
HAL Id: hal-02362115
https://hal.science/hal-02362115

Submitted on 13 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing the Computational Complexity of
Mass-Matrix Calculation for High DOF Robots

Mohammad Safeea, Richard Bearee, Pedro Neto

To cite this version:
Mohammad Safeea, Richard Bearee, Pedro Neto. Reducing the Computational Complexity of Mass-
Matrix Calculation for High DOF Robots. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, Madrid, Spain. pp.5614-5619. �hal-02362115�

https://hal.science/hal-02362115
https://hal.archives-ouvertes.fr

Reducing the computational complexity of
mass-matrix calculation for high DOF robots

Mohammad Safeea, Richard Bearee, Senior Member, IEEE, and Pedro Neto, Member, IEEE

Abstract—Increasingly, robots have more degrees of freedom
(DOF), imposing a need for calculating more complex dynam-
ics. As a result, better efficiency in carrying out dynamics
computations is becoming more important. In this study, an
efficient method for computing the joint space inertia matrix
(JSIM) for high DOF serially linked robots is addressed. We
call this method the Geometric Dynamics Algorithm for High
number of robot Joints (GDAHJ). GDAHJ is non-symbolic,
preserve simple formulation, and it is convenient for numerical
implementation. This is achieved by simplifying the way to
recursively derive the mass-matrix exploiting the unique property
of each column of the JSIM and minimizing the number of
operations with O(n2) complexity. Results compare favorably
with existing methods, achieving better performance over state-
of-the-art by Featherstone when applied for robots with more
than 13 DOF.

Index Terms—mass-matrix, dynamics, Geometric Dynamics
Algorithm for High number of robot Joints (GDAHJ), high DOF
robots.

I. INTRODUCTION

DYNAMICS of robots is an important topic since that
it is highly involved in their design, simulation and

control. Owing to its importance this subject had been studied
extensively in the past thirty years. Thus, several algorithms
and methods had been developed to calculate robot dynamics
[1] [2]. Nevertheless, this subject remains till this day open
for extensive research while every year there are new studies
being published, methods and algorithms being proposed.

Robot dynamics can be described by one of two formula-
tions:

1) Operational space formulation. In this formulation the
dynamics equations are referenced to the manipulator
end-effector. In a pioneering study this approach was
described and used to control PUMA600 robot [3]. It is
also applied for the combined application of motion and
force control [4]. Algorithms for efficient robot dynam-
ics calculations based on operational space formulation
are presented in [5] and [6].

2) Joint space formulation. This formulation describes the
dynamics of robot in joint space. This formulation

This work was supported in part by the Portuguese Foundation for Science
and Technology (FCT) project COBOTIS (No 32595), Portugal 2020 project
DM4Manufacturing POCI-01-0145-FEDER-016418 by UE/FEDER through
the program COMPETE2020, and the Portuguese Foundation for Science and
Technology (FCT) SFRH/BD/131091/2017.

Mohammad Safeea is with the Department of Mechanical Engineering,
University of Coimbra, Portugal and with Arts et Métiers, ParisTech, France,
e-mail: ms@uc.pt.

Richard Bearee is with Arts et Métiers, ParisTech, Lille, France, e-mail:
Richard.BEAREE@ENSAM.EU.

Pedro Neto is with the Department of Mechanical Engineering, University
of Coimbra, Coimbra, Portugal, e-mail: pedro.neto@dem.uc.pt.

manifests the effect of the joints’ positions, velocities
and accelerations on the torques and vice-versa.

The mathematical formulation of the inverse dynamics in joint
space [7, 8, 9, 10] is given by:

τ = A(q)q̈ +B(q, q̇)q̇ + g (1)

Where τ is the joints’ torques vector, q is the joints’ positions
vector, q̇ is the vector of joints’ angular velocities, q̈ is the
vector of joints’ angular accelerations, A(q) is joint space
inertia matrix of the robot, B(q, q̇) is the joint space Coriolis
matrix of the robot, and g is the vector of joints’ torques due
to gravity. As described in [11], equation (1) can be extended
to include contact forces, joints elasticity, friction, actuators
inertias and dynamics. A(q) is an n×n matrix, in which n is
the number of robot’s joints considering that each joint has one
degree of freedom (DOF), it is symmetric, positive definite and
has the property of being a function of only joints’ positions.
B(q, q̇) is an n× n matrix, function of joints’ positions and
velocities, and describes the centrifugal and Coriolis effects
on joints’ torques.

One of the earliest methods used to deduce the equations of
robot dynamics was the one based on Lagrangian formulation.
This method is well described in the literature. A methodology
for deducing the dynamics of gear-driven serially linked robot
by using Lagrangian formulation is described in [12]. This
study took into consideration the effects of the driving motors.
The Lagrangian formulation is widely used as the bases
for automatic generation of equations of robot dynamics in
symbolic form. Most recent toolboxes for generating equations
of robot dynamics using Lagrangian formulation are in [13].

The Lagrangian formulation is a straight forward approach
that treats the robot as a whole and utilizes its Lagrangian, a
function that describes the energy of the mechanical system:

L = T − U (2)

Where L is the Lagrangian function, T is the kinetic energy
and U is the potential energy. The function described previ-
ously is formulated in terms of the generalized coordinates q.
By differentiating that function we can derive an expression
of the associated generalized forces v:

v =
d

dt
(
δL
δq̇

)T − (
δL
δq

)T (3)

Even though the Lagrangian formulation can be considered
as a straight forward approach, the method requires partial
differentiation. Despite the fact that symbolic manipulation
methods have been utilized to perform the differentiation [14],

http://ms@uc.pt
mailto:Richard.BEAREE@ENSAM.EU
mailto:pedro.neto@dem.uc.pt

the method still lacks the efficiency in terms of execution-
time. This can be clearly noticed when the robot presents
a relatively high number of DOF as noted in [9] and most
remarkably in [15], where the author performed comparison
of execution-times required to run simulations based on dy-
namical models derived by Newton-Euler recursive technique
and Euler-Lagrange technique. It was reported execution-times
difference of order of magnitude which clearly put the case in
favor of the Newton-Euler recursion method.

The formulation of robot-specific dynamics using Kane’s
dynamical equations is in [16]. In this study the authors
argue that using Lagrange method to compute dynamics pro-
duces huge equations resulting in slow execution and costly
computations, while the Recursive Newton-Euler is a gener-
alized method that might perform unnecessary calculations
on specific robot. Thus, a faster execution algorithm with
less computational-cost could be achieved if robot-specific
equations are carefully deduced. The study elaborates in step
by step manner the methodology for deriving dynamics equa-
tions of Stanford manipulator starting from Kane’s dynamical
equations. Nevertheless, the method requires a knowledgeable
analyst to take on a pencil and paper in hand and work out
the equations of a specific robot. A comprehensive review of
Kane’s equations and Gibbs-Appell equations is in [17].

A computationally efficient Newton-Euler recursive method
is described in [18]. This method is performed in two phases:
the first phase (forward propagation) during which the ac-
celerations and velocities of robot links are calculated, and
the second phase (backward propagation) where torques and
forces are calculated. The method proved to be very efficient
for calculating the inverse dynamics. However, the calculations
are carried out implicitly such that the inertia matrix cannot
be retrieved directly. It is shown in [19] that the inertia
matrix A(q) can be calculated from the model of the inverse
dynamics by assigning a unit value to one element of the
joints’ accelerations vector and assigning a zero value to the
remaining elements, including the joints’ velocities and the
gravity term. In such scenario the associated column of the
inertia matrix can be calculated, and by iterating the procedure
through all of the elements of the joints’ acceleration vector
the inertia matrix is achieved. This method was later re-
named composite-rigid-body algorithm (CRBA), by Feather-
stone [20]. Using CRBA to calculate the inertia matrix proved
to be computationally efficient, especially if the calculations
are performed in links-attached local frames. Computer code
of the algorithm based on 6D or spatial vectors algebra is
available in [20]. A comprehensive review of spatial vectors
and Plücker basis is in [21] and in chapter 2 of [22].

In this study we propose GDAHJ as a method to calculate
JSIM for articulated bodies with relatively high number of
DOF, GDAHJ achieves better efficiency over state-of-the-
art method, the famous CRBA. This increase in efficiency
is achieved through minimizing the number of operations
that have O(n2) computational complexity. In GDAHJ the
number of computations associated with the quadratic terms
are reduced to the minimum value possible, from 16n2 in the
case of CRBA to 5.5n2 for GDAHJ.

Figure 1. Inertial moment µCij and linear acceleration p̈Cij of centre of
mass of link i transferred by frame j

II. THEORY AND PRINCIPALS

The proposed algorithm builds on what we call the frame
injection effect, Figure 1, in which each frame j attached to
joint j will transfer to link i a linear acceleration into its centre
of mass and an inertial moment around its centre of mass.
In this study we notate them by p̈Cij and µCij , respectively.
This transfer is due to the rotational effect of joint j around its
axes of rotation, or the z axis of frame j according to modified
Denavit Hartenberg (MDH) designation. This cause and effect
relationship between frame j and link i is referred to by the
subscript ij in p̈Cij and µCij , while the C in the subscript is
used to refer to the mass centre of link i. The same subscript
notation will hold throughout this study for denoting frame-
link interaction of cause-and-effect unless stated otherwise.

A. Link’s acceleration due to the single-frame rotation

Each frame j transfers to link i three acceleration vectors
tangential acceleration, normal acceleration and Coriolis ac-
celeration. The first of which is shown in Figure 2, it is due
to the angular acceleration of frame j:

p̈τCij = εj × pCij (4)

Where p̈τCij is the tangential acceleration of the centre of mass
of link i due to the rotation of frame j, the symbol × is used
to denote the cross product (the same notation of the cross
product will hold throughout this study) and pCij is the vector
connecting the origin of frame j and the centre of mass of link
i. εj is the angular acceleration of link j:

εj = q̈jkj (5)

Where kj is the unit vector associated with the z axis of joint
j, and q̈j is the angular acceleration of that joint.

Concerning the normal acceleration, each frame j transfers
to link i a normal acceleration due to its rotation, Figure 2:

Figure 2. Tangential acceleration of centre of mass of link i transferred by
frame j

p̈nCij = ωj × (ωj × pCij) (6)

Where ωj is the angular velocity of link j due to the rotational
effect of joint j. It is given by:

ωj = q̇jkj (7)

We can rewrite the equation of the normal acceleration trans-
ferred to link i due to frame j by:

p̈nCij = kj × (kj × pCij)q̇2j (8)

The third acceleration transferred is Coriolis acceleration,
Figure 2, in which each frame j transfers to link i Coriolis
acceleration p̈corCij :

p̈corCij = 2ωj × vrCij (9)

Where ωj is as described previously in equation (7), and vrCij
is the velocity transferred to the centre of mass of link i from
frames j+1 up to frame i. Here, the r in the superscript is to
denote that this is a relative velocity, and C in the subscript
is used to refer to the mass centre of link i, so that vrCij can
be calculated from:

vrCij =

i∑
k=j+1

ωk × pCik (10)

The total linear acceleration transferred by frame j to the
centre of mass of link i is given by:

p̈Cij = p̈
τ
Cij + p̈

n
Cij + p̈

cor
Cij (11)

B. Link’s inertial moment due to single-frame effect

It can be proved that each frame j will transfer to link i three
inertial moments, the first of the inertial moments transferred
is due to angular acceleration of frame j and it is given by:

µτCij = (RiI
i
iR

T
i)εj (12)

While µτCij is the moment transferred by frame j into link i
due to frame’s j angular acceleration, Ri is the rotation matrix
of frame i in relation to base frame, and Iii is 3 × 3 inertial
tensor of link i around its centre of mass represented in frame
i.

The second inertial moment transferred from frame j to link
i is due to centrifugal effect:

µn
Cij =

1

2
(Liωj)× ωj (13)

Where Li is a 3× 3 matrix that is calculated from:

Li = Ri(tr(I
i
i)13 − 2Iii)R

T
i (14)

The subscript in Li is to notate that the matrix calculated
pertains to link i. tr(Iii) is the trace of the inertial tensor and
13 is the identity matrix.

The third inertial moment transferred from frame j to link
i is due to Coriolis effect:

µcorCij = (Liωj)× ωrij (15)

Where ωrij can be calculated from:

ωrij =

i∑
k=j+1

ωk (16)

Thus, the total inertial moment transferred to link i around its
centre of mass due to the rotational effect of frames j is given
by:

µCij = µ
τ
Cij + µ

n
Cij + µ

cor
Cij (17)

III. JOINT SPACE INERTIA MATRIX FOR HIGH DOF
(JSIMHJ)

The GDAHJ algorithm calculates the joint space inertia
matrix for robots with high DOF quite efficiently, this increase
in efficiency is achieved through minimizing the number of
operations that has O(n2) computational complexity to a
minimum, according to our knowledge GDAHJ is the most
efficient method for high DOF robots ever proposed till now.

Starting from the basic interpretation of JSIM columns, the
mathematical equations of GDAHJ algorithm can be deduced.
Where as described in section 3.2 of [1], each column j of the
JSIM can be interpreted as: the torques acting on the various
joints of the robot, due to the unit acceleration of joint j,
giving that the angular velocities of all of the joints are equal
to zero. In Figure 3 we show the free body diagram of one
link of the robot, with the inertial moments and inertial forces
acting on it.

Following the previous definition of column j of JSIM, we
can calculate that column as the following: (1) choose a joint

Figure 3. Inertial forces and moments acting on link i due to angular
acceleration of joint j.

j, and (2) write the balance equation of a link i from the robot.
By referring to Figure 3, the balance equation of link i:

µi,j = µi+1,j + (RiI
i
iR

T
i)kj q̈j +mip̂Cii(q̈jkj × pCij)+

l̂i

n∑
k=i+1

mk(q̈jkj × pCkj) (18)

Where µi,j is the total moment acting on joint i due to the
acceleration of joint j only. li is the vector connecting the
origin of frame i to the proceeding frame’s origin, the little hat
notation above the vector is used to denote the skew symmetric
operator associated with that vector. From the definition given
in the previous section of column i, we substitute q̈j by its
value q̈j = 1. Then the modified balance equation is:

µi,j = µi+1,j + (RiI
i
iR

T
i)kj +mip̂Cii(kj × pCij)

+l̂i

n∑
k=i+1

mk(kj × pCkj) (19)

While:

pCij = pCi − pj (20)

And:

pCkj = pCk − pj (21)

We substitute the values of pCij and pCkj into (19), and we
fix:

µi,j = µi+1,j

+

(
RiI

i
iR

T
i −mip̂Ciip̂Ci − l̂i

(
n∑

k=i+1

mkp̂Ck

))
kj

−

(
mipCii + (

n∑
k=i+1

mk)li

)
× (kj × pj) (22)

We define the vector ηi by:

ηi = mipCii + (

n∑
k=i+1

mk)li (23)

Algorithm 1 Calculating joint space inertia matrix entries,
algorithm is based on eq (31).

For i = 1 : n

For j = 1 : i

% calculating Ai,j will require two vector inner products and one
% scalar addition with total cost (3n2 + 3n)m+ (2.5n2 + 2.5n)a

Ai,j = kT
j di + tTj yi

Aj ,i = Ai,j

End

End

And we define the matrix operator κi by:

κi = −mip̂Ciip̂Ci − l̂i

(
n∑

k=i+1

mkp̂Ck

)
(24)

Then we write:

µi,j = µi+1,j +
(
RiI

i
iR

T
i + κi

)
kj − (ηi)× (kj ×pj) (25)

By performing a recursion on previous equation from link n
to link i, and noticing that µn+1,j = 0 we get:

µi,j =

(
n∑
k=i

(
RkI

k
kR

T
k + κk

))
kj −

(
n∑
k=i

ηk

)
× (kj × pj)

(26)
To hide the complexity in the previous equation, we denote
the terms between parenthesis by:

bi =

(
n∑
k=i

ηk

)
(27)

And

Di =

n∑
k=i

(
RkI

k
kR

T
k + κk

)
(28)

Substituting (27) and (28) in (26) yields:

µi,j = Dikj − b̂i(kj × pj) (29)

For calculating the (i, j) entry of JSIM, Ai,j , we project µi,j
on the z axes of joint i, or in other words we multiply (29)
by the unit vector kTi :

Ai,j = k
T
i µi,j = k

T
i Dikj − kTi b̂i(kj × pj) (30)

By noticing that each entry i, j of the JSIM, or kTi µi,j is a
scalar, then we can transpose the previous equation without
loss of generality:

Ai,j = k
T
j

(
DT
i ki
)
−
(
kj × pj

)T (
b̂
T

i ki

)
= kTj

(
DT
i ki
)
+
(
kj × pj

)T (
b̂iki

)
(31)

In such a way we have decoupled the dependency between
indexes i and j. Moreover, we limited the cross-coupling

Table I
OPERATION COUNT FOR PROPOSED METHOD AND OTHER METHODS, m STANDS FOR MULTIPLICATION AND a FOR ADDITION.

Method Quantity Cost Reference
GDAHJ JSIM (3n2 + 88n− 3)m+ (2.5n2 + 95.5n− 18)a Proposed
CRBA JSIM (10n2 + 22n− 32)m+ (6n2 + 37n− 43)a [23] and [22]

EQ. 10.3
Symbolic-
Numeric

JSIM-Coriolis (3
2
n3+ 35

2
n2+9n−16)m+(7

6
n3+ 23

2
n2+ 64

3
n−28)a [24]

RNEA† Inverse dynamics (93n− 108)m+ (81n− 100)a [22] Table 10.1
† Recursive Newton-Euler Algorithm (RNEA) is designed for calculating the inverse dynamics. Nevertheless, if

the algorithm is invoked by passing q̇ = 0, by ignoring the gravity vector, and by passing an angular
acceleration vector with all elements equal to zero except for an element q̈j = 1, then the corresponding j
column of JSIM is produced. In such a case, by invoking this algorithm n times, all columns of JSIM are

calculated, and the resulting computational cost is (93n2 − x1n)m+ (81n2 − x2n)a,
which is very expensive in the O(n2) part of the algorithm.

10 20 30 40 50 60 70 80 90 100 110 120
Number of robot joints

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
im

e
[s

]

CRBA
GDAHJ

Figure 4. Execution time results for GDAHJ vs CRBA.

interaction between joint j and bodies i into a minimum.
The previous equation states that the effect of acceleration of
each joint j is limited to the terms kTj , and tj =

(
kj × pj

)
.

The effect of the articulated bodies from link n to link i is
manifested by the terms

(
DT
i ki
)

and
(
b̂
T

i ki

)
. The terms

di =
(
DT
i ki
)

and yi =
(
b̂
T

i ki

)
can be calculated with

an O(n) algorithm using multiple recursions, while the mass
matrix entries can be calculated with minimum quadratic cost
using the nested loop in Algorithm 1.

The nested loop in Algorithm 1 has the minimal quadratic
cost. This cost results from two vector-inner products and one
scalar addition, with a cost (3n2 + 3n)m+ (2.5n2 + 2.5n)a,
where m stands for multiplication and a stands for addition.
Thus, the O(n2) computational cost is optimized.

IV. IMPLEMENTATION AND RESULTS

To prove the validity of the proposed method, GDAHJ,
and to assess its execution-time performance, a comparison
with well established algorithms was performed, namely with
CRBA method.

Table I shows the computational complexity of the proposed
algorithm against state-of-the-art algorithm, measured in the
number of floating point operations (additions and multiplic-
ations) as function of n, the number of DOF of the robot.
The operation count for CRBA reported in Table I pertains to
the most efficient version of this algorithm [22]. The results
reported in Table I for GDAHJ do not include the number of
operations required to perform the direct kinematics of O(n),
since that most of robotics operations require direct kinematics
calculation, otherwise the cost of the direct kinematics can be

20 40 60 80 100 120
Number of robot joints

0

0.2

0.4

0.6

0.8

1

M
ax

-r
el

at
iv

e
er

ro
r

 b
et

w
ee

n
C

R
B

A
 a

nd
 G

D
A

H
J

10-12

Figure 5. Relative error in computation for results achieved using GDAHJ
and CRBA.

added. It can be inferred that GDAHJ performs better than
CRBA for articulated bodies (serially connected) that have
more than 13 DOF.

To confirm the theoretical results, both algorithms CRBA
and GDAHJ were implemented in Matlab, and a comparison
in terms of execution time between the two algorithms was
performed. Numerical tests were carried out by considering
a manipulator in which the mass of each link was generated
randomly in the range [1,10] kg. The inertial tensors of each
link were generated as random positive definite matrix in
which each element of the matrix is in the range [1,10] kg.m2.
Denavit-Hartenberg parameters of each link were generated
randomly as well as the pose of the robot (joint angles).
Afterwards, the JSIM of the manipulator was calculated twice,
once using CRBA method and another time using GDAHJ
method. Figure 4 shows the results in terms of execution time
and Figure 5 shows the results in terms of numerical error
of the calculation between the two methods. From the figures
we notice that GDAHJ performs better than CRBA in terms of
execution time for high DOF robots (more than 13 DOF). The
maximum ratio of time of execution CRBA/GDAHJ acheived
is 2.2, which is less than the theoretical limit 16/5.5. Again, the
time required for performing the direct kinematics for GDAHJ
is not taken into consideration in the plots.

A metric-value was defined to measure the relative error.
The proposed metric-value is calculated by the overall-sum of

the absolute values of the differences taken on all the cells of
the mass matrix calculated by CRBA against its counterpart
calculated by GDAHJ. Then, this sum is divided by the
maximum absolute matrix-element value from the calculated
JSIM:

e =
sum(sum(abs(AGDAHJ−ACRBA)))

max(max(abs((AGDAHJ+ACRBA)/2)))
(32)

Where the implementation sum(sum(arg)) returns the sum
of all elements of the argument matrix (arg), abs(arg) is
a function that returns a matrix where all its elements have
the absolute value of their counterpart of the argument matrix
argument matrix (arg). From the graph in Figure 5 we notice
that the error is small and can be attributed to numerical
rounding errors.

V. CONCLUSION

In this study we proposed GDAHJ, a novel algorithm for
efficient calculation of JSIM for serially linked robots, the
algorithm achieves better efficiency over state-of-the-art when
calculating JSIM for hyper-joint manipulators. This increase
in efficiency is achieved through minimizing the number of
operations associated with the O(n2). In such a case, the
number of computations associated with the quadratic terms
are reduced to the minimum value possible, from (16n2) in
the case of CRBA to (5.5n2) for the proposed algorithm. At
the end comparison between the proposed algorithm against
state of the art CRBA was made, the performance of the
proposed algorithm was discussed in operation count section
of this study. On a theoretical level, this study demonstrates
the minimum bound for the O(n2) operations required for
calculating JSIM. Future work will focus on reducing the
number of operations associated with O(n) of the algorithm.

REFERENCES

[1] R. Featherstone and D. Orin, “Robot dynamics: equations
and algorithms,” in ICRA, 2000, pp. 826–834.

[2] C. Balafoutis, “A survey of efficient computational meth-
ods for manipulator inverse dynamics,” Journal of Intel-
ligent and Robotic Systems, vol. 9, no. 1-2, pp. 45–71,
1994.

[3] O. Khatib, “Dynamic control of manipulator in opera-
tional space,” in Proc. 6th IFToMM World Congress on
Theory of Machines and Mechanisms, 1983, pp. 1128–
1131.

[4] O. . Khatib, “A unified approach for motion and force
control of robot manipulators: The operational space
formulation,” Robotics and Automation, IEEE Journal of,
vol. 3, no. 1, pp. 43–53, 1987.

[5] K.-S. Chang, “Efficient algorithms for articulated branch-
ing mechanisms: dynamic modeling, control, and simu-
lation,” Ph.D. dissertation, Citeseer, 2000.

[6] K.-S. Chang and O. Khatib, “Efficient recursive al-
gorithm for the operational space inertia matrix of
branching mechanisms,” Advanced Robotics, vol. 14,
no. 8, pp. 703–715, 2001.

[7] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo,
Robotics: modelling, planning and control. Springer
Science & Business Media, 2009.

[8] J. J. Craig, Introduction to robotics: mechanics and
control. Pearson Prentice Hall Upper Saddle River,
2005, vol. 3.

[9] W. Khalil, “Dynamic modeling of robots using recursive
newton-euler techniques,” in ICINCO2010, 2010.

[10] P. Corke, Robotics, vision and control: fundamental
algorithms in MATLAB. Springer Science & Business
Media, 2011, vol. 73.

[11] M. W. Spong, “Control of robots and manipulators,” The
control handbook, pp. 1339–1351, 1996.

[12] L. Sciavicco, B. Siciliano, and L. Villani, “Lagrange and
newton-euler dynamic modeling of a gear-driven robot
manipulator with inclusion of motor inertia effects,”
Advanced robotics, vol. 10, no. 3, pp. 317–334, 1995.

[13] M. Toz and S. Kucuk, “Dynamics simulation toolbox for
industrial robot manipulators,” Computer Applications
in Engineering Education, vol. 18, no. 2, pp. 319–330,
2010.

[14] C. P. Neuman and J. J. Murray, “Symbolically efficient
formulations for computational robot dynamics,” Journal
of robotic systems, vol. 4, no. 6, pp. 743–769, 1987.

[15] H. Hoifodt, “Dynamic modeling and simulation of robot
manipulators: the newton-euler formulation,” 2011.

[16] T. R. Kane and D. A. Levinson, “The use of kane’s dy-
namical equations in robotics,” The International Journal
of Robotics Research, vol. 2, no. 3, pp. 3–21, 1983.

[17] H. Baruh, Analytical dynamics. MacGraw-Hill, 1999.
[18] J. Y. Luh, M. W. Walker, and R. P. Paul, “On-line compu-

tational scheme for mechanical manipulators,” Journal of
Dynamic Systems, Measurement, and Control, vol. 102,
no. 2, pp. 69–76, 1980.

[19] M. W. Walker and D. E. Orin, “Efficient dynamic
computer simulation of robotic mechanisms,” Journal of
Dynamic Systems, Measurement, and Control, vol. 104,
no. 3, pp. 205–211, 1982.

[20] R. Featherstone, “Spatial vectors and rigid-body
dynamics.” [Online]. Available: http://royfeatherstone.
org/spatial/

[21] ——, “Plucker basis vectors,” in Robotics and Automa-
tion, 2006. ICRA 2006. Proceedings 2006 IEEE Interna-
tional Conference on. IEEE, 2006, pp. 1892–1897.

[22] ——, Rigid body dynamics algorithms. Springer, 2014.
[23] ——, “Efficient factorization of the joint-space inertia

matrix for branched kinematic trees,” The International
Journal of Robotics Research, vol. 24, no. 6, pp. 487–
500, 2005.

[24] M. Vukobratović, S.-G. Li, and N. Kirćanski, “An ef-
ficient procedure for generating dynamic manipulator
models,” Robotica, vol. 3, no. 03, pp. 147–152, 1985.

http://royfeatherstone.org/spatial/
http://royfeatherstone.org/spatial/

	Introduction
	Theory and principals
	Link’s acceleration due to the single-frame rotation
	Link’s inertial moment due to single-frame effect

	Joint space inertia matrix for high DOF (JSIMHJ)
	Implementation and results
	Conclusion

