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Abstract—Multifractal analysis has become a standard signal
processing tool successfully used to model scale-free temporal
dynamics in many applications, very different in nature. This
is notably the case in financial engineering where, after Man-
delbrot’s seminal contributions, multifractal models have been
used since the late 90ies to describe temporal fluctuations in
asset prices. However, what exact features of temporal dynamics
are actually encoded in multifractal properties remains generally
only partially understood. In finance, notably, multifractality is
associated to the burstiness of the returns, yet its relation to
trends (signs of the returns) or volatility (modulus of the returns)
remains unclear. Comparing the estimated multifractal properties
of well-controlled synthetic multifractal processes to those of
surrogate data, obtained by applying random permutations
(shuffling) either to signs, or to modulus, or to both, of increments
of original data, permits to better understand what aspects of
temporal dynamics are captured by multifractality. The same
procedure applied to a large dataset of asset prices entering the
composition of the Eurostoxx600 index permits to evidence a
simple and solid relation between multifractality and volatility
as well as a weaker and complicated relation to returns.

Index Terms—Multifractality, scale-free temporal dynamics,
asset prices, finance, shuffling, surrogate.

I. INTRODUCTION

Context. Self-similarity has been massively used in many
applications very different in nature to model scale-free tempo-
ral dynamics, that is, temporal dynamics that are not governed
by any preferred time scale, in signals (cf. e.g., [1]). Self-
similarity (or its asymptotic counterpart, long range depen-
dence (LRD)) essentially models a slow power law decay
of the covariance function at large lags [13], thus indicating
that correlations amongst samples of data remain significant
even for samples very far apart [1]. LRD is quantified by
departures of the Hurst parameter H from 1/2. Multifractality
complements and enriches LRD by introducing versatility in
the modeling of scale-free dynamics at all statistical orders.
It accounts for potentially different scaling exponents, when
self-similarity actually implies that scale-free dynamics at any
finite statistical order are controlled uniquely by H . In finance,

it is well documented that asset prices show no temporal
correlation (H = 0.5, the efficient market hypothesis (EMH))
but have some structured scale-free dependencies, sometimes
quantified by the fact that volatility (squared returns) show
LRD with H > 0.5, which prompted for the use of multifrac-
tality to model asset price fluctuations [6], [8].

However, what aspects of temporal dynamics are actually
encoded by multifractality remains not very well understood.
Despite being crucial for a better understanding of the un-
derlying mechanisms governing temporal dynamics, this open
question has rarely been studied theoretically and barely inves-
tigated on real-world data. For instance, in finance, multifrac-
tality has been related to the stage of development of financial
markets and EMH [8], [16] or to the way volatility relaxes after
endogenous or exogeneous shocks [4], [14] but it remains an
open question to assess whether multifractality encodes the
temporal fluctuations in return signs or in volatility.
Related work. At the theoretical level, it was proven that,
for fractional Brownian motion, the reference process for
modeling scale-free dynamics, LRD is associated with the
fluctuations of the signs of its increments, while their modulus
only shows short-term dependencies [13]. To the best of
our knowledge, similar theoretical results do not exist for
multifractal processes and the question remains barely studied
empirically.

In a seminal contribution [12], Mandelbrot introduced mul-
tifractality in the modeling of asset price time series to
account for burstiness, departures from Gaussianity, large size
fluctuations and scale-free dynamics. This paved the way to
numerous studies consistently reporting multifractal dynamics
in financial time series [1], [3], [5], [10]. It renewed to some
extent financial engineering, notably by suggesting to replace
the Markov Switching Model used to describe the fluctuations
of volatility, which is by construction based on the existence
of a few typical time scales to be identified, by a multifractal
switching model [9]. However, the understanding of what
mechanisms in pricing are actually encoded in multifractality



remains an open question and an obvious preliminary step for
actual use in financial engineering.
Goals, contributions and outline. Making use of ran-
dom permutation (or shuffling) procedures, that consist in
destroying a targeted property of data while preserving others
unaltered, the present work aims to provide a better un-
derstanding of whether multifractality encodes the temporal
dynamics of the signs or of the modulus in a multifractal
time series, both at a general level and in the precise context
of asset price analysis. To that end, Section II restates the
key notions for theoretical and practical multifractal analysis,
recalls the paradigm model of the fractional Brownian motion
in multifractal time and defines the shuffling procedures used
here. Section III reports Monte Carlo simulations comparing
the multifractal properties estimated from a large number of in-
dependent copies of fractional Brownian motion in multifractal
time to those estimated from surrogate versions of such data,
obtained from the application of several different shuffling
procedures. This permits to evidence relations between, on
one hand, LRD and the temporal dynamics of signs, and on
other hand, multifractality and the temporal dynamics of the
modulus. Section IV compares the multifractal properties of
a large dataset of financial times series consisting of daily
prices for 244 assets contributing to the Eurostoxx600 index.
Result shows that multifractality is strongly associated with
the temporal dynamics of volatility.

II. MULTIFRACTAL ANALYSIS AND SHUFFLING

A. Multifractal analysis: Theory

Local regularity. Multifractal analysis aims at character-
izing the fluctuations along time of the local regularity of a
signal X(t), cf., e.g., [17]. Local regularity can be quantified
by pointwise exponents, the most commonly used being the
Hölder exponent, h(t) > 0, defined as follows: X is said
to be in Cα(t), α ≥ 0, if there exist a polynomial Pt with
deg(Pt) < α and a constant C > 0 such that: |X(t+a)−Pt(t+
a)| ≤ C|a|α when |a| → 0. The Hölder exponent consists
of the largest such α: h(t) , sup{α : X ∈ Cα(t)} ≥ 0.
In essence, the larger h(t), the smoother X around t, and
conversely, the closer h(t) to 0, the more irregular X at t.
Multifractal spectrum. Despite being based on a local
measure of regularity, multifractal theory does not, however,
base analysis on the time evolution of the function h(t)
itself, but instead aims to provide a global and geometrical
description of the temporal dynamics of X with the so-called
multifractal spectrum D(h). It is defined as the collection of
Hausdorff dimensions dimH of the sets of points t ∈ R where
h(t) takes the same value h [17]: D(h) , dimH(t : h(t) = h).
The multifractal spectrum D(h) can thus be considered as an
efficient summary for the temporal dynamics of X .

B. Multifractal analysis: formalism

The practical estimation procedure for D(h) from data is
referred to as the mutlifractal formalism, and requires the use
of multiscale quantities, that match the pointwise exponent
chosen to quantify regularity. It is well documented that

measuring the Hölder exponent calls for the use of wavelet
leaders defined as follows [17]. Let dX(j, k) = 2−j/2〈ψj,k|X〉
denote the discrete wavelet transform (DWT) coefficients of
X , with ψ the mother wavelet, an oscillating reference pattern,
characterized by its number of vanishing moments Nψ , a pos-
itive integer defined as ψ ∈ CNψ−1 and ∀n = 0, . . . , Nψ − 1,∫
R t

kψ(t)dt ≡ 0 and
∫
R t

Nψψ(t)dt 6= 0. Further, ψ is chosen
such that the collection of dilated and translated templates
{ψj,k(t) = 2−j/2ψ(2−jt − k)}(j,k)∈Z2 forms an orthonormal
basis of L2(R) [11].

Wavelet leaders are defined as local suprema of wavelet co-
efficients: `X(j, k) , sup2j′k′∈3λj,k |dX(j′, k′)|, with λj,k =

[k2j , (k + 1)2j) the dyadic interval of size 2j and 3λj,k ,
λj,k−1∪λj,k∪λj,k+1 the union of λj,k with its 2 neighbors. It
can be shown that wavelet leaders reproduce Hölder exponents
in the limit of fine scales, LX(j, k) ∼ C2jh(t) as 2j → 0 for
t = 2jk and hence that [17]:

1

nj

nj∑
k=1

LX(j, k)q ∼ Kq2
jζ(q), 2j → 0. (1)

Eq. 1 serves for the estimation of the so-called scaling
exponents ζ(q) by linear regressions [17]. In turn, the function
ζ(q) can be related to D(h) via a Legendre transform:

L(h) = inf
q
(1 + qh− ζ(q)) (2)

which provides an upper bound estimate, L(h) ≥ D(h) for
large classes of processes [17].

C. Multifractal analysis: Practice

Prior to multifractal analysis, it is common to consider the
sum of the squared wavelet coefficients, closely related to the
Fourier spectrum and covariance function of X [1], [2]. For
processes with scale free and/or multifractal dynamics, this
sum, S2(j), behaves, over a wide range of scales, as [1]:

S2(j) =
1

nj

nj∑
k=1

d2X(j, k) ∼ F22
j2H , (3)

where H is often referred to as the Hurst or self-similarity
or long-memory exponent of X , and can be related to the
second-order multifractal scaling exponent as 2H = ζ(2).

For most well-behaved multifractal processes, the scaling
exponents can be approximated by truncating the polynomial
expansion, ζ(q) =

∑
p≥1 cpq

p/q!, whose coefficients cp can
be theoretically related to the cumulants of order p of Cp(j)
of the variables log2 LX(j, k) as [17]:

Cp(j) = c0p + cpj. (4)

Function C1(j) conveys information mostly driven by the
covariance function of the increments Y of process X and
is hence very much related to the function log2 S2(j) [17].
Along the same line, 2H = ζ(2) implies that H = c1 + c2 +
2c3/2 + 3c4/4 + . . . For most multifractal processes, ∀p ≥ 2,
c1 � cp, and hence that H ' c1. Conversely, functions
Cp(j) for p ≥ 2 convey information on temporal dynamics



beyond second order statistics, i.e., not already encoded in
the covariance function. When the cp 6= 0, for some p ≥ 2,
such information is referred to as the multifractality of X .
Moreover, Eq. 4 serves for the estimation of cp by linear
regressions [17]. In turns, it has been shown that D(h) can
be efficiently approximated as [2]:

D(h) = 1 +
c2
2

(
h− c1
c2

)2

− c3
6

(
h− c1
c2

)3

+ . . . (5)

Descriptors c1, c2, c3, c4, . . ., corresponding respectively to lo-
cation of the maximum, width, asymmetry, flatness, . . . , of
D(h) thus summarize the temporal dynamics of X .

D. Scale-free Models

Fractional Brownian motion (fBm). Defined as the only
Gaussian self-similar process with stationary increments, fBm,
BH(t), has its entire statistics controlled by the unique param-
eter 0 < H < 1 [13]. This thus implies that ζ(q) = qH and
D(h) = δ(h−H).
Fractional Brownian motion in multifractal time (MF-
fBm). Introduced by Mandelbrot for a better modeling of
asset price fluctuations [12], MF-fBm is defined by composing
an fBm BH0 with a multifractal measure A, BH0,A(t) ,
BH0

(A(t)). For such processes, ζ(q), D(h) and shape parame-
ters c1, c2, c3, c4, . . . depend jointly on H0 and on parameters
entering the definition of A [7], [17]. The Hurst parameter
associated with BH0,A can be defined as H = ζ(2)/2.

E. Shuffling procedures

To understand what aspects of temporal dynamics are
actually encoded in multifractal properties, the estimated
multifractal properties of original data X , summarized by
H, c1, c2, c3, c4, will be compared to those of surrogate copies,
obtained by applying several different shuffling procedures to
the increment process Y of X , Y (t) = X(t+ 1)−X(t).

Procedure Sign-Shuffling consists in creating a surrogate
process Y (S) by rewriting Y (t) = sgn(Y (t)) × |Y (t)| and
randomly permuting (or shuffling) sgn(Y (t)) while preserving
unaltered moduli: Y (S)(t) , shuffle(sgn(Y (t))× |Y (t)|.

Procedure Modulus-Shuffling consists in creating a surrogate
process Y (M) by shuffling variables |Y (t))| while preserving
unaltered signs: Y (M)(t) , sgn(Y (t)× shuffle(|Y (t)|).

Procedure Full-Shuffling consists in creating a surrogate
process Y (F ) by shuffling both signs and moduli: Y (F )(t) ,
shuffle(sgn(Y (t))× shuffle(|Y (t)|).

Surrogate processes X(S), X(M) and X(F ) are constructed
as the primitives of Y (S), Y (M) and Y (F ), respectively.

III. SHUFFLING SYNTHETIC MULTIFRACTAL PROCESSES

A. Monte Carlo simulations set-up

The three shuffling procedures described above are applied
to 1000 independent copies of MF-fBm, defined from fBm and
Compound Poisson cascades, used as multifractal measures
[7]. Long time series of 218 samples are used, to obtain
statistically relevant results hence permitting a discussion
not confused by estimation performance issues. Multifractal
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Fig. 1. Self-similarity, multifractality and shuffling. Functions log2 S2(j)
(top left), C2(j) (top right), C3(j) (bottom left) and C4(j) (bottom right)
estimated from MF-fBm compared to those obtained on shuffled surrogates.
Original data X (black stars), Sign-Shuffled X(S) (red circles), Modulus-
Shuffled X(S) (pink diamonds), Full-Shuffled X(F ) (blue triangles). Aver-
ages over 1000 independent copies.

TABLE I
ESTIMATED MULTIFRACTAL PARAMETERS (AND CONFIDENCE INTERVALS)

FOR MF-FBM COMPARED TO THOSE OBTAINED FROM SHUFFLED
SURROGATES. AVERAGES OVER 1000 INDEPENDENT COPIES.

H c2 c3 c4

Data 0.70 (0.01) -0.140 (0.002) 0.054 (0.003) -0.026 (0.006)
F 0.49 (0.01) -0.007 (0.001) -0.001 (0.002) -0.001 (0.001)
S 0.50 (0.01) -0.135 (0.002) 0.052 (0.003) -0.013 (0.004)
M 0.66 (0.01) -0.006 (0.001) -0.000 (0.002) -0.003 (0.001)

analysis is conducted using least asymmetric orthonormal
wavelets with Nψ = 3 vanishing moments. Other choices yield
equivalent results. Synthesis and analysis procedures were
devised by ourselves and will be made publicly available1.
Estimation results, obtained as averages across independent
copies, are reported for one set of multifractal attributes (cf.
Table I), equivalent results are yet obtained with other sets
of multifractal attributes. Because function C1(j) conveys an
information almost equivalent to that in log2 S2(j), it it not
plotted in Fig. 1 (nor later in Figs. 2 and 3) for space reasons.
Also, estimates of c1, close to those of H , are not reported in
Table I (nor later in Table II).

B. Self-similarity, multifractality and shuffling

Shuffling and scale invariance. Fig. 1 shows that estimated
functions Cp(j) and log2 S2(j) for original data essentially
consist of straight lines as functions of octave j, as expected
from Eqs. 3-4 for exactly scale-free synthetic processes. Devi-
ations from straight lines observed at the finest scales, even for
exactly scale-free and multifractal processes, are due to a bias

1http://www.ens-lyon.fr/PHYSIQUE/Equipe3/MultiFracs/



induced by wavelet leaders: By definition, the computation of
wavelet leaders requires wavelet coefficients at finer scales,
which are not available because of discretization. This has
been documented elsewhere [17] and is no longer discussed
here. Importantly, Fig. 1 shows that functions log2 S2(j) and
Cp(j) consist of straight lines as in Eqs. 3-4 also for shuffled
data, thus indicating that scale-free dynamics still exist in all
shuffled time series, and raising the question of whether LRD
or multifractal properties were modified or not.
Shuffling, multifractality and LRD. Comparing now the
functions Cp(j), for p ≥ 2, in Fig. 1, clearly shows that
i) they are not altered by Sign-Shuffling, and that ii) they
are systematically altered by Modulus-Shuffling and Full-
Shuffling and transformed into functions that no longer depend
on j. This is confirmed in Table I that shows that cp, for p ≥ 2
of X(S) are essentially similar to those of X , while those of
X(M) and X(F ) are close to 0. These empirical facts clearly
show that multifractality is destroyed by shuffling moduli of
the increments of X but not by shuffling signs.

Moreover, inspection of the functions log2 S2(j) in Fig. 1
shows that all forms of shuffling affect the second order
statistics of the process (the correlation structure). However,
a careful examination of the plots shows that in the limit of
coarse scales 2j → +∞, the impact of Modulus-Shuffling
vanishes. This is confirmed by Table I, reporting estimates
obtained for coarse scales and showing that estimated H for
X(M) are much closer to those of X than the estimates from
X(S) which are closer to 0.5.

This leads to the following conclusions. First, Sign-
Shuffling impacts LRD for multifractal processes, a result
highly reminiscent of that proving that Sign-Shuffling impacts
LRD for self-similar processes (cf. [13]). Second, Modulus-
Shuffling impacts multifractality in an intricate way: the im-
pacts concentrates mostly at fine scales and vanishes in the
asymptotic limit of coarse scales.

IV. MULTIFRACTALITY IN FINANCE

A. Dataset and analysis

The dataset analyzed here consists of a collection of p =
211 daily asset price time series chosen within the basket
defining the Eurostoxx600 index, recorded over 12 years, from
December, the 14th, 2001 to January, the 24th, 2013, for a total
sample size of n = 2900. This selection constitutes a relevant
basket that could potentially be used in practice by investment
firms. An example of such time series is provided in Fig. 2.

Multifractal analysis is applied to these time series and to
the surrogate time series obtained by the shuffling procedures,
with the same parameter setting as that described for Monte
Carlo simulations in Section III-A above.

B. Results and discussion

For illustration and pedagogy, Fig. 2 displays, for an arbi-
trarily chosen asset, the price time series and compares the
functions log2 S2(j) and Cp(j) and Legendre spectra L(h)
for the original data and shuffled surrogates. It shows that
the functions Cp(j) for p ≥ 2 obtained after Sign-Shuffling
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Fig. 2. Self-similarity and multifractality on one asset price. Time series
(top left), log2 S2(j) (top right), estimated Legendre spectrum L(h) (bottom
left), C2(j) (bottom right). Original data X (black stars),Sign-Shuffled X(S)

(red circles), Modulus-Shuffled X(S) (pink diamonds), Full-Shuffled X(F )

(blue triangles).
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Fig. 3. Self-similarity and multifractality in Eurostoxx basket. Functions
log2 S2(j) (top left), C2(j) (top right), C3(j) (bottom left) and C4(j)
(bottom right) averaged over 211 Eurostoxx asset price time series and
compared to those obtained as averages on shuffled surrogates. Original data
X (black stars),Sign-Shuffled X(S) (red circles), Modulus-Shuffled X(S)

(pink diamonds), Full-Shuffled X(F ) (blue triangles).

very well match those of the original data, while the functions
Cp(j) for p ≥ 2 obtained after Modulus-Shuffling are strongly
modified and no longer depend on scales 2j , when the biased
short time scales are disregarded. On this example, one sees
that Modulus-Shuffling suppresses multifractality while Sign-
Shuffling does not. Fig. 2 also clearly shows that functions
log2 S2(j) and Cp(j) are not altered by any form of shuffling:
this is because the original time series show no correlation
structure, shuffling can hence not destroy it.



TABLE II
ESTIMATED MULTIFRACTAL PARAMETERS (AND CONFIDENCE INTERVALS)

FOR EUROSTOXX ASSET PRICE TIMES SERIES COMPARED TO THOSE
OBTAINED FROM SHUFFLED SURROGATES

H c2 100× c3 10× c4

Data 0.47 (0.01) -0.095 (0.008) -0.26 (0.96) 0.298 (0.144)
F 0.46 (0.01) -0.029 (0.002) -0.33 (0.06) -0.018 (0.007)
S 0.43 (0.01) -0.092 (0.008) -0.47 (0.82) 0.284 (0.141)
M 0.48 (0.01) -0.029 (0.002) -0.33 (0.06) -0.018 (0.007)

To draw conclusion at the entire basket level, averages
(and confidence intervals) for functions log2 S2(j) and Cp(j)
are computed over assets (after a suitable normalization of
increment powers, an operation that does not alter time dy-
namics), as if they were independent realizations of one same
financial process. This approach is common in econophysics
and relies on the existence of universal behaviors in economic
and financial systems [15]. Fig. 3 compares basket averaged
functions log2 S2(j) and Cp(j), p = 2, 3, 4 for the original
data and for shuffled surrogates.

Fig. 3 clearly shows that functions Cp(j) for p ≥ 2 obtained
after Sign-Shuffling almost perfectly superimpose with those
of the original data. Conversely, it also shows that functions
Cp(j) for p ≥ 2 obtained after Modulus-Shuffling are strongly
altered and are close to constant with respect to scales 2j ,
when the biased short time scales are disregarded. This is
further confirmed in Table II that reports estimated multifractal
parameters c2, c3 and c4 from the averaged Cp(j), p = 2, 3, 4
for original and shuffled data. It can be seen that estimates
of Sign-Shuffled surrogates and original data are in close
agreements while estimates of Modulus-Shuffled surrogates
strongly differ and are close to 0. Therefore, Sign-Shuffling
leaves multifractility unaltered while Modulus-Shuffling quasi-
totally destroys it, and, remarkably, at any statistical order.

Fig. 3 also shows that functions log2 S2(j) are essentially
not altered by any form of shuffling. Further, Table II confirms
that estimated H are essentially identical for original and
shuffled data. In addition, these estimated H are found close
to 0.5 thus confirming the absence of long memory and even
the absence of any autocorrelation in asset price fluctuations,
which can hence not be altered by shuffling. Incidentally, this
also validates that shuffling per se does not create any spurious
form of long memory (nor of multifractality).

Table II also shows that the asset price times series consid-
ered here display a significant multifractality (large c2) that
tends to involves only even cumulants (c3 ' 0 while c4
significantly departs from 0). Interestingly, this indicates that
multifractality does not account for any asymmetry in such
data, reinforcing the relation to modulus, hence to volatility.

V. CONCLUSIONS AND PERSPECTIVES

The present work explored the relations between multifrac-
tality and the time dynamics of signs and modulus in synthetic
and financial time series. Using the state-of-the-art wavelet
leader based multifractal formalism, and conducting Monte
Carlo simulations over synthetic copies of reference multi-

fractal processes (fractional Brownian motion in multifractal
time), and by comparing estimated multifractal properties of
original and shuffled surrogates, we have established a clear
and generic relation between multifractality and the temporal
dynamics of the increment moduli. Conversely, we have shown
that mutlifractality is not quantifying the temporal dynamics
of increment signs. It has also been shown that the temporal
dynamics of increment signs is coded in long memory, while
the possible impact of the temporal dynamics of increment
moduli on long memory concentrates on short time scales and
asymptotically vanishes at coarse scales.

For asset price time series, the achieved results unambigu-
ously indicate that multifractality is not related to the temporal
dynamics of the returns but is clearly tied to the temporal dy-
namics of volatility. These findings are of interest for financial
engineering at large, e.g., suggesting that multifractality can
not be used for return prediction, but could be involved in
volatility forecasting.
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