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Abstract: In this work, redundancy resolution has been employed to increase the Cartesian
mechanical rigidity of 7 DOF robot manipulators during tasks requiring stiff interactions with
the environment (e.g. milling or drilling). The Cartesian static stiffness of the end-effector for
a given joint configuration is deduced from an identified joints stiffness model. The Cartesian
reflected rigidity evolution over an analytically computed self-motion of the manipulator shows
significant variations that clearly highlight the need to select the right set of joint angles among
the possible ones. A global optimization scheme of the redundant DOF is proposed to determine
the stiffest robot configurations for a given pose of the end-effector. An experimental study on
7 DOF KUKA LBR iiwa then shows the relevance of the proposed approach in finding the
redundant robot joint angles that optimize this rigidity criteria.

Keywords: Kinematic redundancy; Joint stiffness; Cartesian rigidity; 7 DOF anthropomorphic
robot arm.

1. INTRODUCTION

Up until recently, industrial robots were mainly used for
repetitive, heavy or dangerous works. The new genera-
tion of industrial collaborative robots opens the door to
numerous operating scenarios [Cherubini et al. (2016)].
Even if current examples of effective human-robot collab-
oration are restricted, the safe shared workspace between
human and robot is a key factor of flexibility for this new
kind of industrial robotics. A second advantage for some
robots, beyond the safety certification, is their embedded
compliant behavior, which significantly simplifies the im-
plementation of tasks involving soft interactions with the
environment, such as assembly tasks. Now, to accomplish
specific tasks such as milling, drilling (see Fig. 1) or lifting
loads, the limited payload of the current industrial col-
laborative robots can be very restrictive. In this case, it
would be interesting to use the mechanically stiffest robot
configuration regarding the force or torque imposed by the
task-space interactions.

Considering the case of 7 DOF anthropomorphic robotic
arms, the self-motion capacity induced by the redundant
DOF offers the opportunity of optimizing the Cartesian
rigidity for a given end-effector pose. A lot of work has
already been done concerning the Cartesian impedance
control techniques for robots, using for instance the
Cartesian stiffness ellipsoid or the manipulability ellipsoid
[Yoshikawa. (1985); Albu-Schaffer et al. (2003); Kurazume
and T. Hasegawa. (2006); Ficuciello et al. (2015)] to define
the control parameters in an arbitrary non-singular config-
uration to match with a desired end-effector behavior. In
[Ajoudani et al. (2015)], the authors show that using the
previous approaches the suitable selection of a configura-
tion within the self-motion could be underestimated. Then,
they explore the influence of different robot configurations

Fig. 1. Kuka LBR iiwa used for aerospace drilling op-
erations. View of our robotic system (team SIR-
ADO) during the Airbus Shopfloor Challenge [Air-
bus/ICRA. (2016)].

and propose a configuration-dependant stiffness control
method exploiting redundancy resolution to achieve a de-
sired task-space interaction behavior.

This paper aims at contributing to this field by presenting
a practical use of the self-motion of a redundant ma-
nipulator for the global maximization of the Cartesian
static rigidity. This is particularly interesting when dealing
with positioning tasks such as drilling operations. The
main assumption is that the robot joints are locked or
at rest in position control mode at a certain posture,
i.e. that the tool feed is carried out by the end-effector.
The optimization of elastostatic performances are based
on an analytical inverse model of a 7 DOF robotic arm
and a configuration-based Cartesian stiffness model. After
highlighting the redundant DOF strong influence on the
Cartesian rigidity components, an experimental study on
the KUKA LBR iiwa is presented.
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Fig. 2. Parameters of the Kuka LBR iiwa in initial config-
uration and end-effector frame.

2. CLOSED-FORM INVERSE KINEMATIC MODEL
FOR THE KUKA LBR IIWA ROBOT

2.1 Robot kinematic model

Table 1. LBR iiwa DH parameters

i αi (rad) θi (rad) di (mm) ri (mm)

1 0 θ1 0 360
2 −π/2 θ2 0 0
3 π/2 θ3 0 420
4 π/2 θ4 0 0
5 −π/2 θ5 0 400
6 −π/2 θ6 0 0
7 π/2 θ7 0 126

The Kuka LBR iiwa is a seven degrees-of-freedom (DOF)
manipulator. Hence, the robot manipulator is kinemati-
cally redundant, with a least one redundant DOF, with
respect to the task dimension. Table 1 gives the modified
D-H parameters [Khalil and Dombre. (1990)] provided

by the robot manufacturer. Noting q = [θ1, · · · , θ7]⊤ the
(7× 1) joint position vector, the forward kinematic of the
robot, i.e. the position vector p and the unit vectors n, m
and w of the end-effector frame with respect to the base
frame (see Fig. 2), can be expressed as

T (q) =
7∏

i=1

Hi (θi) =

(
n m w p
0 0 0 1

)
, (1)

with Hi the homogeneous transformation matrix

Hi (θi) =

cθi −cαisθi sαisθi aicθi
sθi cαisθi −sαisθi aisθi
0 sαi cαi di
0 0 0 1

 , (2)

where cϕ and sϕ respectively stand for cos(ϕ) and sin(ϕ).

Noting x = [p φ] the (6 × 1) end-effector position vector,
with φ the orientation of the end-effector calculated from
the vectors n, m and w (e.g. using the Euler angles
parametrization), we can also defined the classical map-
ping

ẋ = J (q) · q̇, (3)

which relates the joint velocity vector q̇ to the end-effector
Cartesian velocity vector ẋ through the (6 × 7) Jacobian
matrix J (q).

Fig. 3. Self-motion of 7 DOF S-R-S anthropomorphic arms:
elbow constrained to a circle.

2.2 Closed-form Inverse Kinematic model

Dahm and Joublin [Dahm and Joublin. (1997)] were
among the firsts to introduce an analytical solution to
the inverse geometric problem of 7 DOF anthropomorphic
arms. Their method was based on the fact that this type
of redundant arm may be divided into a succession of 2
DOF spherical articulations, built from the fusion of two
successive roll and pitch revolute joints, and one revolute
joint for the ultimate axis. For a given pose of the tip of
this anthropomorphic arm, the 2 DOF elbow articulation
is shown to be constrained to a circle. The method we
use for this work is based on the formulation given by
Tolani in [Tolani et al. (2000)], which provides another
decomposition of the iiwa-type robot arm. In this method,
the fusion of the first three and the last three joints make
respectively a 3 DOF shoulder spherical joint (positioned
in S in Fig. 3) and a 3 DOF wrist spherical joint (in W ).
The forth revolute axis of the kinematic chain is then taken
as it is, and is called the elbow (in E).

Variations of these methods were further studied in
[Moradi and Lee. (2008)] and [Shimizu et al. (2006)], where
the admissible positions of the elbow within the circle were
determined taking into account the joint limits. A use
of this method is performed in [Wang and Artemiadis.
(2014)] to mimic the natural motions of a human arm
with an anthropomorphic robotic arm by applying a mea-
sured equivalent redundancy angle. In [Zhou et al. (2015)],
the same analytical method is used for anthropomorphic
robots sent in space. A redundancy resolution is performed
to minimize the disturbances induced by the kinematic
structure on the manipulator base.

In a given configuration, the elbow is located at a constant
distances l1 from the shoulder and l2 from the wrist. Hence,
the elbow lies onto two spheres, of respective radii l1
and l2, centered at the shoulder and at the wrist. The
intersection of these two spheres is a circle centered at
the shoulder-wrist axis, and that lies in a plane whose
normal is parallel to this same axis. The tangent of this
circle gives the direction of the elbow rotation axis. The
Cartesian position of the elbow on this circle allows for a
parametrization of the one dimensional self-motion of this
type of redundant manipulator. Dahm and Joublin [Dahm
and Joublin. (1997)] use the term of “redundancy angle”
while Tolani [Tolani et al. (2000)] uses “swivel angle” to



parametrize the position of the elbow. This redundancy
parameter, here called β, is the angular measure between
the vector going from the center of the self-motion circle
to the elbow to the projection (upz0) of an arbitrary
vector (here, uz0) on the plane of the self-motion. Noting
r = SW

∥SW∥ the unit vector directing the shoulder-wrist

axis, l′1 = ∥SC∥ = ∥SW∥2−l2
2+l1

2

2∥SW∥ the distance from the

shoulder to the center of the circle and R =
√

l1
2 − l′1

2

the radius of the circle, we can write the influence of the
redundancy angle β over the position of the elbow E as :

E = S − l′1r+R(cosβupz0 + sinβ(upz0 ∧ r)) (4)

Picking a redundancy angle for the elbow provides an ad-
ditional constraint to the task, then the iiwa-type robot is
not anymore redundant and a closed form solution exists.
After computing the Cartesian positions of the shoulder,
wrist and elbow thanks to the value of the robot base
frame, the destination frame, and β, the analytical method
used for the inverse geometry of the LBR iiwa is divided
into three steps: 1) Determination of the forth axis angle
from a cosine rule in the Shoulder-Elbow-Wrist triangle.
2) Computation of the robot-base-to-elbow-base relative
rotation and of the elbow-base-to-wrist-base relative rota-
tion, respectively corresponding to the rotations achieved
by the 3 DOF spherical shoulder and the 3 DOF spherical
wrist. 3) Determination of the articular angles composing
each 3 DOF spherical articulations of the robot to achieve
the rotations computed at the former step.

The analytical computation of articular configurations for
a given pose of the ultimate link over a [0, 2π] range of
uniform sampling of β provides a representative overview
of the self-motion of the robot. It is then possible to
assess configuration-based performance criterion over a
representation of the self-motion of the robot.

3. REDUNDANCY RESOLUTION WITH RIGIDITY
OPTIMIZATION

3.1 Cartesian compliance model

For most industrial robots, joints compliance and more
specifically gears compliance is recognized as the main
mechanical source of deformation during robot motion and
during robot-environment interaction [Wu et al. (2012);
Lee. (2013)]. In this study, the joints radial deformation is
neglected and, as described in Fig. 4, the joint compliance
is modeled as a torsion spring with stiffness value noted
kq,i for each joint i. Hence, the joint rigidity matrix Kq is a
square (7×7) diagonal matrix with the elements kq,i on the
main diagonal. The static joints stiffness values of a robot
can be experimentally determined by comparing each joint
angular variation to a set of imposed external forces or
torques. In the case of the Kuka LBR iiwa, the embedded
joint torque sensors can be advantageously exploited to
simplify the joint stiffness identification procedure as de-
tailed in [Besset et al. (2016)]. One notes that the reflected
stiffness values for one joint is the result of the serial
combination of the gears stiffness value and the equivalent
control stiffness value. Therefore, the joint stiffness values
are dependent on the robot control mode. For instance, the

Table 2. Identified joint stiffness values of the
Kuka LBR iiwa 14R820 (Nm/rad)

kq,1 kq,2 kq,3 kq,4 kq,5 kq,6 kq,7
4.2e4 3.96e4 1.22e4 2.02e4 0.8e4 0.38e4 0.48e4

kq,4

Fig. 4. Example of joint model (joint 4). The ith joint com-
pliance is modeled as a torsion spring with stiffness
kq,i.
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Fig. 5. Deflection of joint 2 under static increasing and
decreasing payloads: a) under position control mode,
b) when the motor brakes are locked (gear stiffness
only).

impedance control mode 1 will induced lower joint stiffness
values than the position control mode. The focus of this
study being the maximization of the reflected stiffness,
the position control mode is considered. Fig. 5 describes
the experimental measurement of the joint 2 stiffness in
position control mode (position hold) and in locked joint-
brake mode for the Kuka LBR iiwa 14R820. It should be
noted that the identified stiffness value in position control
mode is very close to the static gear stiffness value. The
measured values of the 7 joint stiffness in position control
mode are given in Table 2.

Defining the joint compliance matrix Cq = K−1
q , the

relation between the (7 × 1) joint displacement vector δq
and the (7× 1) vector of the joint static torques τ may be
expressed as

δq = Cq · τ . (5)

Clearly, the resulting end-effector compliance will be in-
duced by the joint stiffness values and will depend on the
robot configuration. Noting Cx (q) the Cartesian compli-
ance matrix at the end-effector, the relation between the
(6 × 1) static Cartesian force-torque vector F acting at
the end-effector and the (6× 1) end-effector displacement
vector δx (translation and rotation) can be written

δx = Cx (q) · F. (6)

1 The user-selected joint or Cartesian stiffness are less or almost
equal to the position controlled mode equivalent stiffness.



Now, considering that the joint compliance matrix Cq is
known, i.e. that the 7 robot joints compliance 1/kq,i are
identified, the Cartesian complianceCx can be analytically
deduced. Applying the principle of energy conservation to
the robot [Khatib. (1990)], associated to the principle of
virtual work, and neglecting the works of gravitational and
frictional forces leads to the relation

δWτ = τ⊤ · δq = δWF = F⊤ · δx, (7)

with δWτ and δWF respectively the virtual work of the
joint torques and the virtual work associated to the ex-
ternal force. Substituting the Cartesian and joint dis-
placement into the kinematic relation deduced from equa-
tion (3) for small displacement

δx = J (q) · δq, (8)

with equation (5) and equation (6) leads to the relation

Cx (q) · F = J (q) ·Cq · τ . (9)

Finally, substituting the joint torque τ with equation (7)
into equation (9) allows to calculate the robot Cartesian
compliance matrix according to the identified joint com-
pliance matrix

Cx (q) = J (q) ·Cq · J⊤ (q) . (10)

One can note that the previous relation represents a
mapping of the compliance in the redundant joint space
into the robot operational space without the need for the
calculus of a generalized Jacobian inverse matrix. The
Cartesian compliance matrix given by equation (10) can be
used to evaluate the mechanical compliant behavior of the
robot submitted to an external force at the end-effector
according to the robot configuration. This mechanical
compliance metrics can be advantageously used to find the
stiffest configuration of the redundant robot for a given
force or torque direction imposed by the operational task.

3.2 Redundancy and rigidity

The problem of finding the stiffest configuration for a
redundant robot can be locally addressed using a redun-
dancy resolution based on a generalized jacobian inverse
(classically the Moore-Penrose inverse) for the end-effector
configuration and by projecting the gradient of the rigid-
ity cost function onto the null space of the manipulator
Jacobian. In this work, we take advantage of the existence
of the analytical inverse model of the 7DOF anthropomor-
phic arm, described in section 2.2, to easily find the global
solution of the rigidity optimization problem.

The Cartesian compliance matrix Cx given by equa-
tion (10) is a (6× 6) matrix with positive diagonal terms.
We define the (3×1) Cartesian translation stiffness vector
ktrans and the (3 × 1) Cartesian rotation stiffness vector
krot as being composed of the first three and the last three
inverse of the diagonal terms of the compliance matrix.
Writing Cx = (cxij )i,j∈[[1,6]]2 , we have :

ktrans
∆
=

[
1/cx11

1/cx22

1/cx33

]
; krot

∆
=

[
1/cx44

1/cx55

1/cx66

]
. (11)

We define two (3×1) unit vectors ηtrans and ηtrans whose
components respectively correspond to the translational
or rotational directions in which single-objective rigidity
optimization is desired. Therefore, the translational (re-
spectively rotational) rigidity optimization for a given end-
effector pose, consists in finding the redundancy parameter
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βtrans (resp. βrot), which maximizes the Cartesian trans-
lation (resp. rotation) stiffness ktrans (resp. krot) along
the direction given by ηtrans (resp. ηtrans). The optimized
redundancy angle for a desired translational or rotational
stiffness can be expressed as:

βtrans = argmax
β∈[0 2π]

(
k⊤
trans (q) · ηtrans

)
, (12)

and
βrot = argmax

β∈[0 2π]

(
k⊤
rot (q) · ηrot

)
. (13)

3.3 Case studies

For all presented cases, the shaded areas on the figures
indicate the inaccessible self-motion parameter β, which
are calculated according to the joint-limits of the studied
robot.

Fig. 6 shows the evolution of the Cartesian stiffness along
translational y-direction (in robot base reference frame)
over a [0, 2π] range of β for a given end-effector position
and orientation x. Among the four robot configurations
shown in the figure, the stiffest configurations aO and dO
and the most flexible ones bO and cO, may be intuitively
determined. One can note that the rigidity gain between
the stiffest configuration and the softest configuration is
almost 400%. This result illustrates the significant influ-
ence of the robot self-motion on the mechanical rigidity of
the end-effector. Regarding the two stiffest configurations
aO and dO, the difference between both configurations is
less intuitive, but the rigidity gain of choosing aO over dO
is still of 20%.

Fig. 7 shows the evolution of the linear components of
the Cartesian stiffness for a different end-effector pose.
For this pose, the Cartesian stiffness along y-direction is
mainly influenced by joint 4 position, while the stiffness
in x-direction and z-direction are dominated by the im-
posed constraints on joint 3. Succession of single local
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operations along one Cartesian axis are in widespread use
in the aerospace or automotive manufacturing industries.
Fig. 8 and Fig. 9 presents the evolution of the Cartesian
stiffness value in y-direction according to the redundancy
parameter and the position of the end-effector along the
x-axis. Fig. 8 shows that the redundancy parameter could
be sequentially modified during the motion to maximize
the rigidity along y-direction on every operation poses
corresponding to changing x values. For practical efficiency
of the successive operations, e.g. for repeatability reason, it
would be more convenient to keep the optimized rigidity
value as constant as possible for each operation. Fig. 9
shows the resulting maximum iso-rigidity curve in the xβ-
plane for the considered example.

4. EXPERIMENTAL RESULTS

Fig. 10 describes the experimental Setup. For a set of
imposed end-effector pose of the KUKA LBR iiwa 14
R820 manipulator, a known external load (0, 4 and 10
kg) was applied to the robot end-effector in the studied
direction. The self-motion of the robot was obtained by
imposing a stepwise variation (steps of 5 degrees) of the
external redundant joint 3 for the imposed end-effector
pose. Then, the deviation of the end-effector was measured
by a laser tracker from API Inc. with absolute accuracy of
±15 µm/m. The Cartesian rigidity values were first mea-
sured over a range of joint 3 angle values. They were then
re-parametrized with regards to the redundancy param-
eter β (for better comparison with previously described
analytical model).

Fig. 11 presents samples of experimental results for two
different end-effector poses. It can be observed that the
general behavior (general trend, minima and maxima)
predicted by the analytical Cartesian stiffness model was
corroborated by the experiments. Hence, the validity of the
identified joint stiffness model for this robot is confirmed
and the proposed Cartesian static stiffness optimization
can be efficiently used for practical applications.

F

−300
−200

−100
0

100
200

300

0

pi/3

2pi/3

pi
0.5

1

1.5

2

2.5

3

3.5

x 10
5

X axis (mm)

Redundancy parameter β

C
ar

te
si

an
 S

ti
ff

n
es

s 
in

 Y
d
ir

ec
ti

o
n

 (
N

/m
)

4pi/3

2pi/3

2pi

Fig. 8. Theoretical Cartesian stiffness along pure
y translational direction over a [0, 2π] range
of β and a [−.25, .25] range of x. x =

[x, .5, .975, 0, π/2, −π/2]
⊤
.

−200 −150 −100 −50 0 50 100 150 200
0

pi/3

2pi/3

pi

4pi/3

5pi/3

2pi

X (mm)

R
e
d
u
n
d
a
n
c
y
 p

a
ra

m
te

r
β

1

1.5

2

2.5

3

x 10
5

iso-maximum 

stiffness value

C
ar

te
si

an
 s

ti
ff

n
es

s 
v
al

u
e 

in
 Y

-d
ir

ec
ti

o
n
 (

N
/m

)

Fig. 9. Maximum iso-rigidity curve for the motion of Fig. 8.

F

Load

Laser tracker

Fig. 10. Experimental setup. KUKA LBR iiwa 14 R820
arm, API laser tracker and example of payload acting
in y-direction.



0 pi/3 2pi/3 pi 4pi/3 5pi/3 2pi
7

7.5

8

8.5

9
x 10

4

Redundancy parameter β

S
tif

fn
es

s 
in

 y
−

di
re

ct
io

n 
(N

/m
)

 

 

pi 4pi/3 5pi/3 2pi 7pi/3 pi 4pi/3 5pi/3
0

0.5

1

1.5

2

2.5

3
x 10

5

Redundancy parameter β

S
tif

fn
es

s 
in

 z
−

di
re

ct
io

n 
(N

/m
)

Theoretical
Measured

a)

b)

Fig. 11. Measured Cartesian Stiffness component ac-
cording to the redundancy angle β for two test
cases: a) Stiffness and load in y-direction for x =

[−0.3, 0.5, 0.6, 0, π/2, −π/2]
⊤
; b) Stiffness and load

in z-direction for x = [0, 0.5, 0.5, −π, 0, π]
⊤
.

5. CONCLUSION

In this paper, redundancy resolution of 7 DOF anthro-
pomorphic arms for determining the stiffest static con-
figuration regarding the task-space interactions has been
treated. The optimization is based on an analytically
computed self-motion that take account of an identified
joint stiffness model. Analytical and experimental results
obtained on a KUKA LBR iiwa for a given pose demon-
strated the strong influence of the redundant DOF on
the Cartesian stiffness. Finally, the proposed approach
gives an efficient and convenient way to select the joint
configuration of 7 DOF manipulator for tasks requiring
stiff interactions.
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