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Quantization-based Bermudan option pricing in the
FX world

Jean-Michel Fayolle ∗ Vincent Lemaire † Thibaut Montes ∗†

Gilles Pagès †

November 13, 2019

Abstract

This paper proposes two numerical solution based on Product Optimal Quan-
tization for the pricing of Foreign Echange (FX) linked long term Bermudan
options e.g. Bermudan Power Reverse Dual Currency options, where we take
into account stochastic domestic and foreign interest rates on top of stochastic
FX rate, hence we consider a 3-factor model. For these two numerical methods,
we give an estimation of the L2-error induced by such approximations and we
illustrate them with market-based examples that highlight the speed of such
methods.

Keywords— Foreign Exchange rates; Bermudan Options; Numerical method; Power Reverse Dual
Currency; Product Optimal Quantization.

Introduction

Persistent low levels of interest rates in Japan in the latter decades of the 20th century were one
of the core sources that led to the creation of structured financial products responding to the
need of investors for coupons higher than the low yen-based ones. This started with relatively
simple dual currency notes in the 80s where coupons were linked to foreign (i.e. non yen-based)
currencies enabling payments of coupons significantly higher. As time (and issuers’ competition)
went by, such structured notes were iteratively “enhanced” to reverse dual currency, power reverse
dual currency (PRDC), cancellable power reverse dual currency etc., each version adding further
features such as limits, early repayment options, etc. Finally, in the early 2000s, the denomination
xPRD took root to describe those structured notes typically long-dated (over 30y initial term)
and based on multiple currencies (see [Wys17]). The total notional invested in such notes is likely
to be in the hundreds of billions of USD. The valuation of such investments obviously requires
the modeling of the main components driving the key risks, namely the interest rates of each
pair of currencies involved as well as the corresponding exchange rates. In its simplest and most
popular version, that means 3 sources of risk: domestic and foreign rates and the exchange rate.
The 3-factor model discussed herein is an answer to that problem.

Gradually, as the note’s features became more and more complex, further refinements to the
modeling were needed, for instance requiring the inclusion of the volatility smile, the dependence
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of implied volatilities on both the expiry and the strike1 of the option, prevalent in the FX
options market. Such more complete modeling should ideally consist in successive refinements
of the initial modeling enabling consistency across the various flavors of xPRDs at stake.

The model discussed herein was one of the answers popular amongst practitioners for multiple
reasons: it was accounting for the main risks – interest rates in the currencies involved and
exchange rates – in a relatively simple manner and the numerical implementations proposed at
that time were based on simple extensions of well-known single dimensional techniques such as
3 dimensional trinomial trees, PDE based method (see [Pit05]) or on Monte Carlo simulations.

Despite the qualities of these methods, the calculation time could be rather slow, especially
when factoring in the cost for hedging (that is, measuring the sensitivities to all the input param-
eters) and even more post 2008, where the computation of risk measures and their sensitivities
to market values became a central challenge for the financial markets participants. Indeed, even
though these products were issued towards the end of the 20th century, they are still present
in the banks’s books and need to be considered when evaluating counterparty risk computa-
tions such as Credit Valuation Adjustment (CVA), Debt Valuation Adjustment (DVA), Funding
Valuation Adjustment (FVA), Capital Valuation Adjustment (KVA), ..., in short xVA’s (see
[BMP13, CBB14, Gre15] for more details on the subject). Hence, a fast and accurate numerical
method is important for being able to produce the correct values in a timely manner. The present
paper aims at providing an elegant and efficient answer to that problem of numerical efficiency
based on Optimal Quantization.

Let P pt, T q be the value at time t of one unit of the currency delivered (that is, paid) at
time T , also known as a zero coupon price or discount factor. A few iterations were needed by
researchers and practitioners before the seminal family of Heath-Jarrow-Morton models came
about. The general Heath-Jarrow-Morton (HJM) family of yield curve models can be expressed
as follows -although originally expressed by its authors in terms of rates dynamics, the two are
equivalent, see [HJM92], in a n-factor setting, we have for the curve P pt, T q that

dP pt, T q

P pt, T q
“ rtdt`

ÿ

i

σi
`

t, T, P pt, T q
˘

dW i
t (0.1)

where rt is the instantaneous rate at time t (therefore a random variable), W i, i “ 1, ¨ ¨ ¨ , n are
n correlated Brownian motions and σi

`

t, T, P pt, T q
˘

are volatility functions in the most general
settings (with the obvious constraint that σi

`

T, T, P pT, T q
˘

“ 0). Indeed, the general HJM
framework allows for the volatility functions σi

`

t, T, P pt, T q
˘

to also depend on the yield curve’s
(random) levels up to t – actually through forward rates – and therefore be random too. However,
it has been demonstrated in [EKMV92] that, to keep a tractable version (i.e. a finite number of
state variables), the volatility functions must be of a specific form, namely, of the mean-reverting
type (where the mean reversion can also depend on time). We use this way of expressing the
model as a mean to recall that such model is essentially the usual and well-known Black Scholes
model applied to all and any zero-coupon prices, with various enhancements regarding number of
factors and volatility functions, to keep the calculations tractable. For further details and theory,
one can refer to some of the following articles [EKFG96, EKMV92, HJM92, BS73]. Of course,
such a framework can be applied to any yield curve. In its simplest form (i.e. flat volatility and
one-factor), we have under the risk-neutral measure

dP pt, T q

P pt, T q
“ rtdt` σpT ´ tqdWt (0.2)

whereW is a standard Brownian motion under the risk-neutral probability. In that case, σ is the
flat volatility, which means the volatility of (zero-coupon) interest rates. That is often referred

1In the case of the FX, the implied volatility is expressed in function of the delta.
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to as a Hull-White model without mean reversion (see [HW93]) or a continuous-time version of
the Ho-Lee model. In the rest of the paper, we work with the model presented in (0.2) for the
diffusion of the zero coupon although the extension to non-flat volatilities is easily feasible.

About the Foreign Exchange (FX) rate, we denote by St the value at time t ą 0 of one unit
of foreign currency in the domestic one. The diffusion is that of a standard Black-Scholes model
with the following diffusion

dSt
St

“ prdt ´ r
f
t qdt` σSdW

S
t (0.3)

where rdt is the instantaneous rate of the domestic currency at time t, rft is the instantaneous
rate of the foreign currency at time t, σS is the volatility of the FX rate and WS is a standard
Brownian motion under the risk-neutral probability.

Let us briefly recall the principle of the adopted numerical method, Optimal quantization.
Optimal Quantization is a numerical method whose aim is to approximate optimally, for a given
norm, a continuous random signal by a discrete one with a given cardinality at most N . [She97]
was the first to work on it for the uniform distribution on unit hypercubes. Since then, it has been
extended to more general distributions with applications to Signal transmission in the 50’s at the
Bell Laboratory (see [GG82]). Formally, let Z be an Rd-valued random vector with distribution
PZ defined on a probability space pΩ,A,Pq such that Z P L2pPq. We search for ΓN , a finite
subset of Rd defined by ΓN :“ tzN1 , . . . , z

N
N u Ă R

d, solution to the following problem

min
ΓNĂR

d,|ΓN |ďN
}Z ´ pZN}2

where pZN denotes the nearest neighbour projection of Z onto ΓN . This problem can be extended
to the Lp-optimal quantization by replacing the L2-norm by the Lp-norm but this not in the scope
of this paper. In our case, we mostly consider quadratic one-dimensional optimal quantization,
i.e d “ 1 and p “ 2. The existence of an optimal quantizer at level N goes back to [CAGM97] (see
also [Pag98, GL00] for further developments). In the one-dimensional case, if the distribution
of Z is absolutely continuous with a log-concave density, then there exists a unique optimal
quantizer at level N , see [Kie83]. We scale to the higher dimension using Optimal Product
Quantization which deal with multi-dimensional quantizers built by considering the cartesian
product of one-dimensional optimal quantizers.

Considering again Z “ pZ`q`“1:d, a Rd-valued random vector. First, we look separately at
each component Z` independently by building a one-dimensional optimal quantization pZ` of size
N `, with quantizer ΓN`` “

 

z`i` , i` P t1, ¨ ¨ ¨ , N`u
(

and then, by applying the cartesian product
between the one-dimensional optimal quantizers, we build the product quantizer ΓN “

śd
`“1 ΓN``

with cardinality N “ N1 ˆ ¨ ¨ ¨ ˆNd by

ΓN “
 

pz1
i1 , ¨ ¨ ¨ , z

`
i`
, ¨ ¨ ¨ , zdidq, i` P t1, ¨ ¨ ¨ , N`u, ` P t1, ¨ ¨ ¨ , du

(

. (0.4)

Then, in the 90s, [Pag98] developed quantization-based cubature formulas for numerical
integration purposes and expectation approximations. Indeed, let f be a continuous function
f : Rd ÝÑ R such that fpZq P L1pPq, we can define the following quantization-based cubature
formula using the discrete property of the quantizer pZN

E
“

fp pZN q
‰

“

N
ÿ

i“1

pifpz
N
i q

where pi “ Pp pZN “ zNi q. Then, one could want to approximate E
“

fpZq
‰

by E
“

fp pZN q
‰

when
the first expression cannot be computed easily. For example, this case is exactly the problem
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one encounters when trying to price European Options. We know the rate of convergence of the
weak error induced by this cubature formula, i.e Dα P p0, 2s, depending on the regularity of f
such that

lim
NÑ`8

Nα
ˇ

ˇE
“

fpZq
‰

´ E
“

fp pZN q
‰
ˇ

ˇ ď Cf,X ă `8. (0.5)

For more results on the rate of convergence, the value of α, we refer to [Pag18] for a survey in
Rd and to [LMP19] for recent improved results in the one-dimensional case.

Later on, in a series of papers, among them [BP03, BPP05] extended this method to the
computation of conditional expectations allowing to deal with nonlinear problems in finance
and, more precisely, to the pricing and hedging of American/Bermudan options, which is the
part we are interested in. These problems are of the form

sup
τ
E
“

e´
şτ
0 r

d
sds ψτ pSτ q

‰

where
`

e´
ştk
0 rdsds ψtkpStkq

˘

k“0,...,n
is the obstacle function and τ : Ω Ñ tt0, t1, . . . , tnu is a stop-

ping time.

In this paper, we will present two numerical solutions, motivated by the works described
above, to the problem of the evaluation of Bermudan option on Foreign Exchange rate with
stochastic interest rates. The paper is organised as follows. First, in Section 1, we introduce
the diffusion models for the zero coupon curves and the foreign exchange rate we work with. In
Section 2, we describe in details the financial product we want to evaluate: Bermudan option
on foreign exchange rate. In this Section, we express the Backward Dynamical Programming
Principle and study the regularity of the obstacle process and the value function. Then, in Section
3, we propose two numerical solutions for pricing the financial product defined above based on
Product Quantization and we study the L2-error induced by these numerical approximations.
In Section 4, several examples are presented in order to compare the two methods presented
in Section 3. First, we begin with plain European option, this test is carried out in order to
benchmark the methods because a closed form formula is known for the price of a European
Call/Put in the 3-factor model. Then, we compare the two methods in the case of a Bermudan
option with several exercise dates. Finally, in Annex A, we make some change of numéraire and
in Annex B, we give the closed-form formula for the price of an European Call, in the 3-factor
model, used in Section 4 as a benchmark.

1 Diffusion Models

Interest Rate Model. We shall denote by P pt, T q the value at time t of one unit of the
currency delivered (that is, paid) at time T , also known as a zero coupon price or discount
factor. When t is today, this function can usually be derived from the market price of standard
products, such as bonds and interest rate swaps in the market, along with an interpolation
scheme (for the dates different than the maturities of the market rates used). In a simple
single-curve framework, the derivation of the initial curve, that is, the zero coupons P p0, T q
for T ą 0 is rather simple, through relatively standard methods of curve stripping. In more
enhanced frameworks accounting for multiple yield curves such as having different for curves for
discounting and forward rates, those methods are somewhat more demanding but still relatively
straightforward. We focus herein on the simple single-curve framework.

In our case we are working with financial products on Foreign Exchange (FX) rates between
the domestic and the foreign currency, hence we will be working with zero coupons in the domestic
currency denoted by P dpt, T q and zero coupons in the foreign currency denoted by P f pt, T q. The
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diffusion of the domestic zero-coupon curve under the domestic risk-neutral probability P is given
by

dP dpt, T q

P dpt, T q
“ rdt dt` σdpT ´ tqdW

d
t

where W d is a P-Brownian Motion, rdt is the domestic instantaneous rate at time t and σd is the
volatility for the domestic zero coupon curve. For the foreign zero-coupon curve, the diffusion is
given, under the foreign neutral probability rP, by

dP f pt, T q

P f pt, T q
“ rft dt` σf pT ´ tqd

ĂW f
t

where ĂW f is a rP-Brownian Motion, rft is the foreign instantaneous rate at time t and σf is the
volatility for the foreign zero coupon curve. The two probabilities rP and P are supposed to be
equivalent, i.e rP „ P and it exists ρdf defined as limit of the quadratic variation xW d,ĂW f yt “

ρdf t.

Remarks. Such a framework to model random yield curves has been quite popular with practi-
tioners due to its elegance, simplicity and intuitive understanding of rates dynamics through time
yet providing a comprehensive and consistent modelling of an entire yield curve through time.
Indeed, it is mathematically and numerically easily tractable. It carries no path dependency and
allows the handling of multiple curves for a given currency as well as multiple currencies – and
their exchange rates – as well as equities (when one wishes to account for random interest rates).
It allows negative rates and can be refined by adding factors (Brownian motions).

However, it cannot easily cope with smile or non-normally distributed shocks or with internal
curve ”oddities” or specifics such as different volatilities for different swap tenors within the same
curve dynamics. Nonetheless, our aim being to propose a model and a numerical method which
make possible to produce risk computations (such as xVA’s) in an efficient way, these properties
are of little importance. That said, when it comes to deal with accounting for random rates in
long-dated derivatives valuations, its benefits far outweigh its limitations and its use for such
applications is popular, see [NP14] for the pricing of swaptions, [Pit05] for PRDCs...

Foreign Exchange Model. The diffusion of the foreign exchange (FX) rate defined under
the domestic risk-neutral probability is

dSt
St

“ prdt ´ r
f
t qdt` σSdW

S
t

with WS
t a P-Brownian Motion under the domestic risk-neutral probability such that their exist

ρSd and ρSf defined as limit of the quadratic variation xWS ,W dyt “ ρSdt and xWS ,ĂW f yt “ ρSf t,
respectively.

Finally, the processes, expressed in the domestic risk-neutral probability P, are
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

dP dpt, T q

P dpt, T q
“ rdt dt` σdpT ´ tqdW

d
t

dSt
St

“ prdt ´ r
f
t qdt` σSdW

S
t

dP f pt, T q

P f pt, T q
“

`

rft ´ ρSfσSσf pT ´ tq
˘

dt` σf pT ´ tqdW
f
t

(1.1)
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where W f , defined by dW f
s “ dĂW f

s ` ρSfσSds, is a P-Brownian motion, as shown in Appendix
A. Using Itô’s formula, we can explicitly express the processes
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

P dpt, T q “ P dp0, T q exp

˜

ż t

0

ˆ

rds ´
σ2
dpT ´ sq

2

2

˙

ds` σd

ż t

0
pT ´ sqdW d

s

¸

St “ S0 exp

˜

ż t

0

ˆ

rds ´ r
f
s ´

σ2
S

2

˙

ds` σSW
S
t

¸

P f pt, T q “ P f p0, T q exp

˜

ż t

0

ˆ

rfs ´ ρSfσSσf pT ´ sq ´
σ2
f pT ´ sq

2

2

˙

ds` σf

ż t

0
pT ´ sqdW f

s

¸

.

From these equations, we deduce exp

ˆ

´
şt
0 r

d
sds

˙

and exp

ˆ

´
şt
0 r

f
s ds

˙

, by taking T “ t and

using that P dpt, tq “ P f pt, tq “ 1, it follows that
$

’

’

’

&

’

’

’

%

exp

ˆ

´

ż t

0
rdsds

˙

“ ϕdptq exp

ˆ

σd

ż t

0
pt´ sqdW d

s

˙

exp

ˆ

´

ż t

0
rfs ds

˙

“ ϕf ptq exp

ˆ

σf

ż t

0
pt´ sqdW f

s

˙

,

where

ϕdptq “ P dp0, tq exp

ˆ

´ σ2
d

ż t

0

pt´ sq2

2
ds

˙

(1.2)

and

ϕf ptq “ P f p0, tq exp

˜

´

ż t

0

ˆ

ρSfσSσf pt´ sq `
σ2
f pt´ sq

2

2

˙

ds

¸

. (1.3)

These expressions for the domestic and the foreign discount factors will be useful in the following
sections of the paper.

2 Bermudan Options

2.1 Product Description

Let pΩ,A,Pq our domestic risk neutral probability space. We want to evaluate the price of a
Bermudan option on the FX rate St defined by

St “
1

exp

ˆ

´
şt
0 r

d
sds

˙S0ϕf ptq exp

ˆ

´
σ2
S

2
t` σSW

S
t ` σf

ż t

0
pt´ sqdW f

s

˙

with

exp

ˆ

´

ż t

0
rdsds

˙

“ ϕdptq exp

ˆ

σd

ż t

0
pt´ sqdW d

s

˙

where the owner of the financial product can exercise its option at predetermined dates t0, t1, ¨ ¨ ¨ , tn
with payoff ψtk at date tk, where t0 “ 0.

At a given time t, the observables in the market are the foreign exchange rate St and the
zero-coupon curves

`

P dpt, T q
˘

Tět
and

`

P f pt, T q
˘

Tět
, hence the natural filtration to consider is

F t “ σ
`

Ss, P
dps, T q, P f ps, T q, s ď t

˘

“ σ
`

WS
s ,W

d
s ,W

f
s , s ď t

˘

. (2.1)
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Let τ : Ω Ñ tt0, t1, . . . , tnu a stopping time for the filtration pF tkqkě0 and T the set of all
stopping times for the filtration pF tkqkě0. In this paper, we consider problems where the horizon
is finite then we define T nk , the set of all stopping times taking finite values

T nk “
 

τ P T ,Pptk ď τ ď tnq “ 1
(

. (2.2)

Hence, the price at time tk of the Bermudan option is given by

Vk “ sup
τPT nk

E
“

e´
şτ
0 r

d
sds ψτ pSτ q | F tk

‰

and Vk is called the Snell envelope of the obstacle process
`

e´
ştk
0 rdsds ψtkpStkq

˘

k“0:n
such that

E
“

ψtkpStkq
2
‰

ă `8, @k “ 0, . . . , n. (2.3)

Remark. The financial products we consider in the applications are PRDC. Their payoffs (see
Figure 1) have the following expression

ψtkpxq “ min

˜

max

ˆ

Cf ptkq

S0
x´ Cdptkq,Floorptkq

˙

,Capptkq

¸

(2.4)

where Floorptkq and Capptkq are the floor and cap values chosen at the creation of the product,
as well as Cf ptkq and Cdptkq that are the coupons value we wish to compare to the foreign and
the domestic currency, respectively.

Figure 1: Example of a PRDC payoff ψtkpStkq “ min
´´

0.189
Stk

88.17 ´ 0.15
¯

`
, 0.0555

¯

at time tk.

The interesting feature of such functions is that their (right) derivative have a compact
support.

2.2 Backward Dynamic Programming Principle

Vk can also be defined recursively by
$

&

%

Vn “ e´
ştn
0 rdsds ψnpStnq,

Vk “ max
´

e´
ştk
0 rdsds ψkpStkq,ErVk`1 | F tks

¯

, 0 ď k ď n´ 1
(2.5)

and this representation is called the Backward Dynamical Programming Principle (BDPP).
First, noticing that the obstacle process e´

şt
0 r
d
sds ψtpStq can be rewritten as a function ht of

two processes Xt and Yt such that

htpXt, Ytq “ e´
şt
0 r
d
sds ψtpStq (2.6)
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where h is given by

htpx, yq “ ϕdptq e´y ψt

ˆ

S0
ϕf ptq

ϕdptq
e´σ

2
St{2`x`y

˙

(2.7)

and pX,Y q is defined by

pXt, Ytq “

ˆ

σSW
S
t ` σf

ż t

0
pt´ sqdW f

s ,´σd

ż t

0
pt´ sqdW d

s

˙

. (2.8)

Using this new form, the Snell envelope becomes

Vk “ sup
τPT nk

E
“

hτ pXτ , Yτ q | F tk
‰

Now, in order to alleviate notations, we denote byXk “ Xtk ,W
f
k “W f

tk
, Yk “ Ytk ,W

d
k “W d

tk
and hk “ htk .
Remark. Using the random vector pX,Y q newly defined, we rewrite the filtration F t as

F t “ σ
`

WS
s ,W

d
s ,W

f
s , s ď t

˘

“ σ
`

Xs,W
f
s , Ys, s ď t

˘

“ σ
`

Xs,W
f
s , Ys,W

d
s , s ď t

˘

. (2.9)

This new expression for the filtration allows us to only consider pXk,W
f
k , Yk,W

d
k q during the

BDPP as this sequence is a Markov chain. Indeed
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Xk`1 “ Xk ` σfδW
f
k ` σS

ż tk`1

tk

dWS
s ` σf

ż tk`1

tk

ptk`1 ´ sqdW
f
s

W f
k`1 “W f

k `

ż tk`1

tk

dW f
s

Yk`1 “ Yk ´ σdδW
d
k ´ σd

ż tk`1

tk

ptk`1 ´ sqdW
d
s

W d
k`1 “W d

k `

ż tk`1

tk

dW d
s

where δ “ T
n and can be written as

$

’

’

’

’

&

’

’

’

’

%

Xk`1 “ Xk ` σfδW
f
k `G

1
k`1

W f
k`1 “W f

k `G
2
k`1

Yk`1 “ Yk ´ σdδW
d
k `G

3
k`1

W d
k`1 “W d

k `G
4
k`1,

(2.10)

where
¨

˚

˚

˝

G1
k`1

G2
k`1

G3
k`1

G4
k`1

˛

‹

‹

‚

„ N
´

µk`1,Σk`1

¯

(2.11)

with

µk`1 “

¨

˚

˚

˝

0
0
0
0

˛

‹

‹

‚

and Σk`1 “

ˆ

Cov
`

Gik`1, G
j
k`1

˘

˙

i,j“1:4

. (2.12)

One notices that
`

pG1
k, G

2
k, G

3
k, G

4
kq
˘

k“1...,n
are i.i.d. Based on Equation (2.10), we deduce the

Markov chain transition of pXk,W
f
k , Yk,W

d
k q, for any integrable function f : R4 Ñ R, given by

Pfpx, u, y, vq “ E
“

fpx` σfδu`G
1
k`1, u`G

2
k`1, y ´ σdδv `G

3
k`1, v `G

4
k`1q

‰

. (2.13)
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Then, using the Markov property of pXk,W
f
k , Yk,W

d
k q, the BDPP (2.5) reads as follows,

$

&

%

Vn “ hnpXn, Ynq,

Vk “ max
´

hkpXk, Ykq,E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

¯

, 0 ď k ď n´ 1.
(2.14)

Moreover, by backward induction we get Vk “ vkpXk,W
f
k , Yk,W

d
k q where

$

&

%

vnpXn,W
f
n , Yn,W

d
nq “ hnpXn, Ynq,

vkpXk,W
f
k , Yk,W

d
k q “ max

´

hkpXk, Ykq, Pvk`1pXk,W
f
k , Yk,W

d
k q

¯

, 0 ď k ď n´ 1.

(2.15)

Payoff regularity. First, we look at the regularity of the payoff. The next proposition will
then allow us to study the regularity of the value function through the propagation of the local
Lipschitz property by the transition of the Markov chain.

Proposition 2.1. If ψtk is are Lipschitz continuous with Lipschitz coefficient rψtksLip with com-
pactly supported (right) derivative (such as the payoff defined in (2.4)) then hkpx, yq given by
(2.7) is locally Lipschitz continuous, for every x, x1, y, y1 P R

|hkpx, yq ´ hkpx
1, y1q| ď e|y|_|y

1|
`

r sψksLip |x´ x
1| ` pϕdptkq}ψtk}8 ` r

sψksLipq|y ´ y
1|
˘

(2.16)

with r sψksLip “ rψtksLipS0ϕf ptkq e´σ
2
Stk{2 }ψ1tk}8 ec with ψ1tk the right derivative of ψtk .

Proof. Let gk be defined by

gkpx, yq “ ψtk

ˆ

S0
ϕf ptkq

ϕdptkq
e´σ

2
Stk{2`x`y

˙

. (2.17)

As ψ1tk has a compact support, then it exists c P R such that

|pψtkpe
xqq1| “ | ex ψ1tkpe

xq| ď }ψ1tk}8 sup
xPsuppψ1tk

ex ď }ψ1tk}8 ec . (2.18)

Hence

|gkpx, yq ´ gkpx
1, y1q| ď

r sψksLip
ϕdptkq

`

|x´ x1| ` |y ´ y1|
˘

(2.19)

with r sψksLip “ rψtksLipS0ϕf ptkq e´σ
2
Stk{2 }ψ1tk}8 ec. Then for every x, x1, y, y1 P R, we have

|hkpx, yq ´ hkpx
1, y1q| “ ϕdptkq

ˇ

ˇ e´y gkpx, yq ´ e´y
1

gkpx
1, y1q

ˇ

ˇ

ď ϕdptkq
´

ˇ

ˇ e´y gkpx, yq ´ e´y
1

gkpx, yq
ˇ

ˇ`
ˇ

ˇ e´u
1

gkpx, yq ´ e´y
1

gkpx
1, y1q

ˇ

ˇ

¯

ď ϕdptkq
´

ˇ

ˇ e´y ´ e´y
1 ˇ
ˇ ¨ }ψtk}8 ` e´y

1 ˇ
ˇgkpx, yq ´ gkpx

1, y1q
ˇ

ˇ

¯

ď e|y|_|y
1|
`

r sψksLip |x´ x
1| ` pϕdptkq}ψtk}8 ` r

sψksLipq|y ´ y
1|
˘

.
(2.20)

The next Lemma shows that the transition of the Markov chain propagates the local Lipschitz
continuity of a function f . This result will be helpful to estimate the error induced by the
numerical approximation (2.15).
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Lemma 2.2. Let Pfpx, u, y, vq “ E
“

fpx ` σfδu ` G1, u ` G2, y ´ σdδv ` G3, v ` G4q
‰

be a
Markov kernel. If the function f satisfies the following local Lipschitz property,

|fpx, u, y, vq ´ fpx1, u1, y1, v1q| ď
`

A|x´ x1| `B|u´ u1| ` C|y ´ y1| `D|v ´ v1|
˘

ˆ e|y|_|y
1|`b|v|_|v1|

(2.21)

then

|Pfpx, u, y, vq ´ Pfpx1, u1, y1, v1q| ď
`

rA|x´ x1| ` rB|u´ u1| ` rC|y ´ y1| ` rD|v ´ v1|
˘

ˆ e|y|_|y
1|`rb|v|_|v1| .

(2.22)

Proof. It follows from Jensen’s inequality and our assumption on f , we have

|Pfpx, u, y, vq ´ Pfpx1, u1, y1, v1q|

ď E
”

ˇ

ˇfpx` σfδu`G
1, u`G2, y ´ σdδv `G

3, v `G4q

´ fpx1 ` σfδu
1 `G1, u1 `G2, y1 ´ σdδv

1 `G3, v1 `G4q
ˇ

ˇ

ı

ď
`

A|x´ x1| ` pB `Aσfδq|u´ u
1| ` C|y ´ y1| ` pD ` Cσdδq|v ´ v

1|
˘

ˆ e|y|_|y
1|`pb`σdδq|v|_|v

1|E
“

e|G
3|`b|G4|

‰

ď
`

rA|x´ x1| ` rB|u´ u1| ` rC|y ´ y1| ` rD|v ´ v1|
˘

ˆ e|y|_|y
1|`rb|v|_|v1|

(2.23)

where
rA “ AErκs, rB “ pB `AσfδqErκs (2.24)

and
rC “ C Erκs, rD “ pD ` CσdδqErκs, rb “ b` σdδ (2.25)

with κ “ expp|G3| ` b|G4|q and Erκs ă `8.

Value function regularity. If the functions pψtkqk“0:n are defined as in Equation (2.4) then
vnpx, u, y, vq preserves a local Lipschitz property. Hence, for every x, x1, u, u1, y, y1, v, v1 P R,

|vnpx, u, y, vq ´ vnpx
1, u1, y1, v1q| ď

`

An|x´ x
1| `Bn|u´ u

1| ` Cn|y ´ y
1| `Dn|v ´ v

1|
˘

ˆ e|y|_|y
1|`bn|v|_|v1|

(2.26)

where

An “ r sψnsLip , Bn “ 0, Cn “ ϕdptnq}ψn}8 ` r
sψnsLip , Dn “ 0, bn “ 0 (2.27)

with r sψnsLip “ rψtnsLipS0ϕf ptnq expp´σ2
Stn{2q}ψ

1
tn}8 ec. Using now Lemma 2.2 recursively and

the elementary inequality maxpa, b ` cq ď maxpa, bq ` c (as x ÞÑ maxpa, xq is 1-Lipschitz), we
have
|vkpx, u, y, vq ´ vkpx

1, u1, y1, v1q|

ď max
`

|hkpx, yq ´ hkpx
1, y1q|, |Pvk`1px, u, y, vq ´ Pvk`1px

1, u1, y1, v1q|
˘

ď max

ˆ

e|y|_|y
1|
`

r sψksLip |x´ x
1| `

`

ϕdptkq}ψtk}8 ` r
sψksLip

˘

|y ´ y1|
˘

,
`

rAk|x´ x
1| ` rBk|u´ u

1| ` rCk|y ´ y
1| ` rDk|v ´ v

1|
˘

ˆ e|y|_|y
1|`rbk|v|_|v

1|

˙

ď
`

Ak|x´ x
1| `Bk|u´ u

1| ` Ck|y ´ y
1| `Dk|v ´ v

1|
˘

ˆ e|y|_|y
1|`bk|v|_|v

1|

(2.28)
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where

Ak “ r sψksLip _
`

Ak`1Erκk`1s
˘

, Bk “ pBk`1 `Ak`1σfδqErκk`1s, bk “ bk`1 ` σdδ
(2.29)

and

Ck “
`

ϕdptkq}ψtk}8 ` r
sψksLip

˘

_
`

Ck`1Erκk`1s
˘

, Dk “ pDk`1 ` Ck`1σdδqErκk`1s (2.30)

with κk`1 “ expp|G3
k`1| ` bk`1|G

4
k`1|q. Or equivalently

Ak “ max
lěk

ˆ

r sψlsLip

l
ź

j“k`1

Erκjs

˙

, Bk “ σf
T

n

n
ÿ

l“k`1

max
lďiďn

ˆ

r sψisLip

i
ź

j“k`1

Erκjs

˙

(2.31)

and

Ck “ max
lěk

ˆ

`

ϕdptlq}ψl}8 ` r
sψlsLip

˘

l
ź

j“k`1

Erκjs

˙

,

Dk “ σd
T

n

n
ÿ

l“k`1

max
lďiďn

ˆ

`

ϕdptiq}ψi}8 ` r
sψisLip

˘

i
ź

j“k`1

Erκjs

˙

(2.32)

with
bk “ σdT

´

1´
k ´ 1

n

¯

. (2.33)

3 Bermudan pricing using Optimal Quantization

In this section, we propose two numerical solutions based on Product Optimal Quantization
for the pricing of Bermudan Options on the FX rate St. First, we remind briefly what is an
optimal quantizer and what we mean by a product quantization tree. Second, we present a
first numerical solution, based on quantization of the Markovian tuple pX,W f , Y,W dq, to solve
the numerical problem (2.14) and detail the L2-error induced by this approximation. However,
remember that we are looking for a method that makes possible to compute xVA’s risk mea-
sures in a reasonable time but this solution can be too time consuming in practice due to the
dimensionality of the quantized processes. That is why we present a second numerical solution
which reduces the dimensionality of the problem by considering an approximate problem, based
on quantization of the non-Markovian couple pX,Y q, introducing a systematic error induced by
the non-markovianity and we study the L2-error produced by this approximation.

3.1 About Optimal Quantization

Theoretical background (the one-dimensional case). The aim of Optimal Quantization
is to determine ΓN , a set with cardinality at most N , which minimises the quantization error
among all such sets Γ. We place ourselves in the one-dimensional case. Let Z be an R-valued
random variable with distribution PZ defined on a probability space pΩ,A,Pq such that Z P L2

R.

Definition 3.1. Let ΓN “ tz1, . . . , zNu Ă R be a subset of size N , called N -quantizer. A Borel
partition

`

CipΓN q
˘

iPJ1,NK of R is a Voronoï partition of R induced by the N -quantizer ΓN if, for
every i “ t1, ¨ ¨ ¨ , Nu,

Ci
`

ΓN
˘

Ă

!

ξ P R, |ξ ´ zi| ď min
j‰i

|ξ ´ zj |
)

.

The Borel sets CipΓN q are called Voronoï cells of the partition induced by ΓN .
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One can always consider that the quantizers are ordered: z1 ă z2 ă ¨ ¨ ¨ ă zN´1 ă zN and in
that case the Voronoï cells are given by

Ck
`

ΓN
˘

“
`

zk´1{2, zk`1{2

‰

, k P J1, N ´ 1K, CN
`

ΓN
˘

“
`

zN´1{2, zN`1{2

˘

where @k P t2, ¨ ¨ ¨ , Nu, zk´1{2 “
zk´1`zk

2 and z1{2 “ inf
`

supppPZ q
˘

and zN`1{2 “ sup
`

supppPZ q
˘

.

Definition 3.2. Let ΓN “ tz1, . . . , zNu be an N -quantizer. The nearest neighbour projection
ProjΓN : RÑ tz1, . . . , zNu induced by a Voronoï partition

`

CipΓN q
˘

iPt1,¨¨¨ ,Nu
is defined by

@ξ P R, ProjΓN pξq “
N
ÿ

i“1

zi 1ξPCipΓN q .

Hence, we can define the quantization of Z as the nearest neighbour projection of Z onto ΓN by
composing ProjΓN and X

pZΓN “ ProjΓN pZq “
N
ÿ

i“1

zi 1ZPCipΓN q .

In order to alleviate notations, we write pZN from now on in place of pZΓN .
Now that we have defined the quantization of Z, we explain where does the term "optimal"

comes from in the term optimal quantization. First, we define the quadratic distortion function.

Definition 3.3. The L2-mean quantization error induced by the quantizer pZN is defined as

}Z ´ pZN}2 “

ˆ

E
”

min
iPt1,¨¨¨ ,Nu

|Z ´ zi|
2
ı

˙1{2

“

ˆ
ż

R

min
iPt1,¨¨¨ ,Nu

|ξ ´ zi|
2PZ pdξq

˙1{2

. (3.1)

It is convenient to define the quadratic distortion function at level N as the squared mean
quadratic quantization error on pRqN :

Q2,N : z “
`

z1, . . . , zN
˘

ÞÝÑ E
”

min
iPt1,¨¨¨ ,Nu

|Z ´ zi|
2
ı

“ }Z ´ pZN}2
2
.

Remark. All these definitions can be extended to the Lp case. For example the Lp-mean
quantization error induced by a quantizer of size N is

}Z ´ pZN}p “

ˆ

E
”

min
iPt1,¨¨¨ ,Nu

|Z ´ zi|
p
ı

˙1{p

“

ˆ
ż

R

min
iPt1,¨¨¨ ,Nu

|Z ´ zi|
pPZ pdξq

˙1{p

. (3.2)

The existence of a N -tuple zpNq “ pz1, . . . , zN q minimizing the quadratic distortion function
Q2,N at level N has been shown and its associated quantizer ΓN “ tzi, i P t1, ¨ ¨ ¨ , Nuu is called
an optimal quadratic N -quantizer, see e.g. [Pag18] for further details and references. We now
turn to the asymptotic behaviour in N of the quadratic mean quantization error. The next
Theorem, known as Zador’s Theorem, provides the sharp rate of convergence of the Lp-mean
quantization error.

Theorem 3.4. (Zador’s Theorem) Let p P p0,`8q.

(a) Sharp rate. Let Z P Lp`δR pPq for some δ ą 0. Let PZ pdξq “ ϕpξq ¨ λpdξq ` νpdξq, where
ν K λ i.e. denotes the singular part of PZ with respect to the Lebesgue measure λ on R.
Then,

lim
NÑ`8

N min
ΓNĂR,|ΓN |ďN

}Z ´ pZN}p “
1

2ppp` 1q

„
ż

R

ϕ
1

1`pdλ

1` 1
p

. (3.3)
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(b) Non asymptotic upper-bound. Let δ ą 0. There exists a real constant C1,p,δ P p0,`8q
such that, for every R-valued random variable Z,

@N ě 1, min
ΓNĂR,|ΓN |ďN

}Z ´ pZN}p ď C1,p,δσδ`ppZqN
´1 (3.4)

where, for r P p0,`8q, σrpZq “ minaPR }Z ´ a}r ď `8.

The next result answers to the following question: what can be said about the convergence
rate of E

“

|Z ´ pZN |2`β
‰

, knowing that pZN is a quadratic optimal quantization?
This problem is known as the distortion mismatch problem and has been first addressed by

[GLP08] and the results have been extended in Theorem 4.3 of [PS18].

Theorem 3.5. [Lr-Ls-distortion mismatch] Let Z : pΩ,A,Pq Ñ R be a random variable and
let r P p0,`8q. Assume that the distribution PZ of Z has a non-zero absolutely continuous
component with density ϕ. Let pΓN qNě1 be a sequence of Lr-optimal grids. Let s P pr, r ` 1q. If

Z P L
s

1`r´s
`δ
pΩ,A,Pq (3.5)

for some δ ą 0, then
lim sup

N
N}Z ´ pZN}s ă `8. (3.6)

Product Quantization. Now, let Z “ pZ`q`“1:d be an Rd-valued random vector with dis-
tribution PZ defined on a probability space pΩ,A,Pq. There are two approaches if one wishes
to scale to higher dimensions. Either one applied the above framework directly to the random
vector Z and build an optimal quantizer of Z, or one may consider separately each component
Z` independently, build a one-dimensional optimal quantization pZ`, of size N `, with quantizer
ΓN

`

` “
 

z`i` , i` P t1, ¨ ¨ ¨ , N
`u
(

and then build the product quantizer ΓN “
śd
`“1 ΓN

`

l of size
N “ N1 ˆ ¨ ¨ ¨ ˆNd defined by

ΓN “
 

pz1
i1 , ¨ ¨ ¨ , z

`
i`
, ¨ ¨ ¨ , zdidq, i` P t1, ¨ ¨ ¨ , N`u, ` P t1, ¨ ¨ ¨ , du

(

. (3.7)

In our case we chose the second approach. Indeed, it is much more flexible when dealing with
normal distribution, like in our case. We do not need to solve the d-dimensional minimization
problem at each time step. We only need to load precomputed optimal quantizer of standard
normal distribution N p0, 1q and then take advantage of the stability of optimal quantization by
rescaling in one dimension in the sense that if ΓN “ tzi, 1 ď i ď Nu is optimal at level N for
N p0, 1q then µ` σΓN (with obvious notations) is optimal for N pµ, σ2q.

Even though it exists fast methods for building optimal quantizers in two-dimension based on
deterministic methods like in the one-dimensional case, when dealing with optimal quantization
of bivariate Gaussian vector, we may face numerical instability when the covariance matrix is
ill-conditioned: so is the case if the variance of one coordinate is relatively high compared to the
second one (which is our case in this paper). This a major drawback as we are looking for a
fast numerical solution able to produce prices in a few seconds and this is possible when using
product optimal quantization.

Quantization Tree. Now, in place of considering a random variable Z, let pZtqtPr0,T s be a
stochastic process following a Stochastic Differential Equation (SDE)

Zt “ Z0 `

ż t

0
bspZsqds`

ż t

0
σps, ZsqdWs (3.8)
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with Z0 “ z0 P R
d, W a standard Brownian motion living on a probability space pΩ,A,Pq and

b and σ satisfy the standard assumptions in order to ensure the existence of a strong solution of
the SDE.

What we call Quantization Tree is defined, for chosen time steps tk “ Tk{n, k “ 0, ¨ ¨ ¨ , n, by
quantizers pZk of Zk (Product Quantizers in our case) at dates tk and the transition probabilities
between date tk and date tk`1. Although p pZkqk is no longer a Markov chain we will consider the
transition probabilities πkij “ Lp pZk`1 | pZkq. We can apply this methodology because, with the
model we consider, we know all the marginal laws of our processes at each date of interest.

In the next subsection, we present the approach based on the quantization tree previously
defined that allows us to approximate the price of Bermudan options where the risk factors are
driven by the 3-factor model (1.1).

3.2 Quantization tree approximation: Markov case

Our first idea in order to discretize (2.14) is to replace the processes by a product quantizer
composed with optimal quadratic quantizers. Indeed, at each time tk, we know the law of the
processes Xk, W

f
k , Yk and W d

k . Then we "force" in some sense the (lost) Markov property by
introducing the Quantized Backward Dynamical Programming Principle (QBDPP) defined by

$

&

%

pVn “ hnp pXn, pYnq,

pVk “ max
´

hkp pXk, pYkq,E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

¯

, 0 ď k ď n´ 1,
(3.9)

where for every k “ 0, . . . , n, pXk, xW
f
k , pYk and xW d

k are quadratic optimal quantizers ofXk,W
f
k , Yk

andW d
k of sizeNX

k , NW f

k , NY
k andNW d

k respectively and we denoteNk “ NX
k ˆN

W f

k ˆNY
k ˆN

W d

k

the size of the grid of the product quantizer.
We are interested by the error induced by the numerical algorithm defined in (3.9) and more

precisely its L2-error, with in mind that we "lost" the Markov property in the quantization
procedure. Moreover, this can be circumvented as shown below.

Theorem 3.6. Let the Markov transition Pfpx, u, y, vq defined in (2.13) be locally Lipschitz in
the sense of Lemma 2.2. Assume that all the payoff functions pψtkqk“0:n are Lipschitz continu-
ous with compactly supported (right) derivative. Then the L2-error induced by the quantization
approximation p pXk,xW

f
k ,

pYk,xW
d
k q is upper-bounded by

›

›Vk ´ pVk
›

›

2
ď

ˆ n
ÿ

l“k

CXl
›

›Xl ´ pXl

›

›

2

2p
` CYl

›

›Yl ´ pYl
›

›

2

2p
` CW d

l

›

›W d
l ´

xW d
l

›

›

2

2p
` C

W f
l

›

›W f
l ´

xW f
l

›

›

2

2p

˙1{2

,

(3.10)
where 1 ă p ă 3{2 and q ě 1 such that 1

p `
1
q “ 1 and

CXl “ r
sψls

2
Lip

›

› e|Yl|_|
pYl|
›

›

2

2q
` rA2

lK
2
l , CW d

l
“ rB2

lK
2
l ,

CYl “
`

ϕdptlq}ψtl}8 ` r
sψlsLip

˘2›
› e|Yl|_|

pYl|
›

›

2

2q
` rC2

l K
2
l , C

W f
l
“ rD2

lK
2
l

(3.11)

with
Kl “

›

› e|Yl|_|
pYl|`rbl|W

d
l |_|

xW d
l |
›

›

2q
. (3.12)

As a consequence if sN “ minNk, we have

lim
sNÑ`8

›

›Vk ´ pVk
›

›

2

2
“ 0. (3.13)
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Remark. From the definition of the processes Xk, W
f
k , Yk and W d

k , all are Gaussian random
variables hence all the L2q-norms in Equations (3.11) and (3.12) are finite. Indeed, let Z „

N p0, σZ q a Gaussian random variable with variance σ2
Z
and pZ an optimal quantizer of Z with

cardinality N then @λ P R`

›

› eλ|Z|_|
pZ|
›

›

2q
“

ˆ

E
“

e2qλ|Z|_| pZ|
‰

˙
1
2q

ď

ˆ

2E
“

e2qλ|Z|
‰

˙
1
2q

ď 2
1
2q eq

2λ2σ2
Z . (3.14)

Proof. The error between the Snell envelope and its approximation is given by

|Vk ´ pVk| ď max
´

ˇ

ˇhkpXk, Ykq ´ hkp pXk, pYkq
ˇ

ˇ,

ˇ

ˇE
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰ˇ

ˇ

¯

(3.15)
thus, using the local Lipschitz property of hk established in Proposition 2.1 and Hölder’s inequal-
ity with p, q ě 1 such that 1

p `
1
q “ 1, the L2-error is upper-bounded by

›

›Vk ´ pVk
›

›

2

2
ď

›

›hkpXk, Ykq ´ hkp pXk, pYkq
›

›

2

2

`
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰›

›

2

2
.

ď
›

› e|Yk|_|
pYk|

›

›

2

2q

´

`

ϕdptkq}ψtk}8 ` r
sψksLip

˘2›
›Yk ´ pYk

›

›

2

2p
` r sψks

2
Lip

›

›Xk ´ pXk

›

›

2

2p

¯

`
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰
›

›

2

2
.

(3.16)
Looking at the last term, we have

E
“

Vk`1 | pXk,W
f
k ,Yk,W

d
k q
‰

´ E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

“E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

`E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

´ E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

q.

(3.17)

Now, we inspect the L2-error of each term on the right-hand side of the equality.

• For the first term, notice that

E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

“ Pvk`1pXk,W
f
k , Yk,W

d
k q (3.18)

and
E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

“ Pvk`1p pXk,xW
f
k ,

pYk,xW
d
k q (3.19)

then, we directly apply Lemma 2.2 on the function vk`1 and obtain

|Pvk`1pXk,W
f
k , Yk,W

d
k q ´ Pvk`1p pXk,xW

f
k ,

pYk,xW
d
k q|

ď

´

rAk|Xk ´ pXk| ` rBk|W
f
k ´

xW f
k | `

rCk|Yk ´ pYk| ` rDk|W
d
k ´

xW d
k |

¯

e|Yk|_|
pYk|`rbk|W

d
k |_|

xW d
k |

(3.20)
with rAk, rBk, rCk, rDk and rbk defined by (2.24) and (2.25). Hence, using Hölder’s inequality with
p, q ě 1 such that 1

p `
1
q “ 1,

›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰›

›

2

2

ď

´

rA2
k

›

›Xk ´ pXk

›

›

2

2p
` rB2

k

›

›W f
k ´

xW f
k

›

›

2

2p
` rC2

k

›

›Yk ´ pYk
›

›

2

2p
` rD2

k

›

›W d
k ´

xW d
k

›

›

2

2p

¯

ˆ
›

› e|Yk|_|
pYk|`rbk|W

d
k |_|

xW d
k |
›

›

2

2q
.

(3.21)
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• The last one is useful for the induction, indeed
›

›E
“

Vk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

´ E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰›

›

2

2
ď

›

›Vk`1 ´ pVk`1

›

›

2

2
. (3.22)

Finally, using the Lr-Ls mismatch theorem for the quadratic optimal quantizers pXk and pYk,
if 1 ă p ă 3{2, then

lim sup
NX
k

NX
k }Xk ´ pXk}2p ă `8, lim sup

NY
k

NY
k }Yk ´

pYk}2p ă `8,

lim sup
NWf
k

NW f

k }W f
k ´

xW f
k }2p ă `8 and lim sup

NWd
k

NW d

k }W d
k ´

xW d
k }2p ă `8

(3.23)

this yields
›

›Vk ´ pVk
›

›

2

2

ď
›

›Xk ´ pXk

›

›

2

2p

´

r sψks
2
Lip

›

› e|Yk|_|
pYk|

›

›

2

2q
` rA2

kK
2
k

¯

`
›

›Yk ´ pYk
›

›

2

2p

´

`

ϕdptkq}ψtk}8 ` r
sψksLip

˘2›
› e|Yk|_|

pYk|
›

›

2

2q
` rC2

kK
2
k

¯

` rB2
kK

2
k

›

›W f
k ´

xW f
k

›

›

2

2p
` rD2

kK
2
k

›

›W d
k ´

xW d
k

›

›

2

2p
`
›

›Vk`1 ´ pVk`1

›

›

2

2

ď

n
ÿ

l“k

CXl
›

›Xl ´ pXl

›

›

2

2p
` CYl

›

›Yl ´ pYl
›

›

2

2p
` CW d

l

›

›W d
l ´

xW d
l

›

›

2

2p
` C

W f
l

›

›W f
l ´

xW f
l

›

›

2

2p

sNÑ`8
ÝÝÝÝÝÑ 0

(3.24)

where Kk “
›

› e|Yk|_|
pYk|`rbk|W

d
k |_|

xW d
k |
›

›

2q
and @k “ 1, . . . , n, CXk , CYk , CW d

k
, C

W f
k
ă `8.

Remark. The same result can be obtained if we relax the assumption on the payoff ψk. If
we only assume the payoff Lipschitz continuous, we have the same limit with the same rate of
convergence, however the constants CXl , CYl , CW d

l
, C

W f
l
are not the same.

To conclude this section, although considering product optimal quantizer in four dimensions
for pXk,W

f
k , Yk,W

d
k q seems to be natural, the computational cost associated to the resulting

QBDPP is too high, of order Opn ˆ pmaxNkq
2q. Moreover the computation of the transition

probabilities needed for the evaluation of the terms E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q
‰

are challenging.
These transition probabilities cannot be computed using deterministic numerical integration
methods and we have to use Monte Carlo estimators. Even though it is feasible, it is a drawback
for the method since it increases drastically the computation time for calibrating the quantization
tree. In the next section we provide a solution to these problems which consists in reducing the
dimension of the problem at the price of adding a systematic error, which turns out to be quite
small in practice.

3.3 Quantization tree approximation: Non Markov case

In this part, we want to reduce the dimension of the problem in order to scale down the numerical
complexity of the pricer. For that we discard the processesW d andW f in the tree and only keep
X and Y . Doing so, we loose the Markovian property of our original model but we drastically
reduce the numerical complexity of the problem. Thence, (2.14) is approximated by

$

&

%

pVn “ hnp pXn, pYnq,

pVk “ max
´

hkp pXk, pYkq,E
“

pVk`1 | p pXk, pYkq
‰

¯

, 0 ď k ď n´ 1
(3.25)
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where for every k “ 0, . . . , n, pXk and pYk are quadratic optimal quantizers of Xk and Yk of size
NX
k and NY

k , respectively and we denote Nk “ NX
k ˆ NY

k the size of the grid of the product
quantizer.

Theorem 3.7. Let the Markov transition Pfpx, u, y, vq be defined by (2.13) be locally Lipschitz in
the sense of Lemma 2.2. Assume that all the payoff functions pψtkqk“0:n are Lipschitz continuous
with compactly supported (right) derivative. Then the L2-error, induced by the quantization
approximation p pXk, pYkq is upper-bounded by

›

›Vk ´ pVk
›

›

2
ď

ˆ n´1
ÿ

l“k

C
W f
l`1

›

›W f
l`1 ´ ErW

f
l`1 | pXl, Ylqs

›

›

2

2p
` CW d

l`1

›

›W d
l`1 ´ ErW

d
l`1 | pXl, Ylqs

›

›

2

2p

` CXl
›

›Xl ´ pXl

›

›

2

2p
` CYl

›

›Yl ´ pYl
›

›

2

2p

˙1{2

(3.26)
where 1 ă p ă 3{2 and q ě 1 such that 1

p `
1
q “ 1, moreover

CXl “ r
sψls

2
Lip

›

› e|Yl|_|
pYl|
›

›

2

2q
` sA2

l

›

› e
sbl|Yl|_|pYl|

›

›

2

2q
, C

W f
l`1
“ B2

l`1

›

›

rκk`1

›

›

2

2q
,

CYl “
`

ϕdptlq}ψtl}8 ` r
sψlsLip

˘2›
› e|Yl|_|

pYl|
›

›

2

2q
` sC2

l

›

› e
sbl|Yl|_|pYl|

›

›

2

2q
, CW d

l`1
“ D2

l`1

›

›

rκk`1

›

›

2

2q
.

(3.27)
Taking the limit in sN “ minNk, the size of the quadratic optimal quantizers, we have

lim
sNÑ`8

›

›Vk´ pVk
›

›

2

2
“

n´1
ÿ

l“k

C
W f
l`1

›

›W f
l`1´ErW

f
l`1 | pXl, Ylqs

›

›

2

2p
`CW d

l`1

›

›W d
l`1´ErW

d
l`1 | pXl, Ylqs

›

›

2

2p
.

(3.28)

Proof. We apply the same methodology as in the proof for the Markov case. The error between
the Snell envelope and its approximation is given by

|Vk´ pVk| ď max
´

ˇ

ˇhkpXk, Ykq´hkp pXk, pYkq
ˇ

ˇ,
ˇ

ˇE
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´E
“

pVk`1 | p pXk, pYkq
‰ˇ

ˇ

¯

(3.29)
thus, using Proposition 2.1 and Hölder’s inequality with p, q ě 1 such that 1

p`
1
q “ 1, the L2-error

is given by
›

›Vk ´ pVk
›

›

2

2
ď

›

›hkpXk, Ykq ´ hkp pXk, pYkq
›

›

2

2

`
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pVk`1 | p pXk, pYkq
‰›

›

2

2

ď

´

r sψks
2
Lip

›

›Xk ´ pXk

›

›

2

2p
`
`

ϕdptkq}ψtk}8 ` r
sψksLip

˘2›
›Yk ´ pYk

›

›

2

2p

¯

›

› e|Yk|_|
pYk|

›

›

2

2q

`
›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pVk`1 | p pXk, pYkq
‰›

›

2

2
.

(3.30)
The last term in equation (3.30) can be decomposed as follow

E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

pVk`1 | p pXk, pYkq
‰

“E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | pXk, Ykq
‰

`E
“

Vk`1 | pXk, Ykq
‰

´ E
“

Vk`1 | p pXk, pYkq
‰

`E
“

Vk`1 | p pXk, pYkq
‰

´ E
“

pVk`1 | p pXk, pYkq
‰

.

(3.31)

And again, each term can be upper-bounded.
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• The first can be upper-bounded using what we did above on the value function vk and Hölder’s
inequality with p, q ě 1 such that 1

p `
1
q “ 1

›

›E
“

Vk`1 | pXk,W
f
k , Yk,W

d
k q
‰

´ E
“

Vk`1 | pXk, Ykq
‰›

›

2

2

ď
›

›Vk`1 ´ E
“

Vk`1 | pXk, Ykq
‰›

›

2

2

ď
›

›vk`1pXk`1,W
f
k`1, Yk`1,W

d
k`1q

´ vk`1

`

Xk`1,E
“

W f
k`1 | pXk, Ykq

‰

, Yk`1,E
“

W d
k`1 | pXk, Ykq

‰˘
›

›

2

2

ď

›

›

›

´

Bk`1

ˇ

ˇW f
k`1 ´ E

“

W f
k`1 | pXk, Ykq

‰ˇ

ˇ`Dk`1

ˇ

ˇW d
k`1 ´ E

“

W d
k`1 | pXk, Ykq

‰ˇ

ˇ

¯

rκk`1

›

›

›

2

2

ď
›

›

rκk`1

›

›

2

2q

´

B2
k`1

›

›W f
k`1 ´ ErW

f
k`1 | pXk, Ykqs

›

›

2

2p
`D2

k`1

›

›W d
k`1 ´ E

“

W d
k`1 | pXk, Ykq

‰
›

›

2

2p

¯

(3.32)
with coefficients bk`1, Bk`1 and Dk`1 defined in (2.31) and (2.32) and

rκk`1 “ e|Yk`1|`bk`1|W
d
k`1|_|ErW

d
k`1|pXk,Ykqs| . (3.33)

• For the second, we define

rvkpXk, Ykq “ E
“

vk`1pXk`1,W
f
k`1, Yk`1,W

d
k`1q | pXk, Ykq

‰

. (3.34)

Indeed, E
“

Vk`1 | pXk, Ykq
‰

is only a function of Xk and Yk, as shown below

E
“

Vk`1 | pXk, Ykq
‰

“ E
“

vk`1pXk`1,W
f
k`1, Yk`1,W

d
k`1q | pXk, Ykq

‰

“ E
”

E
“

vk`1pXk`1,W
f
k`1, Yk`1,W

d
k`1q | pXk,W

f
k , Yk,W

d
k q
‰

| pXk, Ykq
ı

“ E
“

Pvk`1pXk,W
f
k , Yk,W

d
k q | pXk, Ykq

‰

.
(3.35)

Moreover, we can rewrite W f
k “ λkXk

KK

` ξk and W d
k “

rλkYk
KK

` χk where

λk “
CovpXk,W

f
k q

VarpXkq
, rλk “

CovpYk,W
d
k q

VarpYkq

and ξk „ N p0, σ2
ξk
q and χk „ N p0, σ2

χk
q with σ2

ξk
“ VarpW f

k ´λkXkq and σ2
χk
“ VarpW d

k ´
rλkYkq,

then

E
“

Pvk`1pXk,W
f
k , Yk,W

d
k q | pXk, Ykq “ px, yq

‰

“ E
“

Pvk`1px, λkx` ξk, y, rλky ` χkq
‰ˇ

ˇ

px,yq“pXk,Ykq

(3.36)

yielding
rvkpx, yq “ E

“

Pvk`1px, λkx` ξk, y, rλky ` χkq
‰

. (3.37)

Now, using Lemma 2.2 on rvk, we have
ˇ

ˇ

rvkpx, yq ´ rvkpx
1, y1q

ˇ

ˇ

“

ˇ

ˇ

ˇ
E
“

Pvk`1px, λkx` ξk, y, rλky ` χkq ´ Pvk`1px
1, λkx

1 ` ξk, y
1, rλky

1 ` χkq
‰

ˇ

ˇ

ˇ

ď E

„

ˇ

ˇ

ˇ

`

p rAk ` rBk|λk|q|x´ x
1| ` p1` rCk|rλk|q|y ´ y

1|
˘

ep1`
rbk|rλk|q|y|_|y

1|`rbk|χk|
ˇ

ˇ

ˇ



ď

´

sAk|x´ x
1| ` sCk|y ´ y

1|

¯

e
sbk|y|_|y

1|

(3.38)
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where
sAk “ p rAk ` rBk|λk|qE

“

e
rbk|χk|

‰

, sCk “ 1` rCk|rλk|, (3.39)

sbk “ 1`rbk|rλk| (3.40)

with rAk, rBk, rCk and rbk defined in (2.24) and (2.25). Hence, using Hölder’s inequality with
p, q ě 1 such that 1

p `
1
q “ 1

›

›E
“

Vk`1 | pXk, Ykq
‰

´ E
“

Vk`1 | p pXk, pYkq
‰›

›

2

2

“
›

›

rvkpXk, Ykq ´ rvkp pXk, pYkq
›

›

2

2

ď

›

›

›

´

sAk
ˇ

ˇXk ´ pXk

ˇ

ˇ` sCk
ˇ

ˇYk ´ pYk
ˇ

ˇ

¯

e
sbk|Yk|_|pYk|

›

›

›

2

2

ď
›

› e
sbk|Yk|_|pYk|

›

›

2

2q

´

sA2
k

›

›Xk ´ pXk

›

›

2

2p
` sC2

k

›

›Yk ´ pYk
›

›

2

2p

¯

.

(3.41)

• The last one is useful for the induction, indeed
›

›E
“

Vk`1 | p pXk, pYkq
‰

´ E
“

pVk`1 | p pXk, pYkq
‰›

›

2

2
ď

›

›Vk`1 ´ pVk`1

›

›

2

2
. (3.42)

Finally, using the Lr-Ls mismatch theorem on the quadratic optimal quantizers pXk and pYk,
if 1 ă p ă 3{2, then

lim sup
NX
k

NX
k }Xk ´ pXk}2p ă `8 and lim sup

NY
k

NY
k }Yk ´

pYk}2p ă `8 (3.43)

and
›

›Vk´pVk
›

›

2

2

ď
›

›Xk ´ pXk

›

›

2

2p

´

r sψks
2
Lip

›

› e|Yk|_|
pYk|

›

›

2

2q
` sA2

k

›

› e
sbk|Yk|_|pYk|

›

›

2

2q

¯

`
›

›Yk ´ pYk
›

›

2

2p

´

`

ϕdptkq}ψtk}8 ` r
sψksLip

˘2›
› e|Yk|_|

pYk|
›

›

2

2q
` sC2

k

›

› e
sbk|Yk|_|pYk|

›

›

2

2q

¯

`B2
k`1

›

›

rκk`1

›

›

2

2q

›

›W f
k`1 ´ ErW

f
k`1 | pXk, Ykqs

›

›

2

2p

`D2
k`1

›

›

rκk`1

›

›

2

2q

›

›W d
k`1 ´ E

“

W d
k`1 | pXk, Ykq

‰›

›

2

2p
`
›

›Vk`1 ´ pVk`1

›

›

2

2

ď

n´1
ÿ

l“k

C
W f
l`1

›

›W f
l`1 ´ ErW

f
l`1 | pXl, Ylqs

›

›

2

2p
` CW d

l`1

›

›W d
l`1 ´ ErW

d
l`1 | pXl, Ylqs

›

›

2

2p

` CXl
›

›Xl ´ pXl

›

›

2

2p
` CYl

›

›Yl ´ pYl
›

›

2

2p

sNÑ`8
ÝÝÝÝÝÑ

n´1
ÿ

l“k

C
W f
l`1

›

›W f
l`1 ´ ErW

f
l`1 | pXl, Ylqs

›

›

2

2p
` CW d

l`1

›

›W d
l`1 ´ ErW

d
l`1 | pXl, Ylqs

›

›

2

2p
.

(3.44)

Practitioner’s corner. Market implied values of σf , σd and σS used for the numerical com-
putations are usually of order

σf « 0.005, σd « 0.005, σS « 0.5 (3.45)
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and in the most extreme cases, we compute Bermudan options on foreign exchange with maturity
20 years (T “ 20). Thus, we can estimate the order of the induced systematic error. First, we
recall the expression of the related coefficients which it depends of

Bk “ σf
T

n

n
ÿ

l“k`1

max
lďiďn

ˆ

r sψisLip

i
ź

j“k`1

Erκjs

˙

,

Dk “ σd
T

n

n
ÿ

l“k`1

max
lďiďn

ˆ

pϕdptiq}ψi}8 ` r
sψisLipq

i
ź

j“k`1

Erκjs

˙

(3.46)

with
κj “ e|G

3
j |`bj |G

4
j |, rκl`1 “ e|Yl`1|`bl`1|W

d
l`1|_|ErW

d
l`1|pXl,Ylqs| (3.47)

and
bk “ σdT

ˆ

1´
k ´ 1

n

˙

. (3.48)

Now, considering the case where the payoffs are the same at each exercise date, the Lipschitz
constants can be upper-bounded by r sψsLip :

r sψksLip “ rψtksLipS0ϕf ptkq e´σ
2
Stk{2 }ψ1tk}8 ec ď S0rψtksLip}ψ

1
tk
}8 ec “: r sψsLip (3.49)

and let κ defined by

κ “ max
k
Erκks “ E

“

e|G
3
0|`b0|G

4
0|
‰

ď
1

2
E
“

e2|G3
0|` e2b0|G4

0|
‰

(3.50)

moreover, if Z „ N p0, σ2q then E
“

eλ|Z|
‰

“ eλ
2σ2{2, thence we can upper-bound κ

κ ď
1

2
E
“

eσ
2
3{2` eb

2
0{2

‰

“
1

2
E
“

eσ
2
d{96` eσ

2
dT

2{2
‰

« 1. (3.51)

κ being bounded, we notice that the main constants B2
k and D2

k in the remaining error are of
order σ2

d or σ2
f , indeed

Bk ď σf
T

n
r sψsLippn´ kqκ

n´k « σf
T

n
r sψsLippn´ kq,

Dk ď σd
T

n

`

max
l
ϕdptlq}ψ}8 ` r

sψsLip
˘

pn´ kqκn´k « σd
T

n
p}ψ}8 ` r

sψsLipqpn´ kq.
(3.52)

Furthermore

E
“

rκ2q
k`1

‰

“ E
”

e2q|Yk`1|`2qbk`1|W
d
k`1|_|ErW

d
k`1|pXk,Ykqs|

ı

ď
1

2

ˆ

E
”

e4q|Yk`1|
ı

` E
”

e4qbk`1|W
d
k`1|_|ErW

d
k`1|pXk,Ykqs|

ı

˙

ď
1

2

ˆ

E
”

e4q|Yk`1|
ı

` E
”

e4qσdpT´tkq|W
d
k`1|_|ErW

d
k`1|pXk,Ykqs|

ı

˙

ď
1

2

ˆ

e8q2σ2
dT

3{3`2 e8q2σ2
dpT´tkq

2tk`1

˙

(3.53)

and from elementary inequality pa` bq1{q ď a1{q ` b1{q, a, b ě 0, q ě 1

›

›

rκk`1

›

›

2

2q
“ E

“

rκ2q
k`1

‰
1
q ď

ˆ

1

2
e8q2σ2

dT
3{3` e8q2σ2

dpT´tkq
2tk`1

˙
1
q

ď

ˆ

1

2
e8q2σ2

dT
3{3

˙
1
q

`

ˆ

e8q2σ2
dpT´tkq

2tk`1

˙
1
q

ď
1

21{q
e8qσ2

dT
3{3` e8qσ2

dpT´tkq
2tk`1 .

(3.54)
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The two terms on the right-hand side of the inequality do not explode. Indeed, the function
g : t ÞÑ pT ´ tq2t, defined for t P r0, T s with T “ 20, attains its maximum on t “ 20{3 and
gp20{3q « 1185, hence for the considered values

@k “ 1, . . . , n,
›

›

rκk`1

›

›

2

2q
ď C

rκ « 6. (3.55)

Finally, rewriting the obtained systematic error induced by the approximation with this new
informations in (3.28) we have

›

›Vk ´ pVk
›

›

2

2

NÑ`8
ÝÝÝÝÝÑ
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ÿ
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›

›

2
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l`1

›
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›
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›W f
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›
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¯2
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ÿ
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›
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ÿ
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f
l`1 | pXl, Ylqs

›

›

2

2p

ď2σ2
f

´T

n
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ÿ
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›
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›
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ÿ
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pn´ lq2κ2pn´lqC
rκ

›

›W f
l`1

›

›

2

2p

ď

´

σ2
f r
sψs2
Lip
` σ2

d

`

max
l
ϕdptlq}ψ}8 ` r

sψsLip
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¯

4
C
rκ

π1{3

´T

n

¯2 n´1
ÿ

l“k

tl`1pn´ lq
2κ2pn´lq.

(3.56)
Hence, the systematic error is upper-bounded by the squared volatilities σ2

d and σ2
f . These

parameters being of order 5 ˆ 10´3 at most, the systematic error is negligible as long as these
volatilities stay reasonably small.

Remark. As in the Markov case, we can extend this result to the case where the payoffs pψkqk
are Lipschitz continuous, however the residual error can not be as easily estimated and controlled.

4 Numerical experiments

In this section, we illustrate the theoretical results found in Section 3 regarding the pricing of
Bermudan options in the 3-factor model described in Section 1. First, we detail both algorithms
and how to compute the quantities that appear in them (conditional expectation, conditional
probabilities, ...). Then, we test our two numerical solutions for the pricing of European options,
whose price is known in closed form. European options are Bermudan options with only one date
of exercise, hence when using the non-markovian approximate we do not introduce the systematic
error shown in Theorem 3.7 but pricing these kind of options is a good benchmark in order to
test our methodologies. Finally, we evaluate Bermudan Options and compare our two solutions,
the Markovian and the non-Markovian approximation.

We have to keep in mind that the computation time is crucial because these pricers are only
a small block in the complex computation of xVA’s. Indeed, they will be called hundreds of
thousands of time each time these risks measures are needed.

21



All the numerical tests have been carried out in C++ on a laptop with a 2,4 GHz 8-Core
Intel Core i9 CPU. The computations of the transition probabilities and the computations of the
conditional expectations are parallelized on the CPU.

Characterisation of the Quantization Tree. In what follows, we describe the choice of
parameters we made when building the quantization tree: the time discretisation and the size of
of each grid at each time.

• The time discretisation is an easy choice because it is decided by the characteristics of the
financial product. Indeed, we take only one date (and today’s date) in the tree if we want
to evaluate European options and if we want to evaluate Bermudan options we take as
many discretisation dates (plus today’s date) in the tree as there are exercise dates in the
description of the product.

• Then, we have to decide the size of each grid at each date in the tree. In our case, we
consider grids of same size at each date hence Nk “ N, k “ 1 . . . , n and then we take
NX “ 10NY for both trees. This choice seems to be reasonable because the risk factor
Xk is prominent, due to the value of σS compare to σd. Now, in the Markovian case, we
take NX “ 4NWf and NY “ 4NWd , indeed the two Brownian Motions are important
only when we compute the conditional expectation but not when we want to evaluate the
payoffs, hence we want to give as much as possible of the budget N to NX and NY .

The algorithm: Markovian Case. Let pxki1qi1“1:NX , puki2qi2“1:NWf , pyki3qi3“1:NY and pvki4qi4“1:NWd

be the associated centroids of pXk, xW
f
k , pYk and xW d

k respectively, at a given time tk with 0 ď k ď n.
Using the discrete property of the optimal quantizers, the conditional expectation appearing in
(3.9) can be rewritten as

E
“

pVk`1 | p pXk,xW
f
k ,

pYk,xW
d
k q “

`

xki1 , u
k
i2 , y

k
i3 , v

k
i4

˘‰

“ E
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pvk`1p pXk`1,xW
f
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d
k`1q | p
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f
k ,
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d
k q “
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˘‰

“
ÿ
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π
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`
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, uk`1
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, yk`1
j3

, vk`1
j4

˘

(4.1)

where π(m),k
i,j , with i “ pi1, i2, i3, i4q and j “ pj1, j2, j3, j4q, is the conditional probability defined

by
π

(m),k
i,j “ P
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f
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˘
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d
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˘

“
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k
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k
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k
i4

˘

¯

.

Due to the dimension of the problem (4 in this case), we cannot compute these probabilities using
deterministic methods, hence one has to devise a Monte Carlo simulation in order to evaluate
them. We refer the reader to [BPP05, BP03, PPP04] for details on the methodology.

A way to reduce the complexity of the problem is to approximate these probabilities by rπ
(m),k
i,j ,

where the conditional part
 `

pXk,xW
f
k ,

pYk,xW
d
k

˘

“
`

xki1 , u
k
i2
, yki3 , v

k
i4

˘(

is replaced by
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d
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k
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˘(

, yielding

rπ
(m),k
i,j “ P

´

`

pXk`1,xW
f
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d
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˘

“
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j3
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˘

| pXk,W
f
k , Yk,W

d
k q “

`
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k
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k
i3 , v

k
i4

˘

¯

.
(4.2)
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Although, these probabilities are easier to calculate, one still has to devise a Monte Carlo sim-
ulation in order to evaluate them. This simplification will be useful later in the uncorrelated
case.

These remarks allow us to rewritte the QBDPP in the Markovian case (3.9) as
$

’

&

’

%

pvn
`

xni1 , u
n
i2 , y

n
i3 , v

n
i4

˘

“ hn
`

xni1 , y
n
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˘

,

pvk
`

xki1 , u
k
i2 , y

k
i3 , v

k
i4

˘

“ max

ˆ

hk
`

xki1 , y
k
i3

˘

,
ÿ

j1,j2,j3,j4

rπ
(m),k
i,j pvk`1

`

xk`1
j1

, uk`1
j2

, yk`1
j3

, vk`1
j4

˘

˙

.
(4.3)

The algorithm: Non-Markovian case. Let pxki1qi1“1:NX and pyki3qi3“1:NY be the associated
centroids of pXk and pYk respectively, at a given time tk with 0 ď k ď n. Again, as in the Markovian
case, using the discrete property of the optimal quantizers, the conditional expectation appearing
in (3.25) can be rewritten as

E
“

pVk`1 | p pXk, pYkq “
`
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where π(nm),k
i,j , with i “ pi1, i2q and j “ pj1, j2q, is the conditional probability defined by
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This probability can be computed by numerical integration, ie
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| pXk, Ykq “ px, yq
¯

fΣpx, yqdx dy

(4.5)
where fΣpx, yq is the joint density of a centered bivariate Gaussian vector with covariance matrix
Σ given by

Σ “

ˆ

VarpXkq CovpXk, Ykq
CovpXk, Ykq VarpYkq

˙

. (4.6)

However, computing the probability in Equation (4.5) can be too time consuming, hence once
again, we approximate this probability by rπ

(nm),k
i,j , where the conditional part

 `
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˘(
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˘

¯

. (4.7)

From the definition of an optimal quantizer and Equation (2.10), this probability can be
rewritten as the probability that a correlated bivariate normal distribution lies in a rectangular
domain
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´
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(4.8)
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where
ˆ

Z1

Z2

˙

„ N

˜

ˆ

0
0

˙

,

˜

σ2
Z1

ρ
Z1,Z2σZ1σZ2

ρ
Z1,Z2σZ1σZ2 σ2
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¸¸

(4.9)

with σ2
Z1
“ VarpσfδW

f
k ` G1

k`1q, σ
2
Z2
“ Varp´σdδW

d
k ` G3

k`1q and ρ
Z1,Z2 “ CorrpσfδW

f
k `

G1
k`1,´σdδW

d
k `G

3
k`1q.

The advantage of expressing (4.8) as the probability that a bivariate Gaussian vector lies in
a rectangular domain is that it can be rewritten as a linear combination of bivariate cumulative
distribution functions.

Figure 2

Indeed, let pU, V q a two-dimensional correlated and standard-
ized normal distribution with correlation ρ and cumulative distri-
bution function (CDF) given by F ρU,V pu, vq “ PpU ď u, V ď vq.
Fast and efficient numerical implementation of such function ex-
ists (for example, a C++ implementation of the upper right tail of
a correlated bivariate normal distribution can be found in John
Burkardt’s website, see [Bur12], which is based on the work of
[Don73] and [Owe58]. In our case, we are interested in the com-
putation of probabilities of the form

P
`

U P pu1, u2q, V P pv1, v2q
˘

. (4.10)

This probability is represented graphically as the integral of the
two-dimensional density over the rectangular domain in grey in Figure 2. Now, using F ρU,V pu, vq,
the probability (4.10) is given by

P
`

U P pu1, u2q, V P pv1, v2q
˘

“ F ρU,V pu2, v2q ´ F
ρ
U,V pu1, v2q ´ F

ρ
U,V pu2, v1q ` F

ρ
U,V pu1, v1q.

(4.11)
This remark will allow us to reduce drastically the computation time induced by the evalua-

tion of the conditional probabilities and so, of the conditional expectations.
Now, going back to our problem, the QBDPP in the non-Markovian case rewrites (3.25)
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ÿ
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π
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, yk`1
j2

˘

˙

.
(4.12)

In order to test numerically the two methods, we will evaluate PRDC European and Bermu-
dan options with maturities 2Y , 5Y and 10Y . We describe below the market and products
parameters we consider. The volatilities of the domestic and the foreign interest rates are not
detailed below because we investigate the behaviour of the methods with respect to σd and σf .

Pdp0, tq expp´rdtq rd 0.015 ρSd 0
Pf p0, tq expp´rf tq rf 0.01 ρSf 0
S0 88.17 σS 0.5 ρdf 0

Table 1: Market values.

@k P 1, . . . , n, Cdptkq 15% @k P 1, . . . , n, Cf ptkq 18.9%
@k P 1, . . . , n, Capptkq 5.55% @k P 1, . . . , n, Floorptkq 0%
Exercise date (EU): tn T Exercise dates (US): tk Tk{n

Table 2: Product description.
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Remark. When the correlations ρdf and ρSd are equal to zero, the numerical computation of
probabilities rπ(m),k

i,j and rπ
(nm),k
i,j can be accelerated. Indeed, in the Markovian case, (4.2) can be

rewritten as
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˘
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˘

¯

.
(4.13)

In that case, we can use the CDF of a correlated bivariate normal distribution, as detailed above
for the non-Markovian case in (4.11), for computing these probabilities in a very effective and
faster way rather than performing a Monte Carlo simulation.

In the non-Markovian case, (4.8) can be rewritten as
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¯
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(4.14)
where FZ p¨q is the CDF of a one-dimensional normal distribution, σ

Z1 is the standard deviation
of Z1 and σ

Z2 is the standard deviation of Z2. This remark allows us to drastically reduce the
computation time of the conditional probabilities in the case of zero correlations.

4.1 European Option

First of all, we compare the asymptotic behaviour of the Markovian and the non-Markovian
approaches when pricing European PRDC Options with different volatilities and maturities. In
this case, we consider only two dates in the tree: t0 “ 0 an tn “ T , the algorithm is a regular
cubature formula and no systematic error is induced by the non-markovianity of the couple
pXk, Ykq. These numerical tests confirm that both approaches give the same value, however the
non-Markovian approach converges much faster due to the dimension of the product quantization,
2 for the first one and 4 for the last one. Indeed, the complexity of the 2 dimensional pricer
is of order of N “ NX ˆ NY while the complexity of the 4 dimensional pricer is of order
N “ NX ˆNY ˆNW d

ˆNW f . N being the size of the product quantizer at each date (in two
dimensions: N “ NX ˆNY and in four dimensions N “ NX ˆNW f

ˆNY ˆNW d).

In the case of the European options, we have a closed form formula for the price of (2.4).
The benchmark price is computed using the rewriting of (2.4) as a sum of Calls: at a time tk,
the payoff can be expressed as

ψtkpStkq “ min

ˆ

max

ˆ

Cf ptkq

S0
Stk ´ Cdptkq,Floorptkq

˙

,Capptkq
˙

“ Floorptkq ´ akpStk ´K
1
kq` ` akpStk ´K

2
kq`

with ak “
Cf ptkq

S0
, K1

k “
Capptkq ` Cdptkq

Cf ptkq
ˆS0 andK2

k “
Floorptkq ` Cdptkq

Cf ptkq
ˆS0 and the closed

form formula for the price of a Call is detailed in Appendix B. The prices given by the closed
form formula of the European options we consider (diffrents values of volatilities and different
maturities) are given in Table 3.
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Exact price

T
σ

50bp 500bp

2Y 2.171945242 2.159404007

5Y 1.630435483 1.539295559

10Y 1.127330259 0.8013151892

Table 3: Prices given by closed-form formula of European options with zero correlations. (σd “
σf “ σ)

The difference of speed of convergence between the two methods is illustrated in Figures 3
and 4 for the relative errors for both methods compared to the benchmark. N in the label of each
graphic represents the size of the product quantizer (NX ˆNW f

ˆNY ˆNW d in the Markovian
case and NX ˆNY in the other case), hence the complexity of both trees are the same.

(a) Non-Markovian – 2d (b) Markovian – 4d

Figure 3: σd “ σf “ 50bp – Relative Error for both methods for 2Y, 5Y and 10Y European
Options (with zero correlations).

(a) Non-Markovian – 2d (b) Markovian – 4d

Figure 4: σd “ σf “ 500bp – Relative Error for both methods for 2Y, 5Y and 10Y European
Options (with zero correlations).

For both methods, a relative error of 1bp is quickly reached, even for high values of σd and
σf . Indeed, the time needed in order to achieve a 1bp precision for building a quantization tree
with 2 dates, computing the probabilities and pricing a European option is at most 6 ms for the
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non-Markovian method and at most 85ms for the Markovian one when the correlations are equal
to zero. The computation times needed for a 1bp relative error are summarised in Table 4.

Non-Markovian – 2d Markovian – 4d

T
σ

50bp 500bp 50bp 500bp

2Y 1 ms (32000) 4 ms (32000) 24 ms (512000) 4 ms (64000)

5Y 4 ms (32000) 6 ms (32000) 4 ms (64000) 85 ms (2048000)

10Y 4 ms (32000) 3 ms (32000) 14 ms (256000) 83 ms (2048000)

Table 4: Time in milliseconds needed for reaching a 1bp precision for the pricing of a European
option with zero correlation using both methods with, in parenthesis, the size N of the grid at
each time step. (σd “ σf “ σ)

Remark. Of course, the pricers can be used even when we consider non-zero correlations. We
choose to show only the asymptotic behaviour of the non-Markovian method because it converges
much faster and the computations of the probabilities can be made deterministically using the
CDF of a correlated bivariate normal distribution. However, if we want to use the Markovian
approach, we need to compute the transition probabilities using a Monte Carlo simulation, which
is a drawback for the method as it increases its computation time. We consider the following
correlations

ρSf “ ´0.0272, ρSd “ 0.1574, ρdf “ 0.6558.

Table 5 summarises the prices given by the closed-form formula.

Exact price

T
σ

50bp 500bp

2Y 2.173803852 2.185536786

5Y 1.636518082 1.652226813

10Y 1.141944391 1.103531914

Table 5: Prices given by closed-form formula of European options with non-zero correlations.
(σd “ σf “ σ)

Figures 5a and 5b display the relative error induced by the numerical method as a function
of N . And in Table 6, we summarise the computation needed in order to reach a 1bp relative
error.
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(a) σd “ σf “ 50bp (b) σd “ σf “ 500bp

Figure 5: Relative Error for the non-Markovian method for 2Y, 5Y and 10Y European Options
(with correlations).

Non-Markovian – 2d

T
σ

50bp 500bp

2Y 71 ms (64000) 34 ms (32000)

5Y 31 ms (32000) 31 ms (32000)

10Y 32 ms (32000) 139 ms (128000)

Table 6: Time in milliseconds needed for reaching a 1bp relative error for the pricing of a Eu-
ropean option with non-zero correlations using the non-Markovian method with, in parenthesis,
the size N of the grid at each time step. (σd “ σf “ σ)

It is clear that one should prefer the non-markovian methodology to the Markovian one for
the evaluation of European options as it is a fast and accurate method for producing prices in
the 3-factor model.

4.2 Bermudan Option

Now, we compare the asymptotic behaviour of both approaches when pricing true Bermudan
PRDC options. The following figures represent the price and the rescaled difference of the prices
given by the two approaches as a function of N , which is the size of the product quantizer at each
date (in two dimensions: N “ NX ˆNY and in four dimensions N “ NX ˆNW f

ˆNY ˆNW d).
The financial products we consider are yearly exercisable Bermudan Options with different values
for the maturity date (2 years, 5 years and 10 years) and the domestic/foreign volatilities (50bp
and 500bp).

When using domestic and foreign volatilities close to market values, we observe numerically
that the non-Markovian method converges a lot faster than the Markovian one for a given
complexity. However both methods do not converge to the same value (see Figures 6a, 6b, 6c),
which is consistent with the results we found in Theorems 3.6 and 3.7. As in the European case,
N in the label of each graph represents the size of the product quantizer (NXˆNW f

ˆNY ˆNW d

in the Markovian case and NX ˆNY in the other case), hence the complexity of both trees are
the same.
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(a) 2Y (b) 5Y

(c) 10Y

Figure 6: σd “ σf “ 50bp – Price with the two methods for 2Y, 5Y and 10Y yearly exercisable
Bermudan Options (with zero correlations).

However, the relative systematic error induced by the non-Markovian methodology is negli-
gible as can be seen in Figure 7, at most 5bp for a 10-year annual Bermudan option. Hence, one
should prefer, again, the non-Markovian methodology when considering to evaluate Bermudan
options.

Figure 7: σd “ σf “ 50bp – Relative Difference between the two methods for 2Y, 5Y and 10Y
yearly exercisable Bermudan Options (with zero correlations).

When we consider higher values the volatilities, σd “ σf “ 500bp, as expected the prices
produced by the non-Markovian methodology produce a systematic error bigger than the case
where σd “ σf “ 50bp (see Figures 8a, 8b, 8c and 9). However, the relative difference between
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the two methods after convergence is reasonable: less than 0.1% for expiry 2 years, 0.4% for 5
years and around 1.1% for 10 years.

(a) 2Y (b) 5Y

(c) 10Y

Figure 8: σd “ σf “ 500bp – Price with the two methods for 2Y, 5Y and 10Y yearly exercisable
Bermudan Options (with zero correlations).

Figure 9: σd “ σf “ 500bp – Relative Difference between the two methods for 2Y, 5Y and 10Y
yearly exercisable Bermudan Options (with zero correlations).

In Figure 7, we reference the time needed for reaching a 5bp relative precision (we compare the
price given by grids of size N to the "asymptotic", which is the price given by the same method
with a very large N) for the pricing of Bermudan options in a scenario of zero correlations.
The non-Markovian method attains better precision than a relative precision of 5bp in a few
milliseconds, at most 7 ms where the Markovian one can need 4 seconds for reaching that
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precision. Hence, the 2 dimensional approximation seems again to be the better choice.

Non-Markovian – 2d Markovian – 4d

T
σ

50bp 500bp 50bp 500bp

2Y 1 ms (1000) 1 ms (1000) 25 ms (8000) 4 ms (1000)

5Y 3 ms (1000) 4 ms (1000) 98 ms (8000) 1903 ms (64000)

10Y 7 ms (1000) 7 ms (1000) 468 ms (16000) 3850 ms (64000)

Table 7: Time in milliseconds needed for reaching a 5bp relative precision for the pricing of a
Bermudan option using both methods with, in parenthesis, the size N of the grid at each time
step. (σd “ σf “ σ)

Remark. Again, the pricers can even be used when we consider non-zero correlations and we
choose to show only the asymptotic behaviour of the non-Markovian method, for the same reasons
as the European case. We consider the same correlations as in the European case

ρSf “ ´0.0272, ρSd “ 0.1574, ρdf “ 0.6558.

Figures 10a, 10b and 10c display the price given by the numerical method as a function of N
and Table 8 summarises the computation time needed in order to do better than a 3bp precision.

(a) 2Y (b) 5Y

(c) 10Y

Figure 10: σd “ σf “ 50bp – Price for the non-Markovian method for 2Y, 5Y and 10Y Bermudan
Options (with correlations).
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Non-Markovian – 2d

T
σ

50bp

2Y 122 ms (1000)

5Y 553 ms (1000)

10Y 1283 ms (1000)

Table 8: Time in milliseconds needed for reaching a 3bp relative precision for the pricing of a
Bermudan option with non-zero correlations using the non-Markovian method with, in parenthe-
sis, the size N of the grid at each time step. (σd “ σf “ σ)

Conclusion

We were looking for a numerical method able to produce accurate prices of Bermudan PRDC
options with a 3-factor model in a very short time because the pricing of such products arises in a
more complex framework: the computation of counterparty risk measures, also called xVA’s. We
proposed two numerical methods based on product optimal quantization with a preference for
the non-Markovian one. Indeed, even if we introduce a systematic error with our approximation,
the error is controlled, as long as the volatilities of the domestic and foreign interest rates stay
reasonable. Moreover, the numerical tests we conducted confirmed that idea: we are able to
produce prices of Bermudan options in the 3-factor model in a fast and accurate way.
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A W f is a Brownian motion under the domestic risk-neutral mea-
sure

Let pĂW f q a rP-Brownian motion. In this section, we show that the process W f defined by

dW f
s “ dĂW f

s ` ρSfσSds (A.1)

is a P-Brownian motion.
First, we define the following change of numéraire, where rP is the foreign risk-neutral prob-

ability and P is the domestic risk-neutral probability,r

drP “
ST
S0

exp

ˆ

´

ż T

0
rdsds

˙

exp

ˆ
ż T

0
rfs ds

˙

dP

“ exp

ˆ

σSW
S
T ´

σ2
S

2
T

˙

dP

or equivalently

dP “ exp

ˆ

´ σSW
S
T `

σ2
S

2
T

˙

drP

“ exp

ˆ

´ σSpW
S
T ´ σST q ´

σ2
S

2
T

˙

drP

“ exp

ˆ

´ σSĂW
S
T ´

σ2
S

2
T

˙

drP

(A.2)

where ĂWS is a rP-Brownian motion defined by dĂWS
t “ dWS

t ´σSdt. More details concerning the
definition of the foreign risk-neutral probability can be found in the Chapter 9 of [Shr04].

Now, we are looking for q P R such that dW f
s “ dĂW f

s ´ qdt is a P-Brownian motion. Let
λ P R and @t ą s

E
”

eλ
`

pĂW f
t ´qtq´p

ĂW f
s ´qsq

˘

| Fs
ı

“ rE
”

eλ
`

pĂW f
t ´qtq´p

ĂW f
s ´qsq

˘

´σSpĂW
S
T ´

ĂWS
s q´

σ2S
2
pT´sq

| Fs
ı

“ rE
”

eλ
`

pĂW f
t ´qtq´p

ĂW f
s ´qsq

˘

´σSpĂW
S
t ´

ĂWS
s q´

σ2S
2
pt´sq

| Fs
ı

“ e´λqpt´sq´
σ2S
2
pt´sq

rE
”

eλp
ĂW f
t ´

ĂW f
s q´σSpĂW

S
t ´

ĂWS
s q | Fs

ı

“ e´λqpt´sq´
σ2S
2
pt´sq e

λ2

2
pt´sq´λσSρSf pt´sq`

σ2S
2
pt´sq

“ e
λ2

2
pt´sq e´λqpt´sq´λσSρSf pt´sq

“ e
λ2

2
pt´sq

(A.3)

the last equality is ensured if and only if

0 “ ´λqpt´ sq ´ λσSρSf pt´ sq ðñ q “ ´σSρSf . (A.4)

Hence, W f defined by
dW f

s “ dĂW f
s ` ρSfσSds

is a P-Brownian motion.
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B FX Derivatives - European Call

The payoff at maturity t of a European Call on FX rate is given by

pSt ´Kq`

with K the strike and St the FX rate at time t.
Our aim will be to evaluate V0

V0 “ E
”

e´
şt
0 r
d
sdspSt ´Kq`

ı

.

Proposition B.1. If we consider a 3-factor model on Foreign Exchange and Zero-coupon as
defined in (1.1), V0 is given by2

V0 “ S0P
f p0, tqN

˜

log
´

S0P f p0,tq
KP dp0,tq

¯

` µp0, tq

σp0, tq

¸

´KP dp0, tqN

˜

log
´

S0P f p0,tq
KP dp0,tq

¯

´ µp0, tq

σp0, tq

¸

with

µp0, tq “

ż t

0

1

2

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

`

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tqds´ ρfdσf ps, tqσdps, tq
˘

ds

and
σ2p0, tq “ 2µp0, tq.

Proof. In this part, we want to evaluate

V0 “ E
”

e´
şt
0 r
d
sdspSt ´Kq`

ı

.

If we consider a 3-factor model on Foreign Exchange and Zero-coupon as defined in (1.1), we
have

V0 “ E
”

e´
şt
0 r
d
sdspSt ´Kq`

ı

“ E
”

`

e´
şt
0 r
d
sds St ´ e´

şt
0 r
d
sdsK

˘

`

ı

“ E
”

`

e´
şt
0 r
d
sds St ´ e´

şt
0 r
d
sdsK

˘

1tStěKu

ı

“ E
”

e´
şt
0 r
d
sds St 1tStěKu

ı

´K E
”

e´
şt
0 r
d
sds 1tStěKu

ı

.

We focus on the first term
K E

”

e´
şt
0 r
d
sds 1tStěKu

ı

. (B.1)

We do the following change of numéraire:

drQ

dP
“

rZt
rZ0

with
$

&

%

rZt “ exp
´

rYt ´
1

2
ă rY , rY ąt

¯

,

rZ0 “ 1

2We ignore the settlements details in the present paper in order to alleviate the notations but the formula can
easily be extended to take them into account.
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where rYt “
şt
0 σdps, tqdW

d
s and ă rY , rY ąt“

şt
0 σ

2
dps, tqds.

Hence, we can define the following Brownian Motions ĂW d, ĂW f , ĂWS under rQ:

dĂW d
s “ dW d

s ´ d ă Y,W d ąs “ dW d
s ´ σdps, tqds,

dĂW f
s “ dW f

s ´ d ă Y,W f ąs “ dW f
s ´ ρfdσdps, tqds,

dĂWS
s “ dWS

s ´ d ă Y,WS ąs “ dWS
s ´ ρSdσdps, tqds

and St becomes

St “ S0 exp

ˆ
ż t

0

ˆ

rds ´ r
f
s ´

σ2
Spsq

2

˙

ds`

ż t

0
σSpsqdW

S
s

˙

“
S0P

f p0, tq

P dp0, tq
exp

ˆ
ż t

0
´

1

2

`

σ2
Spsq ` σ

2
f ps, tq ´ σ

2
dps, tq

˘

´ ρSfσSpsqσf ps, tq ds

˙

ˆ exp

ˆ
ż t

0
σSpsqdW

S
s `

ż t

0
σf ps, tqdW

f
s ´

ż t

0
σdps, tqdW

d
s

˙

“
S0P

f p0, tq

P dp0, tq
exp

ˆ

´

ż t

0

1

2

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

˙

ˆ exp

ˆ

´

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tq ´ ρfdσf ps, tqσdps, tq
˘

ds

˙

ˆ exp

ˆ
ż t

0
σSpsqdĂW

S
s `

ż t

0
σf ps, tqdĂW

f
s ´

ż t

0
σdps, tqdĂW

d
s

˙

“
S0P

f p0, tq

P dp0, tq
exp

ˆ

´ µp0, tq `

ż t

0
σSpsqdĂW

S
s `

ż t

0
σf ps, tqdĂW

f
s ´

ż t

0
σdps, tqdĂW

d
s

˙

.

Hence, as exp
´

´
şt
0 r

d
sds

¯

“ P dp0, tq ˆ rZt, (B.1) becomes

K E
”

e´
şt
0 r
d
sds 1tStěKu

ı

“ KP dp0, tqE
rQ
”

1tStěKu

ı

“ KP dp0, tqrQpSt ě Kq

“ KP dp0, tqrQ

˜

Z ě
log

´

KP dp0,tq
S0P f p0,tq

¯

` µp0, tq

σp0, tq

¸

“ KP dp0, tqrQ

˜

Z ď
log

´

S0P f p0,tq
KP dp0,tq

¯

´ µp0, tq

σp0, tq

¸

“ KP dp0, tqN

˜

log
´

S0P f p0,tq
KP dp0,tq

¯

´ µp0, tq

σp0, tq

¸
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where Z „ N p0, 1q with

µp0, tq “

ż t

0

1

2

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

`

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tqds´ ρfdσf ps, tqσdps, tq
˘

ds,

σ2p0, tq “ Var

ˆ
ż t

0
σSpsqdĂW

S
s `

ż t

0
σf ps, tqdĂW

f
s ´

ż t

0
σdps, tqdĂW

d
s

˙

“ Var

ˆ
ż t

0
σSpsqdĂW

S
s

˙

`Var

ˆ
ż t

0
σf ps, tqdĂW

f
s

˙

`Var

ˆ
ż t

0
σdps, tqdĂW

d
s

˙

` 2Cov

ˆ
ż t

0
σSpsqdĂW

S
s ,

ż t

0
σf ps, tqdĂW

f
s

˙

´ 2Cov

ˆ
ż t

0
σSpsqdĂW

S
s ,

ż t

0
σdps, tqdĂW

d
s

˙

´ 2Cov

ˆ
ż t

0
σf ps, tqdĂW

f
s ,

ż t

0
σdps, tqdĂW

d
s

˙

“

ż t

0

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

` 2

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tq ´ ρfdσf ps, tqσdps, tq
˘

ds.

Now, we deal with the term

E
”

e´
şt
0 r
d
sds St 1tStěKu

ı

“ P dp0, tqE
rQ
“

St 1tStěKu
‰

(B.2)

using directly the formula of the first partial moment of a log-normal random variable. Let
X „ Log-N pµ, σ2q, then

E
“

X 1tXěxu
‰

“ eµ`
σ2

2 N
ˆ

µ` σ2 ´ logpxq

σ

˙

.

Finally, as St “
S0P f p0,tq
P dp0,tq

X with X
rQ
„ Log-N p´µp0, tq, σ2p0, tqq, we get

(B.2) “ S0P
f p0, tqE

rQ

«

X 1!
Xě KPdp0,tq

S0P
f p0,tq

)

ff

“ S0P
f p0, tq e´µp0,tq`

σ2p0,tq
2 N

˜

´µp0, tq ` σ2p0, tq ´ log
´

KP dp0,tq
S0P f p0,tq

¯

σp0, tq

¸

“ S0P
f p0, tqN

˜

log
´

S0P f p0,tq
KP dp0,tq

¯

` µp0, tq

σp0, tq

¸

noticing that µp0, tq “ σ2p0,tq
2 .

Finally, we get

V0 “ E
”

e´
şt
0 r
d
sdspSt ´Kq`

ı

“ E
”

e´
şt
0 r
d
sds St 1tStěKu

ı

´K E
”

e´
şt
0 r
d
sds 1tStěKu

ı

“ S0P
f p0, tqN

˜

log
´

S0P f p0,tq
KP dp0,tq

¯

` µp0, tq

σp0, tq

¸

´KP dp0, tqN

˜

log
´

S0P f p0,tq
KP dp0,tq

¯

´ µp0, tq

σp0, tq

¸

.
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Special case of constant volatility: σSpsq “ σS , σdps, tq “ σd ˆ pt´ sq σf ps, tq “ σf ˆ pt´ sq

µp0, tq “

ż t

0

1

2

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

`

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tq ´ ρfdσf ps, tqσdps, tq
˘

ds

“

ż t

0

1

2

`

σ2
S ` σ

2
f pt´ sq

2 ` σ2
dpt´ sq

2
˘

ds

`

ż t

0
ρSfσSσf pt´ sq ´ ρSdσSσdpt´ sq ´ ρfdσfσdpt´ sq

2ds

“
1

2

ˆ

σ2
St` σ

2
f

t3

3
` σ2

d

t3

3

˙

` ρSfσSσf
t2

2
´ ρSdσSσd

t2

2
´ ρfdσfσd

t3

3
,

σ2p0, tq “

ż t

0

`

σ2
Spsq ` σ

2
f ps, tq ` σ

2
dps, tq

˘

ds

` 2

ż t

0

`

ρSfσSpsqσf ps, tq ´ ρSdσSpsqσdps, tq ´ ρfdσf ps, tqσdps, tq
˘

ds

“ 2µp0, tq.
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