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Abstract

Polyhedral projection is a main operation of the polyhedron abstract
domain. It can be computed via parametric linear programming (PLP),
which is more efficient than the classic Fourier-Motzkin elimination method.

In prior work, PLP was done in arbitrary precision rational arithmetic.
In this paper, we present an approach where most of the computation
is performed in floating-point arithmetic, then exact rational results are
reconstructed.

We also propose a workaround for a difficulty that plagued previous at-
tempts at using PLP for computations on polyhedra: in general the linear
programming problems are degenerate, resulting in redundant computa-
tions and geometric descriptions.

1 Introduction and related work

Abstract interpretation [6] is an approach for obtaining invariant properties of
programs, which may be used to verify their correctness. Abstract interpre-
tation searches for invariants within an abstract domain. For numerical prop-
erties, a common and cheap choice is one interval per variable per location in
the program, but this cannot represent relationships between variables. Such
imprecision often makes it impossible to prove properties of the program using
that domain. If we retain linear equalities and inequalities between variables,
we obtain the domain of convex polyhedra [7], which is more expensive, but more
precise.
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Several implementations of the domain of convex polyhedra over the field
of rational numbers are available. The most popular ones for abstract inter-
pretation are NewPolka1 and the Parma Polyhedra Library (PPL) [1]. These
libraries, and others, use the double description of polyhedra: as generators
(vertices, and for unbounded polyhedra, rays and lines) and constraints (linear
equalities and inequalities). Some operations are easier on one representation
than on the other, and some, such as removing redundant constraints or gen-
erators, are easier if both are available. One representation is computed from
the other using Chernikova’s algorithm [4, 16]. This algorithm is expensive in
some cases, and, furthermore, in some cases, one representation is exponentially
larger than the other. This is in particular the case of the generator repre-
sentation of hypercubes or, more generally, products of intervals; thus interval
analysis which simulate using convex polyhedra in the double description has
cost exponential in the dimension.

In 2012 Verimag started implementing a library using constraints only, called
VPL (Verified Polyhedra Library) [11, 17]. There are several reasons for us-
ing only constraints; we have already cited the high generator complexity of
some polyhedra commonly found in abstract interpretation, and the high cost
of Chernikova’s algorithm. Another reason was to be able to certify the results
of the computation, in particular that the obtained polyhedra includes the one
that should have been computed, which is the property that ensures the sound-
ness of abstract interpretation. One can certify that each constraint is correct
by exhibiting coefficients, as in Farkas’ lemma.

In the first version of VPL, all main operations boiled down to projection,
performed using Fourier-Motzkin elimination [9], but this method generates
many redundant constraints which must be eliminated at high cost. Also, for
projecting out many variables x1, . . . , xn, it computes all intermediate steps
(projection of x1, then of x2. . . ), even though they may be unneeded and have
high description complexity. In the second version, projection and convex hull
both boil down to parametric linear programming [14]. The current version
of VPL is based on a parametric linear programming solver implemented in
arbitrary precision arithmetic in OCaml [18].

In this paper, we improved on this approach in two respects.

• We replace most of the exact computations in arbitrary precision rational
numbers by floating-point computations performed using an off-the-shelf
linear programming solver. We can however recover exact solutions and
check them exactly, an approach that has previously been used for SMT-
solving [20, 15].

• We resolve some difficulties due to geometric degeneracy in the problems
to be solved, which previously resulted in many redundant computations.

Furthermore, the solving is divided into independent tasks, which may be sched-
uled in parallel. The parallel implementation is covered in [5].

1Now distributed as part of APRON http://apron.cri.ensmp.fr/library/
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2 Notations and preliminaries

2.1 Notations

Capital letters (e.g. A) denote matrices, small bold letters (e.g. x) denote
vectors, small letters (e.g. b) denote scalars. The ith row of A is ai•, its jth
column is a•j . P : Ax + b ≥ 0 denotes a polyhedron and C a constraint. The
ith constraint of P is Ci: ai•x ≥ bi, where bi is the ith element of b. aij denotes
the element at the ith row and the jth column of A. Q denotes the field of
rational numbers, and F is the set of finite floating-point numbers, considered
as a subset of Q.

2.2 Linear programming

Linear programming (LP) consists in getting the optimal value of a linear func-
tion Z(λ) subject to a set of linear constraints Aλ = b, λ ≥ 0 2, where λ is the
vector of variables. The optimal value Z∗ is reached at λ∗: Z∗ = Z(λ∗).

2.3 Basic and non-basic variables

We use the implementation of the simplex algorithm in GLPK3 as LP solver.
In the simplex algorithm each constraint is expressed in the form (λB)i =
∑n

j=1
aij(λN )j + ci, where (λB)i is known as a basic variable, the (λN )j is

non-basic variable, and ci is a constant. The basic variables constitute a basis.
The basic and non-basic variables form a partition of the variables, and the
objective function is obtained by substituting the basic variables with non-basic
variables.

2.4 Parametric linear programming

A parametric linear program (PLP) is a linear program, subjecting to Aλ =
b, λ ≥ 0, whose objective function Z(λ,x) contains parameters x appearing
linearly.4 The PLP reaches optimum at the vertex λ∗, and the optimal solution
is a set of (Ri, Z

∗

i (x)). Ri is the region of parameters x, in which the basis does
not change. Z∗

i (x) is the optimal function corresponding toRi, meaning that all
the parameters in Ri will lead to the same optimal function Z∗

i (x). In the case
of primal degeneracy (Section 5), the optimal vertex λ∗ has multiple partitions
of basic and non-basic variables, thus an optimal function can be obtained by
different bases, i.e., several regions share the same optimal function.

2This is the canonical form of the LP problem. All the LP problems can be transformed
into this form.

3The GNU Linear Programming Toolkit (GLPK) is a linear programming solver imple-
mented in floating-point arithmetic. https://www.gnu.org/software/glpk/

4There also exist parametric linear programs where the parameters are in the constant
terms of the inequalities, we do not consider them here.
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2.5 Redundant constraints

Definition 1 (Redundant). A constraint is said to be redundant if it can be
removed without changing the shape of the polyhedron.

In our algorithms, there are several steps at which redundant constraints
must be removed, which we call minimization of the polyhedron. For instance
we have P = {C1 : x1 − 2x2 ≤ −2, C2 : −2x1 + x2 ≤ −1, C3 : x1 + x2 ≤ 8, C4 :
−2x1 − 4x2 ≤ −7}, and C4 is a redundant constraint.

The redundancy can be tested by Farkas’ Lemma: a redundant constraint
can be expressed as the combination of some other constraints.

Theorem 1 (Farkas’ Lemma). Let A ∈ Rm×nA ∈ Rm×n and b ∈ Rmb ∈ Rm.
Then exactly one of the following two statements is true:

• There exists an x ∈ Rn such that Ax = b and x ≥ 0.

• There exists a y ∈ Rm such that ATy ≥ 0 and bTy < 0.

It is easy to determine the redundant constraints using Farkas’ lemma, but
in our case we have much more irredundant constraints than redundant ones, in
which case using Farkas’ lemma is not efficient. A new minimization algorithm
which can find out the irredundant constraints more efficiently is explained in
[19].

3 Algorithm

As our PLP algorithm is implemented with mix of rational numbers and floating-
point numbers, we will make explicit the type of data used in the algorithm. In
the pseudo-code, we annotate data with (nametype), where name is the name
of data and type is either Q or/and F. Q× F means that the data is stored in
both rational and floating-point numbers.

Floating-point computations are imprecise, and thus the floating-point LP
solver may provide an incorrect answer: it may report that the problem is in-
feasible whereas it is feasible, that it is feasible even though it is infeasible, and
it may provide an “optimal” solution that is not truly optimal. What our ap-
proach guarantees is that, whatever the errors committed by the floating-point
LP solvers, the polyhedron that we computed is a valid over-approximation: it
always includes the polyhedron that should have been computed. Details will
be explained later in this section and in Section 4.

In this section we do not consider the degeneracy, which will be talked in
Section 5.

3.1 Flow chart

The Figure 1 shows the flow chart of our algorithm. The rectangles are processes
and diamonds are decisions. The processes/decisions colored by orange are
computed by floating-point arithmetic, and that by green uses rational numbers.
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The dotted red frames show the cases that rarely happen, which means that
most computation in our approach uses floating-point numbers.

In Section 3 we will present the overview of the algorithm. Then we will
explain into details the processes/decisions framed by dashed blue rectangles in
Section 4.

Figure 1: Flow chart

3.2 Ray-tracing minimization

At several steps we need to remove redundant constraints from the description
of a polyhedron. We here present an efficient ray-tracing minimization method
based on [19]. Their approach used rational computations, while ours uses
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floating-point arithmetic. The use of floating-point numbers here will not cause
a soundness problem: in the worst case, we will eliminate constraints that should
not be removed. In other words, when the floating-point algorithm cannot
determine the redundancy, the corresponding constraints will be reported as
redundant.

There are two phases in ray-tracing minimization. In the first phase we
launch rays to the constraints, and the first hit constraints are irredundant.
The remaining constraints will be determined in the second phase: if we can
find the irredundancy witness point, then the constraint is irredundant. The
algorithm is shown in Algorithm 1.

Definition 2 (Irredundancy Witness). The irredundancy witness of a con-
straint Ci is a point that violates Ci but satisfies the other constraints.

Algorithm 1: Ray-tracing minimization algorithm.

Input: polyF: the polyhedron to be minimized
Output: the index of the irredundant constraints
Function Minimize(polyF)

pF = GetInternalPoint(polyF)
raysF = LaunchRays(polyF, pF)
foreach rayF in raysF do

constraintIdx = FirstHitConstraint(polyF, rayF, pF)
SetAsIrredundant(polyF, constraintIdx )

foreach constraint idx in undetermined constraints do
if cannot determine then

SetAsRedundant(polyF, idx )
else

if found irredundancy witness point then

SetAsIrredundant(polyF, idx )
else

SetAsRedundant(polyF, idx )

return the irredundant constraints

3.3 Parametric linear programming solver

The algorithm is shown in Algorithm 2. Firstly we construct the PLP problem,
and then we solve it by solving a set of LP problems via floating-point LP
solver. Then the rational solution will be reconstructed based on the information
obtained from the LP solver. We will explain each step in the following sections.
Our focus will be on the cooperation of rational and floating-point numbers, and
the tricks for dealing with floating-point arithmetic.
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Algorithm 2: Parametric linear programming algorithm.

Input: polyQ: the polyhedron to be projected
[xp, ..., xq]: the variables to be eliminated
n: number of initial points

Output: optimumsQ the set of optimal function
regionsQ×F the corresponding regions

Function Plp(polyQ, [xp, ..., xq], n)

plpQ×F = ConstructPlp(polyQ, [xp, ..., xq])

worklistF = GetInitialPoints(polyQ, n)
optimumsQ = none

regionsQ×F = none

while worklistF 6= none do

(wF, Rfrom
Q, Ffrom) = getTask(worklistF)

Rcurr
Q = CheckCovered(regionsF, wF)

if Rcurr
Q == none then

(basicIndices, nonbasicIndices) = GlpkSolveLp(wF, plpF)
reconstructMatrixQ = Reconstruct(plpQ, basicIndices)
(newOptimumQ, newRegionQ×F) =
ExtractResult(reconstructMatrixQ, nonbasicIndices)
(activeIndices, witnessListF) = Minimize(newRegionF)
minimizedRQ = GetRational(newRegionQ, activeIndices)
Insert(optimumsQ, newOptimumQ)
Insert(regionsQ, newRegionQ)
AddWitnessPoints(witnessListF, worklist)
Rcurr

Q=minimizedRQ

if Adjacent(Rcurr
Q, Rfrom

Q, Ffrom) then

Fcurr = GetCrossFrontier(Rcurr
Q, Rfrom

Q, Ffrom)

StoreAdjacencyInfo(Rfrom
Q, Ffrom, Rcurr

Q, Fcurr)
else

AddExtraPoint(worklist, Rcurr
Q, Rfrom

Q)

3.3.1 Constructing PLP for projection

The polyhedron to be projected is P: Ax + b ≥ 0. To perform projection,
we can construct a PLP problem shown in Problem 1. In this problem, x

are parameters, and λ are decision variables, where x = [x1, · · · , xm]T, λ =
[λ0, · · · , λn]

T. Assume that we wish to eliminate xp, · · · , xq, where 1 ≤ p ≤ q ≤
m.
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minimize
n∑

i=1

(ai•x+ bi)λi + λ0

subject to

n∑

i=1

(ai•p+ bi)λi + λ0 = 1 (*)

n∑

i=1

aijλi = 0 (∀j ∈ {p, · · · , q}) (**)

and λi ≥ 0 (∀i ∈ {0, · · · , n})

(1)

where p = [p1, · · · , pm] is a point inside P. The constraint (∗) is called normal-
ization constraint. To compute the convex hull of P and P ′: A′x+b′ ≥ 0, we just
replace the constraints (∗∗) with ATλ−A′Tλ′ = 0, bTλ+λ0 − b′Tλ′ −λ′

0 = 0.
For more details about constructing the PLP problem of projection, please refer
to [14, 18].

3.3.2 Solving PLP

The PLP problem represents a set of LP problems, whose constraints are the
same and objective function varies with the instantiation of the parameters.
Here is a brief sketch of our solver. We maintain a working set of tasks yet
to be performed. At the beginning, a random vector of parameters (or a fixed
one) is chosen as the initial task to trigger the algorithm. Then, as long as the
working set is not empty, a vector of parameters w is taken from the working
set. We solve the (non-parametric) linear programming problem for this vector
of parameters, using an off-the-shelf floating-point solver. From the information
of the final basis reached, we obtain a polyhedral region R of parameters, to
which w belongs, that all share the same optimum and the same basis, as it
will be explained below. In general, this region is obtained with redundant
constraints, so we minimize its representation. The witness points w1, . . . ,wm

of the irredundant constraints lie outside ofR, and are inserted into the working
set. We also maintain a set of already created regions: a vector w of parameters
is ignored if it lies inside one of them. The algorithm stops when the working
set is empty, meaning that the full set of parameters is covered by regions.

Here is how we process a vector w from the working set. We solve the LP
problem:
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minimize
n∑

i=1

(ai•w + bi)λi + λ0

subject to

n∑

i=1

(ai•p+ bi)λi + λ0 = 1 (*)

n∑

i=1

aijλi = 0 (∀j ∈ {p, · · · , q})

and λi ≥ 0 (∀i ∈ {0, · · · , n})

(2)

3.3.3 Obtaining rational solution

We solve this LP problem in floating-point using GLPK. Had the solving been
done in exact arithmetic, one could retain the optimal point λ∗, but here we
cannot use it directly. Instead, we obtain the final partition of the variables
into basic and non-basic variables, and from this partition we can recompute
exactly, in rational numbers, the optimum λ∗, as well as a certificate that it is
feasible.

Let M denote the matrix of constraints and O that of the PLP objective
function. The last column of the each matrix represents the constant.

M =








(Ap+ b)T 1 1
(a•p)

T 0 0
...

...
...

(a•q)
T 0 0








O =

[
AT 0 0
bT 1 0

]

(3)

To generate the result of PLP, we need to reconstruct the matrices M and O

to make sure the objective function of PLP contains the same basis as the final
tableau of the simplex algorithm: the coefficients of the basic variables in the
objective function should be 0. We extract the indices of the basic variables from
that tableau; MB and OB denote the sub-matrices from M and B containing
only the columns corresponding to the basic variables. By linear algebra in
rational arithmetic 5 we compute a matrix Θ, representing the substitution
performed by the simplex algorithm. Then we apply this substitution to the
objective matrix O to get the new objective function O′: Θ = OBM

−1

B , O′ =
O − ΘM , where M−1

B denotes the inverse of MB (actually, we do not inverse
that matrix but instead call a solver for systems of linear equations).

In our LP problem 2, the variables λ have lower bound 0, which means that
when the objective function reaches the optimal, all the non-basic variables
should reach their lower bound and their coefficients should be non-negative,
otherwise the optimal value can decrease furthermore. The same applies to
the parametric linear problems, except that the coefficients of the objective

5We use Flint, which provides exact rational scalar, vector and matrix computations, in-
cluding solving of linear systems. http://www.flintlib.org/
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function may contain parameters; thus the sign conditions on these coefficients
is translated to linear inequalities on these parameters. Each non-zero column
in O′ represents a function in x, which is the coefficient of a non-basic variable.
The conjunction of constraints (O′

•j)
Tx ≥ 0 constitute the region of x where

j belongs to the indices of non-basic variables. This conjunction of constraints
may be redundant: we thus call the minimization procedure over it.

4 Checkers and rational solvers

We compared our results with those from NewPolka. We tested about 1.75
million polyhedra in our benchmarks. In only 3 cases, round-off errors caused 1
face being missed. In this section, we explain how we modified our algorithm to
work around this difficulty. The resulting implementation then computes exactly
solutions to parametric linear programs, and thus exactly the same polyhedra
as NewPolka.

4.1 Verifying feasibility of the result from GLPK

GLPK uses a threshold (10−7 by default) to check feasibility, that is, if the
solution it proposes truly is a solution. It may report a feasible result when
the problem is in fact infeasible. Assume that we have an LP problem whose
constraints are C1 : λ1 ≥ 0, C2 : λ2 ≥ 0, C3 : λ1 + λ2 ≤ 10−8, GLPK will return
(0, 0) as a solution, whereas it is not.

We use flint to compute the row echelon form of the rational matrix of
constraints, so that the pivots are the coefficients of basic variables. We obtain
[I A′] = [b] 6, where A′ are the coefficients of the non-basic variables. When
the LP problem reaches an optimum, the non-basic variables are at their lower
bound 0, so the value of the basic variables are just the value of b. As we have
the constraints that the variables are non-negative, we thus just need to verify
that all coordinates in b are non-negative. If it is not in this case, it means that
GLPK does not have enough precision, which is likely due to an ill-conditioned
subproblem. In this case, we start a textbook implementation of the simplex
algorithm in rational arithmetic.

GLPK may also report an optimal solution which is in fact not optimized.
We did not provide a checker for this situation, as even if the solution is not op-
timized in the required region, it is optimized in anther region which is probably
adjacent to the expected one. We keep the obtained solution, and add extra
task points between the regions if they are not adjacent. Besides the adjacency
checker guarantees there will be no missed face.

4.2 Flat regions

Our regions are obtained from the rational matrix, and then they are converted
into floating-point representation. As the regions are normalized and intersect

6There may be rows of all zeros in the bottom of the matrix.
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at the same point, they are in the shape of cones. During the conversion,
the constrains will lose accuracy, and thus a cone could be misjudged as flat,
meaning it has empty interior. For instance, we have a cone {C1 : −

100000001

10000000
x1+

x2 ≤ 0, C2 : 100000000

10000000
x1 − x2 ≤ 0}, which is not flat. After conversion, C1 and

C2 will be represented in floating-point numbers as {C1 : −10.0x1 + x2 ≤ 0, C2 :
10.0x1 − x2 ≤ 0}, and the floating-point cone is flat.

In this case we invoke a rational simplex solver to check the region by shifting
all the constraints to the interior direction. If the region becomes infeasible
after shifting, then the region is really flat; otherwise we launch a rational
minimization algorithm, which is implemented using Farkas Lemma, to obtain
the minimized region.

4.3 Computing an irredundancy witness point

In the minimization algorithm, the checker makes sure that the constraints
which cannot be determined by floating-point algorithm will be regarded as
redundant constraints. In the meantime these constraints are marked as uncer-
tainty. If the polyhedron to be minimized is also represented by rational num-
bers, a rational solver will be launched to determine the uncertain constraints.
As in our PLP algorithm all the regions are represented by both floating-point
and rational numbers, the rational solver can always be executed when there
are uncertain constrains.

Consider the case of computing the irredundant witness point of the con-
straint Ci, we need to solve a feasibility problem: Ci : aix < bi and Cj : ajx ≤
bj, ∀j 6= i. For efficiency, we solve this problem in floating point. However,
GLPK does not support strict inequalities, thus we need tricks to deal with
them.

One method is to shift the inequality constraint a little and obtain a non-
strict inequality C′

1 : a1x ≤ b1 − ǫ, where ǫ is a positive constant. This method
is however difficult to apply properly because of the need to find a suitable ǫ.
If ǫ is small, we are likely to obtain a point too close to the constraint C1; if
ǫ is too large, perhaps we cannot find any point. One exception is that when
the polyhedron is a cone, we can always find a satisfiable point by shifting the
constraints, no matter how large ǫ is.

We thus adopted another method for non-conic polyhedra. Instead of solving
a satisfiability problem, we solve an optimization problem:

maximize − aix

subject to ajx ≤ bj ∀j 6= i

aix ≤ bi

(4)

The found optimal vertex is the solution we are looking for.
Assuming we have the polyhedron: −x1 + x2 ≤ 0, x1 + x2 ≤ 7,−2x2 < −3.

The two methods are shown in Figure 2. If we compute the optimum in the
direction x2 with constraints −x1 + x2 ≤ 0, x1 + x2 ≤ 7, we obtain a feasible
point (3.5, 3.5).
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Figure 2: Solving an optimization problem instead of a feasibility problem.

However the floating-point solver could misjudge, thus the found optimal
vertex p could be infeasible. Hence we need to test aip ≤ bi − t, where t is the
GLPK threshold. If the test fails, we will use the rational simplex algorithm
to compute the Farkas combination: the constraint is really irredundant if the
combination does not exist.

4.4 Adjacency checker

We shall now prove that no face is missed if and only if for each region and each
boundary of this region, another region is found which shares that boundary.

Assuming we have a situation shown in Figure 3: the four regions correspond
to different optimal functions. R1,R2 and R3 all found their adjacencies, but
R4 is missed. In this case there exist two adjacent regions for some boundaries.
We here show that this situation will not happen.

Theorem 2. No face will be missed if each region finds all the adjacent regions.

Proof. Assume that we cross the boundary F of the region Ri, and the adjacent
regions are Rj and Rk. The corresponding optimal functions are Zj and Zk,
and Zj 6= Zk (otherwise no face will be missed). From Ri to its adjacency, we
need to do one pivoting. Consider the simplex tableau in Table 1. Assuming
the entering variable is λq. If there are two adjacent regions, there will be two
possible leaving variables, say λr and λs. In the simplex algorithm we always
choose the variable with the smallest ratio of the constant and the coefficient as
the leaving variable. When there are two possible leaving variables, the value
of these two ratios must be equal, that is

bj
ajq

= bk
akq

. In this case we face the

primal degeneracy, and f∗(x)−
bj
ajq

fq = f∗(x)− bk
akq

fq. This is a contradictory

to the assumption Zj 6= Zk. Hence the situation will not happen.

To find out all the faces, we just need to ensure that all the regions have
their adjacencies. Although we tried to add task points between the regions
which are not adjacent, there may be still missed region because of floating-
point arithmetic. Hence we invoke an adjacency checker at the end of the
algorithm. The information of adjacency has been saved in Algorithm 2: if the
regions Ri and Rj are adjacent by crossing the boundaries Fm and Fn, we set
true to (Ri,Fm) and (Rj ,Fn) in the adjacency table. The checker will find out

12



non-basic variables
︷ ︸︸ ︷

basic variables
︷ ︸︸ ︷ constants

λ1 · · · λq · · · · · · λr · · · λs · · · λn

objective f1 · · · fq · · · · · · 0 · · · 0 · · · 0 Z∗(x)
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

row j . . . . . . . . . . . . mjq · · · · · · 1 · · · 0 · · · 0 cj
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

row k . . . . . . . . . . . . mkq · · · · · · 0 · · · 1 · · · 0 ck
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1: Simplex tableau.

R1

R2

R3

R4

Figure 3: Example of missing faces.

the pair (Rk,Fp) whose flag of adjacency is false. Then we cross the boundary
Fp and use Algorithm 3 to compute the missed region and the corresponding
optimal function. The adjacencies of the new obtained region will be checked
then, and the algorithm terminates when all the obtained regions have complete
adjacencies.

5 Overlapping regions and degeneracy

Ideally, the parametric linear programming outputs a quasi-partition of the
space of parameters, meaning that the produced regions do not have overlap
except at their boundary (we shall from now on say “do not overlap” for short)
and cover the full space of parameters. This may not be the case due to two
reasons: geometric degeneracy, leading to overlapping regions, and imprecision
due to floating-point arithmetic, leading to insufficient coverage. The latter will
be dealt with by rational checker, which has been explained in Section 4.

If regions do not overlap, it is possible to verify that the space of parameters
is fully covered by checking that each boundary of a region is also a boundary
of an adjacent region (proof in Section 4.4); otherwise, this means we have a
boundary with nothing on the other side, thus the space is not fully covered.
This simple test does not work if regions overlap. Furthermore, overlapping
regions may be needlessly more numerous than those in a quasi-partition. We
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thus have two reasons to modify our algorithm to get rid of overlapping regions.
Let us see how overlapping regions occur. In a non-degenerate parametric

linear program, for a given optimization function, there is only one optimal
vertex (no dual degeneracy), and this optimal vertex is described by only one
optimal basis (no primal degeneracy), i.e., there is a single optimal partition
of variables into basic and non-basic. Thus, in a non-degenerate parametric
linear program, for a given vector of parameters there is one single optimal
basis (except at boundaries), meaning that each optimal function corresponds
to one region. However when there is degeneracy, there will be multiple bases
corresponding to one optimal function, and each of them computes a region.
These regions may be overlapping. We call the regions corresponds to the same
optimal function degeneracy regions.

Theorem 3. There will be no overlapping regions if there is no degeneracy.

Proof. In parametric linear programming, the regions are yielded by the parti-
tion of variables into basic and non-basic, i.e., each region corresponds to one
basis. The parameters within one region lead the PLP problem to the same
partition of variables. If there are overlapping regions, say Ri and Rj , the PLP
problem will be optimized by multiple bases when the parameters belong to
Ri ∩Rj . In this case there must be degeneracy: these multiple bases may lead
to multiple optimal vertex when we have dual degeneracy, or the same optimal
vertex when we have primal degeneracy. By transposition, we know that if there
is no degeneracy the PLP problem will always obtain a unique basis with given
parameters, and there will be no overlapping regions.

We thus need to get rid of degeneracy. We shall first prove that there
is no dual degeneracy in our PLP algorithm, and then deal with the primal
degeneracy.

5.1 Dual degeneracy

Theorem 4. For projection and convex hull, the parametric linear program
exhibits no dual degeneracy.

Proof. We shall see that the normalization constraint (the constraint (∗) in
Problem 1) present in the parametric linear programs defining projection and
convex hull prevents dual degeneracy.

Assume that at the optimum Z∗(x) we have the simplex tableau in Table
1. λk denote the decision variables: λk ≥ 0. In the current dictionary, the
parametric coefficients of the objective function is fk = a′

i•x + b′i. Assuming
the variable leaving the basis is λr, and the entering variable is λq. Then λr is
defined by the jth row as

∑

j mjpλp +λr = cj , where λp are nonbasic variables.
That means λr = cj when the nonbasic variables reach their lower bound, which
is 0 here.

Now we look for another optimum by doing one pivoting. As the current
dictionary is feasible, we must have cj ≥ 0. To maintain the feasibility, we must
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choose λq such that mjq > 0. As we only choose the non-basic variable whose
coefficient is negative to enter the basis, then we know fq < 0. By pivoting we
obtain the new objective function Z ′(λ,x) = Z(λ,x)−fq

cj
mjq

. The new optimal

function is:
Z∗

′

(x) = Z∗(x)− fq
cj

mjq

(5)

Let us assume that a dual degeneracy occurs, which means that we obtain
the same objective function after the pivoting, i.e., Z∗

′

(x) = tZ∗(x), where
t is a positive constant. Due to the normalization constraint at the point x0

enforcing Z∗
′

(x0) = Z∗(x0) = 1, we have t = 1. Hence we will obtain

Z∗
′

(x) = Z∗(x) (6)

Considering the equation 5 and 6 we obtain

fq
cj

mjq

= 0 (7)

Since fq 6= 0, cj must equal to 0, which means that we in fact faced a primal
degeneracy.

Let D1 = fq
cj
mjq

, where the subscript of D1 denotes the first pivoting. As

cj ≥ 0, fq < 0 and mjq > 0, we know D1 ≤ 0. Similarly in each pivoting we
have Di ≤ 0.

If we generalize the situation above to N rounds of pivoting, we will obtain:

Z∗
′

(x) = Z∗(x)−

N∑

i=1

Di (8)

If there is dual degeneracy Z∗
′

(x) = Z∗(x), and then

N∑

i=1

Di = 0 (9)

As ∀i,Di ≤ 0, Equation 9 implies ∀i,Di = 0, which is possible if and only if all
the cj equal to 0. For the same reason as above, in this case we can only have
primal degeneracy.

5.2 Primal degeneracy

Many methods to deal with primal degeneracy in non-parametric linear pro-
gramming are known [3, 10, 8]; fewer in parametric linear programming [13].
We implemented an approach to avoid overlapping regions based on the work
of Jones et al. [13], which used the perturbation method [10]. The algorithm is
shown in Algorithm 3. Once entering a new region, we check if there is primal
degeneracy: it occurs when one or several basic variables equal zero. In this case
we will explore all degeneracy regions for the same optimum, using, as explained
below, a method avoiding overlaps.
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Let us consider a projected polyhedra in 3 dimensions with primal degener-
acy, because of which there are multiple regions corresponding to the same face.
Figure 4 shows the 2D view of the face. The yellow and red triangles represent
the intersection of the regions with their face. Figure 4a shows the disappoint
case where the regions are overlapping. The reason is that when the parame-
ters locate in the orange part, two different bases will lead the constructed LP
problem to optimum. We aim to avoid the overlap and obtain the result either
in Figure 4b or in Figure 4c.

(a) (b) (c)

Figure 4: Example of overlapping regions.

Our solution against overlaps is to make the optimal basis unique for given
parameters of the objective function by adding perturbation terms to the right
side of the constraints [13]. These perturbation terms are “infinitesimal”, mean-
ing that the right-hand side, instead of being a vector of rational scalars, be-
comes a matrix where the first column corresponds to the original vector, the
second column corresponds to the first infinitesimal, the third column to the
second infinitesimal, etc. The same applies to λ. Instead of comparing scalar
coordinates using the usual ordering on rational numbers, we compare line vec-
tors of rationals with the lexicographic ordering. After the perturbation, there
will be no primal degeneracy as all the right-hand side of the constraints cannot
be equal.

The initial perturbation matrix is a k ∗ k identity matrix: Mp = I, where
k is the number of constraints. Then the perturbation matrix will be updated
as the reconstruction of the constraint matrix. After adding this perturbation
matrix, the right-hand side becomes B = [b|Mp]. The new constants are vectors
in the form of vi = [bi 0 · · · 1 · · · 0]. We compare the vectors by lexico-order:
vi > vj if the first non-zero element of vi is larger than that of vj .

To obtain a new basis, in contrast to working with non-degeneracy regions,
we do not solve the problem using floating point solver. Instead, we pivot
directly on the perturbed rational matrix. Each non-basic variable will be chosen
as entering variable. Then from all the constraints in which bi = 0, we select
the basic variable λl in Ci whose ratio vi

aij
is smallest as the leaving variable,

where j is the index of the entering variable. If such a leaving variable exist, we
will obtain a degeneracy region: as bi = 0, the new optimal function will remain
the same. Otherwise it means that a new optimal function will be obtained
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by crossing the corresponding frontier. The latter will not be treated by this
algorithm, but will be computed with a task point by Algorithm 2. We maintain
a list of bases which have been explored. The algorithm terminates when all
the degeneracy regions of the same optimal function are found.

Algorithm 3: Algorithm to avoid overlapping regions.

Input: wF: the task point
plpQ: the PLP problem to be solved

Output: degeneracy regions correspond to the same optimal solution
Function DiscoverNewRegion(wF, plpF)

basicIdx = GlpkSolveLp(wF, plpF)
if degenerate then

size = GetSize(basicIdx)
perturbMQ = GetIdentityMatrix(size, size)
basisList = none

Insert(basisList, basicIdx )
degBasic = none

foreach basic variable v do

if v == 0 then
Insert(degBasic, GetIdx(v))

while basisList 6= none do
currBasis = GetBasis(basisList)
if currBasis has been found then

continue
nonBasicIdx = GetNonBasic(currBasis)
(reconstructMQ, perturbMQ) = Reconstruct(plpQ, basicIdx,
perturbMQ)
(newOptimumQ, newRegionQ×F) =
ExtractResult(reconstructMQ, nonbasicIdx )
activeIdx=Minimize(newRegionF)
minimizedRQ = GetRational(newRegionQ, avtiveIdx)
Insert(optimumsQ, newOptimumQ)
Insert(regionsQ, newRegionQ)
foreach constraint i in minimizedRQ

do
enteringV = GetIdx(i)
leavingV = SearchLeaving(degBasic, perturbMQ)
if leavingV 6= none then

newBasis = GetNewBasis(basicIdx, enteringV,
leavingV )
Insert(basisList, newBasis)
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6 Experiments

In this section, we analyze the performance of our parametric linear program-
ming solver on projection operations. We compare its performance with that of
the NewPolka library of Apron7 and ELINA library [21]. Since NewPolka and
ELINA do not exploit parallelism, we compare it to our library running with
only one thread.

We used three libraries in our implementation:

• Eigen 3.3.2 for floating-point vector and matrix operations;

• FLINT 2.5.2 for rational arithmetic, vector and matrix operations;

• GLPK 4.6.4 for solving linear programs in floating-point.

The experiments are carried out on 2.30GHz Intel Core i5-6200U CPU.

6.1 Experiments on random polyhedra

6.1.1 Benchmarks

The benchmark contains randomly-generated polyhedra, in which the coeffi-
cients of constraints are in the range of -50 to 50. Each polyhedron has 4
parameters: number of constraints (CN), number of variables (VN), projection
ratio(PR) and density (D). The projection ratio is the proportion of eliminated
variables: for example if we eliminate 6 variables out of 10, the projection ratio
is 60%. Density represents the ratio of zero coefficients: if there are 2 zeros in
10 coefficients, density is 20%. In each experiment, we project 10 polyhedra
generated with the same parameters. To smooth out experimental noise, we do
each experiment 5 times, i.e., 50 executions for each set of parameters. Then
we calculate the average execution time of the 50 executions.

6.1.2 Experimental results

We illustrate the execution time (in seconds) by line charts. The blue line is the
performance of NewPolka library of Apron, and the red line is that of our serial
PLP algorithm. To illustrate the performance benefits from the floating-point
arithmetic, we turned off GLPK and always use the rational LP solver, and
the execution time is shown by the orange lines8. It is shown that solving the
LP problems in floating-point numbers and reconstructing the rational simplex
tableau leads to significant improvement of performance.

By a mount of experiments, we found that when the parameters CN =
19, V N = 8, PR = 62.5% and D = 37.5%, the execution time of PLP and
Apron are similar, so we maintain three of them and vary the other to analyze
the variation of performance.

7https://github.com/antoinemine/apron
8The minimization is still computed in floating-point numbers.
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Recall that in order to give a constraint description of the projection of a
convex polyhedron P in constraint description, Apron (and all libraries based
on the same approach, including PPL) computes a generator description of P ,
projects it and then computes a minimized constraint description.

Projection ratio In Figure 5a we can see that execution time of PLP is
almost the same for all the cases, whereas that of Apron changes significantly.
Apron incurs a large cost when it computes the generator representation of each
polyhedron. We plot the execution time of PLP (Figure 5c) and the number
of regions (Figure 5d), which vary with the same trend. That means the cost
of our approach depends mostly on the number of regions to be explored. To
illustrate it more clearly, the zoomed figure is shown in Figure 5b.

The more variables are eliminated, the lower dimension the projected poly-
hedron has. Then the cost of chernikova’s algorithm to convert from the gen-
erators into the constraints will be less. This explains why Apron is slow when
the projection ratio is low, and becomes faster when the number of eliminated
variable is larger.
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Figure 5: CN=19,VN=8,D=37.5%,PR=[25%,87.5%]

Number of constraints Keep the other parameters, we increase the number
of constraints from 12 to 30. The result is shown in Figure 6. We can see that
Apron is faster than PLP when constraints are fewer than 19; beyond that, its
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execution time increases significantly. In contrast, the execution time of PLP
grows much more slowly.
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Figure 6: CN=[12,30],VN=8,D=37.5%,PR=62.5%

Number of variables Here the range of variables is 3 to 15. Figure 7a shows
that the performance are similar for Apron and PLP when variables are fewer
than 11, but after that the execution time of Apron explodes as the variable
number increases. The zoomed figure is shown in Figure 7b.

Our understanding is that the execution time of Apron is dominated by the
conversion to the generator description, which is exponential in the number of
constraints for polyhedra resembling hypercubes—likely for a nonempty poly-
hedron built from m random constraints in a space of dimension less than m.
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Figure 7: CN=19,VN=[3,15],D=37.5%,PR=62.5%

Density The Figure 8 shows the effect of density. The execution time varies
for both Apron and PLP with the increase of density, with the same trend.

6.2 Experiments on SV-COMP benchmarks

In this experiment we used the analyzer Pagai [12] and SV-COMP benchmarks
[2]. We randomly selected C programs from the category of Concurrency Safety,
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Figure 8: CN=19,VN=8,D=[12.5%,75%],PR=62.5%

Program Num Apron AveT ELINA AveT PLP AveT ACN
pthread-complex-buffer 405 116.03 0.29 71.46 0.18 128.56 0.32 3.25

ldv-linux-3.0-module-loop 10745 6148.74 0.57 2346.16 0.22 3969.44 0.37 3.16
ssh-clnt-01.csv 17655 5081.45 0.29 3123.7 0.18 5664.97 0.32 3.53

ldv-consumption-firewire 30650 13763.71 0.45 8574.01 0.28 21493.57 0.7 7.19
busybox-1.22.0-head3 18340 13686.23 0.75 6930.74 0.38 23971.92 1.31 10.94

ldv-linux-3.0-magicmouse 20 6.6 0.33 4.24 0.21 10.3 0.52 5
ldv-linux-3.0-usb-input 1230 327.22 0.27 198.0 0.16 356.71 0.29 3

bitvector-gcd 240 78.14 0.33 46.06 0.19 174.55 0.73 5
array-example-sorting 5395 1769.75 0.33 1081.45 0.2 3413.21 0.63 4.78
ldv-linux-3.0-bluetooth 15250 3898819.28 255.66 37477.14 2.46 190001.11 12.46 20.62

ssh-srvr-01 82500 35806.67 0.43 20170.35 0.24 98763.8 1.2 5.91

Table 2: Performance on SV-COMP benchmarks.

Software System and Reach Safety. The result is compared with NewPolka and
ELINA. In Table 2, we show the name of programs, the number of polyhedra to
be projected (Num), the total and average time (AveT) spent on projection, the
average constraint number (ACN) and the average variable number (AVN). The
time is in milliseconds. As it is shown, our algorithm has advantage over Apron
when the polyhedra contain more constraints and/or in higher dimension, e.g,
polyhedra in ldv-linux-3.0-module-loop and ldv-linux-3.0-bluetooth, as we get
rid of maintaining double description. ELINA is the most efficient.

6.3 Analysis

We conclude that our approach has remarkable advantage over Apron for pro-
jecting polyhedra in large dimension (large number of constraints or/and vari-
ables); it is not good choice for solving problems with few constraints in small
dimension.

Our serial algorithm is less efficient than ELINA, but our approach is par-
allelable and is able to speed up with multiple threads.
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7 Conclusion and future work

We have presented an algorithm to project convex polyhedra via parametric
linear programming. It internally uses floating-point numbers, and then the
exact result is constructed over the rationals. Due to floating-point round-off
errors, some faces may be missed by the main pass of our algorithm. However,
we can detect this situation and recover the missing faces using an exact solver.

We currently store the regions that have been explored into an unstructured
array; checking whether an optimization direction is covered by an existing
region is done by linear search. This could be improved in two ways: i) regions
corresponding to the same optimum (primal degeneracy) could be merged into
a single region; ii) regions could be stored in a structure allowing fast search.
For instance, we could use a binary tree where each node is labeled with a
hyperplane, and each path from the root corresponds to a conjunction of half-
spaces; then each region is stored only in the paths such that the associated
half-spaces intersects the region.
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operators on polyhedra via parametric linear programming”. In: Interna-
tional Static Analysis Symposium. Springer. 2017, pp. 212–231.
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