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Quantization-based Bermudan option pricing in the
FX world
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May 1, 2020

Abstract

This paper proposes two numerical solution based on Product Optimal Quan-
tization for the pricing of Foreign Exchange (FX) linked long term Bermudan
options e.g. Bermudan Power Reverse Dual Currency options, where we take
into account stochastic domestic and foreign interest rates on top of stochastic
FX rate, hence we consider a 3-factor model. For these two numerical methods,
we give an estimation of the L2-error induced by such approximations and we
illustrate them with market-based examples that highlight the speed of such
methods.

Keywords— Foreign Exchange rates; Bermudan Options; Numerical method; Power Reverse Dual
Currency; Product Optimal Quantization.

Introduction

Persistent low levels of interest rates in Japan in the latter decades of the 20th century were one
of the core sources that led to the creation of structured financial products responding to the
need of investors for coupons higher than the low yen-based ones. This started with relatively
simple dual currency notes in the 80s where coupons were linked to foreign (i.e. non yen-based)
currencies enabling payments of coupons significantly higher. As time (and issuers’ competition)
went by, such structured notes were iteratively “enhanced” to reverse dual currency, power reverse
dual currency (PRDC), cancellable power reverse dual currency etc., each version adding further
features such as limits, early repayment options, etc. Finally, in the early 2000s, the denomination
xPRD took root to describe those structured notes typically long-dated (over 30y initial term)
and based on multiple currencies (see [Wys17]). The total notional invested in such notes is likely
to be in the hundreds of billions of USD. The valuation of such investments obviously requires
the modeling of the main components driving the key risks, namely the interest rates of each
pair of currencies involved as well as the corresponding exchange rates. In its simplest and most
popular version, that means 3 sources of risk: domestic and foreign rates and the exchange rate.
The 3-factor model discussed herein is an answer to that problem.

Gradually, as the note’s features became more and more complex, further refinements to the
modeling were needed, for instance requiring the inclusion of the volatility smile, the dependence
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of implied volatilities on both the expiry and the strikeﬂ of the option, prevalent in the FX
options market. Such more complete modeling should ideally consist in successive refinements
of the initial modeling enabling consistency across the various flavors of xPRDs at stake.

The model discussed herein was one of the answers popular amongst practitioners for multiple
reasons: it was accounting for the main risks — interest rates in the currencies involved and
exchange rates — in a relatively simple manner and the numerical implementations proposed at
that time were based on simple extensions of well-known single dimensional techniques such as
3 dimensional trinomial trees, PDE based method (see [Pit05]) or on Monte Carlo simulations.

Despite the qualities of these methods, the calculation time could be rather slow (around 20
minutes with a trinomial tree for one price), especially when factoring in the cost for hedging (that
is, measuring the sensitivities to all the input parameters) and even more post 2008, where the
computation of risk measures and their sensitivities to market values became a central challenge
for the financial markets participants. Indeed, even though these products were issued towards
the end of the 20th century, they are still present in the banks’s books and need to be considered
when evaluating counterparty risk computations such as Credit Valuation Adjustment (CVA),
Debt Valuation Adjustment (DVA), Funding Valuation Adjustment (FVA), Capital Valuation
Adjustment (KVA), ..., in short xVA’s (see [BMP13|, [CBB14) |Grel5| for more details on the
subject). Hence, a fast and accurate numerical method is important for being able to produce
the correct values in a timely manner. The present paper aims at providing an elegant and
efficient answer to that problem of numerical efficiency based on Optimal Quantization. Our
novel method allows us reach a computation time of 1 or 2 seconds at the expense of a systematic
error that we quantify in Section [3]

Let P(t,T) be the value at time t of one unit of the currency delivered (that is, paid) at
time 7', also known as a zero coupon price or discount factor. A few iterations were needed by
researchers and practitioners before the seminal family of Heath-Jarrow-Morton models came
about. The general Heath-Jarrow-Morton (HJM) family of yield curve models can be expressed
as follows — although originally expressed by its authors in terms of rates dynamics, the two are
equivalent, see [HJM92| — in a n-factor setting, we have for the curve P(¢,T') that

dP(t,T) ,
’ = rydt (¢, T, P(t,T))dW} 0.1
P(t,T) Tt +;Uz(u y (7 )) t ( )
where 7; is the instantaneous rate at time t (therefore a random variable), W% i = 1,--- ,n are

n correlated Brownian motions and o; (t, T, P(t, T)) are volatility functions in the most general
settings (with the obvious constraint that o;(T,T,P(T,T)) = 0). Indeed, the general HIM
framework allows for the volatility functions o; (t, T, P(t, T)) to also depend on the yield curve’s
(random) levels up to ¢t — actually through forward rates — and therefore be random too. However,
it has been demonstrated in [EKMV92] that, to keep a tractable version (i.e. a finite number of
state variables), the volatility functions must be of a specific form, namely, of the mean-reverting
type (where the mean reversion can also depend on time). We use this way of expressing the
model as a mean to recall that such model is essentially the usual and well-known Black Scholes
model applied to all and any zero-coupon prices, with various enhancements regarding number of
factors and volatility functions, to keep the calculations tractable. For further details and theory,
one can refer to some of the following articles [EKFG96, EKMV92, [HIM92|, BS73]. Of course,
such a framework can be applied to any yield curve. In its simplest form (i.e. flat volatility and
one-factor), we have under the risk-neutral measure
dP(t,T)

Dy~ o(T — t)dW, (0.2)

In the case of the FX, the implied volatility is expressed in function of the delta.



where W is a standard Brownian motion under the risk-neutral probability. In that case, o is the
flat volatility, which means the volatility of (zero-coupon) interest rates. That is often referred
to as a Hull-White model without mean reversion (see [HW93|) or a continuous-time version of
the Ho-Lee model. In the rest of the paper, we work with the model presented in for the
diffusion of the zero coupon although the extension to non-flat volatilities is easily feasible.

About the Foreign Exchange (FX) rate, we denote by Sy the value at time ¢ > 0 of one unit
of foreign currency in the domestic one. The diffusion is that of a standard Black-Scholes model
with the following equation

20— Dt + ogdWP 0.3
t t t

where ¢ is the instantaneous rate of the domestic currency at time ¢, 7{ is the instantaneous
rate of the foreign currency at time t, og is the volatility of the FX rate and W¥ is a standard
Brownian motion under the risk-neutral probability.

Let us briefly recall the principle of the adopted numerical method, Optimal quantization.
Optimal Quantization is a numerical method whose aim is to approximate optimally, for a given
norm, a continuous random signal by a discrete one with a given cardinality at most N. [She97|
was the first to work on it for the uniform distribution on unit hypercubes. Since then, it has been
extended to more general distributions with applications to Signal transmission in the 50’s at the
Bell Laboratory (see [GG82]). Formally, let Z be an R%valued random vector with distribution
P, defined on a probability space (2,.A,P) such that Z € L?(IP). We search for I'y, a finite
subset of R? defined by 'y := {z{,..., 2} = R, solution to the following problem

min |z —ZN|,
IycRYTy|<N

where ZV denotes the nearest neighbour projection of Z onto I'y. This problem can be extended
to the LP-optimal quantization by replacing the L?-norm by the LP-norm but this not in the scope
of this paper. In our case, we mostly consider quadratic one-dimensional optimal quantization,
i.ed = 1and p = 2. The existence of an optimal quantizer at level N goes back to [CAGM97] (see
also [Pag98, I[GLO0| for further developments). In the one-dimensional case, if the distribution
of Z is absolutely continuous with a log-concave density, then there exists a unique optimal
quantizer at level N, see |[Kie83]. We scale to the higher dimension using Optimal Product
Quantization which deals with multi-dimensional quantizers built by considering the cartesian
product of one-dimensional optimal quantizers.

Considering again Z = (Ze)gzlzd, a R%valued random vector. First, we look separately at
each component Z¢ independently by building a one-dimensional optimal quantization Z¢ of size
Nt with quantizer I‘éV‘ = {Zf[,ig e {1, - ,Ng}} and then, by applying the cartesian product
between the one-dimensional optimal quantizers, we build the product quantizer I'V = 1—[?:1 I‘éV‘
with cardinality N = N! x --. x N? by

TV ={(zf, 2, 28), dge{l,~ | Ng}, CLe{l, -, d}}. (0.4)

Then, in the 90s, [Pag98| developed quantization-based cubature formulas for numerical
integration purposes and expectation approximations. Indeed, let f be a continuous function
f: R — R such that f(Z) e L'(IP), we can define the following quantization-based cubature
formula using the discrete property of the quantizer zN

N
E[f(ZM)] = pif(z)
=1



where p; = ]P(EN = zN). Then, one could want to approximate I [f(Z)] by E [f(éN)] when
the first expression cannot be computed easily. For example, this case is exactly the problem
one encounters when trying to price European options. We know the rate of convergence of the
weak error induced by this cubature formula, i.e 3o € (0,2], depending on the regularity of f
such that R

i NYE[f(2)] -E[f(ZV)]| < Crx < +. (0.5)
For more results on the rate of convergence, the value of a, we refer to [Pagl§| for a survey in
R? and to [LMP19] for recent improved results in the one-dimensional case.

Later on, in a series of papers, among them [BP03, BPP05| extended this method to the
computation of conditional expectations allowing to deal with nonlinear problems in finance
and, more precisely, to the pricing and hedging of American/Bermudan options, which is the
part we are interested in. These problems are of the form

sup B [ e~ 0750 4 (5]

where (e~ fo* réds (o (Stk»k:o,...,n

ping time for the filtration (Fy,)k=0 where F; = o(Ss, PU(s,T), P/(s,T),s < t) is the natural
filtration to consider because the foreign exchange rate and the zero-coupon curves are observ-
ables in the market.

is the obstacle function and 7 : Q — {to,t1,...,t,} is a stop-

In this paper, we will present two numerical solutions, motivated by the works described
above, to the problem of the evaluation of Bermudan option on Foreign Exchange rate with
stochastic interest rates. The paper is organised as follows. First, in Section [1} we introduce
the diffusion models for the zero coupon curves and the foreign exchange rate we work with. In
Section [2] we describe in details the financial product we want to evaluate: Bermudan option on
foreign exchange rate. In this Section, we express the Backward Dynamic Programming Principle
and study the regularity of the obstacle process and the value function. Then, in Section [3] we
propose two numerical solutions for pricing the financial product defined above based on Product
Quantization and we study the L2-error induced by these numerical approximations. In Section
[ several examples are presented in order to compare the two methods presented in Section [3]
First, we begin with plain European option, this test is carried out in order to benchmark the
methods because a closed-form formula is known for the price of a European Call/Put in the 3-
factor model. Then, we compare the two methods in the case of a Bermudan option with several
exercise dates. Finally, in Appendix [A] we make some change of numéraire and in Appendix
we give the closed-form formula for the price of an European Call, in the 3-factor model, used
in Section Ml as a benchmark.

1 Diffusion Models

Interest Rate Model. We shall denote by P(t,7") the value at time ¢t of one unit of the
currency delivered (that is, paid) at time 7', also known as a zero coupon price or discount
factor. When t is today, this function can usually be derived from the market price of standard
products, such as bonds and interest rate swaps in the market, along with an interpolation
scheme (for the dates different than the maturities of the market rates used). In a simple
single-curve framework, the derivation of the initial curve, that is, the zero coupons P(0,T)
for T" > 0 is rather simple, through relatively standard methods of curve stripping. In more
enhanced frameworks accounting for multiple yield curves such as having different for curves for



discounting and forward rates, those methods are somewhat more demanding but still relatively
straightforward. We focus herein on the simple single-curve framework.

In our case we are working with financial products on Foreign Exchange (F'X) rates between
the domestic and the foreign currency, hence we will be working with zero coupons in the domestic
currency denoted by P4(t,T) and zero coupons in the foreign currency denoted by Pf(¢,T). The
diffusion of the domestic zero-coupon curve under the domestic risk-neutral probability P is given
by

dP(t,T)

Pi(t,T)
where W is a P-Brownian Motion, 7{ is the domestic instantaneous rate at time ¢ and o4 is the
volatility for the domestic zero coupon curve. For the foreign zero-coupon curve, the diffusion is
given, under the foreign neutral probability ]lND, by

dPf(t,T)
PI(t,T)

where W/ is a P-Brownian Motion, r,{ is the foreign instantaneous rate at time ¢ and oy is the

= rddt + oq(T — t)dW¢

= ngt +op(T — t)thf

volatility for the foreign zero coupon curve. The two probabilities P and P are supposed to be
equivalent, i.e P ~ PP and it exists pqr defined as limit of the quadratic variation (we, w/ o=
pdft.
Remarks 1.1. Such a framework to model random yield curves has been quite popular with
practitioners due to its elegance, simplicity and intuitive understanding of rates dynamics through
time yet providing a comprehensive and consistent modelling of an entire yield curve through
time. Indeed, it is mathematically and numerically easily tractable. It carries no path dependency
and allows the handling of multiple curves for a given currency as well as multiple currencies —
and their exchange rates — as well as equities (when one wishes to account for random interest
rates). It allows negative rates and can be refined by adding factors (Brownian motions).
However, it cannot easily cope with smile or non-normally distributed shocks or with internal
curve "oddities” or specifics such as different volatilities for different swap tenors within the same
curve dynamics. Nonetheless, our aim being to propose a model and a numerical method which
make possible to produce risk computations (such as xVA’s) in an efficient way, these properties
are of little importance. That said, when it comes to deal with accounting for random rates in
long-dated derivatives valuations, its benefits far outweigh its limitations and its use for such
applications is popular, see [NP14] for the pricing of swaptions, [Pit05] for PRDCs...

Foreign Exchange Model. The diffusion of the foreign exchange (F'X) rate defined under
the domestic risk-neutral probability is
S
with Wts a IP-Brownian Motion under the domestic risk-neutral probability such that their exist
psa and pgy defined as limit of the quadratic variation (WS, Wy = pggt and (WS, V[N/f>t = psyt,
respectively.
Finally, the processes, expressed in the domestic risk-neutral probability IP, are

= (! —rhydt + ogdW?

dPi(t,T) 4 J
e \BHr) T _
Pt T) ridt + og( t)dWy
ds
?: = (rd - r{)dt + ogdW (1.1)
dpP/(t,T) s s
k 7Pf(t, T = (rt — psposos(T — t))dt + o (T —t)dW;



where W/, defined by awy{ = dWJ + psrosds, is a P-Brownian motion, as shown in Appendix
[A] Using It0’s formula, we can explicitly express the processes

Pt, T) = P0,T) exp (E <r§l — G?I(T2_S)2>d5 + 04 Lt(T — s)dwj>

t 2
{ St:SQeXp<J <r§—r£—023>ds+aswts>
0

t
P/ (t, T) = P/(0,T) exp (f <r§ — psyosa (T —s) —
0

‘

2

U]%(T_S)2>ds + oy f:(T — s)dwsf>

From these equations, we deduce exp ( — S(t) r?ds) and exp < — Sé réc ds>, by taking T' = t and
using that P?(t,t) = P/(t,t) = 1, it follows that

exp ( — Lt r;lds) = @q4(t) exp (ad Lt(t — s)dWSd)
exp <— Lt rg‘ds) — () exp (af f:(t - s>dwg”>,

where
o — )2
©q(t) = P4(0,t) exp < — aﬁfo (¢ 5 ) ds> (1.2)
and ) g2(t - 3)2
(pf(t) = Pf((),t) exp ( — JO (pSstaf(t —s)+ f2>d8>. (1.3)

These expressions for the domestic and the foreign discount factors will be useful in the following
sections of the paper.

2 Bermudan options

2.1 Product Description

Let (2,.A,P) our domestic risk neutral probability space. We want to evaluate the price of a
Bermudan option on the F'X rate Sy defined by

1

exp ( — Sé rdds

exp < — Lt r§d8> = @a(t) exp <0d Jot(t - S)dWsCl)

where the owner of the financial product can exercise its option at predetermined dates ty,t1, - - ,t,
with payoft ¢, at date t;, where 5 = 0.
At a given time t, the observables in the market are the foreign exchange rate S; and the

zero-coupon curves (P4(t,T)) and (P7(t, T))T>t’ hence the natural filtration to consider is

2 t
>Sog0f(t) exp ( — %t + 0’5Wts + Ufj (t— S)dWJ)
0

Sy =

with

T>t

Fi=0(Ss, PUs,T), Pl (s,T),s <t) = (WS, W W/, s <t). (2.1)



Let 7 : Q — {to,t1,...,t,} a stopping time for the filtration (Fy, )r=0 and T the set of all
stopping times for the filtration (F%, )g=0. In this paper, we consider problems where the horizon
is finite then we define 7", the set of all stopping times taking finite values

T ={reT,Pty <7 <t,) =1}. (2.2)
Hence, the price at time t; of the Bermudan option is given by

Vi =sup E [e—SS rids ¥ (S7) | ftk]

TeT
and Vj, is called the Snell envelope of the obstacle process (e~ fot réds wtk(stk))k:O:n such that
E [¢tk(5t,€)2] <400, Vk=0,...,n. (2.3)

Remark 2.1. The financial products we consider in the applications are PRDC. Their payoffs
(see Figure (1)) have the following expression

Yy, () = min (max <CJ‘CS(,tk):L‘ — Cy(tr), Floor(tk)> , Cap(tk)> (2.4)

0

where Floor(tx) and Cap(tx) are the floor and cap values chosen at the creation of the product,
as well as C¢(ty) and Cy(ty) that are the coupons value we wish to compare to the foreign and
the domestic currency, respectively.

0 20 40 60 80 100 120 140

Figure 1: Ezample of a PRDC payoff 1, (St,) = min (<0.1898§t’f7 — 0.15> ,0.0555) at time ty.
: +

The interesting feature of such functions is that their (right) derivative have a compact
support.
2.2 Backward Dynamic Programming Principle
Vi can also be defined recursively by
tn
Vn =e SO r?ds wn(stn)a

(2.5)
Vi = max (=W (5, B[Vigr | i), 0<h<n—1

and this representation is called the Backward Dynamic Programming Principle (BDPP).

First, noticing that the obstacle process e™ foréds ¥(S¢) can be rewritten as a function h; of
two processes X; and Y; such that

hi(X:,Y:) = e” fordds P (St)



where h is given by

hel,y) = palt) ey <SZ§§2 /) (2.6)

and (X,Y) is defined by

t t

(t —s)dW/, —adj

0

(Xt, Y;g) = (UsWtS + JfL

(t — s)dWSd) : (2.7)

Now, in order to alleviate notations, we denote by X = X;,, W,f = Wtj;, Yi =Y, W,gl =
Wi W =Wg and hy, = hy, .

Using this new form, the Snell envelope becomes

Vi = sup E [h(X;,Y7) | Fy, |
TET
and the Backward Dynamic Programming Principle (2.5)) rewrites
Vn = hn(Xn7Yn)7
(2.8)

Vi = max (hk(Xk,Yk),]E [Vig1 | ]—'tk]), 0<k<n-—1.

Second, in order to solve the problem theoretically by dynamic programming it is required
to associate a Fi-Markov process to this problem and in our case, the simplest of them (i.e. of
minimal dimension) is (X, Wtf , Y, Wtd) which is Fi-adapted and a Markov process because

f Te+1 g th+1
X1 = Xp + 0p0Wj +USJ dWy +Uff (tp1 — s)dW/
tr tr
1
wl, =w] +£ aw/
k
d ti+1 d
Yig1 =Y —0qgdWg — Udf (thg1 — 8)dW
tk
d J tht1 d
Wk+1 = Wk} +L dWs
k

where § = % and can be written as

Xiv1 = X + Uf(;Wk{ + G;lﬁ_l
Wlf+1 = Wg + Gy

p 5 (2.9)
Yiv1 =Y — 000 Wi + Giiq
WI?H = ng + Giﬂ?
where the increments are normally distributed
Géﬂ
G
Gl§+1 ~N (Uk+1a2kz+1> (2.10)
ZJrl
Gk‘+1
with
0
0 . ‘
He+1 = | and Ykt1 = (Cov( 2;+1,G?€+1)> . (2.11)
0 i,j=1:4



One notices that ((Gi,G%,G%,G%))k:L“n are i.i.d. Based on Equation (2.9), we deduce the

Markov process transition of (Xp, W,f , Yy, W,f), for any integrable function f : R* — R, given
by

Pf(z,u,y,v) =E[f(x+ opdu+ Gy, u+ Giyp,y — 040v + Giiq,v + Gip)]. (2.12)

Remark 2.2. Using the Markov process (X, W7, Y, W9) newly defined, we rewrite the filtration
Fi as
Fe=o(WZWE W s<t)=o(X,, Wl Y, Wl s <t). (2.13)

Then, using the new expression for the filtration and the Markov property of (X, Wl{ , Yk, Wg),
the BDPP (2.8)) reads as follows,

Vn = hn(Xna Yn)y

; ) (2.14)
Vi = max (hk(Xk,Yk),IEJ [Virr | (X5, W/ ,Yk,Wk)]), 0<k<n-—1.

Moreover, by backward induction we get Vi = v (X, Wg , Yk, Wg) where
Un(Xna W’r{? Ya, Wff) = hn(Xm Yn)a

ve(Xi, W, Vi, W) = max (hk(Xk,Yk),kaH(Xk, WJ,Yk,W,sl)), 0<k<n-1.
(2.15)

Payoff regularity. First, we look at the regularity of the payoff. The next proposition will
then allow us to study the regularity of the value function through the propagation of the local
Lipschitz property by the transition of the Markov process.

Proposition 2.3. If iy, is are Lipschitz continuous with Lipschitz coefficient [, | Lip With com-
pactly supported (right) derivative (such as the payoff defined in (2.4])) then hi(z,y) given by
(2.6) is locally Lipschitz continuous, for every z,x',y,y € R

(e, y) = b’y )] < W ([d0] L, |2 — o) 4 (pati) [Ye e + [9n]L)ly — o) (2.16)

with (], = (V)L Soes () e o5t/ |1, |, € with 1y, the right derivative of 1y, .
Proof. Let g be defined by

or(tk) o O%tk/2+ T+
9k =9 (So 5k v 2.17
As 1/)£k has a compact support, then it exists ¢ € R such that
(e (€)' = [ g, ()] < ¥, ., sup e <oy, [0 e (2.18)
z€supp1p7’§k
Hence _
9) = 9ula )] < L (10 01 1y — ) 219
Sod(tk)
with [¢r],,, = [¥1,.],.,S00s(tr) e —o5t/2 |41, 1l . Then for every z,2',y,y" € R, we have
Pk, y) = hi(a, 4] = alti)] e grlz,y) — e g2, y)|
d<tk>(|e Vgu(,y) — e gi(w )] + | gelay) — e gi(a’ o))
ealt)(|e™ =< [ [n, L., + e |gu(ay) — gn(a’y)])

VW ([gk] 2 — 2 + (Pa(ti) | le + [Pk] )Ny — o)
(2.20)



O

The next Lemma shows that the transition of the Markov process propagates the local Lips-
chitz continuity of a function f. This result will be helpful to estimate the error induced by the

numerical approximation (2.15)).

Lemma 2.4. Let Pf(z,u,y,v) = E[f(z + opdu + G',u+ G%y — 046v + G, v + G*)] be a
Markov kernel. If the function f satisfies the following local Lipschitz property,

‘f(x>u7yvv) - f(xlaul7ylvvl)’ < (A|l' - $/’ + B’u - U/’ + C’y - y/‘ + D‘U - U,‘)

2.21
o Qlulv Iy bl v (2.21)

then

|Pf(a,u,y,v) — Pf@' o'y, 0) < (Alz — 2'| + Blu— /| + Cly —y/| + Do —v/'|)

% elvIvVIVI+blolv V|

(2.22)

Proof. 1t follows from Jensen’s inequality and our assumption on f
[P f(z,u,y,v) — Pf(a', .y, ')
<E [yf(x +op0u+ Ghu+ G2y — ogdv + G3 v+ GY)
— f(a' + opu + G + G2y — ogdv + G300 + G4)|]

< (Alz — /| + (B+ Aogd)|u —u'| + Cly — | + (D + Cogd)|v — v']) (2.23)
% eIV [++oad)lvlv v | [e\G3|+bIG4| ]

< (ﬁ|x—az'| + Blu—'| + Cly — /| +]_~?|v—v/\)

a1 ’
% elyIvIy'[+blv]v]v|

where N R
A = AE[x], B = (B + Acyd) E[x] (2.24)
and N R R
CZCE[H], D= (D—I—CUd5)E[/€], b=b+ 046 (2.25)
with &k = exp(|G3| + b|G*|) and E[x] < +o0. O

Value function regularity. If the functions (1, )y—o., are defined as in Equation ([2.4) then
vn (2, u, y,v) preserves a local Lipschitz property. Hence, for every z, 2’ u, v, y,y/,v,v" € R,

’Un(CC,’LL,y,U) - vn(fv’,u',y’,vlﬂ < (ATL|‘7J - SC/| + Bn|u - ul| + Cn|y - y/| + DTL|U - vl|)

X e|y‘\/|y/|+bn\v\v|v’\ (226)

where

Ap = [¢n]upv B, =0, Cn = @a(tn)|¢nl, + [TZn]Lipv Dy =0, bp =0 (2.27)

with [ty,] i = [Vta) 1, 5097 (tn) exp(—0gtn/2)[¢] |, ¢°. Using now Lemma recursively and
the elementary inequality max(a,b + ¢) < max(a,b) + ¢ (as ¢ — max(a,z) is 1-Lipschitz), we
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have

‘Uk($7 u,y, U) - ’Uk(xla ula y/7 'U/)‘

< max (|hg(z,y) — hi(2',y)], |Pogs1 (2, u, y,0) — Pupgq (2,0, 9, 0")])
< ma (M ([, o =+ (gt + 9], o~ o )
, (Avk|:z — 2|+ §k|u —u'| + 6’k|y -]+ 5k|v — v'|) (2.28)
« VI 1+l v ] )

< (Aklz — 2'| + Bilu — /| + Crly — ¥/| + Dilv — ')

% elvIVIY[+bklv|v]o']

where

Ay = [Vl v (Aks1 E[rp1]), By = (Bis1 + Ap41050) E[rg11], b = bry1 + 046
(2.29)
and

Cr = (pa(te) Ve, + [Wk]L) v (Crr1 Elkgga]),  Di = (Dry1 + Cry10ad) E[kg 1] (2.30)

with rj11 = exp(|G3_ ;| + br+1/G}41])- Or equivalently

N aa N Bs)). Bomort 3 mas (10, I Bll) (231

=k . I<i< .
j=k+1 I=k+1 ST j=k+1

and l
Cu = o ((eattll. + 31,,) TT Elwd).
Jkt , (2.32)
T ¢ - :
Di=oiy Y g ((eattlvil + 1, T Bl
I=kt1 S j=k+1
with ko1
by, = adT(l - ) (2.33)

3 Bermudan pricing using Optimal Quantization

In this section, we propose two numerical solutions based on Product Optimal Quantization
for the pricing of Bermudan options on the FX rate S;. First, we remind briefly what is an
optimal quantizer and what we mean by a product quantization tree. Second, we present a
first numerical solution, based on quantization of the Markovian tuple (X, W7, Y, W%), to solve
the numerical problem and detail the L?-error induced by this approximation. However,
remember that we are looking for a method that makes possible to compute xVA’s risk mea-
sures in a reasonable time but this solution can be too time consuming in practice due to the
dimensionality of the quantized processes. That is why we present a second numerical solution
which reduces the dimensionality of the problem by considering an approximate problem, based
on quantization of the non-Markovian couple (X,Y’), introducing a systematic error induced by
the non-markovianity and we study the L?-error produced by this approximation.
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3.1 About Optimal Quantization

Theoretical background (the one-dimensional case). The aim of Optimal Quantization
is to determine I'yy, a set with cardinality at most NV, which minimises the quantization error
among all such sets I'. We place ourselves in the one-dimensional case. Let Z be an RR-valued
random variable with distribution P, defined on a probability space (€2, A, P) such that Z € LIQR.

Definition 3.1. Let I'y = {z1,...,2n5} < R be a subset of size N, called N-quantizer. A Borel
partition (Ci(I‘ N))ie[[1 N of R is a Voronoi partition of R induced by the N-quantizer I' if, for
every i = {1,--- N},

Ci(Tw) < {§ e Rolé — =] < mine — 21},
The Borel sets C;(I' ) are called Voronoi cells of the partition induced by T'y.

One can always consider that the quantizers are ordered: z1 < 29 < -+ < zy_1 < zny and in
that case the Voronofi cells are given by

Cr(Tn) = (2k—1/2: 2k41/2] ke[, N —1], Cn(Tn) = (2n-1/2, 2N +1/2)

where Vk € {2,--- N},  zp_1p0 = w and zy /5 = inf (supp(PP,)) and ZN41/2 = SUp (supp(PP,)).

Definition 3.2. Let 'y = {z1,...,2n} be an N-quantizer. The nearest neighbour projection
Projr, : R — {21,..., 2y} induced by a Voronoi partition (Ci(FN))ie{l N} is defined by

N

VEeR,  Projpy(€) = ) zileecyry) -
i=1

Hence, we can define the quantization of Z as the nearest neighbour projection of Z onto I'y by
composing Projp  and X

N

Z" = Projr (Z) = Y 2z Lgecy(ry) -
=1

In order to alleviate notations, we write Z" from now on in place of ARS
Now that we have defined the quantization of Z, we explain where does the term "optimal"
comes from in the term optimal quantization. First, we define the quadratic distortion function.

Definition 3.3. The L?-mean quantization error induced by the quantizer ZN is defined as

1/2 1/2
o 7N _ : 2 _ : 2
1z — ZV|, <]E[ min |7~ = D (Jwaﬁ?m'g | IPZ(d§)> . (3.)

ie{l, N

It is convenient to define the quadratic distortion function at level N as the squared mean
quadratic quantization error on (R)™:

2= (z,..., HﬁE[ i Z--ﬂ::Z—ZN?
Qon:z=(z ZN) ie{?’l._l_r}N}| 2] I I3

Remark 3.4. All these definitions can be extended to the LP case. For example the LP-mean
quantization error induced by a quantizer of size N is

SN . , 1/p . ) 1/p
|z - 2N, = <1E[ min |7~ = D - <L{ min |7 IPZ(dg)) L (32)

ie{l,,N ie{1, ,N
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The existence of a N-tuple z(V) = (#1,...,2N) minimizing the quadratic distortion function
Qo N at level N has been shown and its associated quantizer I'y = {z;,i € {1,--- , N}} is called
an optimal quadratic N-quantizer, see e.g. [Pagl8| for further details and references. We now
turn to the asymptotic behaviour in N of the quadratic mean quantization error. The next
Theorem, known as Zador’s Theorem, provides the sharp rate of convergence of the LP-mean
quantization error.

Theorem 3.5. (Zador’s Theorem) Let p € (0, +0).

(a) SHARP RATE. Let Z € LT (P) for some § > 0. Let P, (d€) = @(€) - A(d€) + v(d€), where
v L Xi.e. denotes the singular part of P, with respect to the Lebesque measure A on R.
Then,

~ 1 1 1+%
lim N min [|Z2-2ZV|, = ———— f eTrd\| . (3.3)
N—+w TI'ycR,|[y|<N Po2e(p+1) [ g
(b) NON ASYMPTOTIC UPPER-BOUND. Let d > 0. There exists a real constant Cy s € (0, +0)
such that, for every R-valued random variable Z,

YN > 1, : Z-7N| <C Z)N~! 3.4
FNclg,llanwlsN “ Iy Lpa%54p(4) 34

where, for r € (0,+©0),0,(Z) = minger |Z — a|, < +o0.

The next result answers to the following question: what can be said about the convergence
rate of b [|Z — 2N|2+B], knowing that ZN s a quadratic optimal quantization?

This problem is known as the distortion mismatch problem and has been first addressed by
IGLPOS8] and the results have been extended in Theorem 4.3 of [PS18].

Theorem 3.6. [L"-L°-distortion mismatch| Let Z : (Q, A,P) — R be a random variable and
let r € (0,+0). Assume that the distribution P, of Z has a non-zero absolutely continuous
component with density ¢. Let (T'n)n=1 be a sequence of L"-optimal grids. Let s € (r,r +1). If

Z e L= 15(Q, A, P) (3.5)

for some § > 0, then R
limsup N[ Z — ZV|, < +o0. (3.6)
N

Product Quantization. Now, let Z = (Ze)gzlzd be an R%valued random vector with dis-
tribution P, defined on a probability space (€2,.A,P). There are two approaches if one wishes
to scale to higher dimensions. Either one applies the above framework directly to the random
vector Z and build an optimal quantizer of Z, or one may consider separately each component
Z* independently, build a one-dimensional optimal quantization Z¢, of size N*, with quantizer
Févé = {ng,ie e {1, - ,Ne}} and then build the product quantizer IV = ]_[21:1 Ffvz of size
N = N x ... x N% defined by
N .
r = {(zzll, ,zfz,~-- ,zz‘-jd), ige{l,--- Ny}, CLef{l,--- ,d}}. (3.7)
In our case we chose the second approach. Indeed, it is much more flexible when dealing with
normal distribution, like in our case. We do not need to solve the d-dimensional minimization
problem at each time step. We only need to load precomputed optimal quantizer of standard
normal distribution N (0, 1) and then take advantage of the stability of optimal quantization by
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rescaling in one dimension in the sense that if TV = {z;,1 < i < N} is optimal at level N for
N(0,1) then p 4+ oT'N (with obvious notations) is optimal for N (i, 02).

Even though it exists fast methods for building optimal quantizers in two-dimension based on
deterministic methods like in the one-dimensional case, when dealing with optimal quantization
of bivariate Gaussian vector, we may face numerical instability when the covariance matrix is
ill-conditioned: so is the case if the variance of one coordinate is relatively high compared to the
second one (which is our case in this paper). This a major drawback as we are looking for a
fast numerical solution able to produce prices in a few seconds and this is possible when using
product optimal quantization.

Quantization Tree. Now, in place of considering a random variable Z, let (Z;),c[01) be a
stochastic process following a Stochastic Differential Equation (SDE)

t t

bo(Zs)ds + f o (s, Z,)dW, (3.8)

Zt:ZO+J
0

0

with Zy = 2o € R%, W a standard Brownian motion living on a probability space (Q, A, P) and
b and o satisfy the standard assumptions in order to ensure the existence of a strong solution of
the SDE.

What we call Quantization Tree is defined, for chosen time steps ty, = Tk/n,k =0,--- ,n, by
quantizers 2k of Zy, (Product Quantizers in our case) at dates t; and the transition probabilities
between date t; and date t;,1. Although (Ek) & is no longer a Markov process we will consider
the transition probabilities ﬂfj = E(Z;Hl ] Ek) We can apply this methodology because, with
the model we consider, we know all the marginal laws of our processes at each date of interest.

In the next subsection, we present the approach based on the quantization tree previously
defined that allows us to approximate the price of Bermudan options where the risk factors are

driven by the 3-factor model (|1.1)).

3.2 Quantization tree approximation: Markov case

Our first idea in order to discretize is to replace the processes by a product quantizer
composed with optimal quadratic quantizers. Indeed, at each time ¢, we know the law of the
processes Xy, Wg , Y and Wg. Then we "force" in some sense the (lost) Markov property by
introducing the Quantized Backward Dynamic Programming Principle (QBDPP) defined by

Vn = hn()znyi}n)v
Ui = max (h(R ), B [V | (R, W90 WD), 0<k<n—1,
where for every k = 0,...,n, X ks I//I\/,f , }A/k and I//I\/,g are quadratic optimal quantizers of Xy, W,f , Yy
and W,f of size NX, NZVf, N,z/ and Nde respectively and we denote Ny = N,g( xN,XVf xNng,ng
the size of the grid of the product quantizer.

We are interested by the error induced by the numerical algorithm defined in (3.9) and more

precisely its L2-error, with in mind that we "lost" the Markov property in the quantization
procedure. Moreover, this can be circumvented as shown below.

Theorem 3.7. Let the Markov transition Pf(x,u,y,v) defined in (2.12)) be locally Lipschitz in
the sense of Lemma . Assume that all the payoff functions (¢, ) k=0 are Lipschitz continu-
ous with compactly supported (right) derivative. Then the L%-error induced by the quantization
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approximation ()A(k, I//I\/,f, Y, I//I\/,g) is upper-bounded by

N n R R Y - 1/2
Ve~ il < (X Conllxs = R, + Cxi¥i = Fil?, + Cul Wi = W2 + Gy = /12)

=k
(3.10)
where 1 < p < 3/2 and ¢ =1 such that 1 + = =1 and
= []2, | P2 4 AR, Cyya = BYEG.
N (3.11)
CYZ = (wd(tl)Hd)tle + [’djl]Lip) “ em‘v‘Yl' ||2q + CZQKl27 CWlf = DZQKVI2
with L .
K = | ol Yi VY b Wi v W H (3.12)
1 - .
As a consequence if N = min Ny, we have
lim Vi — Vi) = (3.13)

N—+o

Remark 3.8. From the definition of the processes X k, sz , Yk and Wk , all are Gaussian random
variables hence all the L??-norms in Equations and (| are finite. Indeed, let Z ~
N(0,0,) a Gaussian random variable with variance a and Z an optimal quantizer of Z with
cardinality N then YA e R

1 1
i - (s} < o) sk o
q

Proof. The error between the Snell envelope and its approximation is given by

|Vk—Vk| max (’hk Xk,Yk) hk(jfk,i}k) y

’ E [Vk‘-i-l | (Xka W]glv Yk7 ngl)] —E [‘7]6-"-1 | (Xka I//I\/Ifa ?/m I//I\/Igl)] |>

(3.15)

thus, using the local Lipschitz property of hj established in Proposition and Holder’s inequal-
ity with p, ¢ = 1 such that % + % = 1, the L?-error is upper-bounded by

Vi — ‘A/kHj < || (X, V) — hk()?k,i}k)uj
+ H E [Vk-i-l | (Xk7 Wk]-cv Yk7 Wk(;i)] - [‘//\Yk-‘rl | (an I//I\/k;fv }/}lﬁ I//I\/k;d)] ||j
< M ((palti) el + (e [V = TalE, + B2,
| B [Visr | (Xi, WY, Vi, W] = B [V | (Xk,W,Z T W]

S o2
X, — Xky|2p)
(3.16)
Looking at the last term, we have

E Vi1 | (Xe, WY W] = E [Vier | (X, W, Y3, W]
=E [Visr | (X, W, Y, W] = E Vi | (X, W/, Yi, W] (3.17)
+E Vi1 | (X, WY, W] = E [V | (X, WL Vi, W)

Now, we inspect the L?-error of each term on the right-hand side of the equality.
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e For the first term, notice that

E[Vis1 | (Xp, W, Vi, W] = Poyr (Xp,, W/, Y3, Wi (3.18)
and N o
E[Vis1 | (X, W, Ve, W] = Pogyr (X, W/, Y3, Wi (3.19)

then, we directly apply Lemma[2.4] on the function vgq and obtain

|ka+1(Xk;a ng Yka W}?) - ka-l-l()?k? W]f7?k7 ng)|
< (Avk|Xk — Xi| + BulW — W] + CilYi — Vil + De| Wi — W/ﬂ) elel Vel b Wil W]
o R (3.20)
with Ak, B, Ck, Dy and by defined by (2.24) and (2.25)). Hence, using Holder’s inequality with
p,q = 1 such that I%—l—%: 1,
A~ S~ ~ S~ 2
| B [V | (X, WY, W] = B [Vieir | (Xe, W, Ve, W]
A2 v 2 - B2lwd —wlR o o2 v 12 L D2lwd _ Trd)?
< (AkHXk = Xl + Bi|Wi = Wil + Ci[Ya = Vil + DR|wil — Wi HZ,,> (3.21)

< | AV AN AT 17
2q

e The last one is useful for the induction, indeed

| B [Visr | (R W, 90, W] — B [Visr | (R W02 < Virr — Vi [F- 3:22)

Finally, using the L"-L® mismatch theorem for the quadratic optimal quantizers X r and }A/k,
if 1 <p < 3/2, then

lmsup NX|Xi — Rl < +oo, timsup N Vi — Tel,, < +o0,
e N 3.23)
limsupNZVf ||W,g - I//I\/JHQP <400  and limsupN,ngHW,g - I//T\/,‘jHQP < 4w S
Nyt N
this yields
12
[V = Vil
< X~ Rul? (l2, | PP 4 2)
¥ = Vil ()l + [9),,) X2 4 G2 cE)
+ BYRIWL — WL+ DREIWE = WL, + Ve — P 24
n
< 2 Ox X0 = X, + Cwil[Yi =Y, + Cua| Wi = WL+ Cyp [ =W/
=k
N—+o0 0
where Kj, = “ e|Yk|V‘?k|+Bk|W]g|V‘WIg‘ ng and Vk =1,...,n, CXk,CYk,CWg,CWf < +00. O
k

Remark 3.9. The same result can be obtained if we relax the assumption on the payoff yy. If
we only assume the payoff Lipschitz continuous, we have the same limit with the same rate of
convergence, however the constants Cx,, C’yl,C'Wld, C, s are not the same.

l
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To conclude this section, although considering product optimal quantizer in four dimensions
for (Xk,Wg , Y, W,f) seems to be natural, the computational cost associated to the resulting
QBDPP is too high, of order O(n x (max N)?). Moreover the computation of the transition
probabilities needed for the evaluation of the terms It [XA/;CH | ()2' ks I//[\/]f , f’k, I//T\/lgl)] are challenging.
These transition probabilities cannot be computed using deterministic numerical integration
methods and we have to use Monte Carlo estimators. Even though it is feasible, it is a drawback
for the method since it increases drastically the computation time for calibrating the quantization
tree. In the next section we provide a solution to these problems which consists in reducing the
dimension of the problem at the price of adding a systematic error, which turns out to be quite
small in practice.

3.3 Quantization tree approximation: Non Markov case

In this part, we want to reduce the dimension of the problem in order to scale down the numerical
complexity of the pricer. For that we discard the processes W? and W7 in the tree and only keep
X and Y. Doing so, we loose the Markovian property of our original model but we drastically
reduce the numerical complexity of the problem. Thence, is approximated by

‘771 = hn()?m i}n)a

~ ~ A ~ ~ A 3.25
Vi = max (hk(Xk>Yk)aE [Vies1 | (Xk,Yk;)])’ 0<k<n-—-1 (329)
where for every k = 0,...,n, X . and ?k are quadratic optimal quantizers of X} and Y} of size

N,f and N,gf, respectively and we denote Nj = Nf X lef the size of the grid of the product
quantizer.

Theorem 3.10. Let the Markov transition P f(z,u,y,v) be defined by be locally Lipschitz
in the sense of Lemma . Assume that all the payoff functions (1, )k=0:n are Lipschitz contin-
uous with compactly supported (right) derivative. Then the L?-error, induced by the quantization
approximation ()A(k, f/k,) 1s upper-bounded by

n—1
[Vie = Vi, < ( Z CWZJ:JHM/ZJ—CH - E[Wlil | (XbYl)]Hip + Cya Wiy — BWL, | (XbYl)]ij
I=k
. ~ 9 1/2
+ O X = &2+ Cyili - 912 )

(3.26)
where 1 < p < 3/2 and q =1 such that % + % =1, moreover

Oy, = Wip aMid “i ] hilYilv Yl “17 chfH = B,QHH%M}@,
CYZ = (@d(h)”%\’m + [@Z]Lip)2H e‘Yll\/DA/ll qu + C_(lzu el;”Yl‘vDA/l' “qu C'Wld_*_1 = Dl2+1H%k+1H§q.

(3.27)
Taking the limit in N = min Ny, the size of the quadratic optimal quantizers, we have
n—1
. 12 f f 2 d d 2
Jim VeVl = é Coys Wy =B [ (XD, +Cg [WE—EIWEL | (X0, VI, -

(3.28)

Proof. We apply the same methodology as in the proof for the Markov case. The error between
the Snell envelope and its approximation is given by

Vi — V| < max (|hk(Xk,Yk)—hk()A<k7f/k)’7|E[Vk+1 | (Xi, W, Y, W]~ E [Vis1 | (Xkaf/k)“)
(3.29)
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thus, using Proposition and Holder’s inequality with p, g = 1 such that %4—% = 1, the L?-error
is given by

Vi — %Hj < (X, Vi) — hio( X, ffk)“j
+ | B [Visr | (X, W, Y0, W] = B [Vieg | ()A(k,f/k)]Hz

< (10012, 1% = Rkl2 + (palt) [0, + [0, [V = Tl ) [Tk
+ | B [V | (X, WL Y W] = B [Vier | (X5, Y]
The last term in Equation can be decomposed as follows (330
E Vi1 | (Xe, WL, Y, W] = E [Vier | (X, Vi)
(3.31)

+E [Vigr | (X, Y3)] = B [Vier | (B2, %0)]

=E [Vir1 | (X, W, Vi, W] - E[Vk+1 | (X, Ya)]
(X
+ B[Vt | (X V)] = B [Viesr | (Xi, Ya)].

And again, each term can be upper-bounded.

e The first can be upper-bounded using what we did above on the value function v and Hélder’s
inequality with p, ¢ > 1 such that % + % =1

| E[Vir | (X WL Y, W] = E [Vi | (X, Y|
< Vi = B [Vigr | (X, 0]
< “Uk+1(Xk+1aW;f+1aYk+1aWI?H)
— Vg1 (Xk+1,]E[W,f+1 | (Xe, Vi) ], Yiew 1, B [W | (kayk)])Hz
< | (Beaa Wy = BIWL, | (X Yl + Deaa| Wik = B[WE, | (X, Vi) ])%kHHj

< |2 (BEalWhy — BIWL, | (X, mu; + DR Wik —B[WE, | (X))

with coefficients by 1, Bry1 and Dgiq defined in ) and ( and (3.32)
Rpi1 = e|Yk+1|+bk+1|W,§+l\v|]E[Wg+1\(Xk,Yk)]| . (3.33)

e For the second, we define
Op(Xg, Vi) = E [Uk+1(Xk+1,Wg+1,Yk+1, W,?H) \ (Xk,Yk)]. (3.34)

Indeed, E [Vk+1 | (Xk, Yk)] is only a function of X and Y}, as shown below
E [Vier | (X5, Ya)] = E [t (X1, W1 Vi, Wiky) | (X, V)]
=E [E I:/Uk—l-l(Xk—i-la W]f_,_p Yk+17 ng+1) | (Xk’ W];;f7Yk7 Wk;d)] ‘ (Xka Yk)]
=E [ka+1(Xk7W]g7Yk7WIg) | (XkaYk)]

(3.35)
1 ~ 1
Moreover, we can rewrite W,f = M\ Xk + & and W,? = A\ Y + X where
\ _ Cov(X;, w) ~ Cov(Yi, W
b Var(Xy) R Var(Yy)

18



and & ~ N(0, agk) and x; ~ N(0,0%,) with Jgk = Var(Wg—)\ka) and 02 = Var(Wg—;\kYk),
then

E[PUkJrl(kaW]szkaIg) | ( Xk, i) = (2,9)]

= E [Pogir(z, My + € kY + )| (3.36)
k+1\Ly Ak kY, \EY Xk (@) =(XgYe)
yielding R
5]{3(:1:" y) =E [ka‘-i-l('xv Ak + &gy Yy Aky + Xk)] (337)
Now, using Lemma on vy, we have
’lljk(xay) - 17k($/7y/)’
= ‘ ]E ka+1(x7 )\k‘x + §k7 Y, Xky + Xk) - ka+1(x/7 )‘kx/ + §k7 Z//7 Xky/ + Xk‘)]‘
. e A (3.39)
Ak + B M)z — 2’| + (1 + Crl M)y — ¢/)) (10l A DIyl v Iy [+0k [xk|
(A 2= '] + Caly —y'[) vV
where B R R N - o
A = (Ag + B M) E [l ] Gy =14 Crlhl, (3.39)
Bk =1 +5k|xk| (340)

with Ak, Bk, C’k and bk defined in ) and - Hence, using Holder’s inequality with
/1suchthatzl7+§—1

| B [Vir | (X, V)] = B [Vigr | (X, V)]
= |0k (X, Yi) — %k()?k;i}k)uj

_ ~ _ ~ - S 3.41
< | (Al = Rl + Culi — 1] bl | (341)
2
< [l T2 (Aguxk - X, + CRlvi - f/kHzp).
e The last one is useful for the induction, indeed
| E[Vis1 | (X5, V)| = B [Vigr | (X, V) ]H Vi1 — Vk+1H (3.42)

Finally, using the L"-L*® mismatch theorem on the quadratic optimal quantizers X r and f’k,
if 1 <p < 3/2, then

lim sup N{¥ | X, — Xk”zp <+ and  limsup NY ||V} — ?kH% < 400 (3.43)

X Y
Nk Nk
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and

[Vi—Ta;
<% = Rl (I, o6l 2 g el el )

¥ = Tl ((Paltln e + [4],.,) [ VMR 4 G2 bl MITT |2 )

& BE R WLy~ BV | (0]

+ Dl%’-i-l”%k'*‘lHiq Wi —E[WE | (X, Yk)]”i + Vi1 — ‘7k+1\|§

n—1
<Y Copr W =BV L (XIS + Cug Wi — BIWEL | (0 W]
=k

+1

+ Ox X = X} + Owilvi = Vil
_ n—1
Noston ZC%AMWQ—EmﬁM@nnm@+cmhwﬁ4—mwﬁﬂomﬁm;
1=k

(3.44)
0

Practitioner’s corner. Market implied values of o, 04 and og used for the numerical com-
putations are usually of order
or ~ 0.005, oq ~ 0.005, os ~ 0.5 (3.45)

and in the most extreme cases, we compute Bermudan options on foreign exchange with maturity
20 years (T = 20). Thus, we can estimate the order of the induced systematic error. First, we
recall the expression of the related coefficients which depends of

Bk:Uf% y max <[1Zi]up ﬁ ]E[/’vj]),

I<isn .
l=k+1 j=k+1
o ) i (3.46)
Du=oul 3 s ((ealt)lual. + [6,,,) 1] Elw])
I=k+1 S j=k+1
with ‘
Ky = el G31+bs1G51 Rppq = el b Wi, IV I BWE, [(XYD)]) (3.47)
and k1
b, = ng<1 - > (3.48)
n

Now, considering the case where the payoffs are the same at each exercise date, the Lipschitz
constants can be upper-bounded by [¢]

Lip*

(Ot 1, = [ S0 (1) ™75 o5 | € < Solny ] 07, | € =2 [0],,  (349)
and let x defined by
k= max B[] = E [ el%0I%1 ] < %IE [ 21681 4 e2bolGil ] (3.50)
moreover, if Z ~ N(0,0?) then | [e’\‘Z‘ ] = e)‘2‘72/2, thence we can upper-bound
w< g B[t 1 2] = CE [ i ] 11 (3.51)
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k being bounded, we notice that the main constants Bg and D,% in the remaining error are of
order 02 or O']%, indeed

T - _ T -
Bk S Ufﬁ[w]up(n - k)’%n g ~ O-fg[/(/}]Lip(n - k)v
T _ . T B (3.52)
Dy < og— (maxpa(t) ¢, + [¥],,,) (n = k)&" % ~ 00— (¥, + [¢],,,)(n — k).
n' 1 n
Furthermore
E [%ii_l] =K [qu‘Yk+1‘+2qbk+1|Wg+1‘V|E[Wg+1‘(xkvyk)]| :|
< } (E [e4q\Yk+1| ] +E [e4qbk+1\Wkd+1|v\E[W,§+1|(Xk,Yk)]| ])
2
1 4 4 (3.53)
<! (IE [e4q\Yk+1|] LE [e4qad(T—tk)|Wk+1|v|E[Wk+1|(Xk,Yk)]\ ]>
2
< 1 <68q203T3/3 +2 equO—(Qi(T_tk)th+l >
2
and from elementary inequality (a + b)l/q <av14+bY1 a,b>0,g>1
1 1
~ 2 ~2¢ 13 8¢203T3/3 | 8¢202(T—ty)%t e
[Fuoal?, = B[R < (5 oo oot )
1 1
< (1 e8q2”5T3/3> T <e8q20¢21(T_tk)2tk+1 > ! (3.54)
2
< R &3003T?/3 | (8a0q(T—tk)*tis1
21/q

The two terms on the right-hand side of the inequality do not explode. Indeed, the function
g :t— (T —t)%, defined for t € [0,T] with T = 20, attains its maximum on t = 20/3 and
9(20/3) ~ 1185, hence for the considered values
~ 2
Vk=1,...,n, ||/<;k+1|}2q < C; ~ 6. (3.55)

Finally, rewriting the obtained systematic error induced by the approximation with this new
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informations in (3.28]) we have

n—1
m—wuiM§83+1|\%z+1|3q|mil—E[Wfil|<Xz,m]|jp
+Dl+1|\m+1u Wi~ B ol
<3 (-) 19 2 D2RAOC WL, — BWE, | (X, YD)

; ag(g)g(maxwd@l)uzz}nw +[{,,)°

_2 DR NCH W, ~ BIWE, | (a2,
<2} () 192, S0t i
+203(2) (ma a1, + (91, 2 DD W
< (afc[@]i@ + o (max ga(t) ¥, + [w]“p)z)ziﬂcl’fg (%)2 gtm(n _ )220,

(3.56)
Hence, the systematic error is upper-bounded by the squared volatilities 03 and aj%. These
parameters being of order 5 x 1073 at most, the systematic error is negligible as long as these
volatilities stay reasonably small.

Remark 3.11. As in the Markov case, we can extend this result to the case where the payoffs
(g are Lipschitz continuous, however the residual error can not be as easily estimated and
controlled.

4 Numerical experiments

In this section, we illustrate the theoretical results found in Section [3| regarding the pricing of
Bermudan options in the 3-factor model described in Section[I] First, we detail both algorithms
and how to compute the quantities that appear in them (conditional expectation, conditional
probabilities, ...). Then, we test our two numerical solutions for the pricing of European options,
whose price is known in closed form. European options are Bermudan options with only one
date of exercise, hence when using the non-Markovian approximate we do not introduce the
systematic error shown in Theorem but pricing these kind of options is a good benchmark
in order to test our methodologies. Finally, we evaluate Bermudan options and compare our two
solutions, the Markovian and the non-Markovian approximation.

We have to keep in mind that the computation time is crucial because these pricers are only
a small block in the complex computation of xVA’s. Indeed, they will be called hundreds of
thousands of time each time these risks measures are needed.

All the numerical tests have been carried out in C++ on a laptop with a 2,4 GHz 8-Core
Intel Core 19 CPU. The computations of the transition probabilities and the computations of the
conditional expectations are parallelized on the CPU.

Remark 4.1. The computation times given below measure the time needed for loading the
pre-computed optimal grids from files, rescaling the optimal quantizers in order to get the right
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variance, computing the conditional probabilities (the part that demands the most in term of
computing power) and finally computing the expectations for the pricing. One has to keep in
mind that the complexity is linear in function of n, the number of exercise dates. Indeed, if we
double the number of exercise dates, we double the number of conditional probability matrices
and expectations to compute.

Characterisation of the Quantization Tree. In what follows, we describe the choice of
parameters we made when building the quantization tree: the time discretisation and the size of
each grid at each time.

e The time discretisation is an easy choice because it is decided by the characteristics of the
financial product. Indeed, we take only one date (and today’s date) in the tree if we want
to evaluate European options and if we want to evaluate Bermudan options we take as
many discretisation dates (plus today’s date) in the tree as there are exercise dates in the
description of the product.

e Then, we have to decide the size of each grid at each date in the tree. In our case, we
consider grids of same size at each date hence Ny = N, kK = 1...,n and then we take
NX = 10NY for both trees. This choice seems to be reasonable because the risk factor
X} is prominent, due to the value of og compare to 4. Now, in the Markovian case, we
take NX = 4NWs and NY = 4NWa, indeed the two Brownian Motions are important
only when we compute the conditional expectation but not when we want to evaluate the
payoffs, hence we want to give as much as possible of the budget N to N¥ and NY.

The algorithm: Markovian Case. Let (x Zl)Zl LNX, (qu)i2:1:NWf, (yZ)iS:l:Ny and (UZ)MI1

be the associated centroids of )A(k, 171\/15, Y and Wk respectively, at a given time ¢ with 0 < k < n.
Using the discrete property of the optimal quantizers, the conditional expectation appearing in
(3.9) can be rewritten as

E Vit | (X, W, Ve, W) = (2f b,k 0k
= B [0s1 (Xist, Wiy, Ve, W) | (X, WL, Vi, W) = (2 ull, yf 0F) ] (4.1)

_ (M),k ~ K+l ktl kel kel
- Z Tij vk“( Tj Wiy Y55 Uy )
J1,J2,J3:J4

(m),k

where 7

i with @ = (i1,12,13,14) and j = (J1, j2,J3,J4), is the conditional probability defined
by
7r(M) k

2,] Jr J2 ’ J4

| (Xk,Wk,Yk,Wk) = (xﬁ?ufz’y’iﬂvlkzl))'

Due to the dimension of the problem (4 in this case), we cannot compute these probabilities
using deterministic methods, hence one has to simulate trajectories of the processes in order to

evaluate them. We refer the reader to [BPP05, [BP03| [PPP04] for details on the methodology.

A way to reduce the complexity of the problem is to approximate these probabilities by 7T(M) k,

% Wl v T17d O O I T.an I s
=P <(Xk+17Wk+17Yk+17Wk+1) - (ZE Jyj3 )

.Nwd

where the conditional part {(Xk, Wg, Yy, Wk) = ( k )} is replaced by 1 ( { X, w/ ,Yk, Wk)

Zl? 127y137 14

(a;k k )} yielding

217 127y137 14

2,] J1o 72 2993 ) T4

‘ (Xk’W]f’Yk’Wl?) = (ﬁp?/iﬂ%ﬂﬁ))-

%(M) =P ((2k+17wg+17?k+1vwg+l) = (1.]?4‘1 uk':+1 y’?—i_l Ul?—’_l) (4 2)
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The reason for replacing { (X, W,f, Yk, Wg) = (mf’l,ug, yf;, vl’i)} by { (X, W,f, Yy, Wi) = (:U?l,uig,yfs, UZ)}
is explained in the next paragraph dealing with the Non-Markovian case with lighter notations
(see Equation (4.5) and (4.7))). Although, these probabilities are easier to calculate, one still has
to devise a Monte Carlo simulation in order to evaluate them. This simplification will be useful

later in the uncorrelated case.
These remarks allow us to rewritte the QBDPP in the Markovian case (3.9) as

~ n n .n .n\ _ n o .n
Un (mh » Wigs Yig s Ui4) = hn (mil ) yi3)’

PN T T T R " ~ (M) k K41kl kel (4.3)
Vg (xil y Uiy s yi37 vi4) = Inax (hk (xil ) 3/13) ) Z Ur J Uk+ (le ) ]2 ) Z/JS ) ]4 )) .
J1,J2:93:74

The algorithm: Non-Markovian case. Let (z “)“ 1.yx and (ylg)l3 1.nv be the associated

centroids of X, r and }A/k respectively, at a given time ¢, with 0 < k < n. Again, as in the Markovian
case, using the discrete property of the optimal quantizers, the conditional expectation appearing

in (3.25) can be rewritten as

E[Vigr | (Xi, Vi) = (28, 98)] = B [Or1(Xpr1, Visr) | (Xi, Vi) = (28, 98)]

(CLORPN k+1 ) k+1 4.4

= 2 my B () (44)
j17j2

where W§71;M)7k, with ¢ = (i1,42) and j = (j1,J2), is the conditional probability defined by

ml0F B (R, Ten) = (57057 | (R B0) = (208
This probability can be computed by numerical integration, ie
W(,IJM)k P ((2k+1>?k+1) = ( kH,yf;l) ! ()A(k,f/k) = (xfl,yﬁ))
=P (()A(th/kﬂ) = ( kH??/ng) | Xy € ($§1—1/2=$§1+1/2)7Yk € (?/Z—1/2=?/i+1/2)>

f 11+1/2 J l2+1/2 Xk+17 i}k+1) = (x;?jlay;'c;_l) | (Xk7Yk‘) = (»T:y)>f2(377y)d$ dy
i1—1/2 vy 5—1/2
(4.5)
where fx(z,y) is the joint density of a centered bivariate Gaussian vector with covariance matrix
Y given by

:< Var(Xy) @ov(Xk,Yk))_ (4.6)

Cov(Xy,Yr)  Var(Yy)
However, computing the probability in Equation (4.5) can be too time consuming, hence once
again, we approximate this probability by WZ( g M)k , where the conditional part {()/Ek.,)/}k) =
( il,ym)} is replaced by { Xk, Yy) = ( il,in)}, yielding

%(EM) k_p (()A(Hl,f/kﬂ) (@B ) | (X, V) = (xfl,yf;)> (4.7)

From the definition of an optimal quantizer and Equation ([2.9), this probability can be
rewritten as the probability that a correlated bivariate normal distribution lies in a rectangular
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domain

~ k % k v k
i(f;M) =P (Xk+1 = a5 Y =yt | X = a2l Yy = yg)
_ k+1 k+1 k+1 k+1 _ .k _ .k
=P <Xk+1 € (xj1—1/2’xj1+1/2)’yk+1 € (yj2—1/2’yj2+1/2) | Xp = 27,, Yi = yiz)
_ k f 1 k+1 k+1 k d 3 k+1 k+1
=P ($i1 +op Wi +Gpyq € (le—l/z’xj1+1/2)’yi2 —0g0Wp + G € (ng—l/Q’yj2+1/2))
_ 1 k+1 ko k+1 k 2 k+1 ko k+1 k
=P <Z € (xj171/2 LT 12 T v,), 2% € (yj271/2 " Yir Yjoq12 T y’?))
(4.8)
where

1 o? 0.0
@2)“” <8> AP (4.9)
pzl,z2azlaz2 0 s

with ail = Var(af(SW,f + Giy1)s 022 = Var(—os0WI + G}, ,) and Py g = Corr(aﬂWg +
Ghr1, —0ad Wi + G ).
The advantage of expressing as the probability that a bivariate Gaussian vector lies in
a rectangular domain is that it can be rewritten as a linear combination of bivariate cumulative
distribution functions.
Indeed, let (U, V') a two-dimensional correlated and standard-

v ized normal distribution with correlation p and cumulative distri-
bution function (CDF) given by Ff (u,v) = P(U < u,V < v).
i Fast and efficient numerical implementation of such function ex-

ists (for example, a C-++ implementation of the upper right tail of
a correlated bivariate normal distribution can be found in John
Burkardt’s website, see [Burl2|, which is based on the work of
[Don73| and [Owe58|. In our case, we are interested in the com-
putation of probabilities of the form

U1

P (U € (ul,uz), Ve (Ul,vg)). (4.10)

This probability is represented graphically as the integral of the
two-dimensional density over the rectangular domain in grey in

Figure [2| Now, using F}} (u,v), the probability (4.10) is given by

Figure 2

P (U € (u1,u9),V € (v1, ’02)) = F{iv(ug,vg) — F{}y(ul, v9) — F57V(u2,v1) + F(’}’V(ul, v1).
(4.11)
This remark will allow us to reduce drastically the computation time induced by the evalua-
tion of the conditional probabilities and so, of the conditional expectations.
Now, going back to our problem, the QBDPP in the non-Markovian case rewrites

Ba(ehf) = ho(ehof), 1< SNY. 1<z <N

A " 4.12

’Uk(xfpyzkg) = max (hk (-T?lvyzkz)’ Z ﬂl(vl;M) Vk+1 (x;?jl,y;?;_l)). ( )
J1,J2

In order to test numerically the two methods, we will evaluate PRDC European and Bermu-
dan options with maturities 2Y, 5Y and 10Y. We describe below the market and products
parameters we consider. The volatilities of the domestic and the foreign interest rates are not
detailed below because we investigate the behaviour of the methods with respect to o4 and oy.
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Py(0,t) | exp(—=rqt) || 74 | 0.015 || psa | O
Pr(0,t) | exp(—r¢t) || ¢ | 0.01 || psy
So 88.17 os | 0.5 par | 0

)

Table 1: Market values.

Vk e 1,...,n, Cd(tk) 15% Vk e 1,...,TL, Cf(tk) 18.9%
Vkel,...,n, Cap(tg) | 5.55% || Vkel,...,n, Floor(tx) | 0%
Exercise date (EU): ¢, T Exercise dates (US): tj Tk/n

Table 2: Product description.

Remark 4.2. When the correlations pgr and pgq are equal to zero, the numerical computation

of probabilities %Z(I;/I)k and %g?M)’k can be accelerated. Indeed, in the Markovian case, (4.2]) can
be rewritten as

—~

~(nk _ p (()A(kﬂ,W;fH) _ (xk-&-l uk+1) | (ijwg) _ (xk uk))

,J Jj1 0 g2 117 P2

(4.13)
% T7d E+1  k+1 d E ok
x P <(Yk+17Wk+1) = (?Jj3+ 7Uj4+ ) | (Y, W) = (%y%))-
In that case, we can use the CDF of a correlated bivariate normal distribution, as detailed above
for the non-Markovian case in (4.11]), for computing these probabilities in a very effective and
faster way rather than performing a Monte Carlo simulation.
In the non-Markovian case, (4.8]) can be rewritten as

~(Nm) .k 1 k+1 ko k+1 k 2 k+1 ko k+l k
i =P (Z € (‘Tj1—1/2 i T2 T z“)) P (Z € (yj2—1/2 Yy Yjp1/2 T ylg))
k41 k k+1 k k41 k k41 k
- (F (xj1+1/2 - %) 7 (%71/2 - Ty )) (F (yj2+1/2 - yiz) 7 (%—1/2 ~ Yi, )>
- z\ - z\— z\— - z\ - _
7, T, T, T,
(4.14)

where F,(-) is the CDF of a one-dimensional normal distribution, o, is the standard deviation
of Z' and o, is the standard deviation of Z 2. This remark allows us to drastically reduce the
computation time of the conditional probabilities in the case of zero correlations.

4.1 European Option

First of all, we compare the asymptotic behaviour of the Markovian and the non-Markovian
approaches when pricing European PRDC Options with different volatilities and maturities. In
this case, we consider only two dates in the tree: {9 = 0 an ¢, = T, the algorithm is a regular
cubature formula and no systematic error is induced by the non-markovianity of the couple
(Xk,Yx). These numerical tests confirm that both approaches give the same value, however the
non-Markovian approach converges much faster due to the dimension of the product quantization,
2 for the first one and 4 for the last one. Indeed, the complexity of the 2 dimensional pricer
is of order of N = NX x NY while the complexity of the 4 dimensional pricer is of order
N =NXx NY x NV «x NW/ N being the size of the product quantizer at each date (in two
dimensions: N = N¥X x NV and in four dimensions N = N¥ x NW/ x NV x NWd).

In the case of the European options, we have a closed-form formula for the price of (2.4)).
The benchmark price is computed using the rewriting of (2.4]) as a sum of Calls: at a time tj,
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the payoff can be expressed as

1, (Si,) = min <max (Cfgsk) Sy — Caltr), Floor(tk)> , Cap(tk)>

= Floor(t,) — ap(Sy, — K{)+ + ar(Si, — K7)+

Ce(t Cap(t Cylt Fl t Cy(t
with a; = i k), Kli = ap(tk) + Caltk) x Sy and K,% = oor(ty) + Ca(tr) x Sp and the
So Cy(tr) Cy(tx)
closed-form formula for the price of a Call is detailed in Appendix [B] The prices given by the
closed-form formula of the European options we consider (different values of volatilities and

different maturities) are given in Table

Exact price

N 50bp 500bp

| 2171945242 2.159404007
Y || 1630435483 1.539295559
10Y || 1127330259  0.8013151892

Table 3: Prices given by closed-form formula of European options with zero correlations. (o4 =
of=0)

The difference of speed of convergence between the two methods is illustrated in Figures [3]
and [ for the relative errors for both methods compared to the benchmark. N in the label of each
graphic represents the size of the product quantizer (N X x NW/ « NY x N in the Markovian
case and NX x NY in the other case), hence the complexity of both trees are the same.

7 0.0003
4.5x10 £ 2 —v—

4x107 10Y —m— 10Y —m—
0.00025
3.5x107

3x107 0.0002
2.5x107
0.00015

2x107
1.5x107 0.0001

1x107

5x10°°
5x10°®

0 0
0.0e+00 5.0e+05 1.0e+06 1.5e+06 2.0e+06 2.5e+0 0.0e+00 5.0e+05 1.0e+06 1.5e+06 2.0e+06 2.5e+0
N N

(a) Non-Markovian — 2d (b) Markovian — 4d

Figure 3: o4 = oy = 50bp — Relative errors for both methods for 2Y, 5Y and 10Y European
options pricing (with zero correlations).
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5 0.00035
1.6x10 v v

5 10Y —m— 10Y —m—
1.4x10 0.0003

1.2x10°
0.00025

1x10°
0.0002
8x10®
0.00015
6x10°®
0.0001
4x10°

5x10°

\\\- — /\\r\

0 0
0.0e+00 5.0e+05 1.0e+06 1.5e+06 2.0e+06 2.5e+0 0.0e+00 5.0e+05 1.0e+06 1.5e+06 2.0e+06 2.5e+0
N N

(a) Non-Markovian — 2d (b) Markovian — 4d

2x10°

Figure 4: 04 = oy = 500bp — Relative errors for both methods for 2Y, 5Y and 10Y European
options pricing (with zero correlations).

For both methods, a relative error of 1bp is quickly reached, even for high values of o4 and
os. Indeed, the time needed in order to achieve a 1bp precision for building a quantization tree
with 2 dates, computing the probabilities and pricing a European option is at most 6 ms for the
non-Markovian method and at most 85ms for the Markovian one when the correlations are equal
to zero. The computation times needed for a 1bp relative error are summarised in Table [

Non-Markovian — 2d ‘ Markovian — 4d

N 50bp 5006p 50bp 5000p

| 1 ms (32000) 4 ms (32000) | 24 ms (512000) 4 ms (64000)
5Y || 4 ms (32000) 6 ms (32000) | 4 ms (64000) 85 ms (2048000)
10Y | 4 ms (32000) 3 ms (32000) | 14 ms (256000) 83 ms (2048000)

Table 4: Times in milliseconds needed for reaching a 1bp precision for Furopean options pricing
with zero correlations using both methods with, in parenthesis, the size N of the grid at each time

step. (0q=0f=0)

Remark 4.3. Of course, the pricers can be used even when we consider non-zero correlations. We
choose to show only the asymptotic behaviour of the non-Markovian method because it converges
much faster and the computations of the probabilities can be made deterministically using the
CDF of a correlated bivariate normal distribution. However, if we want to use the Markovian
approach, we need to compute the transition probabilities using a Monte Carlo simulation, which
is a drawback for the method as it increases its computation time. We consider the following
correlations
psy = —0.0272, psa = 0.1574, par = 0.6558.

Table [5] summarises the prices given by the closed-form formula.
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‘ ‘ Exact price

N

2Y || 2.173803852 2.185536786
5Y || 1.636518082 1.652226813
10Y || 1.141944391 1.103531914

50bp 500bp

Table 5: Prices given by closed-form formula of European options with correlations. (04 = 0§ =

o)

Figures [pa] and [5b| display the relative error induced by the numerical method as a function
of N. And in Table [6] we summarise the computation needed in order to reach a 1bp relative
error.

0.00016 0.0003
2Y —v— 2V —v—

10Y —m— 10Y —m—
0.00025

0.00014

0.00012
0.0002
0.0001
8x10° 0.00015
6x10°
0.0001

4x10°®

5x10°°
2x10° \—\
K

0 = 0
0.0e+00 5.0e+05 1.0e+06 1.5e+06 2.0e+06 2.5e+0 0.0e+00 5.0e+05 1.0e+06 1.5e+06 2.0e+06 2.5e+0
N N

(a) oq = oy = 50bp (b) 04 = oy = 500bp

Figure 5: Relative errors for the non-Markovian method for 2Y, 5Y and 10Y European options
pricing (with correlations).

‘ ‘ Non-Markovian — 2d

N

2Y || 71 ms (64000) 34 ms (32000)
5Y || 31 ms (32000) 31 ms (32000)
10Y || 32 ms (32000) 139 ms (128000)

50bp 500bp

Table 6: Times in milliseconds needed for reaching a 1bp relative error of FEuropean options
pricing with correlations using the non-Markovian method with, in parenthesis, the size N of the
grid at each time step. (04 =0f = 0)

It is clear that one should prefer the non-Markovian methodology to the Markovian one for
the evaluation of European options as it is a fast and accurate method for producing prices in
the 3-factor model.
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4.2 Bermudan option

Now, we compare the asymptotic behaviour of both approaches when pricing true Bermudan
PRDC options. The following figures represent the price and the rescaled difference of the prices
given by the two approaches as a function of N, which is the size of the product quantizer at each
date (in two dimensions: N = NX x N and in four dimensions N = NX x NWT S NY NWd).
The financial products we consider are yearly exercisable Bermudan options with different values
for the maturity date (2 years, 5 years and 10 years) and the domestic/foreign volatilities (50bp
and 500bp).

When using domestic and foreign volatilities close to market values, we observe numerically
that the non-Markovian method converges a lot faster than the Markovian one for a given
complexity. However both methods do not converge to the same value (see Figures @ ,
which is consistent with the results we found in Theorems and As in the European case,
N in the label of each graph represents the size of the product quantizer (N~ x N W NY x NW¢
in the Markovian case and NX x NV in the other case), hence the complexity of both trees are
the same.

2.873 3.267
2d —v— 2d —p—
4d 3.266 4d

2872

/’\ 3.265
2.871 — v .

R 3.264

2.87
3.263

2.869 3.262
2868 3.061 pFv—rv v v v

3.26

2.867
3.259
2.866
3.258

2.865 3.257

2.864 3.256
0.0e+00 2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06 1.2e+0 0.0e+00 2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06 1.2e+0

N N

(a) 2Y (b) 5Y

2d —v—
40 ——

3.46
3.459
3.458

3.457
0.0e+00 2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06 1.2e+0

N

(c) 10Y

Figure 6: 04 = oy = 50bp — Price with the two methods for 2Y, 5Y and 10Y yearly exercisable
Bermudan options (with zero correlations).

However, the relative systematic error induced by the non-Markovian methodology is negli-
gible as can be seen in Figure[7] at most 5bp for a 10-year annual Bermudan option. Hence, one
should prefer, again, the non-Markovian methodology when considering to evaluate Bermudan
options.
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Figure 7: 04 = oy = 50bp — Relative differences between the two methods for 2Y, 5Y and 10Y
yearly exercisable Bermudan options (with zero correlations).

Remark 4.4. If we consider more exercise dates for the Bermudan option, the systematic errors
increase, as shown in Figure § where we considered Bermudan options exercisable every 6 months
and the same parameters as before with zero correlations and o4 = o = 50bp. However, even-
though the error is higher for small N, when the non-Markovian pricer has converged, the relative
difference between both methods is still acceptable (lower than 5bp).
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Figure 8: 04 = oy = 50bp — Relative differences between the two methods for 2Y, 5Y and 10Y
bi-annual exercisable Bermudan options (with zero correlations).

When we consider higher values the volatilities, o4 = oy = 500bp, as expected the prices
produced by the non-Markovian methodology produce a systematic error bigger than the case
where oq = o5 = 50bp (see Figures @ and . However, the relative difference between
the two methods after convergence is reasonable: less than 0.1% for expiry 2 years, 0.4% for 5
years and around 1.1% for 10 years.
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Figure 9: 04 = oy = 500bp — Price with the two methods for 2Y, 5Y and 10Y yearly exzercisable
Bermudan options (with zero correlations).
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Figure 10: o4 = oy = 500bp — Relative differences between the two methods for 2Y, 5Y and 10Y
yearly exercisable Bermudan options (with zero correlations).

In Figure m we reference the time needed for reaching a 5bp relative precision (we compare the
price given by grids of size N to the "asymptotic", which is the price given by the same method
with a very large N) for the pricing of Bermudan options in a scenario of zero correlations.
The non-Markovian method attains better precision than a relative precision of 5bp in a few
milliseconds, at most 7 ms where the Markovian one can need 4 seconds for reaching that
precision. Hence, the 2 dimensional approximation seems again to be the better choice.
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H Non-Markovian — 2d ‘ Markovian — 4d

N

2Y || 1 ms (1000) 1 ms (1000) | 25 ms (8000) 4 ms (1000)
5Y || 3 ms (1000) 4 ms 0) | 98 ms (8000) 1903 ms (64000)
10Y || 7 ms (1000) 7 ms (1000) | 468 ms (16000) 3850 ms (64000)

50bp 500bp 50bp 500bp

Table 7: Times in milliseconds needed for reaching a 5bp relative precision for Bermudan options
pricing using both methods with zero correlation and, in parenthesis, the size N of the grid at
each time step. (0q =05 =0)

Remark 4.5. Again, the pricers can even be used when we consider non-zero correlations and
we choose to show only the asymptotic behaviour of the non-Markovian method, for the same
reasons as the European case. We consider the same correlations as in the European case

psf = —0.0272,  pgq=0.1574,  pg = 0.6558.

Figures and display the price given by the numerical method as a function of N
and Table [§| summarises the computation time needed in order to do better than a 3bp precision.
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Figure 11: o4 = oy = 50bp — Price of 2Y, 5Y and 10Y yearly evercisable Bermudan options
using the non-Markovian method (with correlations).
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H Non-Markovian — 2d

M 50bp
2Y || 122 ms (1000)
5Y || 553 ms (1000)
10Y || 1283 ms (1000)

Table 8: Times in milliseconds needed for reaching a 3bp relative precision for Bermudan yearly
exercisable options pricing with correlations using the non-Markovian method with, in parenthesis,
the size N of the grid at each time step. (04 =05 = 0)

Conclusion

We were looking for a numerical method able to produce accurate prices of Bermudan PRDC
options with a 3-factor model in a very short time because the pricing of such products arises in a
more complex framework: the computation of counterparty risk measures, also called xVA’s. We
proposed two numerical methods based on product optimal quantization with a preference for
the non-Markovian one. Indeed, even if we introduce a systematic error with our approximation,
the error is controlled, as long as the volatilities of the domestic and foreign interest rates stay
reasonable. Moreover, the numerical tests we conducted confirmed that idea: we are able to
produce prices of Bermudan options in the 3-factor model in a fast and accurate way.
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Appendices

A W/ is a Brownian motion under the domestic risk-neutral mea-
sure

Let (Wf ) a P-Brownian motion. In this section, we show that the process W7 defined by
dW! = dW{ + pssosds (A1)
is a IP-Brownian motion.

First, we define the following change of numéraire, where P is the foreign risk-neutral prob-
ability and P is the domestic risk-neutral probability,r

- ST T J T f
dP = —exp| — | rgds])exp rids |dP
So 0 0

or equivalently

= exp ( —o5(Ws — o5T) — T) dp (A.2)
~ 0'2 ~
= exp ( —ogWi3 — 25T> dP
where W is a P-Brownian motion defined by thS = thS — ogdt. More details concerning the

definition of the foreign risk-neutral probability can be found in the Chapter 9 of [Shr04].

Now, we are looking for ¢ € R such that dst = dst — qdt is a P-Brownian motion. Let
A€eR and Vt > s

B (0= an) | 7, = [ (Vo= o) s T W5 -0 7, |
_ E[eA((Wtffqt)f(Wfqu)) 705(Wt57ﬁ7£)7§(t78) | ]:s]

2 ~r o~ ~ ~
_ e—Aq(t—s)—%S(t—s>]E[ethf—w!)—as(th—Wf) | ;S]

(A.3)
o Mt9) T (t-5) o2 (t-5)-Aosps s (t—s)+ L (t-9)
_ o3 (t-5) o Aalt—s)~Aospsy(t—s)
_ ()
the last equality is ensured if and only if
0=—Aq(t —s) = Aogpgf(t —s) < q=—0ospsy- (A4)

Hence, W/ defined by N
dWSf = dWSf + pSfO'SdS

is a IP-Brownian motion.
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B FX Derivatives - European Call
The payoff at maturity ¢ of a European Call on F'X rate is given by
(5t — K)+

with K the strike and S; the F'X rate at time t.
Our aim will be to evaluate Vj

Vo=E [e—SET?dS(St - K)+].

Proposition B.1. If we consider a 3-factor model on Foreign Ezxchange and Zero-coupon as

defined in (1.1), Vo is given bgﬂ

f(0,0) SoP7(0,t)
log (22 ( + (0, ) log — u(0,t)
Vo = SoPY(0,t) ( <Kpd(°’“> ) — KPY0,t) N ( (Kpd(o’t)> )

a(0,1) o(0,)
with
1(0,1) = L %(Ug(s) T 02(s,1) + 02(s,))ds
+ fo (psros(s)of(s,t) = psacs(s)oa(s, t)ds — praoy(s,t)oa(s,t))ds
and

o2(0,t) = 2u(0,1).
Proof. In this part, we want to evaluate
Vo= E [e—SST?dS(St _ K)+].

If we consider a 3-factor model on Foreign Exchange and Zero-coupon as defined in (1.1)), we
have ) .
Vo= B |e bt (s, - K), |

- F 7(e—Sér5dds S, — e—Sérgds K)+:|

=1 78_837"?(18 Sy ]l{SzZK}] —KE [e—Sérgds]l{St>K}].

We focus on the first term

KE[e 55 |. (B.1)
We do the following change of numéraire:
Q _Z
dP  Z,

with 1
Zgzexp(ﬁ—§<l~/,l7>t>,

~

Zy=1

2We ignore the settlements details in the present paper in order to alleviate the notations but the formula can
easily be extended to take them into account.
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where Y; = Sé oa(s,t)dWe and < Y,V >= Sé o2(s,t)ds.
Hence, we can define the following Brownian Motions W/d, W/ , WS under Q:
AW =dWe—d<Y,We>, = dW?—cy(s,t)ds,
W] = dWf —d <YV, W/ >, = dW] — praca(s, t)ds,
AWS =dW5 —d <Y, W5 >, = dW?5 — pgao4(s,t)ds

and S; becomes

— Spexp U ( "§2(S)>ds+ L th(S)de)

_ Sopf ) exp <f: )+ 03(s,8) — 03(, 1)) — psyos(s)os(s,t) ds)
X exp (L os(s)dW? + f or(s,t)dW — Lt ad(s,t)dW§l>
= S;):Zfoott exp< )+ af(s t) 4 o3(s, t)) ds )

x eXp( Jo (psfos(s)ap(s,t) — psaos(s)oa(s,t) — Pfde(Sat)Ud(Sat))dS)

t ¢ t
X exp (j os(s dWS J or(s,t)dWs —J Jd(S,t)de>
0

0 0
pf t ~ ¢ ~ ¢ =
_ PO (o, + f os(s)dWS + j os(s,)dW] - f oa(s, )W ).
Pd(0,1) 0 0

0

Hence, as exp ( — Sé r?ds) = P4(0,t) x Zt, (B.1)) becomes

KE [ S réds n{St>K}] =KPd(O,t)IE@[]l{St>K}]
— KPY0,1)Q(S; > K)

KP(0,t)
SOPf(O,t) ) + ,u(O, t)
a(0,1)

1
- KPd(O,t)Q<Z > Og(

SoP7(0,t)
Kopd(oﬂf) ) - N(Oa t)
a(0,1)

1(0,t)
log ( S5 ) — (0, )
0.0) ’
:KPd(O,t)./\/< ( (0 2) )

1
- KPd(O,t)Q<Z < Og(
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where Z ~ N(0,1) with

w(0,t) = f %(O’%(S) + ch(s,t) + ag(s,t))ds

+ | (psros(s)as(s,t) — psaos(s)oa(s,t)ds — praos(s,t)oa(s,t))ds,
0
t t t
02(0,t) = Var <J os(s)dW? +J or(s,t)dWs j O'd(S,t)dWSd>
0 0 0
t N t N t N
= Var <J Us(S)dWSS> + Var <J af(s,t)dWSf> + Var (J ad(s,t)de>
0 0 0
t ot ,\, t ot N
+2Cov <f Us(s)dWsS,f Uf(s,t)dst> —2Cov (J Us(S)dWSS,J ad(s,t)de>
0 0 0 0
t t
—2Cov (J af(s,t)dWSf,f ad(sjt)dWsd>
0 0

= ft (03(s) + a?(s,t) +05(s,t))ds
+ 2J0t (psros(s)of(s,t) — psaos(s)oa(s,t) — praop(s,t)oa(s,t))ds.
Now, we deal with the term
B o0 8t gopy | = PO BR [Si 15,21 ] (B.2)

using directly the formula of the first partial moment of a log-normal random variable. Let
X ~ Log- N (p,0?), then

2 _
E[X Tjxss ] = 0% N (’HU log(x))

o

Finally, as S; = SoPT00) ¥ with X 2 Log- N'(—u(0,t),02(0,t)), we get

Pa(0,t)
X1 . ]
{x>grgonl
K P20,
—u(0,) +0*(0,1) — log ((A5A00 )
o(0,t)

B2) = SoP’ (0,1) E?

a2(0,t)
2

= SoP’(0,t) e HOOF N (

f(0,t)
log (528704 1 1u(0, )
— SoPT(0,6) N < (s )

o(0,t)

noticing that u(0,t) = 02(20,15).

Finally, we get
Vo=E [e* fordds(g, — K)+]
t t
= E [e_Sngds St ]l{StZK}] — KE [e—gorgds l{Sf,?K}]

7(0,t) S0P/ (0,t)
10g SK();)d (0 + /‘l'(()? t) lOg KPI0 - M(O, t)
= 5P 0.0 N ( ( 0((6) 2) ) - KPOON < ( ;(g) 2) )
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Special case of constant volatility: og(s) = g, 04(s,t) = 04 x (t —5) 0¢(s,t) = 0f x (t = 5)

w(0,t) = Jo %(O’%(S) + a]%(s,t) +05(s,t))ds

+ f (psros(s)ap(s,t) — psaos(s)aa(s,t) — praos(s,t)oa(s,t))ds

t
+ | psposor(t —s) — psacsoa(t — s) — pracsoa(t — s)*ds

0
1 2, 2t3+ o t3 N t2 t2 3
=—|o 04— + 05— 00 f— — PSATSOd— — PO f0q—
5\ 78 I3 d3 PSfOSOf S = PSATSTdy — PfdOf0d 5
t
o?(0,t) = J (Ugv(s) + J?(S,t) + aﬁ(s,t))ds
0
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