to mesoderm in the absence of casactivity, cas
appears to achieve a dual function, i.e. to inhibit mesoderm
formation and to induce endoderm formation.

Expression of casanova changes the fate of
marginal blastomeres and restores endoderm
differentiation in Nodal mutants
Expression of cascan increase the contribution of marginal
cells to endoderm, probably at the expense of mesoderm.
However, this effect is modest because most cas expressing
cells remain in the mesoderm. It is possible that higher doses
of casRNA induce a better change of fate of marginal cells to
endoderm but, owing to the incompatibility of the lineage
tracing and casoverexpression, we have not been able to
address this specific point.

Because cas was able to induce a spectrum of endoderm
markers in the absence of or reduced Nodal signalling, we
tested whether it could also restore the formation of late
endoderm derivatives. We found that casrescued, at a very low
frequency, small domains of late endodermal derivatives in
MZoep mutants, whereas it rescued the same derivatives very
efficiently in a Zoep mutant. Similarly, activation of Nodal
signalling in MZoepembryos at doses that do not allow
endoderm formation also enabled cas-mediated restoration of
late endoderm derivatives (data not shown). This indicates that
cas is sufficient to induce early endoderm progenitors in the
absence of Nodal signalling but that their later differentiation
requires some other component of Nodal signalling, Y, which
is not itself sufficient to allow endoderm formation (Fig. 9
shows the adaptation of the model proposed by Alexander).
Late activation of Nodal signalling mediated by Cripto
injections is not sufficient to allow cas-mediated endoderm
differentiation, suggesting that the additional component must
either be provided at an early stage or induced by sustained
Nodal signalling (data not shown). In addition, this component
appears required within casexpressing cells because cas-
expressing MZoepcells grafted into wild-type embryos do not
efficiently populate endoderm derivatives. Altogether our
results combined with previous work show that endoderm
formation and differentiation requires sustained Nodal
signalling and is mediated by the Nodal inducible sox-related
gene casanovain conjunction with other components activated
by the Nodal signalling pathway.

We thank R. Ho and J. Kanki for introducing us to the grafting
technique, L. Henry for providing the Xmixer plasmid construct, F.
Bouallague for fish maintenance and many colleagues, including J.
Mathieu and S. Wilson, who provided probes, fish strains and
plasmids for injections. This study was supported by grants from
ARC, LNCC, the Italian AIRC (to G.M.P.), MRE and an EMBO
short-term fellowship to G.M. While the present work was under
review, the work of two other groups was published describing the
cloning of casanova(Kikuchi et al., 2001; Sakaguchi et al., 2001).
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