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ARTICLE

A tessellation-based colocalization analysis
approach for single-molecule localization
microscopy
Florian Levet 1,2,3,4,5, Guillaume Julien1,2, Rémi Galland1,2, Corey Butler1,2, Anne Beghin1,2, Anaël Chazeau1,2,

Philipp Hoess 6, Jonas Ries 6, Grégory Giannone1,2 & Jean-Baptiste Sibarita 1,2

Multicolor single-molecule localization microscopy (λSMLM) is a powerful technique to

reveal the relative nanoscale organization and potential colocalization between different

molecular species. While several standard analysis methods exist for pixel-based images,

λSMLM still lacks such a standard. Moreover, existing methods only work on 2D data and are

usually sensitive to the relative molecular organization, a very important parameter to con-

sider in quantitative SMLM. Here, we present an efficient, parameter-free colocalization

analysis method for 2D and 3D λSMLM using tessellation analysis. We demonstrate that our

method allows for the efficient computation of several popular colocalization estimators

directly from molecular coordinates and illustrate its capability to analyze multicolor SMLM

data in a robust and efficient manner.

https://doi.org/10.1038/s41467-019-10007-4 OPEN

1 Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux 33076, France. 2 Interdisciplinary Institute for Neuroscience, Centre National
de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux 33076, France. 3 Bordeaux Imaging Center, University of Bordeaux, Bordeaux 33076, France.
4 Bordeaux Imaging Center, CNRS UMS 3420, Bordeaux 33076, France. 5 Bordeaux Imaging Center, INSERM US04, Bordeaux 33076, France. 6 Cell Biology
and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany. Correspondence and requests for materials should be
addressed to J.-B.S. (email: jean-baptiste.sibarita@u-bordeaux.fr)

NATURE COMMUNICATIONS |         (2019) 10:2379 | https://doi.org/10.1038/s41467-019-10007-4 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4009-6225
http://orcid.org/0000-0002-4009-6225
http://orcid.org/0000-0002-4009-6225
http://orcid.org/0000-0002-4009-6225
http://orcid.org/0000-0002-4009-6225
http://orcid.org/0000-0003-2390-2245
http://orcid.org/0000-0003-2390-2245
http://orcid.org/0000-0003-2390-2245
http://orcid.org/0000-0003-2390-2245
http://orcid.org/0000-0003-2390-2245
http://orcid.org/0000-0002-6640-9250
http://orcid.org/0000-0002-6640-9250
http://orcid.org/0000-0002-6640-9250
http://orcid.org/0000-0002-6640-9250
http://orcid.org/0000-0002-6640-9250
http://orcid.org/0000-0002-9920-7700
http://orcid.org/0000-0002-9920-7700
http://orcid.org/0000-0002-9920-7700
http://orcid.org/0000-0002-9920-7700
http://orcid.org/0000-0002-9920-7700
mailto:jean-baptiste.sibarita@u-bordeaux.fr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Over the last decade, single-molecule localization micro-
scopy1–3 (SMLM) has revolutionized cell biology, making
it possible to decipher the nanoscale organization of

fluorescently labelled proteins. Multicolor SMLM (λSMLM)
enables investigating the relative organization and potential
interaction between several subcellular components at the
nanoscale. However, while λSMLM can be acquired in routine,
performing robust quantitative colocalization analysis still
remains a challenging problem. The first biological applications
used the popular image-based colocalization analysis to quantify
the level of interaction between two fluorescent markers at the
pixel level4,5. Recently, several coordinate-based techniques have
emerged to compute the colocalization directly from the molecule
coordinates6–10. Lagache et al.6,7 used an extension of the
bivariate K-Ripley’s function computed on previously segmented
clusters’ barycenters to determine the most likely interaction
distance between each molecular specie. Getis and Franklin
(GF)8, coordinate-based colocalization (CBC)9 and cluster
detection with degree of colocalization (ClusDoc)10 methods all
employ a user defined local distance parameter, combined either
with the Getis and Franklin function8, the Spearman rank
correlation9,10 or the density-based spatial clustering of applica-
tions with noise (DBSCAN)11 to quantify the level of colocali-
zation around each localization. However, while these approaches
are quite robust to the local molecular density, they all require
model-dependent parameters which may be difficult to tune and
strongly influence the colocalization values.

We here present a simple and efficient parameter-free
colocalization method, called Coloc-Tesseler (CT), using poly-
topes (polygons in 2D or polyhedrons in 3D) embedding
the localizations to compute the molecular co-organization of 2-
and 3-dimensional λSMLM data. Coloc-Tesseler relies on
the normalized pair-density parameter computed from the
overlapping Voronoï diagrams of the two molecular species to
quantify their spatial co-organization in a robust to density
and parameter free manner. It allows computing the popular
image-based colocalization quantifiers, such as the Manders
and Spearman’s coefficients, directly from the molecular coordi-
nates in a straightforward manner. Compared with existing
localization-based solutions, it is very efficient in terms of com-
putation speed and it comes with a powerful graphical user
interface enabling user interactive feedback at the single locali-
zation level, making it an ideal tool for routine colocalization
analysis of biological data. We validate our method on 2D and 3D
synthetic data as well as on experimental λSMLM data of tubulin
and nuclear pore complexes in mammalian cells, and actin
cytoskeleton regulators in neuronal synapses.

Results
Tesselation-based colocalization analysis. Tessellation-based
methods, such as SR-Tesseler12 and ClusterVisu13, have been
recently introduced to quantify SMLM data from the molecules’
coordinates. They have proven to be efficient at quantifying
biological data with very different molecular organizations in a
robust and automatic manner14–17, by comparing the local
molecular density with the average density of a complete spatially
random distribution. Our method relies on the computation and
overlay of the Voronoï diagrams of two independent color
channels (Fig. 1a). The normalized 1st rank density bδi ¼ δi=δ is
computed for each Voronoï diagram, with δi and δ being
respectively the 1st rank density of the ith localization (Supple-
mentary Fig. 1a) and the average density of a spatially random
reference distribution. The histograms of bδiA and bδiB describe the
spatial distributions of the localizations of channels A and B,

respectively. They have the property to be independent from the
absolute molecular density (Supplementary Fig. 1b). Auto-
matically thresholding both channels based on bδiA and bδiB allows
classifying the localizations in three orthogonal classes: two high-
density classes and one background class (Fig. 1b, Supplementary
Fig. 2a and “Methods” section). This classification enables com-
puting the standard version of the Manders coefficients, by seg-
menting both channels independently and measuring the ratios
between the overlapping areas and the total areas per channel13

(Supplementary Fig. 2b and “Methods” section). The segmenta-
tion is achieved by regrouping adjacent molecules belonging to
the high-density classes. In order to take into account the relative
densities between each channel and avoid the segmentation step
required to compute the surface of each channel, we bind each
localization of a given channel, sAi (resp. sBi ), to its corresponding
molecule in the other channel, sBj (resp. sAj ), using overlapping
polytopes (Fig. 1c and “Methods” section). This allows sub-
dividing the high-density classes in two additional classes, cor-
responding to whether or not a localization in a given channel lies
inside a high-density polytope of the other channel, without the
need for segmentation (Fig. 1c). Localizations are therefore
organized in five different orthogonal classes describing the co-
organization of the two molecular species based on their local
pair-normalized localization densities (Fig. 1d). We then used a
scatterplot representation18 adapted to λSMLM data to investi-
gate the colocalization between the two channels in a more
quantitative manner (Fig. 1e). Contrary to image-based scatter-
plots, which are constructed from the pixel intensities of each
image19, λSMLM scatterplots are designed using the normalized
densities of each channel as axes, where each point at coordinates
(xi ¼ bδiA; yi ¼ bδjB) corresponds to overlapping localization pairs
in the two-color Voronoï space (Fig. 1c, e and “Methods” sec-
tiom). In order to avoid possible edge artifacts inherent to
Voronoï space dividing methods, we computed an additional
edge correction parameter that takes into account outliers and
large polytopes lying at the edge of dense structures (Supple-
mentary Fig. 3 and “Methods” section).

The λSMLM scatterplot representation can then be used to
further quantify the spatial co-organization of multicolor SMLM
data by simply deriving the popular Manders and Spearman’s
rank correlation coefficients19 – gold standards to quantify the
level of colocalization and correlation between two molecular
species from intensity-based images – directly from their
localization coordinates. The λSMLM Manders coefficients, MA

and MB, are computed by ratiometric measurement of the
normalized densities directly from the classified molecules within
the thresholded scatter-plots (Fig. 1f and “Methods” section).
They precisely quantify the level of colocalization between the
two channels for each molecular species, independently of their
relative localization densities. While the Manders coefficient
usually requires two parameters, corresponding to the thresholds
separating background from structures of interest for each
channel19, the Voronoï diagrams allow automatic and robust
determination of these parameters12,13. We used the same
threshold value of bδi ¼ 1 for all the channels, both for the
simulated and the experimental data. Moreover, we demonstrated
that the relative molecular densities between the two channels
don’t influence the Manders coefficients (Fig. 2 and Supplemen-
tary Fig. 4).

In the case of λSMLM data, the Spearman rank correlation
coefficient is preferred to the Pearson coefficient because of its
robustness to the relative molecular densities between the two
channels9. It estimates for each channel the best monotone
relationship within the cloud of (xi, yi) scatterplot coordinates
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Fig. 1 Voronoï-based colocalization analysis. a Simulated 2-colors SMLM dataset composed of 100 nm partially overlapping clusters with circular and
square shapes (left) (scale bar 50 nm). Overlay of the Voronoï diagrams generated from the 2-colors localizations (right). b Automatic density-based
classification of the localizations in 3 classes segmented with bδi>1. Localizations are colored on a per-class basis: the yellow (resp. cyan) class CA (resp. CB)
represents localizations with high densities in the channel A (resp. B) and the black class C�A�B regroups the localizations with low densities in both channels.
c Classification of the localization in 5 classes. Magnified region of (a, b) showing localizations classified in CA, CB or C�A�B, together with the two overlapping
Voronoï diagrams (left) (scale bar 10 nm). Each localization is described by a pair of normalized densities, extracted from the overlapping polygons in
which it relies (middle). For simplification, only the Voronoï cells of 2 localization pairs (described by the star numbered 1 and 2) have been displayed. Two
additional classes CAB and CBA (red and blue), sub-divide the high-density classes CA and CB from localizations having high densities in both channels
(right). d Final 5 classes density-based classification of the 2-color localizations. e Scatterplot representation of normalized densities pairs in log-scale axes
for the 2 channels. Scatterplots are defined for each channel, always keeping the density of channel A in abscises and the density of channel B in ordinates.
The 5 classes are highlighted by the division of the scatterplots at (0,0) coordinates. f, g Principle of the Manders’ coefficients (f) and Spearman rank
correlation (g) for quantitative colocalization analysis
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(Fig. 1g and “Methods”) and quantifies the level of co-
organization between the λSMLM data, with the advantage of
being parameter-free and robust to molecular-density.

Validation on simulated data and comparison with other
methods. As already discussed, one major limitation of existing
colocalization methods dedicated to λSMLM is, in addition to be
time-consuming and restricted to 2D data, their sensitivity to the
molecular organization, making them difficult to parametrize for
routine analysis of different biological samples. This is an
important limiting factor since molecular densities of each
channel can strongly fluctuate experimentally depending on the
labelling strategy, acquisition parameters and biological models of
investigation. In order to validate the robustness of our method
with respect to the density parameter, we simulated and analyzed

2-color SMLM data of well separated 50 nm radius clusters of
circular and square shapes, with varying respective density ratios
between 1:1 and 1:5 and varying colocalization ratios between 0 to
100% (Fig. 2a). We computed the Manders coefficients (MA and
MB) and the Spearman rank correlation coefficients (SA and SB)
from the scatterplots of each channel for all the conditions using
Coloc-Tesseler. Both quantitative analyses always successfully
assessed the level of colocalization of the simulations regardless of
the respective molecular densities, and without changing any
parameters (Fig. 2b). All the quantifications remained stable even
in the case of strong density ratios between two channels (Sup-
plementary Fig. 4).

We also validated the efficiency of Coloc-Tesseler to quantify
3D localization data with the same formalism used to analyze 2D
data. We more especially investigated the effect of the anisotropic
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Fig. 2 Voronoï-based colocalization analysis of 2-color simulation data. a 2-color 100 nm circular (purple) and square (green) clusters with inter-cluster
distances of 0, 50 and 125 nm (scale bar 50 nm). Original 2-color localizations (left). Scatterplots of the normalized pairs densities for the 2 channels
(middle). Scatterplots are defined for each channel, always keeping the density of channel A in abscises and the density of channel B in ordinates. The
dashed line is a visual representation of the Spearman rank correlation analysis while the solid line shows the threshold used to compute the Manders
coefficients. 5 class classification of the 2-color localizations computed from the overlapping Voronoï diagrams (right). b Manders’ coefficients and (c)
Spearman rank correlation computed on the 3 colocalization conditions for different density ratios ranging from 1:1 (0.013 mol.nm−2, 0.013mol.nm-2) to 1:5
(0.013 mol.nm-2, 0.065mol.nm-2). All 3 colocalization conditions were correctly retrieved for all the densities: (d= 0 nm, MA= 0.94 ± 0.006 SEM, MB=
0.7 ± 0.004 SEM; d= 50 nm, MA= 0.43 ± 0.004 SEM, MB= 0.32 ± 0.001 SEM; d= 125 nm, MA= 0.01 ± 0.001 SEM, MB= 0.01 ± 0.0001 SEM) for
Manders and (d= 0 nm, SA= 0.76 ± 0.003 SEM, SB= 0.76 ± 0.005 SEM; d= 50 nm, SA= 0.46 ± 0.005 SEM, SB= 0.4 ± 0.003 SEM; d= 125 nm, SA=
−0.18 ± 0.002 SEM, SB=−0.18 ± 0.002 SEM) for Spearman rank correlation. In all box plots the center line is the median, the square is the mean and the
bounds of the boxes are the 75 and 25% percentiles i.e., the interquartile range (IQR)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10007-4

4 NATURE COMMUNICATIONS |         (2019) 10:2379 | https://doi.org/10.1038/s41467-019-10007-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


localization precision by scrambling the localizations coordinates
with different amplitudes ranging between 0 and 20 nm laterally
and between 0 and 60 nm axially. For all the simulated
conditions, Coloc–Tesseler systematically performed accurate
colocalization analysis, illustrating its capability to analyze
realistic 3D λSMLM data with a good robustness to the
localization accuracy anisotropy (Supplementary Fig. 5). How-
ever, these simulations also point-out that Spearman coefficients
are more sensitive to localization accuracy, which is expected
since degrading the localizations accuracy homogenizes the
density distribution of the two channels and increase their
correlation.

In order to further mimic the heterogeneity existing in biology,
we simulated data sets of fully colocalized clusters with varying
molecular density, cluster density (i.e. number of clusters per
surface unit) and cluster size (Supplementary Fig. 6), from which
no significant change is expected in the colocalization analysis.
This variability is a common situation that can be found in many
biological systems, where receptors are organizing and clustering
in a highly dynamic manner upon activation to trigger molecular
signaling20–22. We then compared the capability of Coloc-
Tesseler (CT), Clus-Doc10 (CD) and Getis & Franklin8 (GF)
methods to quantify these colocalization data. We first analyzed
the impact of changing the density of clusters, ranging between
50 and 200 clusters per fixed field of view (Supplementary
Fig. 6a). Modulating the density of clusters in a fixed background
impacts the ratio between clustered and non-clustered molecules,
destabilizing the methods quantifying the colocalization by
ratiometric computation between the colocalized molecules
inside and outside the clusters. As an illustration, GF colocaliza-
tion showed an important variability and dropped from 56 to
27% when increasing the density of clusters. Combined with
DBSCAN to segment the clusters and restrict the colocalization
analysis to the clustered molecules, CD allowed stabilizing the
quantifications between 69 and 63%. Nevertheless, despite its
stability, the computed colocalization value remains low for a
100% simulated colocalization. Since CT uses a similar concept
to compute the Manders coefficients, it exhibited strong
robustness with respect to the cluster density with a colocaliza-
tion ranging between 87% and 80.5%. We then investigated the
stability of the three methods with respect to the relative
molecular densities between channels, ranging from 1:1 to 1:8
(Supplementary Fig. 6b). This variation in density is common in
multicolor SMLM, where molecular densities of clusters in each
color may differ due to differences in protein aggregation,
antibody specificity, and fluorophore photophysics. Since
DBSCAN is known to be sensitive to the molecular density
and background12, CD method was not stable when varying the
respective molecular densities. It resulted in strong differences in
the case of high relative density ratio between the channels, with
89% colocalization for channel A and 65% for channel B in the
case of 1:8 density ratio. On the contrary, GF was very stable to
this parameter thanks to its intrinsic normalization formalism,
with a colocalization varying between 60 and 62%. However, GF
being more sensitive to background, the colocalization values
remained too low for a 100% colocalization condition. CT
exhibited a high and stable colocalization ranging between 82
and 96% for all the conditions, thanks to its normalization
mechanism and its robustness to noise. Finally, we analyzed the
robustness of the 3 methods with respect to the cluster size
heterogeneity. We simulated a mixed population of clusters of
100 and 200 nm diameter, with varying percentage of each
population between 0 to 100% (Supplementary Fig. 6c). In this
case, both GF and CD exhibited a strong sensibility to this
parameter, with colocalization values ranging between 56 and
29% for GF and between 69 and 34% for CD. On the contrary,

CT remained highly robust with colocalization values ranging
between 89 to 87% for all the conditions.

The colocalization analysis performed on these synthetic data
illustrates the limits of existing techniques and the versatility and
robustness of Coloc–Tesseler to properly quantify the hetero-
geneity found in single-molecule localization microscopy and cell
biology. This heterogeneity is a very important parameter to
consider when aiming to decipher the molecular co-organization
between different molecular species, under various biological
conditions.

Validation on well-known experimental data. We validated our
tessellation-based colocalization analysis on 2D and 3D experi-
mental data using well-known biological structures, such as
microtubules and nuclear pore complex, as well as actin cytos-
keleton regulators. As a control of our method to efficiently
analyze 2D and 3D experimental λSMLM, we performed several
SMLM acquisitions of samples with varying labeling and mole-
cular densities. For each data set, we quantified, with all the
colocalization methods, the entire image as well as different ROI
displaying different molecular densities. For the 2D analyses, we
only considered the lateral coordinates of the localized molecules.

As a positive control, we first acquired and analyzed astigmatism-
based 3D single-color DNA-PAINT Tubulin data composed of
7,871,312 localizations, which we randomly split over time to mimic
colocalized data with varying relative labelling density ratios ranging
between 50%/50 and 10%/90% (Fig. 3a–c). The normalized density
scatter-plots illustrate both the perfect colocalization and correlation
between the two channels (Fig. 3d), as well as the robustness to
molecular densities (Supplementary Fig. 7). As expected from the
simulations, in 2D, CT performed very well for all the density
conditions, with a colocalization ranging between 96 to 91% for
Manders, and between 76 to 61% for Spearman (Fig. 3e). CT also
exhibited a very strong stability for the different zones on the image,
with less than 17% (resp. 26%) fluctuation between ROIs for
Manders (resp. Spearman) coefficients. GF also performed quite
well, with a colocalization ranging between 83 and 82%, but a
higher variability between the different ROI up to 28% (Fig. 3e).
However, CD’s sensitivity to molecular density, made it fastidious to
adjust the parameters for the different relative densities. In addition,
it could only achieve between 51 and 22% colocalization at the best,
with up to 17% fluctuation between ROIs. As observed from the
simulations, variabilities between ROIs on the same data illustrates
the sensitivity of GF and CD methods, that rely on ratiometric
computation between localizations inside the structures and
background localizations. The 3D colocalization analysis performed
with CT provided very similar results to 2D, with colocalization
ranging between 91 to 80% (resp. 83 to 62%) for Manders (resp.
Spearman), and an improved variability below 10% (resp. 8%) for
all the ROI (Fig. 3f).

As a negative control, we performed 3D two-color DNA-PAINT
experiments of non-overlapping microtubule (4,086,102 localizations)
and lamin (828,756 localizations) structures (Fig. 3g, h). The
normalized density scatterplot of the entire cell nicely illustrates the
non-colocalization of the 2 channels. At the entire image level, CT
performed very well, with a colocalization of 1% for Manders and
−5% for Spearman (Fig. 3i, j). GF didn’t perform very well in this
condition, quantifying up to 20% colocalization and CD performed
very well with only 3% colocalization. However, while both GF and
CD remained quite stable for all the regions, Manders CT
colocalization increased to 20% in the nucleus region, due to 2D
projection artefacts (Fig. 3j). This was corrected using the 3D
colocalization analysis (Fig. 3k), providing less than 0.3% colocaliza-
tion for all the ROI, illustrating the importance of 3D colocalization
analysis in the case of 3D protein distribution.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10007-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2379 | https://doi.org/10.1038/s41467-019-10007-4 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


As a more challenging negative control, we performed 2D and
3D dual-color dSTORM experiments of the nucleoporin Nup107
(34,362 localizations in 2D and 46,081 localizations in 3D) and
wheat germ agglutinin (WGA) which binds to the disordered and
glycosylated regions in the center of the nuclear pore (79,990

localizations in 2D and 35,321 localizations in 3D). Differences in
the total number of localizations compared to the microtubule
experiments are mainly due to the protein organization, labelling
strategies and processing of the data, illustrating the broad range
of densities that can be found in experimental SMLM. While
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these two structures are known for not being colocalized at the
nanoscale level, they are very close to each other and organized in
a concentric manner (Fig. 3l, m). The normalized density
scatterplots illustrate both the complexity of the data and the
difference between 2D and 3D normalized density distributions
(Fig. 3n). While CT could still perform quite well in 2D, with 14%
for Manders and 28% for Spearman, and classify efficiently the
localizations (Fig. 3l), GF failed to quantify properly the
colocalizations, with more than 80% colocalization (Fig. 3o).
CD performed very well for this dataset with only 1.5%
colocalization, even if overall CD always provided much lower
values in our hands compared to CT and GF. Interestingly, the
3D quantifications provided by Coloc-Tesseler still performed
well, improving the Mander’s colocalization from 14% to 7.5%,
but degrading the Spearman rank coefficient from 28 to 38%.
This loss of efficiency in 3D versus 2D is certainly due to the
decrease of resolution, as illustrated on simulations (Supplemen-
tary Fig. 5).

Colocalization analysis of cytoskeleton regulators. In the brain,
post-synaptic structures of most excitatory synapses consist of
small membrane extensions emerging from dendritic shafts called
dendritic spines. Concentrated in spines, F-actin networks control
their formation and morphological remodeling during synaptic
plasticity23,24. Using λSMLM, we previously showed that the
nanoscale segregation of actin regulators directs dendritic spine
protrusion25. Actin regulatory proteins driving nucleation of
branched F-actin networks, such as the WAVE and Arp2/3
complexes, were located close to the postsynaptic density
(PSD)25. On the contrary, actin regulators involved in F-actin
elongation, including VASP and Formin, were located at the tip
of membrane protrusions moving away from the PSD22. This was
measured using custom-made quantitative analysis dedicated to
the very specific geometry of dendritic spines and radial mole-
cular organization of the investigated proteins with respect to the
PSD. The same study also demonstrated that spine morphological
remodeling, driven by activation of Rho GTPases26, is correlated
with the nanoscale reorganization of branched actin regulators25.
Specifically, expression of a constitutively active Rac1 mutant
(Rac1-Q61L) triggers delocalization from the PSD of its main
effector, the WAVE complex. To confirm these results, we
quantified the amount of colocalization with the PSD for three
F-actin regulatory proteins: Abi1 a subunit of the WAVE com-
plex, ArpC5A a subunit of the Arp2/3 complex and VASP. We
used dual-color dSTORM and PALM acquisitions performed in
rat hippocampal neurons, for respectively PSD95, to localize the
PSD, and actin regulatory proteins. For all the cells, we computed

i) the Voronoï diagrams for PSD95 and F-actin regulatory pro-
teins, PSD95 (18 cells, 4,494,370 localizations), Abi1 (4 cells,
464,294 localizations), VASP (8 cells, 2,469,510 localizations),
ArpC5A (3 cells, 602,108 localizations) and Abi1 with constitutive
Rac1 activation (3 cells, 246,579 localizations), ii) the scatterplots
of PSD95/F-actin regulators pairs, and iii) the Manders and
Spearman coefficients, MA and SA, using the F-actin regulator
localizations as a reference (Fig. 4a). We computed the colocali-
zation coefficients on manually selected synapses (176 synapses)
between PSD95 (672,343 localizations) and the F-Actin reg-
ulatory proteins, Abi1 (36 synapses, 81,048 localizations), VASP
(88 synapses, 211,894 localizations), ArpC5A (29 synapses, 59,025
localizations) and Abi1 with constitutive Rac1 activation
(23 synapses, 19,894 localizations). These quantifications clearly
demonstrate that Abi1 protein is strongly colocalized with
the PSD compared to VASP and ArpC5A (MA= 0.74 ± 0.02
SEM, SA= 0.62 ± 0.02 SEM for Abi1, MA= 0.17 ± 0.02 SEM,
SA= 0.24 ± 0.03 SEM for VASP andMA= 0.16 ± 0.03 SEM, SA=
0.26 ± 0.03 SEM for ArpC5A) (Fig. 4b,c). This further demon-
strates that the PSD is the convergence zone where proteins
triggering branched F-actin nucleation such as the WAVE com-
plex meet. The specific localization of the WAVE complex at the
PSD is reorganized with enhanced Rac1 activation, as evidenced
by the significant decrease of colocalization between Abi1
and PSD95 in conditions where Rac1 is constitutively activated
(MA= 0.15 ± 0.04 SEM, SA= 0.14 ± 0.04 SEM). We also
performed our colocalization analysis to the whole dendrite,
resulting in a similar trend compared to the synaptic analysis
(MA= 0.46, SA= 0.55 for Abi, MA= 0.1, SA= 0.25 for VASP,
MA= 0.09, SA= 0.32 for Arp2/3 and MA= 0.04, SA= 0.17 for
Abi-Rac) (Supplementary Fig. 8a). However, while the decrease of
the Manders’ coefficient was limited for VASP, ArpC5A and Abi1
with constitutive Rac1 activation, we could notice a significant
decrease for Abi1, further illustrating that the WAVE complex
and PSD are more co-organized in dendritic spines than to any
other part of the dendritic shaft. Finally, since all these proteins
are known to organize in nano-clusters25, we analyzed the
cluster-to-cluster distance between the different F-actin reg-
ulatory proteins and PSD95 using the Voronoï-based cluster
analysis12 (“Methods” section and Supplementary Fig. 8b). These
quantifications showed that Abi1 nanoclusters are positioned at
closer proximity to PSD95 (d= 220 nm ± 21, SEM), while VASP,
which moves outwards from the PSD with growing F-actin bar-
bed ends, is the farthest away from PSD95 (d= 453 nm ± 19 SEM
for VASP). Like the tessellation-based Manders and Spearman
coefficients, the cluster-to-cluster distance analysis demonstrated
the delocalization of Abi1 from the PSD by Rac1 constitutive
activation (d= 393 nm ± 22 SEM for Abi1 with constitutive Rac1

Fig. 3 Colocalization analysis on well-characterized biological structures. a–f Colocalization analysis of 3D single-color Tubulin data. (a) Random split of the
localizations to obtain 2 channels with a density ratio of 50/50 (scale bar 5 µm). Left: 2D projection overlay of the 2 channels. Right: 3D color coding
projection of all the localizations. bMagnified views of 3 ROI in a (scale bar 2 µm). c Point rendering for different density ratios within the magnified view in
b (left 33 : 67%, middle 20 : 80%, right 10 : 90%, scale bar 250 nm). d Scatterplot of the normalized densities of the 2 colors. e 2D colocalization analyses
performed with Coloc-Tesseler (Manders and Spearman), Clus-DoC and Getis & Franklin. f 3D colocalization analysis performed with Coloc-Tesseler
(Manders and Spearman). g–k Colocalization analysis of a 3D two-color Tubulin/Lamin dataset (scale bar 5 µm). h Lateral (top) and axial (bottom) views
of two magnified ROI of the dataset in f (scale bar 2 µm). i Scatterplot of the normalized densities of the 2 colors. j 2D colocalization analyses performed
with Coloc-Tesseler (Manders and Spearman), Clus-DoC and Getis & Franklin. k 3D colocalization analysis performed with Coloc-Tesseler (Manders and
Spearman). l–o Colocalization analysis of 2D and 3D two-color acquisitions of nuclear pore complexes (NPC). l 3D NPC dataset of genome-edited
expressing Nup107-SNAP cells, labelled with BG-AF647 (magenta) and WGA-CF680 (green) (scale bar 500 nm). m Magnified views of a 2D (left,
middle) and 3D (right) NPC (scale bar 50 nm). The same 2D NPC was used for the intensity-based (left) and point (middle) rendering. The point
representation (middle) illustrates the result of the 5-class classification obtained using Color-Tesseler. n Scatterplot of the normalized densities of the 2
colors for a 2D (left) and 3D (right) NPC data sets. o 2D (left) and 3D (right) colocalization analyses performed with Coloc-Tesseler (Manders and
Spearman), Clus-DoC and Getis & Franklin. In all box plots the center line is the median, the square is the mean and the bounds of the boxes are the 75 and
25% percentiles i.e., the interquartile range (IQR)
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Fig. 4 Voronoï-based colocalization between F-actin regulators and PSD95 in synapses. a Overlay display of the Voronoï diagrams for F-actin regulatory
proteins (Abi1, VASP and Abi1 with constitutive Rac1 activation) and PSD95 on 3 different neuronal dendritic spines (left) (scale bar 200 nm). 5 class
classification of the localizations (middle). Manders’ coefficients (MA) and Spearman rank correlation (SA) computed from the scatterplots of the F-actin
regulatory protein localizations (right). Abi1 protein exhibits a much higher colocalization (MA= 0.85, SA= 0.71) compared to VASP (MA= 0.2, SA=
0.39) or Abi1 with constitutive Rac1 activation (MA= 0.01, SA=−0.25). b Manders’ coefficient computed on selected synapses for the different F-actin
regulatory proteins (Abi1: MA= 0.74 ± 0.02 SEM; VASP: MA= 0.17 ± 0.02 SEM; ArpC5A: MA= 0.19 ± 0.03 SEM; Abi1 with constitutive Rac1 activation:
MA= 0.15 ± 0.04 SEM). c Spearman rank correlation computed on the same synapses (Abi1: SA= 0.62 ± 0.02 SEM; VASP: SA= 0.24 ± 0.03 SEM;
ArpC5A: SA= 0.26 ± 0.03 SEM; Abi1 with constitutive Rac1 activation: SA= 0.14 ± 0.04 SEM. In all box plots the center line is the median, the square is the
mean and the bounds of the boxes are the 75 and 25% percentiles i.e., the interquartile range (IQR)
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activation). Thus, our analysis strategy confirms the observations
from Chazeau et al.25 using dedicated image analysis that in
spines, elongation and nucleation zones are not co-localized and
that conditions associated with spine morphological changes
trigger nanoscale reorganization of actin regulators. As a com-
parison, we analyzed the same data sets using Getis&Franklin and
ClusDoc colocalization methods. They both confirmed the global
trend measured by Coloc-Tesseler, but with a reduced dynamic
range (Supplementary Fig. 8b).

The colocalization analysis performed on these experimental
data illustrates the versatility of our method to quantify efficiently
the co-organization between different molecular species having
very different molecular organizations. It is important to
emphasis that both the simulations and the experimental data
sets were analyzed automatically without changing any para-
meters, demonstrating the robustness of Coloc-Tesseler with
respect to the respective localization density and molecular
organization. The computation time was between 3.8 s (36,650
localizations) and 7.1 s (164,925 localizations) for the simulation
data, and between 36.2 s (2D; 1,123,113 localizations) and 19:01
min (3D; 7,871,312 localizations) for the biggest experimental
data sets. Computations were performed using a standard
computer equipped with an Intel Xeon 2.40 GHz processor,
including the visual feedback on the localizations with color
coding in function of their colocalization, making Coloc-Tesseler
an efficient analysis tool for biologists.

Discussion
Colocalization analysis reached great success in conventional
fluorescence microscopy through technically sound and efficient
methods compatible with routine use. Popular methods such as
Manders’ or Pearson’s coefficients have enabled biologists with
modest experience in image analysis to automatically quantify a
large amount of data and better understand protein interactions.
However, colocalization analysis of multicolor SMLM from the
localization coordinates still requires strong expertise in order to
foresee the effects and potential bias of each method’s parameters.
As the SMLM field is rapidly improving towards automatic acqui-
sition of multicolor and multidimensional data sets with improved
throughput27,28, significant variabilities of cell shape and relative
molecular organization need to be considered in such colocalization
analyses. With the widespread of SMLM techniques helping to
decipher important biological questions, it becomes crucial to pro-
vide access to robust and turn-key analysis methods that can be used
by non-experts without biasing the data interpretation.

The colocalization analysis method presented here, Coloc-Tes-
seler, relies on a tessellation-based analysis framework to quantify
the co-organization of different molecular species at the single-
molecule level. It exploits the space partitioning capability provided
by the Voronoï diagrams to compute popular image-based colo-
calization analysis coefficients such as Manders or Spearman’s
coefficients. Coloc-Tesseler exhibits three main characteristics,
making it an ideal colocalization analysis tool. First, it is robust to
experimental conditions thanks to the unique scalability of Voronoï
diagrams with respect to the molecular density. Second, it is
straightforward to understand since it relies on the very popular
parameter-free Spearman’s rank correlation analysis and Manders’
coefficients combined with a cytometry-like density scatterplots
representation. In addition to provide quantitative information on
the percentage of colocalization, it provides a direct visual feedback
of the colocalization patterns between channels at the single-
molecule level, an important feature to help understanding the
colocalization phenotype and separate populations. Third, it is easy,
fast and compatible with popular 2D and 3D SMLM data formats,
making it an ideal tool for routine analysis of large number of cells

and biological conditions. Moreover, it is to our knowledge the only
solution allowing the colocalization analysis of 3D λSMLM data,
which we have demonstrated to be able to differentiate 2D-
projection based colocalization errors. Of course, 2D and 3D
multicolor data need to be acquired and registered carefully prior
colocalization analysis, to avoid systematic biases in the colocali-
zation analysis. Coloc-Tesseler is freely available as a standalone
software package including a complete graphical user interface. We
can envision Coloc-Tesseler to become a method of reference for
the investigation of 2D and 3D multicolor SMLM data.

Methods
2D simulations. We simulated several single-molecule colocalization data sets
organized in clusters of various stoichiometry ratios, with R defined as the enrichment
ratio between the densities of molecules inside and outside the clusters. Simulations
consist of randomly placed, non-overlapping circular clusters of 100 nm-diameter
(channel A) and 100 nm square clusters (channel B). A reference condition was
defined with a cluster density of 0.013mol nm−2, an enrichment factor R= 10 and an
image dimension of 2.5 × 2.5 µm. Channel A was fixed with the reference condition
while channel B was defined with cluster densities varying linearly between 0.013mol
nm−2 and 0.065mol nm−2 with 0.0026mol nm−2 steps, corresponding to ratios
between 1:1 and 1:5 with 20 steps. We simulated three colocalization conditions
by varying the inter-distance between clusters of the two-colors of 0 nm, 50 nm and
125 nm. Each condition, corresponding to a given enrichment factor and colocali-
zation, was simulated 10 times, leading to a total of 200 simulations.

3D simulations. 3D simulations were analogous to 2D simulations conditions,
extended with the axial (z) coordinate. They consisted of 100 nm-diameter spherical
clusters of density 1.9 × 10–4 mol nm−3 randomly distributed in a 2.5 × 2.5 × 1 µm
volume with an enrichment factor R= 146. In order to test the efficiency of our
method with respect to the localization accuracy, we degraded our simulation data by
scrambling the molecule positions with 5 different localization accuracy couples of
(Δxy= 0 nm, Δz= 0 nm), (Δxy= 20 nm, Δz= 20 nm), (Δxy= 20 nm, Δz= 40 nm)
and (Δxy= 20 nm, Δz= 60 nm). We then simulated the three colocalization condi-
tions defined in the 2D case. Each condition, corresponding to a given scrambling
mode and colocalization, was simulated 10 times, leading to a total of 120 simulations.

Voronoï-based colocalization analysis. The Voronoï diagram V is a space-
partitioning technique subdividing a space S 2 R

n containing an ensemble of
localizations L ¼ si; 2 � i � nf g 2 S into polytopes (i.e. polygons in 2D and
polyhedrons in 3D). Each localization si is described by a unique polytope Pi ∈ S
centered on si, with si∈Pi, from which several parameters can be computed such as
its area Ai (or volume Vt in 3D), ni the number of direct neighbors (i.e. polytopes
sharing a common edge with Pi) of si, d(si, si,j) the Euclidian distance from si to one
of its direct neighbor si,j or its 1st rank local localization density δi (Supplementary
Fig. 1a), other parameters and their definitions can be found in Levet et al.12). The

normalized 1st rank density is defined as bδi ¼ δi=δ, with δ the average density of a
spatially random reference distribution.

In the case of the colocalization analysis between two channels, A and B, there
are two ensembles of localizations LA ¼ sAi ; 2 � i � nA

� � 2 S and LB ¼
sBi ; 2 � i � nB

� � 2 S with their corresponding Voronoï diagrams VA and VB

(Fig. 1a). Each Voronoï diagram can be analyzed independently using a unique
threshold T≥0, allowing classifying the localizations in 3 orthogonal classes: two
high-density classes CA and CB, and one background class C�A�B, defined by:

CA ¼ sAi 2 LAjbδiA � T
n o

ð1Þ

CB ¼ sBi 2 LBjbδiB � T
n o

ð2Þ

C
�A�B ¼ sAi 2 LAjbδiA<Tn o

∪ sBi 2 LBjbδiB<Tn o
ð3Þ

with CA þ CB þ C�A�B ¼ LA þ LB (Fig. 1b). The surfaces (or volumes in 3D)
occupied by each high-density class OA and OB, can be computed by segmentation
from the neighboring polygons of CA and CB as described in12 (Supplementary
Fig. 2b). A simplified version of the Manders’ fractional overlapping coefficients,
only accounting for overlapping surfaces can then be defined as:

MA ¼ OA \ OB

OA
ð4Þ

MB ¼ OA \ OB

OB
: ð5Þ

This formulation requires segmenting both channels in order to extract the
surface (or volume in 3D) of each channel. However, the subdividing space
Voronoï tessellation architecture makes it possible to avoid this step. Indeed, since
VA and VB are defined on the same spatial domain S, it is possible to pair the
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molecules in both channels using overlapping polytopes. Each localization sAi (resp.
sBi ) can therefore be associated with its corresponding molecule sBj (resp. sAj ) in the

other channel, with sBj (resp. sAj ) determined such as sAi 2 PB
j (resp. sBi 2 PA

j ). We

introduce a pair-density descriptor (bδiA; bδjB) (resp. (bδjA; bδiB)) to quantify the
spatial co-organization of the localization sAi (resp. sBi ).

The high-density classes CA and CB can then be divided into 4 classes defined by:

CAB ¼ sAi 2 CAjbδjB � T
n o

ð6Þ

CA�B ¼ sAi 2 CAjbδjB<Tn o
ð7Þ

CBA ¼ sBi 2 CBjbδjA � T
n o

ð8Þ

CB�A ¼ sBi 2 CBjbδjA<Tn o
ð9Þ

with CAB þ CA�B ¼ CA and CBA þ CB�A ¼ CB. These four classes describe whether a
high-density localization in channel A (resp. B) lies (CAB, resp. CBA) or not (CA�B,
resp. CB�A) into a high-density polytope on the other channel (Fig. 1c).

Edge effects correction. The localizations at the frontier between high- and low-
density classes can lead to artifacts, an inherent limitation of Voronoï diagrams.
Indeed, the region of influence of these border localizations, represented by their
polytopes, is usually larger compared to the ones of the inside localizations,
influencing the colocalization classification in a negative manner (Supplementary
Fig. 3a-c). In particular, it results in classifying localizations in CAB and CBA, even
when high density regions of the 2 colors are only partially colocalized (Supple-
mentary Fig. 3c).

The Delaunay triangulation, dual of the Voronoï diagram, is not prone to edge
effect and can be used to correct these localizations by transferring them from CAB

(resp. CBA) to CA�B (resp. CB�A). First, we determine TrA and TrB, the triangle sets
that describe CA and CB. A triangle is part of TrA (resp. TrB) if its three vertices
belong to CA (resp. CB) (Supplementary Fig. 3d). To ensure a better stability of the
correction, we remove outliers from TrA and TrB by using the interquartile range
(IQR) method defined as:

IQR= q75 - q25 (10)
With q25 and q75 being the 25th and 75th percentiles of the triangle area

distribution. Then outliers are defined as triangles with areas bigger than q75+
(IQR*1.5) (Supplementary Fig. 3e). All outliers are then removed from TrA and TrB

(Supplementary Fig. 3f) and the final classes are defined as:

corr CAB
� � ¼ sAi 2 CABjsAi 2 TrB

� �
; ð11Þ

corr CA�B
� �

¼ CA�B þ sAi 2 CABjsAi =2TrB
� � ð12Þ

corr CBA
� � ¼ sBi 2 CBAjsBi 2 TrA

� � ð13Þ

corr CB�A
� �

¼ CB�A þ sBi 2 CBAjsBi =2TrA
� �

; ð14Þ
where sAi 2 TrB means that the localization sAi falls inside one triangle of TrB

(Supplementary Fig. 3g).

Scatterplot representation. A scatterplot is a 2D histogram, commonly used in
image-based colocalization analysis where the intensity of one channel is plotted
against the intensity of the other channel for each pixel. It allows to visually
investigate the degree of colocalization between two channels. We adapted the
scatterplot representation to λSMLM data using the Tessellation-based architecture
provided by the Voronoï diagrams, plotting each localization sAi (resp. sBi ) with

respect to its pair-density coordinates (bδiA; bδjB) (resp. (bδjA; bδiB)). We defined one
scatterplot for each channel, always keeping the density of channel A in abscises
and the density of channel B in ordinates. The scatterplot of channel A (resp. B) is

defined by nA (resp. nB) points of coordinates (xAi ¼ bδiA, yAi ¼ bδjB) (resp.
(xBi ¼ bδjA; yBi ¼ bδiB)).
Voronoï Manders’ overlapping coefficients. They can be derived from the
thresholded scatterplot representations to quantify the spatial overlapping between
the two channels. They are defined by:

8 sAi 2 CA;MA ¼
P

i αix
A
iP

i x
A
i

with
αi ¼ 1; if sAi 2 corr CABð Þ
αi ¼ 0; if sAi 2 corr CA�B

� �(
ð15Þ

8 sBi 2 CB;MB ¼
P

i αiy
B
iP

i y
B
i

with
αi ¼ 1; if sBi 2 corr CBAð Þ
αi ¼ 0; if sBi 2 corr CB�A

� �(
ð16Þ

Spearman’s rank correlation coefficients. The normalized densities bδiA (resp. bδiB)
sorted in ascending order can be substituted by their rank rðbδiAÞ (resp. rðbδiBÞ) in the
ordered density distribution. The Spearman’s rank correlation coefficients quantify

the similarities between rðbδiAÞ and rðbδiBÞ. Compared to the popular Pearson coef-
ficients, they don’t impose any linear relationship between the densities of the two
channels, making it more suitable for λSMLM data colocalization analysis. They can
be derived from the scatterplot representations to quantify the spatial co-organization
between the two channels. They are defined by:

8sAi 2 LA; SA ¼ 1� 6
P

i r xAi
� �� r yAi

� �� �2
nA nA2 � 1ð Þ ð17Þ

8sBi 2 LB; SB ¼ 1� 6
P

i r xBi
� �� r yBi

� �� �2
nB nB2 � 1ð Þ ð18Þ

with r(xi) and r(yi) the ranks of the scatterplot coordinates of the ith localization. We
used the implementation provided by the Alglib library (http://www.alglib.net/).

DNA-PAINT Tubulin experiment. MEF (Mouse Embryonic Fibroblast) cells were
allowed to spread onto 1.5 H clean coverslips for 4 h prior fixation with 4% par-
aformaldehyde (Sigma)+ 0.2% Glutaraldehyde (Sigma)+ 0.3% Triton X-100
(Sigma) for 10 min, followed by the quenching of autofluorescence using 150 mM
Glycin (Sigma) in PBS for 10 min and an additional permeabilization step with 0.3
% Triton X-100 in PBS for 10 min. Unspecific sites were then blocked using 5%
BSA in PBS for at least 2 h prior incubation of primary antibodies for 2 h at room
temperature. Anti-tubulin (rat, alpha-Tubulin #MA1–80017, Thermo Fisher) and
anti-lamin (Goat, #sc-6217, Santa Cruz) were diluted at 1:500 in the blocking
solution. After three washes, secondary antibodies were incubated 2 h at room
temperature. Anti-rat-P1 and anti-Goat-P5 antibodies functionalized with two
orthogonal oligonucleotides sequences, P1 and P5, were kindly given by Ralf
Jungmann’s lab and were each used at 1:100 in blocking solution. Finally, coverslips
were washed three times in blocking solution and then in PBS and were kept at 4 °
C before use. Prior DNA-PAINT experiments, coverslips were incubated in a
solution containing 100 nm fluorescent nanodiamonds (NDNV100 nmMd10ml
from Adamas Nanotechnologies, Inc) for 30 min and then washed three times in
PBS. DNA-PAINT acquisitions were performed on a TiE Nikon microscope
equipped with a TIRF illumination module (iLAS2, Roper Scientific) fiber coupled
to a 635 nm and 561 nm lasers (Errol), a 100 × 1.49NA objective lens (CFI SR HP
Apochromat TIRF 100XC Oil, Nikon), a quad-band filter set (ZET 405/488/561/
640, Chroma), a N-STORM astigmatism lens (Nikon, France), and an EMCD
camera (Evolve512, Photometrics). P1-Cy3b and P5-Cy3b imagers (kindly pro-
vided by Ralf Jungmann’s Lab) were used at a concentration of 0.2 nM and 0.5 nM
respectively in imaging media (PBS supplemented with 500 mM of NaCl (Sigma)).
For two-color experiments, sequential exchange PAINT approach was used: after
acquisition using a first imager, coverslips were carefully washed several times with
imaging media to remove all imagers before to add the second orthogonal imagers
and perform a second acquisition sets. It enables to image both structures with the
same Cy3b fluorophores avoiding possible chromatic aberrations. Acquisition
sequences of 40,000 frames per channel were steered using MetaMorph software at
5 Hz in streaming mode. 3D single-molecule localization and super-resolution
image reconstruction were achieved using the WaveTracer module (Molecular
Devices) which uses a combination of wavelet-based localization and anisotropic
Gaussian fitting methods29,30.

dSTORM nuclear pore experiment. Nuclear pores were stained and imaged as
described previously31. Genome-edited U-2 OS cells that expressed Nup107–SNAP
were cultured under adherent conditions in DMEM (high-glucose, without phenol
red) supplemented with 10% (v/v) FBS, 2 mM L-glutamine, nonessential amino
acids, and ZellShield at 37 °C, 5% CO2 and 100% humidity. All incubations were
carried out at room temperature. For nuclear pore staining, the coverslips were
prefixed with 2.4% (w/v) formaldehyde (FA) in PBS for 30 s. Cells were permea-
bilized with 0.4% (v/v) Triton X-100 in PBS for 3 min and then fixed with 2.4%
(w/v) FA in PBS for 30 min. Subsequently, the fixation reaction was quenched by
incubation in 100 mM NH4Cl in PBS for 5 min. After being washed twice with PBS,
the samples were blocked with Image-iT FX signal enhancer (Thermo Fisher
Scientific, Waltham, MA, USA) for 30 min. The coverslips were incubated in
staining solution (1 μM benzylguanine Alexa Fluor 647 (S9136S; NEB, Ipswich,
MA, USA), 1 mM DTT, 1% (w/v) BSA in PBS) for 50 min in the dark. After being
rinsed three times with PBS and washed three times with PBS for 5 min, the
samples were stained with wheat germ agglutinin coupled to CF680 (29029, Bio-
tium, Fremont, CA, USA). The coverslips were incubated in the staining solution
(0.2 µg.mL−1 WGA-CF680 in 1% (w/v) BSA in PBS) for 5 min in the dark. After
washing three times with PBS for 5 min, the sample was mounted for imaging. The
sample was imaged in blinking buffer (50 mM Tris, pH 8, 10 mM NaCl, 10% (w/v)
D-glucose, 35 mM 2-mercaptoethylamine, 500 μg.mL−1 GLOX, 40 μg.mL−1

catalase).
SMLM image acquisition was performed at room temperature (24 °C) on a

customized microscope equipped with a high-numerical-aperture (NA) oil-
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immersion objective (×160, 1.43-NA; Leica, Wetzlar, Germany) with homogenous
multi-mode fiber illumination32. A closed-loop focus lock system was
implemented, using the signal of a near-infrared laser reflected by the coverslip and
its detection by a quadrant photodiode. The fluorescence emission was split by a
665 nm long-pass filter (AHF, Tübingen, Germany). Both color channels were
imaged side-by-side on an EMCCD camera (Evolve512D; Photometrics, Tucson,
AZ, USA) after filtering by a 685/70 and 676/37 filters (AHF), respectively. A
cylindrical lens (f= 1000 mm, Thorlabs, Newton, NJ, US) introduced astigmatism
for 3D localization. The pulse length of the 405 nm laser was automatically adjusted
to retain a constant number of localizations per frame.

The 3D positions of the fluorophores were determined with a MLE fit using an
experimentally derived PSF model31. The color was assigned based on the relative
intensity of the fluorophores in both spectral channels. A 3D redundant cross-
correlation based drift correction was employed31 and localizations persistent in
consecutive frames were grouped into one localization.

PALM-dSTORM experiments for cytoskeleton regulators. We used dissociated
rat hippocampal neurons transfected using Effectene (Qiagen) at 7 days in vitro
(DIV) with F-actin regulators fused to mEos2 (mEos2::Abi1, mEos2::ArpC5A,
mEos2::VASP). Neurons were co-transfected with constitutively active Rac1-Q61L
and mEos2::Abi1 as a negative control for our single-molecule-based colocalization
analysis. Data were acquired as in Chazeau et al.22 by sequential dual-color SMLM
using PALM for F-actin regulators fused to mEos2 and dSTORM for endogenous
PSD95 immunostained with a mouse primary anti-PSD95 antibody revealed with
an Alexa647-coupled anti-mouse secondary antibody.

Chromatic aberration correction. Localization errors induced from field-
dependent chromatic aberrations were characterized and corrected using a bi-
dimensional 3rd order polynomial field correction. A single image containing ≥ 10
fiducial markers covering the entire field of view was acquired for each excitation
wavelength used, and the localizations of the individual fiducial markers in each
channel were paired and used to calculate the field of view transformation. After
the acquisition, localizations from the second emission channel (typically 561 nm
excitation, Channel B) were transformed into the space of the reference, far-red
emission channel (640 nm excitation, Channel A), with an error smaller than the
localization precision of the individual localizations.

Chromatic and drift corrections. We used 100 nm multicolor fluorescent
microbeads (Tetraspeck, Invitrogen) or 100 nm fluorescent nanodiamonds
(NDNV100nmMd10ml, Adamas Nanotechnologies) as fiducial markers to register
multicolor experimental data and correct for lateral drifts. After drift correction,
chromatic shift was automatically corrected using a two-stage process. First, the
bead positions of the 2 channels were automatically computed as the barycenter of
all the registration beads’ localizations. Second, all the localizations of the second
channel (Channel B) were translated by the displacement vector computed between
the 2 bead positions.

Bead filtering. Fluorescent beads were automatically excluded from the analysis
after chromatic and drift correction. For each localization, we computed the
number of neighboring localizations within a radius of 100 nm using kd-tree
implementation of Jose Luis Blanco-Claraco (https://github.com/jlblancoc/
nanoflann). Then, localizations with a number of neighbors greater or equal to 90%
of the total number of frames were removed.

Determination of the distance between clusters of F-actin regulatory proteins
and PSD95. Clusters of F-actin regulator proteins were identified by a two-level
segmentation process using SR-Tesseler12. First, we segmented the neuron con-
tours by thresholding the localizations with δ1i > 2δΙ, δΙ being the average locali-
zation density of the whole image. Then we computed potential embedded clusters
into the selected synapses using a threshold of δ1i > 2δΝ, where δΝ is the average
localization density inside the neuron contour. PSD95 clusters were segmented
inside the selected synapses using a single-level threshold of δ1i > 2δΝ. For both F-
actin regulators and PSD95, the cluster barycenter was defined as the centroid of all
the localizations composing each cluster. The cluster distance between the 2
channels was computed as the shortest distance between the clusters’ barycenter on
identified synapses having F-actin regulators and PSD95 clusters.

Implementation and benchmarking. Coloc-Tesseler software uses a combination
of a multi-view OpenGL-based visualization with a C++ code optimization for
the colocalization analysis. It is fast both for the colocalization analysis and the
visual rendering and includes an efficient batch analysis mode. As an illustration, it
took only 7:17 min, including 1:50 min to load the data, to analyze and display the
complete experimental data sets, composed of 18 two-colors cells labelled with F-
actin regulators fused to mEos2 and PSD95 immunostained with A647, corre-
sponding to 8,276,861 localizations. The 3D colocalization analysis of the 3D DNA-
PAINT Tubulin biggest dataset composed of 7,871,312 localizations took 19:01
min, including 1:52 min to load the data. Computation were done using a standard
computer equipped with an Intel Xeon 2.40 GHz processor.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The software is freely available for academic use at http://www.iins.u-bordeaux.fr/team-
sibarita-Coloc-Tesseler. Source-code is available under a GPL v3 license.
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