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ABSTRACT 18 

Background: Staphylococcus aureus is a human pathogen that is a common cause of 19 

nosocomial infections and infections on indwelling medical devices, mainly due to its ability 20 

to shift between the planktonic and the biofilm/sessile lifestyle. Biofilm infections present a 21 

serious problem in human medicine as they often lead to bacterial persistence and thus to 22 

chronic infections. The immune responses elicited by biofilms have been described as specific 23 

and ineffective. In the few experiments performed in vivo, the importance of neutrophils and 24 

macrophages as a first line of defence against biofilm infections was clearly established. 25 

However, the bilateral interactions between biofilms and myeloid cells remain poorly studied 26 

and analysis of the dynamic processes at the cellular level in tissues inoculated with biofilm 27 

bacteria is still an unexplored field. It is urgent, therefore, to develop biologically sound 28 

experimental approaches in vivo designed to extract specific immune signatures from the 29 

planktonic and biofilm forms of bacteria. 30 

Results: We propose an in vivo transgenic mouse model, used in conjunction with intravital 31 

confocal microscopy to study the dynamics of host inflammatory responses to bacteria. 32 

Culture conditions were created to prepare calibrated inocula of fluorescent planktonic and 33 

biofilm forms of bacteria. A confocal imaging acquisition and analysis protocol was then 34 

drawn up to study the recruitment of innate immune cells in the skin of LysM-EGFP 35 

transgenic mice. Using the mouse ear pinna model, we showed that inflammatory responses to 36 

S. aureus can be quantified over time and that the dynamics of innate immune cells after 37 

injection of either the planktonic or biofilm form can be characterized. First results showed 38 

that the ability of phagocytic cells to infiltrate the injection site and their motility is not the 39 

same in planktonic and biofilm forms of bacteria despite the cells being considerably recruited 40 

in both cases. 41 
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Conclusion: We developed a mouse model of infection to compare the dynamics of the 42 

inflammatory responses to planktonic and biofilm bacteria at the tissue and cellular levels. 43 

The mouse ear pinna model is a powerful imaging system to analyse the mechanisms of 44 

biofilm tolerance to immune attacks. 45 

Key words: Staphylococcus aureus, Biofilm, Planktonic form, Inflammation, Mouse, 46 

Intravital imaging 47 

 48 

BACKGROUND   49 

Staphylococcus aureus (S. aureus) is a common commensal Gram-positive bacterium that 50 

colonizes the skin and mucous membranes of humans. It can also shift between planktonic 51 

and biofilm lifestyles and colonize abiotic surfaces such as indwelling medical devices and 52 

prosthetic implants [1]. Inside biofilms, bacteria are embedded in an extracellular matrix and 53 

are more tolerant to antibiotics and to host immune attacks [2]. The resulting impact on 54 

human health is enormous since biofilm infections account for more than 80 percent of 55 

microbial infections in otherwise sterile tissue(s) and often become chronic [3]. 56 

The immune responses elicited by biofilms have been described as specific and ineffective 57 

thus promoting bacterial persistence and the establishment of chronic infections [4]. Different 58 

immune evasion mechanisms have been proposed to be involved, including phagocyte direct 59 

killing (macrophages, neutrophils), specific recruitment of myeloid-derived suppressor cells 60 

(MDSCs) and macrophage polarization towards an anti-inflammatory phenotype [4,5]. These 61 

results were mostly obtained during experiments performed in vitro in which biofilms were 62 

exposed to monocytes or neutrophils, or both [6]. In the few experiments performed in vivo 63 

with different rodent models, several parameters vary, such as the presence of a biomedical 64 

device, the tissue(s) that were inoculated or implanted with a bacteria-free or loaded device, 65 
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the bacteria delivery mode and the inoculum dose [7]. These studies illustrate the importance 66 

of both neutrophils and monocytes/macrophages as a first line of defence against biofilm 67 

infections. However, the bilateral interactions between biofilms and myeloid cells remain 68 

poorly studied and analysis of the dynamic processes at the cellular level in tissues inoculated 69 

with biofilms is still an unexplored field. The mouse ear pinna is currently one of the most 70 

frequently used tissues to perform intravital confocal live imaging. In particular, it allows the 71 

analysis of cellular behaviour in an inflamed tissue [8]. We previously developed a concept 72 

that was potentially able to extract the biologically relevant features of the host and invasive 73 

bacteria after injection of either the planktonic or biofilm form of bacteria in the ear pinna [7]. 74 

In the present study, it was decided to use the transgenic fluorescent reporter laboratory mice 75 

line LysM-EGFP. Owing to the relative thinness of the ear pinna, the model enabled us to 76 

perform live imaging on recruited enhanced green fluorescent protein (EGFP) fluorescent 77 

leukocytes, in particular neutrophils and monocytes/macrophages. When the LysM-EGFP 78 

mouse ear pinna dermis was loaded with either planktonic or biofilm bacteria, the first results 79 

showed that the inflammatory response to S. aureus can be quantified in the skin. 80 

Both bacterial forms induced a considerable inflammatory response at the injection site. 81 

However, real-time analysis showed different cellular dynamics with a limited access of 82 

recruited phagocytes to bacteria inside biofilms, resulting in less efficient phagocytosis. We 83 

also investigated the motility of resident or recruited phagocytes and observed that cells arrest 84 

at the injection site to interact with planktonic or biofilm bacteria. At early time points, 85 

biofilms slowed down phagocytes and modified their trajectory. Finally, the nature of the 86 

inoculum (planktonic or biofilm) influenced speed and straightness parameters differently, 87 

independently of cell-bacteria interactions at the injection site. 88 
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We therefore developed a mouse model of infection to compare the inflammatory response to 89 

planktonic and biofilm bacteria at the tissue and cellular levels. Our novel findings show that 90 

the dynamics of the inflammatory responses against the two bacterial forms are different. 91 

 92 

RESULTS 93 

Preparation and characterization of calibrated inocula of Staphylococcus aureus biofilm 94 

and planktonic cultures  95 

A reproducible protocol of biofilm preparation was created to obtain a calibrated bacterial 96 

inoculum of 107 colony-forming units (CFUs) in 3.8 µL of biofilm suspension (injection 97 

volume). As shown in Additional file 1: Figure S1A, titres of different aliquots of 24 h-old 98 

biofilms collected in the same well or in different wells for three independent experiments 99 

were comparable (Additional file 2: Table S1). To compare host immune responses to 100 

planktonic and biofilm forms of S. aureus LYO-S2 bacteria, calibrated inocula of planktonic 101 

bacteria were also prepared. The titres of the inocula were comparable for both bacterial 102 

forms and contained the expected quantity of bacteria (Additional file 1: Figure S1B and 103 

Additional file 2: Table S1). However, the morphological characteristics of the two inocula 104 

were different, even after passing through the 34-gauge (34G) needle used for micro-injection 105 

into the mouse ear tissue. Scanning electron microscopy (SEM) ultrastructural analysis 106 

showed that planktonic bacteria were either dispersed or organized in small clusters (Fig. 1A 107 

and Additional file 1: Figure S1C). In contrast, biofilms were organized in aggregates of 108 

29.43 ± 7.06 µm across (Additional file 1: Figure S1D). When zoomed in, the extracellular 109 

matrix is clearly observed inside these aggregates (Fig. 1B, red arrows and Additional file 1: 110 

Figures S1E-H). However, the homogenization technique used to prepare biofilm inocula 111 

results in an inoculum containing mainly biofilm aggregates but also detached bacteria and 112 
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planktonic bacteria. Future use of the term “biofilm inoculum” or “biofilm” will be in 113 

reference to this type of inoculum. Using the fluorescent probe CDy11, which targets amyloid 114 

fibrils, we observed that this biofilm matrix component was detected more abundantly in our 115 

biofilm preparations than in the samples of planktonic bacteria (Figs. 1C-D) [9].  116 

 117 

Micro-injection of calibrated inocula of planktonic or biofilm forms of Staphylococcus 118 

aureus in the mouse ear pinna induces a strong inflammatory response  119 

LysM-EGFP transgenic mice were inoculated intradermally into the ear pinna with 107 CFUs 120 

of either planktonic or biofilm mCherry-LYO-S2 fluorescent bacteria, or Trypticase Soja (TS) 121 

culture medium, which was used as a control. Inflammatory responses were followed at early 122 

(4-7 hours post-injection [hpi]) and late time points (after 24 hpi) by measuring the intensity 123 

of the EGFP signal for each group  (Figs. 2A-C). The image of the ear pinna enabled us to 124 

analyse overall inflammation in the entire tissue (mosaic acquisition). To quantify this signal, 125 

we created the following protocol. A region of interest (ROI) was drawn on late time point 126 

images, where the EGFP signal was more easily detectable, and applied to early time point 127 

images. The ratio of the sum of EGFP fluorescence intensities to ROI areas was calculated 128 

with this protocol and the inflammatory response was compared at early and late time points 129 

in the two groups of infected mice (Fig. 2D and Additional file 3: Table S2). We used the 130 

same protocol for the control group and observed a non-specific recruitment of EGFP+ innate 131 

immune cells due to the physical trauma from injection and the introduction of TS culture 132 

medium (Additional File 4: Movie 1).  At early time points, both bacterial forms induced an 133 

inflammatory response, with a statistically significant increase only in the group of mice 134 

inoculated with planktonic bacteria. Thus, planktonic bacteria induced a greater response than 135 

biofilms after 4 hpi. Between the early and late time points, the inflammatory response was 136 
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significantly greater for both bacterial forms. At late time points, the response was 137 

considerable in both groups of challenged mice compared to control mice, with no significant 138 

difference between mice inoculated with planktonic or biofilm bacteria (Fig. 2D).  139 

 140 

Dynamics of immune cell recruitment after the micro-injection of either planktonic or 141 

biofilm forms of Staphylococcus aureus in the mouse ear pinna are different 142 

LysM-EGFP transgenic mice were inoculated intradermally into the ear pinna with 107 CFUs 143 

of either planktonic or biofilm mCherry-LYO-S2 fluorescent bacteria, or with TS culture 144 

medium. We created a confocal acquisition protocol to analyse the dynamics of recruited 145 

EGFP+ cells at the inoculation sites by real-time imaging. A red autofluorescence signal is 146 

emitted by mice hairs and could not be prevented by shaving the ear pinna. Indeed, this 147 

operation would have induced a non-specific inflammatory response. In control mice, 148 

recruitment was low owing to injection trauma (Additional File 4: Movie 1). In mice 149 

inoculated with bacteria, an influx of phagocytic cells was observed at early (3 to 6 hpi) (Figs. 150 

3A-B, white circles) and late time points (after 24 hpi) (Figs. 3C-D) for both bacterial forms. 151 

At early time points, immune cells were present over the entire surface of planktonic bacteria 152 

injection sites and multiple contact points between cells and bacteria were observed. In 153 

addition, numerous immune cells infiltrated the injection sites (Fig. 3A and Additional file 5: 154 

Figures S2A-B, white arrowheads; see also Additional File 6: Movie 2). In biofilms, the 155 

contact points were less numerous and were mainly located at the periphery of the injection 156 

site. In contrast to planktonic inocula, a small number of cells succeeded in infiltrating the 157 

biofilm (Fig. 3B and Additional file 5: Figures S2C-D, white arrowheads; see also Additional 158 

File 7: Movie 3). The fluorescent signal was less detectable for planktonic bacteria after 24 h, 159 

suggesting that bacterial lysis after phagocytosis had occurred (Fig. 3C, white empty 160 
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arrowhead). For biofilms, phagocytosis seemed to be less effective, since a fluorescent signal 161 

was still clearly visible after 24 h (Fig. 3D). Overall, this real-time analysis using an intravital 162 

imaging approach shows that the dynamics of the inflammatory responses against planktonic 163 

and biofilm bacteria are different. 164 

 165 

Motility of recruited innate immune cells is different after injection of planktonic or 166 

biofilm forms of Staphylococcus aureus in the mouse ear pinna  167 

Using Imaris software, we created an analysis protocol to track the motility properties 168 

(average speed and straightness) of EGFP+ cells recruited at the injection zone from the 169 

previously acquired time-lapse videos (Fig. 4). Using the “Spots” tool we attributed a sphere 170 

to a number of immune cells observed in the acquisition field (Figs. 4A-B, white spheres). 171 

This enabled us to establish a trajectory (Figs. 4A-4B, multicoloured lines) for each sphere 172 

corresponding to the path taken by each cell over time in the ear tissue. We then compared the 173 

average speed and straightness of the trajectories of phagocytic cells in response to the two 174 

bacterial forms. In different zones of the injection site, cells interacted with bacteria (Fig. 4A) 175 

or not (Fig. 4B). We first analysed the motility of all cells in response to bacteria (planktonic 176 

or biofilm) or to TS culture medium without distinction between cells that interacted with 177 

bacteria and cells that did not. At early time points, only biofilms induced a significant 178 

decrease in cell speed, compared to control mice and mice inoculated with planktonic 179 

bacteria. Thus, biofilms slowed down recruited cells, an effect that was maintained 24 hpi. In 180 

contrast, planktonic bacteria significantly increased cell speed compared to the control group 181 

(Fig. 4C and Additional file 8: Table S3). This differential response induced by the two 182 

bacterial forms was also seen for cell trajectory straightness, which was significantly 183 

decreased at early time points only by biofilms (less straight trajectory of EGFP+ recruited 184 
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cells) compared to the control group. At late time points, we observed an opposite effect, as 185 

both bacterial forms significantly increased straightness compared to the control group, with a 186 

more pronounced effect for planktonic bacteria (Fig. 4D and Additional file 9: Table S4). We 187 

further analysed the motility of cells interacting with bacteria (bacteria contact) or not (no 188 

bacteria contact) in different zones of the cutaneous injection site for the same time point 189 

(Figs. 4E-H). Cell motility was compared after inoculation of biofilm or planktonic bacteria. 190 

At early time points, the presence of the two forms of bacteria (bacteria contact) induced a 191 

significant decrease in both speed and straightness (Figs. 4E-F, Additional file 10: Table S5 192 

and Additional file 11: Table S6). This indicates that cells arrest at the injection site to interact 193 

with inoculated bacteria. At early and late time points, cell speed was reduced in biofilms 194 

compared to planktonic cells, independently of the presence of bacteria (Figs. 4E and 4G, 195 

Additional file 12: Table S7). Finally, at late time points, straightness was reduced for cells 196 

interacting with biofilms, compared to planktonic inocula (Fig. 4H and Additional file 13: 197 

Table S8). Taken together, these results demonstrate that the cell dynamics of the 198 

inflammatory response are different after inoculation of biofilm or planktonic bacteria. The 199 

mouse ear pinna model evidences an inflammatory response specific to biofilms that is 200 

probably one mechanism of its tolerance to immune attacks.  201 

 202 

DISCUSSION 203 

The dynamics of the implementation of immune responses during S. aureus infections in vivo 204 

is a key event. It is a determinant factor especially during planktonic-to-biofilm transition, as 205 

the bacterial persistence associated with the “chronicization” process of biofilm infection 206 

often depends on it. However, it is difficult to follow these events in mammals over time and 207 
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this hinders the clear understanding of the immune evasion mechanisms of S. aureus biofilms 208 

and therefore the design of preventive strategies against biofilm infections.   209 

In the present study, we compared for the first time the dynamics of early innate immune 210 

responses to planktonic and biofilm S. aureus in the skin. The skin is a common target tissue 211 

for S. aureus infections and the mouse ear pinna is frequently used as a cutaneous imaging 212 

site. This accessible tissue can be rapidly and easily prepared for imaging over long periods of 213 

time. Calibrated inocula were injected intradermally in a very small volume with a 34G 214 

needle to limit inflammation resulting from injection trauma. The maturation state of the 215 

biofilm culture and the bacterial inocula were two major criteria in the finalization of the 216 

protocol. We prepared “young” biofilms (24 h-old) as previous studies reported that immature 217 

biofilms are more susceptible to neutrophil attack than mature biofilms [10]. We inoculated a 218 

high number of bacteria (107 CFUs) into the ear tissue of LysM-EGFP transgenic mice, as in 219 

previously published mouse models of S. aureus skin infections such as the chronic diabetic 220 

wound model and the air pouch model [11,12]. Once drawn up, our protocol enabled us to 221 

compare qualitatively and quantitatively the innate immune responses induced by a 222 

comparable dose of planktonic or biofilm bacteria. As described above, our biofilm inoculum 223 

contained bacterial aggregates and also planktonic and detached bacteria. The phenotype of 224 

the latter is similar to that of biofilm bacteria. Indeed, previous studies have described 225 

differential gene expression profiles for S. aureus in its planktonic or biofilm form [13,14]. 226 

One major difference between the two inocula was the presence of the extracellular matrix in 227 

the biofilm aggregates. Among the components of the LYO-S2 S. aureus biofilm matrix 228 

inoculated into mice, we detected amyloid fibrils. Small peptides called phenol-soluble 229 

modulins (PSMs) produce amyloids in S. aureus biofilms and notably contribute to S. aureus 230 

biofilm stability. They are also described as key virulence factors capable of stimulating 231 



11 
 

inflammatory responses or affecting leukocyte viability or functions [15,16], and could 232 

contribute to the specific innate immune responses observed with biofilm bacteria. 233 

 After inoculation, we used the mouse ear pinna model to follow the inflammatory response to 234 

S. aureus over time at the tissue level. Imaging analysis showed that bacterial inocula induced 235 

an early inflammatory response at the cutaneous injection site in LysM-EGFP transgenic 236 

mice, consisting of recruited EGFP+ phagocytes, in particular neutrophils and 237 

monocytes/macrophages. We quantified this response for the first time and showed that it is 238 

significantly increased with the planktonic form after 4 h, compared to that in control mice. 239 

The absence of significant differences between the control and biofilm conditions could have 240 

been due to early phagocyte killing, as previously reported [4,5,17]. After 24 h, the 241 

inflammatory response was considerable and comparable for the two bacterial forms. In 242 

rodent models, neutrophils are usually the most rapidly recruited, and therefore most 243 

abundant, cells in the proximity of  biofilms [7]. In a catheter-related model, however, 244 

monocytes were the first cells to be recruited [18]. Although overall responses are comparable 245 

at late time points, we postulate that the phenotype of recruited cells in our model differs 246 

according to whether planktonic or biofilm bacteria are injected with, for example, the 247 

specific recruitment of myeloid-derived suppressor cells (MDSCs) for the biofilm, as 248 

described previously [19].  249 

The mouse ear pinna model then enabled us to follow the inflammatory responses to 250 

planktonic or biofilm S. aureus over time at the cellular level. Analysis of the dynamics of 251 

recruited EGFP+ cells at the inoculation sites by real-time imaging showed that the dynamics 252 

differed between planktonic and biofilm bacteria. Our results show that biofilm acts as a 253 

physical barrier [20]. Few cells infiltrate the biofilm, with most recruited cells being present at 254 

the periphery of the inoculum. After 24 h, when innate immune responses have been 255 

considered as set up, phagocytosis seemed to be limited. Indeed, the bacterial signal was still 256 
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intense, compared to the low signal observed with planktonic bacteria at the same time point. 257 

This impairment of phagocytosis observed with biofilms is commonly known as “frustrated 258 

phagocytosis” [20]. Complementary experiments are required to quantify the bacterial load in 259 

the ear tissue over time.  260 

The mouse ear pinna model further enabled us to obtain reproducible quantitative 261 

measurements of the speed and straightness of recruited innate immune cells. To obtain the 262 

most accurate representation of these motility parameters, stringent algorithm settings were 263 

used. Then, manual corrections were applied to cell tracks. For example, only tracks lasting 264 

three or more frames were considered during the time that cells were visible in the 265 

observation field. Tracks that converged into one were eliminated to avoid any uncertainty 266 

about the resulting cell trajectory. Likewise, cells near or exiting the border of the image 267 

volume were carefully checked to ensure that the same cell was not counted twice with two 268 

different tracks. Analysis of innate immune cell migration showed that cells behaved 269 

differently in presence of planktonic and biofilm bacteria. Study of the entire population of 270 

cells in the tissue (cells interacting or not with bacteria) showed that biofilms generally 271 

decreased cell speed and straightness. In addition, when immune cells interacted with bacteria 272 

at the injection site, biofilms generally decreased cell speed more significantly than did 273 

planktonic bacteria. A possible correlation could be made with previous observations 274 

describing immobilized neutrophils on Pseudomonas aeruginosa biofilms in vitro after loss of 275 

their pseudopodia [21]. Interestingly, biofilms also induced a remote effect on cell speed, as 276 

cells with no visible contact with bacteria moved more slowly when the inoculum was in the 277 

biofilm form. This result suggests the potential diffusion of small molecules from the biofilm 278 

capable of influencing the behaviour of proximal recruited cells [5]. We thus provide 279 

evidence that cell motility is affected differently by planktonic and biofilm bacteria. Notably, 280 

the latter has a greater effect on speed and straightness. Further work is needed on the fine 281 
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interactions between cells and bacteria in order to study phagocytic cell arrest and subsequent 282 

phagocytosis (or lack of). 283 

 284 

CONCLUSIONS 285 

The mouse ear skin model proposed here detects and measures the inflammatory responses 286 

induced by biofilm and planktonic bacterial challenge over time. It has great potential to 287 

elucidate the specific mechanisms used by biofilms to circumvent host innate immune 288 

responses and therefore to develop new preventive strategies specifically targeting host 289 

immune responses during biofilm infections.  290 

 291 

MATERIAL AND METHODS  292 

Mice and ethical statement  293 

LysM-EGFP transgenic mice (6- to 8-week-old males and females) were obtained from the 294 

bacteria-cell interactions unit, Pasteur Institute (Paris, France), and bred in the animal care 295 

facility at Université Clermont Auvergne (Clermont-Ferrand, France). All experiments were 296 

approved by the Ethics Committee on Animal Experimentation of Auvergne C2E2A, 297 

Clermont-Ferrand, France (agreement number: 1725) and were carried out in accordance with 298 

the applicable guidelines and regulations.   299 

 300 

mCherry-tagged strain construction 301 

The S. aureus LYO-S2 mCherry-tagged strain was constructed after insertion of pAH9 302 

plasmid [22] into the LYO-S2 clinical strain [23] by electroporation, as described previously 303 
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[24]. The S. aureus LYO-S2 mCherry-tagged fluorescent strain, named S. aureus mCherry-304 

LYO-S2, was selected onto Luria-Bertani (LB) agar containing erythromycin (10 μg/mL). 305 

The plasmid was maintained by growing the strain in TS culture medium containing 306 

erythromycin (10 μg/mL). Fluorescence was detected in bacterial suspensions by fluorescence 307 

microscopy.  308 

 309 

Bacterial growth conditions 310 

S. aureus LYO-S2 or the mCherry-LYO-S2 fluorescent strain were grown in TS culture 311 

medium at 37°C with shaking and stored at −80°C in the same medium containing 15% 312 

glycerol. Planktonic bacteria were cultured at 37°C in TS culture medium under aerobic 313 

conditions and harvested after overnight growth (stationary phase). For biofilm preparations, 314 

overnight cultures were adjusted to 2.107 CFUs/mL of TS culture medium and added to 24-315 

well cell culture plates (1 mL per well). Twenty-four-hour-old biofilms were obtained after 316 

incubation of plates at 37°C without shaking. 317 

 318 

Preparation of bacterial inocula  319 

Before injection, S. aureus mCherry-LYO-S2 planktonic inocula were prepared from the 320 

overnight growth, which was first homogenized. Bacterial concentration was then deduced by 321 

measuring the OD600 and using the known bacterial titre of the strain at 6.5.108 CFU/OD unit. 322 

A specific volume of the overnight growth containing 107 CFUs was then withdrawn and 323 

centrifuged at 3000 x g for 5 min. The supernatant was eliminated and bacteria were 324 

resuspended in TS culture medium to obtain a final concentration of 107 CFUs per 3.8 µL of 325 

culture medium. For S. aureus mCherry-LYO-S2 biofilms, inocula were obtained by carefully 326 
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eliminating 700 µL of the supernatant from each well in the cell culture plate. The remaining 327 

biofilm volume was then delicately homogenized and 3.8 µL, corresponding to 107 CFUs, was 328 

collected for further inoculation to mice. Serial dilutions of both planktonic and biofilm 329 

inocula were plated on LB agar plates for titration. Biofilm inocula were sonicated three times 330 

for 5 min each before dilution (Fisher Scientific, 80W, 37kHz). CFUs were counted after 24 h 331 

at 37°C. 332 

 333 

Inoculation of bacteria into mice 334 

Mice were anesthetized by intraperitoneal injection of a mixture of ketamine (50 mg/kg) and 335 

xylazine (5 mg/kg). A small volume (3.8 µL) of planktonic or biofilm inocula or TS culture 336 

medium were injected into the dorsal ear dermis of anesthetized mice with a 34G needle fitted 337 

to a NanoFil syringe (World Precision Instruments) [25]. A characteristic papule was 338 

observable at the injection site, evidence of an intradermal injection.  339 

 340 

Scanning electron microscopy observation of bacterial preparations 341 

For electron microscopy observations, biofilms and planktonic inocula were prepared as 342 

described above and deposited on SEM Pore (Jeol filters) with a 34G needle fitted to a 343 

NanoFil syringe. After absorption, bacteria were fixed overnight at 4°C with glutaraldehyde 344 

1.6% in 0.2 M cacodylate buffer at pH 7.4, supplemented with ruthenium red at 0.15%. They 345 

were then rinsed in the same buffer. After post-fixation for 1 h with 1% osmium tetroxide in 346 

cacodylate buffer at room temperature, samples were washed for 20 minutes in distilled water 347 

and dehydrated by graded ethanol from 25° to 100° (10 minutes each) to finish in 348 

hexamethyldisilazane (HMDS) evaporated overnight. After drying, samples were sputter-349 
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coated with gold-palladium (JFC-1300, JEOL, Japan). Morphology analyses were made with 350 

a scanning electron microscope JSM-6060LV (Jeol, Japan) at 5 kV in high-vacuum mode.  351 

 352 

Detection of amyloid fibrils in biofilm preparations  353 

Planktonic suspensions and biofilms of S. aureus LYO-S2 were prepared as described 354 

previously. For planktonic bacteria, 5.6.108 CFU were withdrawn from the overnight culture. 355 

The suspension was then centrifuged as before and bacteria were resuspended in 200 µL of 356 

TS culture medium. For 24 h-old biofilm cultures, 700 µL of supernatant were carefully 357 

withdrawn from the cell culture plates before homogenization of the remaining suspension.  A 358 

10 µM stock solution of the fluorescent probe CDy11 [9] was prepared in dimethyl sulfoxide 359 

(DMSO). The solution was diluted in phosphate-buffered saline solution (PBS) to prepare a 360 

100 µM solution. Ten µL of the diluted probe was then added to each bacterial preparation 361 

and incubated for 45 min in the dark at room temperature. TS culture medium (800 µL) and 2 362 

µL of the live cell fluorescent label SYTO9 from the LIVE/DEAD BackLight Bacterial 363 

Viability Kit (Molecular probes) were then added to each preparation and left to incubate for 364 

15 min in the dark at room temperature. Ten µL of planktonic and biofilm preparation 365 

samples were deposited on glass slides for further observation by fluorescence microscopy. 366 

Image acquisition was carried out on a ZEISS Cell Observer Spinning Disk Confocal 367 

Microscope (Carl Zeiss Microscopy, Germany), with two different lasers to observe 368 

fluorescence emitted from SYTO9 and CDy11 (excitation at 488 and 590 nm, emission at 509 369 

and 612, respectively, with exposure times set at 100 ms for both channels). Acquisition was 370 

performed with 20X (dry) objectives. Each image corresponds to the Z-projected average 371 

intensity signal for each channel. 372 

 373 
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In vivo confocal imaging: acquisition 374 

Time-lapse video acquisition. Three to 6 hpi, mice were anesthetized by intraperitoneal 375 

injection of a mixture of ketamine (50 mg/kg) and xylazine (5 mg/kg). Infected ears were 376 

prepared as described previously [26] and imaged on a ZEISS Cell Observer Spinning Disk 377 

Confocal Microscope (Carl Zeiss Microscopy, Germany). Video acquisition was carried out 378 

with two different lasers to observe EGFP and mCherry fluorescence (excitation at 488 and 379 

590 nm, emission at 509 and 612, with exposure times set at 100 and 300 ms, respectively). 380 

Acquisition was performed with 10X (dry) and 20X (dry) objectives for periods of 20 to 30 381 

min. With the 10X objective, multiple fields of observation were required as the entire 382 

injection site was imaged. Z-stacks and intervals between images were adjusted according to 383 

the thickness of the ear tissue. Acquisition was repeated 24 hpi. Ear tissues of control mice 384 

were inoculated with TS culture medium and imaged at the same time points. 385 

Mosaic acquisition. Infected ears were also imaged on a ZEISS LSM 800 (Carl Zeiss 386 

Microscopy, Germany) confocal microscope with a 10X objective (dry). Multiple fields of 387 

observation covering the entirety of the tissue surface were imaged to get a reconstructed 388 

image of the ear. To set up acquisition parameters, multiple focal points 389 

distributed homogenously over the acquisition zone were chosen. EGFP fluorescence signal 390 

was detected in six Z-stacks spanning 75 µm of tissue, with an exposure time of 9.5 ms. The 391 

bright-field signal was also detected on a central stack, with an exposure time of 10 ms. 392 

Acquisition was repeated after 24 h, with imaging sessions typically lasting 30 to 45 min. Ear 393 

tissues of control mice injected with TS culture medium were also imaged with the same 394 

protocol. 395 

 396 

In vivo confocal imaging: analysis  397 
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Time-lapse video analysis. Videos acquired with the 10X objective were first stitched 398 

together using ZEN software. Each image extracted from time-lapse videos corresponds to the 399 

Z-projected average intensity signal for each channel at the corresponding time point. Time- 400 

lapse videos at 20X and 10X were then analysed with Imaris software using the “Spots” tool. 401 

For each cell, a track was generated by the software and manually corrected according to 402 

specific criteria: number of frames superior to three and elimination of converging tracks 403 

between two different cells. Two different parameters (average speed and straightness) of 404 

immune cell dynamics were then extracted. For each time point, both parameters were 405 

analysed in different zones of the cutaneous injection site, where cells were in contact or not 406 

with the bacterial inoculum.   407 

 408 

Mosaic analysis. Images acquired on the ZEISS LSM 800 confocal were stitched together 409 

using ZEN software to reconstitute an entire image of the ear tissue at early and late time 410 

points. A maximum intensity projection image was created from image Z-stacks. A ROI was 411 

then drawn manually around the EGFP fluorescent zone of the 24 h image to obtain the sum 412 

of EGFP fluorescence intensities of each pixel in the ROI. The shape of the ROI was 413 

conserved and applied to the early time point image. The ratio of the sum of intensities of 414 

EGFP fluorescence to the area of the ROI was then calculated for both time points. The 415 

images shown represent the Z-projected maximal intensity signal of a reconstituted image of 416 

the ear tissue for the EGFP channel.  417 

 418 

Statistical analysis 419 
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Prism 5 software (GraphPad Software, Inc.) was used to analyse the statistical significance of 420 

data sets by the Mann-Whitney two-tailed test. p≤0.05 was considered statistically significant 421 

(symbols: ****p≤0.0001; ***p≤0.001; **p≤0.01; *≤0.05; ns = non-significant).  422 

 423 
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Figure legends 554 

Figure 1. Characterization of calibrated inocula of Staphylococcus aureus biofilm and 555 

planktonic cultures  556 

 (A and B) SEM micrographs of S. aureus LYO-S2 planktonic (A) and 24 h biofilm (B) 557 

inocula after passing through the 34G needle used for micro-injections. Red arrows in panel B 558 

indicate the biofilm extracellular matrix. Scale bar: 5 µm. (C and D) Fluorescence 559 

microscopy images of S. aureus biofilm (C) and planktonic (D) cultures stained with the 560 

green live cell fluorescent label SYTO9 and incubated with CDy11 red fluorescent probe. 561 

Scale bar: 50 µm. 562 

 563 

Figure 2. Micro-injection of calibrated inocula of Staphylococcus aureus in the mouse 564 

ear pinna  565 

(A to C) Reconstituted confocal images of the mouse ear pinna tissue showing the maximal 566 

projection intensities of the EGFP signal. LyM-EGFP transgenic mice were micro-injected 567 

with TS culture medium (A) or S. aureus mCherry-LYO-S2 in its planktonic (B) or biofilm 568 

(C) form at early (4-7 hpi) and late time points (after 24 hpi). The EGFP fluorescence (green) 569 

signal corresponds to phagocytic cells (neutrophils and macrophages). The yellow line 570 

indicates the ROI where the “Sum of EGFP fluorescence intensities” was measured. Scale 571 

bar: 2 mm. One representative experiment is shown for each group of mice from four 572 

independent experiments. (D) Ratio of the sum of EGFP fluorescence intensities to ROI area. 573 

Data are expressed as median and interquartile ranges for four mice per group.  574 

 575 

 576 
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Figure 3. Dynamics of recruited EGFP+ cells in the mouse ear pinna after inoculation of 577 

Staphylococcus aureus   578 

(A and B) Live confocal imaging after micro-injection of S. aureus mCherry-LYO-S2 in its 579 

planktonic (A) or biofilm (B) form in the ear pinna of LysM-EGFP transgenic mice at early 580 

time points. Innate immune cell recruitment towards planktonic bacteria and biofilms was 581 

observed between 3.20 to 3.50 hpi and 4.20 to 4.40 hpi, respectively. A progressive 582 

recruitment of EGFP+ innate immune cells was observed at the injection site with cell-583 

bacteria contact areas (filled white arrowheads). White empty circles show cell accumulation 584 

over time for the planktonic or biofilm inoculum at early time points. *: autofluorescent hair 585 

(also in magenta). Scale bar: 100 μm. (C and D) Live confocal imaging at late time points 586 

after micro-injection of planktonic (C) or biofilm (D) bacteria, at 24.20 hpi and 26.20 hpi, 587 

respectively. Empty white arrowhead indicates the presence of remaining planktonic form 588 

after 24 h (low magenta signal) whereas biofilms were still easily detectable. Scale bar: 100 589 

μm. (A to D) Images show average intensity projections of green (innate immune cells) and 590 

magenta (bacteria) fluorescence. One representative experiment is shown for each group of 591 

mice from three independent experiments.  592 

 593 

Figure 4. Motility of recruited EGFP+ cells in the mouse ear pinna after micro-injection 594 

of Staphylococcus aureus  595 

(A and B) Illustration of immune cell tracking with Imaris software using the “Spots” tool to 596 

analyse the motility of recruited immune cells. The analysis was carried out in different zones 597 

of the injection site where cells were either in contact with visible bacteria (A) or not (B). 598 

Each cell is represented by a white sphere and its trajectory in the thickness of the tissue by a 599 
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multicoloured line. Images shown were taken at 4.45 hpi (A) and 26 hpi (B). *: base of hair 600 

follicles. Scale bar: 50 μm.  601 

(C to H) Average speed and straightness of EGFP+ cells recruited to injection sites at early 602 

and late time points after inoculation of TS culture medium (control), planktonic bacteria 603 

(planktonic form) or biofilms (biofilm form). Data are expressed as median and interquartile 604 

ranges pooled from three different mice in three independent experiments for each group. 605 

Average speed (C) and straightness (D) of all cells (in contact with visible bacteria or not) in 606 

infected and control mice. Number of cells (N) analysed for each group at early and late time 607 

points, respectively: Control: N = 90 and 94 cells; Planktonic form: N = 315 and 433 cells; 608 

Biofilm form: N = 254 and 518 cells. 609 

Average speed (E and G) and straightness (F and H) of cells either in contact (bacteria 610 

contact) or not (no bacteria contact) with planktonic or biofilm bacteria at early (E and F) and 611 

late (G and H) time points. Number of cells (N) analysed at early time points that were in 612 

contact or not in contact with bacteria, respectively: Planktonic form: N = 157 and 158 cells; 613 

Biofilm form: N = 142 and 112 cells. Number of cells (N) analysed at late time points that 614 

were in contact or not in contact with bacteria, respectively: Planktonic form: N = 298 and 615 

135 cells; Biofilm form: N = 98 and 420 cells. 616 

 617 

Additional material 618 

Additional file 1: Figure S1 619 

Preparation and characterization of calibrated inocula of Staphylococcus aureus biofilm 620 

and planktonic cultures (pdf 5.18Mb) 621 
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(A) Titration of 3.8 µL aliquots of 24 h-old biofilms of S. aureus LYO-S2. Data represent 622 

mean ± SD of three samples per well collected from three different wells and prepared in 623 

three independent experiments. (B) Titration of S. aureus LYO-S2 planktonic and 24 h 624 

biofilm inocula on agar plates. Results are expressed as CFU numbers x107 in 3.8 µL 625 

(injection volume). Data represent mean ± SD from 17 experiments for the planktonic form 626 

and from 27 experiments for biofilms. (C) Planktonic inocula after passing through a 34G 627 

needle. Scale bar: 10 μm. (D to H) Biofilm inocula after passing through a 34G needle. Red 628 

arrows indicate the biofilm extracellular matrix. Scale bar: 10 μm (D), 5 μm (E and F), 2 μm 629 

(G and H). 630 

Additional file 2: Table S1 631 

Raw data used for Additional file 1: Figure S1A-B. (xls 67 Kb) 632 

Tables presenting raw data used for the preparation of calibrated Staphylococcus aureus 633 

biofilm and planktonic inocula. 634 

Additional file 3: Table S2 635 

Raw data used for Figure 3D (xls 67 Kb) 636 

Table presenting raw data used to measure the ratio of the sum of EGFP fluorescence 637 

intensities to ROI areas. 638 

Additional file 4: Movie 1 639 

Immune cells are recruited to injection sites even in the absence of bacterial challenge 640 

(mp4 9 kb) 641 

In vivo confocal time-lapse imaging of immune cell migration in LysM-EGFP transgenic 642 

mice ear tissue injected with TS culture medium from 4 hpi to 4.20 hpi. Average projections 643 

of time-lapse images. Z-stacks collected 41.76 seconds apart. Scale bar: 100 μm.  644 

 645 
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Additional file 5: Figure S2 646 

Dynamics of recruited EGFP+ cells in the mouse ear pinna after micro-injection of 647 

Staphylococcus aureus (pdf 8.04 Mb) 648 

(A and B) Confocal images of injection sites after micro-injection of S. aureus mCherry-649 

LYO-S2 in its planktonic form in the ear pinna of LysM-EGFP transgenic mice at early time 650 

points for two independent experiments. Images of innate immune cell recruitment towards 651 

planktonic bacteria were acquired at 5.15 hpi (A) and 3.05 hpi (B). (C and D) Confocal 652 

images of injection sites after micro-injection of S. aureus mCherry-LYO-S2 in its biofilm 653 

form in the ear pinna of LysM-EGFP transgenic mice at early time points for two independent 654 

experiments. Images of innate immune cell recruitment towards biofilms were acquired at 655 

4.20 hpi (C) and 3.30 hpi (D). Images show average intensity projections of green (innate 656 

immune cells) and magenta (bacteria) fluorescence. Filled white arrowheads indicate cell-657 

bacteria contact areas. *: autofluorescent hair (also in magenta). Scale bar: 100 μm.  658 

Additional file 6: Movie 2 659 

Numerous immune cells penetrate the injection site and interact with planktonic 660 

bacteria (mp4 1.14 Mb) 661 

In vivo confocal time-lapse imaging of immune cell migration in LysM-EGFP transgenic 662 

mice ear tissue injected with planktonic bacteria from 3.20 hpi to 3.50 hpi. Average 663 

projections of time-lapse images. Z-stacks collected 41.73 seconds apart. Scale bar: 100 μm.  664 

Additional file 7: Movie 3 665 

Most immune cells arrest at the periphery of injected biofilms (mp4 9kb) 666 

In vivo confocal time-lapse imaging of immune cell migration in LysM-EGFP transgenic 667 

mice ear tissue injected with planktonic bacteria from 4.20 hpi to 4.40 hpi. Average 668 

projections of time-lapse images. Z-stacks collected 45.15 seconds apart. Scale bar: 100 μm 669 

Additional file 8: Table S3 670 
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Raw data used for Figure 4C (xls 164 Kb) 671 

Table presenting the average speed of all cells in infected and control mice at early and late 672 

time points. Raw data extracted from Imaris software. 673 

Additional file 9: Table S4 674 

Raw data used for Figure 4D (xls 224 Kb) 675 

Table presenting the straightness of all cells in infected and control mice at early and late time 676 

points. Raw data extracted from Imaris software. 677 

Additional file 10: Table S5 678 

Raw data used for Figure 4E (xls 125 Kb) 679 

Table presenting the average speed of cells in contact with bacteria or not in infected mice at 680 

early time points. Raw data extracted from Imaris software. 681 

Additional file 11: Table S6 682 

Raw data used for Figure 4F (xls 132 Kb) 683 

Table presenting the straightness of cells in contact with bacteria or not in infected mice at 684 

early time points. Raw data extracted from Imaris software. 685 

Additional file 12: Table S7 686 

Raw data used for Figure 4G (xls 133 Kb) 687 

Table presenting the average speed of cells in contact with bacteria or not in infected mice at 688 

late time points. Raw data extracted from Imaris software. 689 

Additional file 13: Table S8 690 
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Raw data used for Figure 4H (xls 199 Kb) 691 

Table presenting the straightness of cells in contact with bacteria or not in infected mice at 692 

late time points. Raw data extracted from Imaris software. 693 
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