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Abstract
We study the evolution of one million test particles in a turbulent plasma simulation, using the

gyrokinetic code TERESA, as a method to get insights on the type of transport governing the

plasma. TERESA (Trapped Element REduction in Semi lagrangian Approach) is a collisionless

global 4D code which treats the trapped particles kinetically while the passing particles are con-

sidered adiabatic. The Vlasov-Poisson system of equations is averaged over the cyclotron and the

trapped particle’s bounce motion, thus the model focuses on slow phenomena of the order of the

toroidal precession motion of the banana orbits.

We initialize the test particles, which are de facto "test banana-centers", at a time of the simulation

when the plasma is turbulent. We impose an initial temperature and density gradients and only

Trapped Ion Mode (TIM) instability can develop in this system.

We then calculate the Mean Squared Displacement (MSD) of the test particles as a function of

time in order to obtain a random walk diffusion coefficient. We observe that the radial diffusion

of the test particles depends on their toroidal precession kinetic energy (E), in such a way that

the transport of particles is dominated by a strong, relatively narrow peak at the resonant ener-

gies. A radial particle diffusion flux is then calculated and compared to the total radial particle

flux accounting for all the transport processes such as diffusion and advection which is obtained

directly from the TERESA code. We can thus compare the diffusive contribution to the particle

flux against the non-diffusive contributions. Results show that the total flux is essentially diffusive

which is consistent with our simulation set-up aiming for "global turbulence". Both fluxes present

a peak around a resonance energy ER ≈ 1.74Ti between the TIM and the particles. Both thermal

and high-energy particles do not contribute significantly to radial transport.
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I. INTRODUCTION

Understanding, predicting and mitigating turbulent transport in tokamaks are some of

the main challenges to overcome in order to achieve commercially viable fusion reactors.

Turbulent transport processes include diffusion[16, 23, 27, 35], sub-[9, 37, 38] or super-

diffusion[42] appearing in fusion scenarios such as pre-disruptive phases, toroidicity-induced

Alfvén eigenmodes (TAE) transport or saturated tearing modes, convection[1, 2, 11, 27],

and ballistic events such as avalanches[11, 26, 36, 39, 41, 43].

Although there is no global theory of turbulence, tremendous progress on this subject have

been made in the last few decades, thanks to a combination of analytical, experimental and

numerical research[17]. Recently, the field of High Performance Computing (HPC) combined

with advances in gyrokinetic theory[3] opened new horizons in the domain of numerical sim-

ulations of turbulence[18] allowing for a deeper understanding of transport. The gyrokinetic

framework allows to simulate high-temperature plasma behavior, usually in a 5 dimensional

space, by averaging out the fast cyclotron motion of the charged particles. Simulation codes

based on this model non-exhaustively include GYSELA[8, 12, 21, 22, 41], GENE[13, 20, 28],

GKW[34], ELMFIRE[24], ORB5[29], GT5D[25, 26] and GYRO[4, 5].

It is possible to further reduce the model by averaging out, in addition to the cyclotron

motion, the trapped particle bounce (or banana) motion and considering adiabatic passing

particles with kinetic trapped ions (from zero to supra-thermal, although non-relativistic, en-

ergies), thus focusing on slow phenomena on a time-scale of the toroidal precession of trapped

particles with thermal velocity, which is around 10−2 s. In this work we use the TERESA

code[6, 7, 10, 14, 19, 31, 32, 40] which is based on this reduced gyrokinetic model and which

is less computationally intensive than standard gyrokinetic codes. This axisymmetric, elec-

trostatic code solves the Vlasov equation coupled to the quasi-neutrality constraint, in a 4

dimensional space: 2 spatial variables (α, ψ) and 2 adiabatic invariants κ and E. α = ϕ−qθ

is the precession angle with ϕ the toroidal angle, θ the poloidal angle and q the safety factor,

taken independent of the radius. ψ = ψ0−cr2 is the poloidal magnetic flux with r the radial

coordinate, c a constant and ψ0 a shift so that ψ = 0 is toward the edge. κ2 = sin2
(
θ0
2

)
is the

trapping parameter with θ0 the poloidal angle where the trapped particle parallel velocity

changes sign, µ the magnetic moment and E = 1
2mv

2
‖ + µB is the kinetic energy. Although

the code allows the simulation of kinetic trapped ions and electrons[15], in this work we focus
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on kinetic trapped ions and consider the trapped electrons as a neutralizing background.

The turbulence obtained in our simulation is driven by Trapped Ion Modes (TIM) and we

expect that mode-particle resonance play an important role in the transport of particles and

energy. The TERESA code allows for numerical investigation of fundamental phenomena

and is not intended to give quantitative predictions for tokamaks.

Although this kind of code solves the distribution function f and the electric potential φ, it

does not yield individual particle trajectories. Particles, momentum and energy fluxes can

be obtained from f and φ but discriminating diffusive and convective processes typically

requires convoluted methods such as dedicated dynamical synthetic experiments. Investi-

gating the particle trajectories in the turbulent plasma would lead to have better insights

on diverse phenomena occurring in tokamaks such as diffusion, hyper- or sub-diffusion[45],

advection, ballistic motions, and the trapping of particles in potential wells. Indeed, the

analysis can be done locally in space, within a short timespan, and without ambiguity.

In this work, in order to have access to the particle trajectories, we add test particles to

TERESA. Test particles are particles advected by the electrostatic field, but which do not

affect it. They can thus be used as markers in the turbulent plasma, representing exactly

the motion of a single particle belonging to f . The test particle trajectories are computed

directly in the TERESA code thus allowing for the same order of accuracy as solving f and

φ directly.

The present work aims at distinguishing the radial diffusive flux of the test particles, which

are de facto "banana-centers", from the total particle flux. We initialize 106 test particles in a

TIM-driven, turbulent, core plasma and investigate their time-evolution and their statistical

properties.

In section IIA, we describe briefly the bounce-averaged gyrokinetic model, then in section

II B we explain our implementation of test particles in TERESA. In section III, we detail

our simulation parameters, the initialization of the test particles and give information on

the turbulent plasma such as, the time evolution of the dominant modes, the typical mode

spectrum, the absence of large scale plasma structure. Then in section IVA we analyze the

time evolution of the test particles Mean Squared Displacement (MSD) in order to calculate

a radial random walk diffusion coefficient in velocity space. With this diffusion coefficient,

we estimate a radial diffusive flux in velocity space for the test particles in section IVB and

we compare it to the total radial particle flux obtained from f and φ. In section V we draw
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our conclusions.

II. TEST PARTICLES IMPLEMENTATION IN THE TERESA CODE

A. A bounce averaged gyrokinetic model

The TERESA code[6, 7, 10, 14, 19, 32, 40] is based on a reduced electrostatic gyrokinetic

model focusing on trapped particles, where the cyclotron and bounce motions are averaged

out. TERESA is not aimed to quantitatively predict transport in existing or futures toka-

maks. Instead its purpose is to investigate general trends and fundamental ingredients of

turbulent transport in a qualitative way. In this paper we focus on trapped hydrogen ions.

The passing particles respond adiabatically to the electric potential while the trapped ions

motion is described kinetically using the Vlasov equation

∂f

∂t
− [H, f ]α,eψ = 0. (1)

The trapped electrons are assumed as a neutralizing background. Eq. (1) is coupled to the

quasi-neutrality constraint

C1
[
φ+ F−1

(
iδmφ̂m

)]
− C2∆̄φ = 2√

π

∫ ∞
0
J0(E)f

√
EdE − 1 (2)

which comes from the fact that the fluctuation densities of the ions (passing + trapped) are

locally equal to the fluctuation densities of the electrons. Here we give a brief explanation of

the model. More details on each terms, as well as the normalization, can be found in [31, 32].

f is the ion "banana-center" (charged +e) distribution function. H = E(1 + eΩdψ) + e ¯̄φ is

the Hamiltonian of an ion "banana-center", where Ωd is linked to the precession frequency

and ¯̄φ(α, ψ;κ,E) is the gyro-bounce averaged electric potential felt by the banana-center.

[H, f ]α,eψ are the Poisson brackets in angle-action (α, eψ). A position in phase space is

determined by α the toroidal precession angle, ψ the poloidal magnetic flux which serves

as a radial coordinate, and two adiabatic invariant which are fixed parameters: E the

particle kinetic energy present in the toroidal precession motion, and κ the pitch angle. All

quantities in the TERESA code are dimensionless and are normalized as: ψ = Ψ/Lψ where ψ

is dimensionless, Ψ is the physical magnetic flux and Lψ is the radial length of the simulation

box in magnetic flux units, E is normalized to ion temperature Ti, and φ = R0eΦ/aTi where

Φ is the physical electric potential, a and R0 are respectively the minor and major tokamak
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radii.

The quasi-neutrality equation, yields the electric potential φ(α, ψ). The term C1φ in the

LHS accounts for the adiabatic response of the passing particles to φ. Although there is no

collision in the model (thus no collisional transfer between passing and trapped particles), the

term δm models the effects of electron-ion (every particles, trapped and passing) collisions as

a phase shift between φ and the electron density[31]. F−1 is the inverse Fourier transform,

φ̂m is the Fourier transform of φ in the α direction and m is the α-mode label number.

∆̄φ is the polarization term accounting for the difference between the true density and the

bounce-averaged density. J0 is the averaging operator and C1, C2 (the inverse aspect ratio)

are two fixed parameters. The RHS accounts for the difference between the trapped ions

and trapped electron densities.

B. Test particles in TERESA

Test particles allow the study of, local or global, diffusion, advection, ballistic motion,

trapped particles in potential wells. In order to obtain insights on the type of transport

processes occurring in the simulation we want to determine the banana-center trajectories.

This information is not available by solving the system for f therefore we will use test parti-

cles, which are charged particles advected by the electric potential without affecting it and

can thus be used as "markers" in the plasma.

There are multiple approaches to use test particles and the main ones are: 1) determine

an electric potential map from analytical methods and let the test particles evolve in it[30],

or, 2) obtain the electric potential map either from a kinetic simulation (or experimental

measurements[33, 44]) and determine the test particle trajectories in post processing, or, 3)

solve the test particle trajectories directly in the kinetic simulation.

Method 1 offers the main advantage that it does not require large computational power but

it relies on a predetermined analytical description of the electric potential configuration.

Method 2 is usually more computationally intensive as it generally requires a nonlinear ki-

netic simulation. One downside is that the test particle trajectories which are solved in post

processing are not solved at the same order of precision than the simulation: ∆t� dt where

∆t is the kinetic simulation time-step and dt the post processed test particle trajectories

time-step. Although it is in principle possible to use method 2 with ∆t = dt and obtain
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method 3, we distinguish method 2 from method 3 because it would require the saving of

the potential map at each dt and would thus be prohibitively expensive in term of numerical

storage.

In this work we will use method 3 which has the advantage of giving the test particle trajec-

tories with the same order of precision as the numerical scheme of the TERESA simulation

(∆t = dt ∼ 10−6Ω−1
d ), but with the downside of being more expensive in terms of computa-

tional time and numerical storage. With one million test particles, the TERESA simulation

usually takes twice as much time than without test particles.

The test particle trajectories follow the Vlasov characteristics, and as we have df
dt

= 0 over

particle trajectories, the test particles follow contours of constant f in time. The test particle

dynamics is described by the characteristic equations:

α̇ = 1
e

∂H

∂ψ
= EΩd + ∂ ¯̄φ

∂ψ
(α, ψ;κ,E) (3)

and

ψ̇ = −1
e

∂H

∂α
= −∂

¯̄φ
∂α

(α, ψ;κ,E) (4)

These positions are solved at each time-step using RK4 method and they depend on the

energy parameter E. The test particle energy E conservation throughout the simulation is

at the same order of accuracy than other quantities in TERESA. At each time-step of the

simulation, TERESA thus solves f , φ and the test particle positions in phase space.

III. SIMULATION CONFIGURATION

The bounce-averaged gyrokinetic code TERESA allows us to simulate a fusion plasma

core on the precession time-scale, in a qualitative way and at the same time follow test

particle trajectories in this plasma. We use a uniform grid in phase space: Nψ points in

ψ ∈ [0; 1] where ψ = 1 is the center of a poloidal section and ψ = 0 is toward the edge

(but still fulfilling core plasma conditions) and Nα points in the toroidal precession angle

α ∈ [0; 2π[. The number of points is Nα×Nψ = 2045× 1025. For the energy E, we choose a

non uniform grid spacing with the introduction of a new parameter V =
√
E, with NV = 96

points. The range E ∈ [0; 20] is chosen to allow good convergence of simulations results.

For the κ adiabatic invariant, we only use a single value which forces the trapped particles

to be deeply trapped. We recall the grid configuration in table I.
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Grid Number of grid points Value

α Nα = 2045 α ∈ [0; 2π[

ψ Nψ = 1025 ψ ∈ [0; 1]

κ Nκ = 1 κ = 0

E, V NE or NV = 96 E ∈ [0; 20]

TABLE I: Grid used for our simulation. α and ψ are the phase-space variables while κ and

E (or V ) are parameters.

For boundary conditions we use thermal baths on ψ = 0 and ψ = 1 thus we can impose

an initial temperature gradient length κT = 0.15 and an initial density gradient length

κn = 0.05. We also impose the electric potential to be 0 at the edges. Imposing such

constraints usually create numerical error when approaching the edges, thus we create an

artificial diffusion, "buffers", between ψ ∈ [0; 0.15] and ψ ∈ [0.85; 1][32]. The ion Larmor

radius is ρi = 0.001 and the ion banana width is δbi = 0.01 which are given in units of ψ,

at the thermal velocity, using the approximation of constant orbits. The initial electrostatic

potential is a sum of sines both in α and ψ with random phases and we choose the equilibrium

ion distribution function feq as locally Maxwellian (exponential in E):

feq(ψ,E) = e−E[1 + ψ(κT (E − 3/2) + κn)] (5)

We recall the input parameters in table II.

With the goal of studying test particle diffusion in a typical core plasma, we do not want

zonal flows or streamers to be dominant because they would drastically enhance or reduce

the radial transport of particles and thus it would not be a pertinent case to study radial

transport of test particles. We want a simulation with a "global turbulence" at the time

of the study, where global means that there is no large electric potential structure either

in ψ or in α. Fig. 1 shows the time evolution of the 5 modes along with the 0th mode

(m = 0, 2, 4, 6, 7, 9) in α direction, in semi-log. The mode magnitudes grow exponentially

from t = 0 to t ≈ 2, where the time t is normalized to the inverse precession frequency of

particles with thermal velocity Ω−1
d . Then the modes reach the saturation level at t ≈ 2

and nonlinear interactions are dominant. This is the turbulent phase where the modes are

Trapped Ion Modes (TIM). The 0th mode is not dominant throughout the simulation.
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Quantity Value

Ion Larmor radius ρi = 0.001

Ion banana width δbi = 0.01

Initial temperature gradient κT = 0.15

Initial density gradient κn = 0.05

Trapped particles precession frequency Ωd = 1

C1 C1 = 0.1

C2 C2 = 0.1

Electron dissipation[31] δm = 0.02

TABLE II: Input parameters.

A "global turbulence" would not be dominated by large scale modes such as kαmLα ∼ 1 and

kψnLψ ∼ 1, where kαm and kψn are the mth and nth wavenumbers of a φ wave in (α, ψ)

directions and Lα = 2π and Lψ = 1 are the sizes of the box in α and ψ. Moreover we

would have a bulk of most intense α-modes (not one dominant mode over the others) so

that ∆m ∼ m̄ where ∆m is the mode-range of the bulk of most intense α-modes and m̄ the

mean mode of this bulk. The auto-correlation time of the α-modes is τα ≈ 1. The spectrum

of α-modes averaged between t = 6 and t = 7 is shown in Fig. 2 and we can see that the

mode-range of the bulk of most intense α-modes is approximately ∆m ≈ 10 and the mean

mode of this bulk of modes is m̄ ≈ 10 so we do not have one very dominant mode but rather

a collection of dominant modes of about the same amplitude.

Therefore we choose to study the test particles diffusion at time t = 6. At this time we have

a ratio eφ/T ∼ 0.01− 0.03, Fig. 3, which is typical in core fusion plasma.

We choose to initialize the test particles at time t = 6, with a Gaussian distribution in ψ

centered in ψ = 0.5 and with a standard deviation ∆ψ = 0.022, in order to minimize the

sensitivity to the radial variations of turbulence. In the α direction the test particles are

distributed randomly. They have a fixed E. Fig. 4 shows the test particle distribution

function in ψ, for E = 1.74, from initialization at t = 6 to t = 6.5. Section IV shows that

the highest rate of test particle radial transport is observed for E = 1.74. For each E we

use 106 test particles: 1000× 1000 in the ψ and α directions.
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FIG. 1: Time-evolution of 5 α-modes, along with the 0th mode, in semi-log at ψ = 0.5.
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FIG. 2: Log-log spectrum of the α-modes at ψ = 0.5 and averaged over t ∈ [6, 7].
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FIG. 3: Electric potential φ map at t = 6.
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FIG. 4: Snapshot of the Test Particle Distribution Function from Gaussian initialization at

t = 6 to t = 6.5, for E = 1.74.

IV. TEST PARTICLE DYNAMICS IN A TURBULENT PLASMA SIMULATION

In this section, we aim at developing a robust method for dissociating radial diffusion and

radial convection of the test particles. We first study the time-evolution of the test particles

Mean Squared Displacement (MSD) in the radial direction ψ for each E as they evolve in a

turbulent plasma simulation. It allows to estimate the turbulent radial diffusion coefficient

in velocity space. We then find the radial diffusive flux of the test particles and we compare

it to the total radial particle flux accounting for all the transport processes.
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A. Estimation of a random walk radial diffusion coefficient in velocity space for

the test particles

We let the test particles evolve in the turbulent simulation starting from time t0 = 6. At

each time-step of the simulation, TERESA calculate the MSD of the test particles in the

radial direction, where the average is over all the test particles : 〈(ψ(t)− ψ(t0))2〉, for each

energy E. Later we will see that around E ≈ 1.74 there is a resonance between trapped ions

and TIM therefore we plot the time-evolution of this MSD for E = 0, E = 0.8, E = 1.74,

E = 2.71 and E = 3.2 respectively on Figs. 5a, 5b, 6a, 6b and 7. For each E we can

distinguish different phenomena in time for the MSD. When the MSD grows linearly in

time, we superpose the slope in red to the plot, and we will be able to calculate a diffusion

coefficient.

In the general case we expect the MSD to have 4 different phases at different time and space

scales:

1. Phase 1: a first, rapid (∼ 0.1Ω−1
d ) phase of local convection where the test parti-

cles reorganize themselves inside the local potential structure where they have been

initialized in, typically on a space scale of 10−2 in units of ψ.

2. Phase 2: a phase of fast-diffusion (∼ 0.2Ω−1
d ), on a space scale of 10−2− 10−1 in units

of ψ

3. Phase 3: In this phase, the evolution of the MSD is somewhat complex, with strong

fluctuations on a∼ 0.1Ω−1
d timescale, indicating that the particle motion is not a simple

combination of diffusion and convection on this timescale. However, on a timescale

∼ Ω−1
d , of the order of the turbulent auto-correlation time, the MSD grows roughly

linearly in time, on the space scale of the simulation box. Therefore, transport may be

modeled by a simple diffusive process on this longer timescale. We thus make a linear

fit on phase 3, which we superpose in red to the plot, to find the diffusive coefficient

4. Phase 4: a phase of saturation due to nonlocal effects and boundary conditions, where

the test particles have explored the whole simulation box in ψ and the MSD reaches

a plateau at MSD≈ 0.08.

For E = 0, see Fig. 5a, the trapped particles have no kinetic energy in the α direction. Phase

1 is from t = 6 to t ≈ 6.1, where the MSD grows quadratically with time until MSD≈ 10−3.
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Phase 2 appears from t ≈ 6.1 to t ≈ 6.3 where the MSD grows to MSD≈ 2.3× 10−3. Phase

3 is from t ≈ 6.3 to the end of the simulation. Phase 4 does not appear on this figure, but

the MSD would reach the saturation phase if the total simulation time were approximately

one order of magnitude longer.

E = 0.8, Fig. 5b, is an intermediary case. Phase 1 is present from t = 6 to t ≈ 6.1, where

the MSD grows quadratically with time until MSD≈ 10−4. Phase 2 appears from t ≈ 6.1 to

t ≈ 6.7 where the MSD grows to MSD≈ 1.5 × 10−2. Phase 3 is from t ≈ 6.3 to the end of

the simulation, and is where we fit linearly the MSD. Phase 4 is again not present, for the

same reason as before.

For E = 1.74, see Fig 6a, the test particles resonate with the TIM. Phase 1 is from t ≈ 6

to t ≈ 6.4. Phase 2 does not appear as the MSD transitions directly to phase 3. Phase

3 is from t ≈ 6.4 to t ≈ 6.8 where the MSD grows, linearly in time, from MSD≈ 0.02 to

MSD≈ 0.06, as the test particles diffuse rapidly in ψ. Phase 4 appears from t ≈ 6.8 to the

end of the simulation, where the test particles have explored the whole simulation box in ψ

and the MSD reaches a plateau at MSD≈ 0.08.

At E = 2.7, Fig. 6b, the test particles are above the resonance energy and have a higher

α̇ than the precedent cases. Phase 1 is from t ≈ 6 to t ≈ 6.1. Phase 2 does not appear as

the MSD directly enters phase 3 from t ≈ 6.1 to t ≈ 8, with the MSD growing linearly from

MSD≈ 10−3 to MSD≈ 0.04. Then the MSD enters phase 4 as the test particles are subject

to boundary effects, finally reaching a plateau at MSD≈ 0.08 at the end of the simulation.

For E = 3.2, Fig. 7, the test particles first explore the potential structure they where

initialized in, in phase 1, from t = 6 to t ≈ 6.1. Then the MSD directly enters phase 3 as

the test particles follow Brownian motion and the MSD grows linearly, until the end of the

simulation. Phase 4 does not appear during the simulation time although the saturation

would appear with a longer simulation (around t ≈ 20− 30).

From the MSD at each E, we calculate the slope of the MSD in phase 3, and thus we

can estimate a radial random walk diffusion coefficient of the test particles in E space (or

velocity space), Fig. 8.

The diffusion coefficient has a peak (DRW ≈ 5.2× 10−2) around the resonance energy ER ≈

1.74 because at this E, the test particles tend to move simultaneously with the electric

potential and thus diffuse in the radial direction much faster than at other E.

For high E, the test particles have a high velocity α̇ compared to the evolution of the electric
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potential and tend to perceive only an average of φ along their trajectories, thus their radial

diffusion coefficient is much smaller.
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FIG. 5: Time-evolution of the test particles MSD for E = 0 (5a) and E = 0.8 (5b). In red

is the linear fit of the MSD in phase 3 (diffusive phase). In black the power law fit for all

the simulation time, with t̃ = t− t0.
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FIG. 6: Time-evolution of the test particles MSD for E = 1.74 (6a) and E = 2.71 (6b). In

red is the linear fit of the MSD in phase 3 (diffusive phase). In black the power law fit for

all the simulation time, with t̃ = t− t0.

13



6 8 10 12 14 16

0

0.01

0.02

0.03

0.04

M
S

D

E = 3.20

MSD

4.17 10
-3

t - 2.49 10
-2

6 6.2 6.4 6.6

0

2

4
10

-3

FIG. 7: Time-evolution of the test particles MSD for E = 3.2. In red is the linear fit of the

MSD in phase 3.

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

0.05

0.06

FIG. 8: Random walk radial diffusion coefficient in velocity space evaluated from the motion

of the test particles.

To confirm that the diffusion coefficient calculated from the MSD is not spuriously influ-

enced by convection, we analyze the standard deviation of the ψ-distribution of test particles,

which cannot be influenced by convection. We find that there is no significant difference

between the time-evolution of the variance and that of the MSD, except for a constant shift

due to a finite initial standard deviation, which has no impact on the slope. Therefore,

this second method of analysis, which unambiguously discriminate convection and diffusion,

confirms the results of the first method. This agreement indicates that, on a timescale of
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the order of the turbulence auto-correlation time, transport is predominantly diffusive in

this simulation.

We have interpreted the results in terms of a purely diffusive phase, in general preceded by

a first phase of local convection and a second phase of fast-diffusion, and followed by a phase

of saturation due to nonlocal effects and boundary conditions. However, the same results

can also be interpreted in terms of a generalized 〈(ψ(t) − ψ(t0))2〉 = D(t − t0)p law, where

p < 1 and p > 1 correspond to sub-diffusion and super-diffusion. Figures 5-6 include fits to

this generalized law. These fits indicate that transport is sub-diffusive for particles outside

the resonance energy and below high energies, Fig. 5 and 6b, is super-diffusive for particles

around the resonance energy, Fig. 6a, and diffusive for high energies, Fig. 7.

Although we provide this alternative interpretation, the following analysis focuses on our

first interpretation of a purely diffusive phase.

B. Comparison between the radial diffusion flux of the test particles and the total

radial particle flux, in velocity space

From the random walk diffusion coefficient we can estimate a radial diffusive flux for the

test particles as

ΓDRW = −DRW〈
∂〈f〉α
∂ψ
〉ψ∈[0.4;0.6] (6)

where we averaged the radial gradient of 〈f〉α over ψ ∈ [0.4; 0.6] in order to smooth out local

high variations of f in the radial direction. The diffusive flux ΓDRW is equal to the particle

flux if transport is purely diffusive.

On Fig. 9 we compare the diffusive flux in blue to the total flux in red obtained directly

from the TERESA code as:

ΓTotal = 〈ψ̇f〉α (7)

which includes all radial transport processes such as diffusion or advection and which we

average over ψ ∈ [0.4; 0.6] and over an auto-correlation time t ∈ [6; 7].
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FIG. 9: Radial diffusion flux of the test particles (in blue) in velocity space, compared to

the total flux given by the gyrokinetic simulation in red.

We find that radial particle transport is dominated by the resonant particle around the

energy ER ≈ 1.74 where the trapped ions resonate with the TIM. As the peaks of the

total flux and the diffusive flux are of the same magnitude, we can say that the transport

of resonant particle is exclusively diffusive, following a random walk process, and moreover

that the whole radial particle transport is dominated by diffusive processes. This is coherent

with our choice of "global turbulence" as we chose to favour a turbulence driven by a bulk of

dominant TIM, with non-dominant large potential structure. Both flux peaks are negative

(directed toward the edges) which is coherent with the gradient 〈∂〈f〉α
∂ψ
〉ψ∈[0.4;0.6] being positive

at E = ER, recalling that ψ = 1 is toward the core and ψ = 0 is toward the edge.

For high E and thus high α̇, particle radial transport tends to be negligible and thus the

two fluxes tend to 0, as explained in Sec. IVA.

For E < 1, the gradient 〈∂〈f〉α
∂ψ
〉ψ∈[0.4;0.6] is negative, thus the diffusive flux is slightly positive

(directed toward the core). The total flux is of the same sign than the diffusive flux thus

they are in the same direction. Between E = 0 and E ≈ 0.5, the total flux is a little less

intense than the diffusive flux, indicating that the total flux may have a significant non-

diffusive component directed toward the edge, although the discrepancy may be due to the

uncertainty in measuring the slope of the MSD. Between E ≈ 0.5 and E ≈ 1 the total flux

is more intense than the diffusive flux indicating that the total flux may have a non-diffusive

component in the same direction than the diffusive flux, i.e. directed toward the core. The
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use of test particles thus allows us to estimate the diffusive part of the flux in the total

particles flux.

V. CONCLUSION

We added a test particle module to the reduced bounce-averaged gyrokinetic code

TERESA which is focused on investigating low frequency phenomena of the order of the

trapped particles toroidal precession frequency. The code can henceforth solve, in addition

to the distribution function f and the electric potential φ, the individual trajectories of

millions of test particles. The test particle positions in phase space are computed directly

in the code thus allowing the same order of accuracy than the TERESA numerical scheme.

Test particles are particles which respond to the electrostatic field without contributing to

it. The addition of test particles in our code gives us access to information which where not

available before with only f and φ. It allows to have better insights on transport phenomena

such as diffusion, advection or ballistic motions.

In this first work using test particles in TERESA we aimed at separating the contribu-

tion of the diffusive process of the particles in the radial direction, from the total radial

transport. To proceed, we initialized one million test particles at t = 6, in a turbulent

core plasma, in the center of our box (ψ = 0.5) and let them evolve in the electrostatic

potential. The turbulence is TIM-driven and there is no dominant zonal flows, streamers or

large potential structure which would drastically impact the transport. Instead, the α-mode

spectrum presents a bulk of most intense modes ranging from m ≈ 1 to m ≈ 10 and the

ratio eφ/T ∼ 0.01− 0.03 is typical of core turbulence.

We then calculated the time evolution of the test particles Mean Squared Displacement in

the radial (ψ) direction, for each E ∈ [0; 20] and observed that the MSD tend to first have

a rapid growth indicating that the test particles reorganize themselves inside the potential

structure where they were initialized in. Then the test particle MSD grows linearly indi-

cating a radial diffusion process toward the edges of the box until the test particles start

to undergo boundaries effects. At ER = 1.74 which is approximately when the particles

resonate with the TIM, the MSD becomes constant in time at MSD≈ 0.08 indicating that

the test particles fully explored the box in the radial direction. At the resonant energy,

the particles tend to "see" constant potential structure and thus explore the simulation box
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faster than at non-resonant energies.

With the MSD obtained for each E, we calculated a radial random walk diffusion coefficient,

which presents a peak around the resonant energy ER ≈ 1.74.

Then we estimated the radial diffusive flux of the particles which is the flux if there was only

a diffusion process. We compared it to the total flux obtained directly from the TERESA

simulation accounting all the radial transport processes. We found that the radial particle

transport is clearly dominated by the resonant particles, as both fluxes present a peak

around ER ≈ 1.74. Both peaks are negative and of the same intensity, indicating that

radial transport of resonant particles is exclusively a diffusive process toward the edge. It is

coherent with our choice of "global turbulence". The high energy particle radial transport

tend to be negligible. Below the resonance, for E < 1, the gradient of f is negative and

the diffusive flux is oriented toward the core. Between E = 0 and E ≈ 0.5, there might

be a non-diffusive process, directed toward the edge so that the total flux is lower than the

diffusive flux. Between E ≈ 0.5 and E ≈ 1, a non-diffusive process appears to induce a flux

directed toward the edge, so that the total flux is more intense than the diffusive flux.

This analysis was made in a broad spectrum (∆m ∼ m̄) turbulence. In a peaked (∆m� m̄)

spectrum turbulence, large radial structures (streamer-like) appear and test particle trans-

port is enhanced, so that ΓDRW is one order of magnitude smaller than ΓTotal and the two

fluxes are not peaked at a resonance energy anymore.
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