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Abstract 1 

The characterization of cancer tissues by matrix-assisted laser desorption ionization-2 

mass spectrometry images (MALDI-MSI) is of great interest because of the power of 3 

MALDI-MS to understand the composition of biological samples and the imaging side 4 

that allows for setting spatial boundaries among tissues of different nature based on 5 

their compositional differences. 6 

In tissue-based cancer research, information on the spatial location of necrotic/tumoral 7 

cell populations can be approximately known from grayscale images of the scanned 8 

tissue slices. This study proposes as a major novelty the introduction of this 9 

physiologically-based information to help in the performance of unmixing methods, 10 

oriented to extract the MS signatures and distribution maps of the different tissues 11 

present in biological samples. Specifically, the information gathered from grayscale 12 

images will be used as a local rank constraint in Multivariate Curve Resolution-13 

Alternating Least Squares (MCR-ALS) for the analysis of MALDI-MSI of cancer 14 

tissues. The use of this constraint, setting absence of certain kind of tissues only in clear 15 

zones of the image, will help to improve the performance of MCR-ALS and to provide 16 

a more reliable definition of the chemical MS fingerprint and location of the tissues of 17 

interest.  18 

The general strategy to address the analysis of MALDI-MSI of cancer tissues will 19 

involve the combination of MCR-ALS and K-means clustering. The resolution method 20 

will provide the distribution maps and MS signatures of each tissue in the sample and 21 

the resolved distribution maps for each biological component will be submitted as initial 22 

information to K-means segmentation to obtain further information on the boundaries of 23 

the different tissues studied. Such an approach is more powerful than the direct use of 24 

K-means on the raw MSI spectra, since resolved non-biological signal contributions are 25 
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not used, and the weight given to the different biological components in the 1 

segmentation process can be modulated by suitable preprocessing methods.  2 

 3 

Keywords 4 

 MCR-ALS, K-means, local rank constraints, MALDI-MSI, grayscale images. 5 

  6 
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1. Introduction 1 

Mass Spectrometry Imaging (MSI) is a powerful tool extensively applied in the field of 2 

biomedical research that provides exceptional advantages to analyze tissue specimens in 3 

detail. MSI incorporate information of a broad variety of analytes, ranging from small 4 

(e.g., drugs and their metabolites) to large molecules (e.g. proteins, peptides) and 5 

provide visualization of their spatial distribution. Mass spectrometry capabilities 6 

combined with microscopic information assists in the comprehension of molecular 7 

processes in specific cell types within a tissue.  8 

Among MSI techniques, Matrix-Assisted Laser Desorption/Ionization (MALDI)-MSI is 9 

the most commonly employed in the field of tissue-based research  [1–4]. The method 10 

MALDI-MSI, as developed by Caprioli et al. [5], permits the analysis of hundreds to 11 

thousands of molecules directly from tissue sections after matrix deposition and 12 

introduction of the sample into the ionization chamber. For each pixel, a complete mass 13 

spectrum is acquired. Since this spectrum may contain hundreds of distinct 14 

biomolecular ions, the information content of a MALDI-MSI data set is extremely 15 

complex. Therefore, the application of chemometric tools is necessary to successfully 16 

interpret MALDI images [6].  17 

Two of the most important aspects to be investigated on sections of biological material 18 

are the identity and distribution of the biological components and the presence of 19 

sample regions with similar properties, often defined by tissue boundaries. The ideal 20 

approaches to achieve these two objectives are factor analysis and segmentation 21 

analysis, respectively. In the framework of MSI data, the most well-known factor 22 

analysis method is the principal component analysis (PCA) [7–10]. Other methods have 23 

also been applied, such as probabilistic latent semantic analysis [8,9], independent 24 

component analysis (ICA) [8,10] and non-negative matrix factorization (NMF) [10]. 25 
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Recently, MCR-ALS has been proven to adapt particularly well to MALDI image 1 

resolution due to the ability to incorporate dedicated image constraints and to the 2 

chemical meaning of the resolved distribution maps and spectral information associated 3 

with the image constituents [10–12].  4 

In the case of segmentation methods, unsupervised algorithms are commonly applied 5 

when insufficient or no prior knowledge is available, such as often occurs in tissue-6 

based cancer research. Among them, K-means is widely used for large image data sets 7 

because it is computationally lighter than hierarchical approaches [13,14].  8 

Recently, combination of MCR (factor analysis method) and K-means clustering 9 

(segmentation method), has been proposed as general strategy for the characterization of 10 

biological tissues in infrared and Raman images [15–17]. Piqueras et al. demonstrated 11 

that the use of MCR score as starting information in K-means  allows a compound-wise 12 

selection and preprocessing of the input information to be submitted to the segmentation 13 

algorithm and, for this particular scenario, presents advantages in the interpretability of 14 

the class centroids fo[15]. MCR scores are chemically meaningful because they are 15 

concentrations of the pixel constituents in the images. This could help to explain that the 16 

meaning of centroids coming from MCR scores are easy to interpret. Moreover, the 17 

application of this strategy in the simultaneous analysis of several images coming from 18 

different samples provided a better differentiation among tissue subparts or among 19 

tissues in different conditions [16]. Therefore, the application of this proposed 20 

methodology improved the efficiency of the information obtained when K-means 21 

method was applied directly on the raw image spectra.  22 

Nevertheless, resolution of hyperspectral images under constraints, like non-negativity, 23 

does not always guarantee unique solutions because of the rotation ambiguity inherent 24 

to the bilinear model decompositions of MCR [18,19]. The introduction of selectivity 25 
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and local rank constraints, i.e., information on the absence of one or more image 1 

constituents in certain pixels, are among the most powerful constraints to decrease the 2 

rotational ambiguity in resolution results. Some examples of introduction of these 3 

constraints to hyperspectral images have already been reported [20,21]. However, the 4 

presented work proposes for the first time the introduction of local rank constraints 5 

based on the information provided by biological grayscale images (scanned images of 6 

the tissues) in the MCR resolution. Thus, the spatial information from biological 7 

grayscale images will be used to force certain components to be absent in some pixels. 8 

To do so, grayscale images will be registered to their MALDI-MSI data acquisition. 9 

This multimodal registration technique will be used for anatomical labeling of the data 10 

and will be later coded under the form of local rank constraints.   11 

Application of the combination of MCR followed by K-means for the simultaneous 12 

analysis of MALDI-MSI data and the benefits from setting this local rank constraint to 13 

obtain best-defined images and less ambiguous profiles will be shown in a real example 14 

corresponding to fifteen tissues of colorectal cancer images. 15 

2. Experimental 

Human colon adenocarcinoma cell lines sensitive HCT116 (S) and resistant HCT116-16 

SN50 (R) to Irinotecan (chemotherapy drug) were used as a model of sensitive and 17 

resistant experimental tumors. Clonogenic tumor xenografts were generated by a 18 

subcutaneous injection of both unique cell lines in athymic mice whereas a model of 19 

heterogeneity was created injecting various mixtures of R and S clones. The tumors 20 

were then collected, sliced, and analyzed utilizing MALDI-MSI. The complete 21 

methodology is described in more detail in the following subsections.  22 

2.1 Materials and Methods 23 
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2.1.1 Chemicals and cell lines 1 

Acetonitrile (ACN) and trifluoroacetic acid (TFA) were purchased from ThermoFisher 2 

Scientific (France). α-cyano-4-hydroxycinnamic acid was purchased from LaserBio 3 

Labs (France). 4 

HCT116 (S) cell line was purchased from the American Type Culture Collection 5 

(ATCC, Manassas, Virginia). HCT116-SN50 (R) cell line was obtained from a clone of 6 

HCT116 as previously described in [22,23]. Cells were grown in RPMI1640 with L-7 

glutamin supplemented with 10% fetal calf serum at 37°C under an atmosphere with 5% 8 

CO2. 9 

2.1.2 Tumor xenografts in nude mice 10 

In vivo experiments were conducted by accredited researchers (Dr Adeline Ayrolles-11 

Torro n°I-34UnivMontp-F1-12, Dr Celine Gongora n° 34-142) in compliance with the 12 

French regulation and ethical guidelines for experimental animal studies. Six weeks old 13 

female athymic mice were purchased from Harlan laboratories and were maintained in a 14 

specific pathogen-free facility in an accredited establishment (Agreement n° 34-172-15 

27). Mice were xenografted subcutaneously in both flanks with 3.10
6
 HCT116 or 16 

HCT116-SN50 alone or with mixture of these cells lines.  Cells of the two lines of 17 

interest were mixed in 3 ratios 90% HCT116-10% HCT116-SN50; 50% HCT116-50% 18 

HCT116-SN50; 10%HCT116-90%HCT116-SN50. When tumors reached 19 

approximately 0.5cm
3
 in diameter, mice were euthanized and tumors were excised and 20 

frozen in liquid nitrogen. 21 

2.1.3 MALDI-MSI analysis 22 

Sample preparation 23 
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Frozen xenograft tumors were cut at 10µm thick slices with a HM 550 OVPD cryostat 1 

(Fisher Scientific, Illkirch, France) operating at -20°C. Consecutive sections were 2 

mounted on ITO coated conductive glass slides for IMS and on Superfrost Plus slides 3 

(Microm) for immunochemistry experiments. Then, ITO slides were allowed to thaw 4 

and were desiccated in a vacuum desiccator.  The MALDI matrix application was as 5 

follows: a 5 mg/ml solution of α-cyano-4-hydroxycinnamic acid dissolved in 50% ACN 6 

and 0.1% TFA was sprayed on each tissue section (SunChrom SunCollect Maldi 7 

spotter) with a distance in x of 0.5mm and in y of 2mm, Z offset at 1 and speed low7. 8 

Twenty-two layers were applied at 10, 15, 20, 25 µl/min with a pause of 15 seconds 9 

between each layer. 10 

Data acquisition 11 

Scanned images 12 

The scanned images were acquired at 2400 dpi resolution with an Epson Perfection 13 

4990 Photo Scanner (Seiko Epson, Nagano, Japan) into a tiff format as RGB images 14 

stored in a x×y×3 matrix with data type uint8 (containing all whole numbers from 0 to 15 

255). These scanned images were prior to MALDI-MSI acquisition. 16 

MALDI images 17 

All imaging mass spectrometry experiments were performed with a 4800 Plus MALDI 18 

TOF/TOF
TM

 Analyzer (AB Sciex) and the image acquisition was achieved using the 19 

4800-imaging tool software (MSI imaging). Imaging of tumor sections was carried out 20 

in a reflector positive mode, in the mass range of m/z 250-2000, with a resolution of 21 

50000 points of m/z and 100µm in a 100µm x 1000 µm raster. The laser intensity was 22 

set at 80% of full laser intensity as selected within the 4000 Series Explorer
TM

. At each 23 

position of the tissue section, an averaged mass spectrum is generated from 1000 24 



9 
 

consecutive laser shots. The mass spectrum measured even for each pixel could not 1 

have exactly the same size (number of measured m/z values) because only the non-zero 2 

values were stored to reduce the size of the file acquired. The number of measured m/z 3 

for each pixel could range between 50000 and 30000. The irregular MALDI images 4 

(x×y×mz) were stored in Analyze7.5 format.  5 

2.1.4 Data description 6 

Different tumor samples and replicates of sections of the same tumor were analyzed in 7 

order to obtain accurate results and identify differences of experimental origin. A total 8 

of 15 images was analyzed: 3 slices of 100 % R cell line from the same tumor and 9 

another slice from a different tumor (mice); 3 slices of 100 % S cell line from the same 10 

tumor and another slice from a different tumor (mice); 2 slices of 50 % S and 50 % R, 3 11 

slices of 90 % S and 2 slices of 90 % (R) of different tumors (mice). Description and 12 

image labelling is summarized in table 1.  13 

For each analysis, one scanned image and one MALDI image were provided. The size 14 

(x×y number of pixels) of both scanned and MALDI images is also described in table 1 15 

 

3. Data analysis 

3.1 Data pretreatment  16 

In MALDI-MSI, the data generated can be arranged in a data cube in which the x- and 17 

y- axis correspond to the pixel coordinates and the z-axis corresponds to the m/z values 18 

registered in each pixel MS. Data preprocessing is needed to improve the signal quality 19 

and to compress the raw data acquired into a list of useful peaks associated with 20 
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relevant m/z values for further analysis. In this work, almost all the data preprocessing 1 

was performed using the MALDIquant R package [24].   2 

First, the raw data was imported into the R environment and, for each pixel, the 3 

spectrum was smoothed using a moving average filter and the baseline was corrected 4 

using the Statistics-sensitive Non-linear Iterative Peak-clipping algorithm (SNIP) [25]. 5 

Afterwards, the Median Absolute Deviation (MAD) was adopted as a noise estimation 6 

method, and all masses with signals above a signal-to-noise (S/N) ratio threshold of 7 

2.5MAD, were identified as relevant peaks. This led to the identification of a list of 8 

masses and associated intensities for each pixel and helped to reduce the size of the 9 

data. Peaks of different m/z spectra of the same image or different images are associated 10 

with the same nominal m/z value by using a tolerance of 0.002 Da. Finally, the dataset 11 

including all  15 images was further reduced by keeping only the peaks present in at 12 

least 30 % of the spectra and, hence, avoiding artifacts and noise contributions The final 13 

dataset contained 758 different peaks between 250 and 1200 Da. For each pixel, the 14 

number of detected and preserved peaks ranged between 132 and 667 with a median 15 

value of 477. The most frequent peak (798.50 Da) was found in 98.9 % of the analyzed 16 

pixels, and 60.7 % of the peaks were present in at least half of the pixels. 17 

For further analysis, this data set was imported to Matlab R2013b environment using a 18 

homemade script. A matrix D (n,m) of dimension n equal to (x × y) pixels by m m/z 19 

values was generated per each image. A multiset structure containing all 15 images was 20 

built, appending the 15 blocks of individual image pixel mass spectra one on top of each 21 

other. 22 

 23 

3.2 Image registration 24 
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Spatially-related properties identified in the grayscale images from tissue slices could be 1 

used to label the related parts in the MALDI images. Therefore, grayscale images were 2 

registered to their related MALDI-MSI by using the MATLAB Image Processing 3 

Toolbox 8.3 (R2013b) “imregister” function. This intensity-based automatic 4 

registration uses an optimization algorithm to find the best transformation to register 5 

two input images [26]. We used the “rigid” transformation (only involving translation 6 

and rotation transforms) to register all grayscale images to MSI.  7 

Before applying the registration, the pixels in the grayscale images were binned by a 8 

factor of nine in x and y to have the same pixel size as the MALDI images. RGB 9 

scanned images were converted to grayscale images with gray levels from 0 to 255 by 10 

rbg2gray MATLAB function. This function converts RGB images to grayscale by 11 

eliminating the hue and saturation information while retaining the luminance. MALDI 12 

image cubes (x × y × z) were used to obtain 2D global intensity maps by adding all the 13 

mass intensity values for each image pixel. Finally, the MALDI 2D global intensity 14 

maps were converted to an  image containing values in the range 0 (black) to 1.0 (white) 15 

by mat2gray MATLAB function. Afterwards, we rescaled this intensity image 16 

multiplying by 255 to be matched with the analogous grayscale images coming from the 17 

scanner of tissue slices. 18 

As an example, figure 1a, b and c show an original scanned grayscale image of 100R1a, 19 

its related MALDI 2D global intensity map and its corresponding registered scanned 20 

image, once binned to the MALDI pixel size, respectively. The scanned image in figure 21 

1a reveals three different pixel types according to the gray intensity. Black color pixels 22 

correspond to MALDI matrix, the dark gray pixels (external region) are attributed to the 23 

region in which tumor cells have grown and light gray pixels (central region) 24 

correspond to necrotic tissue.  25 
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 1 

FIGURE 1 2 

This difference among gray color intensity in the physiological grayscale image was 3 

used as a criterion for tissue recognition. Histograms were computed from all the pixels 4 

in the physiological grayscale images and the peaks and valleys in the histogram were 5 

used to locate the boundaries among clusters related to MALDI matrix, tumor parts and 6 

necrotic parts.  The tissue assignment in the physiological images was then used to label 7 

the related MALDI pixels. Figure 1d shows the histogram corresponding to the 8 

registered grayscale image in Figure 1c. The black rectangle includes all the pixels with 9 

information of the biological material that was considered for further analysis. The 10 

region framed in blue represents the grey intensity range in which tumor parts are 11 

clearly located and the red framed region includes the grayscale values associated with 12 

necrotic pixels.  Pixels with grayscale intensities between both regions were not 13 

assigned either to tumor or to necrotic parts to avoid incorrect labeling. Pixels outside 14 

the black rectangle are related to background.  This background would correspond to 15 

MALDI matrix pixels, which give no information; therefore, they were not used for 16 

further analysis. It is worth to mention that visually inspection of selected pixels was 17 

made to ensure the correct labeling. 18 

3.3 Multivariate Curve Resolution—Alternating Least Squares (MCR-ALS)  19 

MCR-ALS decomposes the matrix of MS pixel spectra D into a bilinear model, where 20 

all MS spectra in the image can be described by the sum of the MS fingerprints of the 21 

different pure image constituents weighted according to their relative concentrations in 22 

the different pixels. This model is expressed by the following equation in matrix form:  23 

D(n,m)=C(n,nc)S
T
(nc,m)+E(n,m)             Equation 1 24 
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where D (n,m) is the matrix of MS pixel spectra obtained after the pretreatment 1 

described  in section 3.1, C(n,nc) is the matrix of the relative amounts or concentration 2 

of the nc components in the n pixels and S
T
 is the pure MS spectra matrix associated 3 

with these nc components. E is the matrix associated with noise or experimental error 4 

(variance not explained by the nc resolved components). The indexes n and m refer to 5 

the number of pixels analyzed from the image and the number of m/z channels in each 6 

MS spectrum, respectively. 7 

With the aim to recover the bilinear model expressed in Equation 1, an iterative 8 

alternating least squares optimization under constraints is used to obtain both C and S
T
 9 

matrices with a minimum error in the reproduction of the original data set (D). In order 10 

to initialize the iterative procedure, a previous determination of the number of pure 11 

signal contributions in the raw data set and the generation of C or S
T
 estimates is 12 

required.  13 

During the alternating least-squares optimization, constraints are used to introduce 14 

information useful to provide chemically meaningful  C and S
T
 profiles and to decrease 15 

the ambiguity in the final solutions obtained [19,27]. In image resolution, non-16 

negativity in the concentration and in the spectral direction are the most commonly used 17 

constraints. Normalization of pure spectra in S
T
 is also a common constraint used to 18 

avoid scaling fluctuations in the profiles during the optimization. Moreover, the use of 19 

local rank constraints can be extremely helpful to improve the reliability of MCR-ALS 20 

solutions. Local rank information indicates the absence of one or more constituents in 21 

the different pixels. In tissue-based cancer research, local rank information about the 22 

presence/absence of different tissues (tumor or necrotic) in samples can be obtained 23 

from the grayscale images, as mentioned in section 3.2. In these cases, the use of this 24 

physiologically-based local rank information can help to decrease the inherent MCR 25 
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ambiguity and, consequently, to define better the location and chemical structure of 1 

tissue type. The local rank information in terms of compound identification is translated 2 

into a ‘mask’ matrix. This matrix, sized as C (n pixels × nc of components), is used 3 

to encode the local rank constraints, i.e., the information on the missing components in 4 

the different pixels, setting them to have a concentration value equal to zero or smaller 5 

than a very low predefined value [19,27]. 6 

A great advantage of MCR-ALS is the possibility to analyze simultaneously several 7 

images in a single multiset structure to provide more reliable results, less affected by 8 

ambiguity phenomena [19,28,29]. In a biomedical context, this means that resolved 9 

spectral contributions will define much better general trends of the population of 10 

samples analyzed together than if images were analyzed individually. In this study, the 11 

multiset structure was obtained by appending the pixel MS blocks of the different 12 

MALDI images one on top of each other to form a column-wise augmented matrix, 13 

Daug. The decomposition Daug = CaugS
T
 + E provides a single matrix S

T
 of pure spectra, 14 

valid for all the images in the multiset, and a matrix Caug, formed by as many 15 

submatrices Ci as images in the multiset. The profiles in each of these Ci submatrices 16 

can be refolded conveniently to recover the related distribution maps of every 17 

constituent in each image. A multiset structure also obeys the bilinear model seen in 18 

Equation 1. 19 

The percentage of explained variance is used to indicate the fit quality of the MCR-ALS 20 

results. This parameter is calculated according to the expression: 21 

∑

∑

ij

2
ij

ij

*2
ij

2

d

d

×100=(%)r

                                                                            Equation 2 22 
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 1 

where dij* are the values of the data set reproduced by the bilinear model and dij the 2 

original values in the raw data set D. The number of components included in the MCR-3 

ALS model should be compromise between this maximum variance explained by the 4 

model, model simplicity, and model interpretability 5 

More details about the MCR-ALS method are given in [28,30,31] and a GUI to use the 6 

algorithm is freely available at http://mcrals.info. 7 

 8 

3.4 K-means (segmentation analysis) 9 

K-means clustering is an algorithm which works by partitioning the observations of a 10 

dataset into k clusters [32]. In image analysis, the pixels in the dataset are partitioned 11 

into groups according to their similarity, expressed by a similar spectral shape, 12 

composition, chemical and/or biological properties.  13 

In this study, a single K-means analysis was performed on the 15 images 14 

simultaneously. This multiset segmentation analysis allowed finding clusters 15 

consistently present in all images and, thus, related to relevant biological structures of 16 

the samples analyzed. MCR scores coming from the augmented Caug matrix obtained by 17 

MCR-ALS have been used as the pixel input information for K-means analysis because 18 

they are excellent compressed and noise-filtered representations of the pixel 19 

composition. Besides, each column in Caug has constituent-specific information and this 20 

allows performing K-means on some or all the signal contributions resolved by MCR-21 

ALS. When using Caug for segmentation, the number of sought clusters should be equal 22 

or slightly higher than the number of MCR contributions used in the K-means analysis. 23 

http://mcrals.info/
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The K-means algorithm basically consists of three steps: 1. Initialization, where few 1 

pixels are randomly selected and used as cluster centroids. 2. Assignment of every pixel 2 

of the data set to its nearest centroid, and 3. Updating of the centroid position based on 3 

the groups formed. Steps 2 and 3 are iteratively performed until centroids do not shift 4 

any longer and clusters are stable or when a present number of iterations is exceeded. In 5 

this work, 100 replicates with random initial centroid positions were performed to 6 

achieve more reliable results and Euclidean distance was used as a similarity criterion 7 

for pixel assignment to clusters. Finally, suitable segmentation maps were obtained 8 

refolding the part of the segmentation vector that relates to each image. Segmentation 9 

maps can be used to be compared with physiological images. 10 

Moreover, the use of MCR scores provides chemically meaningful spectra of the 11 

components and, hence, allows interpreting easily the centroid properties in each 12 

segmentation class. This is an advantage in comparison with the centroids coming from 13 

PCA scores, which are difficult to interpret because these composition-related values 14 

are abstract and lack chemical sense. 15 

Figure 2 presents a schematic illustration of the combination of MCR-ALS with K-16 

means for the simultaneous analysis of MALDI images previously described. First, 17 

multiset MCR-ALS is applied to the images of biological tissues to provide basic 18 

spectral signatures and distribution maps of the biological contributions. Finally, 19 

multiset K-means analysis is applied to obtain consistent tissue clusters (relevant 20 

biological parts) common to all samples. MCR scores from biological constituents in 21 

MSI images were used as input pixel information for segmentation analysis. 22 

Autoscaling was applied to each concentration profile in each submatrix Ci of the Caug 23 

matrix, to balance the importance of all biological constituents present in each image in 24 
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the segmentation analysis. This strategy might be considered as generally applicable for 1 

mass spectrometry imaging data analysis. 2 

 3 

FIGURE 2 4 

4. Results and discussion 5 

This section will include the results obtained from both image resolution and 6 

segmentation approaches. Firstly, the information gathered from the comparison of the 7 

analysis of the two types of tumor by MCR-ALS will be showed. Secondly, advantages 8 

of the implementation of the new constraint in the simultaneous MCR-ALS analysis of 9 

all 15 images will be presented. Finally, the results achieved from the multiset image 10 

segmentation and a final interpretation of the chemical results will be offered. 4.1. 11 

Resolution analysis (MCR-ALS)  12 

The first MCR-ALS analysis was oriented to identify significant contributions with a 13 

specific “mass signature” for each tumor type (R or S). To do so, two multisets as 14 

described in section 3.3. were built, each containing images related to a particular kind 15 

of tumor and were analyzed separately. The first multiset was formed by the four 16 

images corresponding to the tumors of 100% R, DaugR= [D100R1a; D100R1b; D100R1c; 17 

D100R2], and the second multiset by the four images corresponding to the tumors of 18 

100% S, DS= [ D100S3a; D100S3b; D100S3c; D100S4]. 19 

MCR-ALS was applied separately to each multiset structure (DR and DS) following the 20 

steps explained in section 3.3 and the following bilinear models were obtained: 21 

DaugR = CaugR*S
T

R                                                                                          Equation 2 22 

DaugS = CaugS*S
T

S                                                                                                Equation 3 23 
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 and using non-negativity constraints in concentration and spectra profiles and spectra 1 

normalization in matrix S
T

R or S (using the Euclidean norm).  2 

Table 2 lists the number of resolved components and the explained variance obtained 3 

from the MCR-ALS analyses of both multisets. Resolution of five contributions was 4 

necessary in both cases. The inclusion of a different number of contributions gave 5 

worse data fits or unreliable spectra or distribution maps (see Figure S1 in 6 

Supplementary information for resolved spectra and distribution maps for these two 7 

MCR-ALS analyses). Four contributions were related to biological regions of the 8 

tissues; two associated with tumoral parts and two corresponding to necrotic parts, 9 

according to the morphology seen in the related grayscale images. The need of two 10 

biological contributions to describe the tumoral part of the sample and two additional 11 

ones for the description of the necrotic regions of the samples is not surprising if we 12 

take into consideration the heterogeneity associated with this kind of tissues. Moreover, 13 

an additional non-biological contribution was needed to improve the resolution results 14 

in both multiset structures. This extra contribution could be attributed to instrumental 15 

background or could be originated to compensate for variations linked to slight 16 

differences of sample preparation. Actually, the high noise of MSmass spectra and 17 

possible experimental differences in the tissue preparation also justify that the explained 18 

variance by the models does not exceed 90%. 19 

 20 

TABLE 2 21 

 22 

A correlation coefficient matrix generated by comparing by pairs the resolved spectra of 23 

the components of both multisets (S
T

R and S
T

S) by Pearson correlation shows a high 24 
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correlation between analogous biological components of the two tumor cell lines R and 1 

S (see correlation matrix shown below). 2 

 3 

   

 
 
   

 4 

Where Rc1/Rc2 and Sc1/Sc2 were the spectra corresponding to tumoral contribution 1/2 5 

of DR and DS, respectively. Rn1/Rn2 and Sn1/Sn2 were the spectra corresponding to 6 

necrotic contribution 1/2 of DR and DS, respectively. Finally, Rb and Sb were the 7 

spectra corresponding to background contribution of DR and DS, respectively.  8 

No significant differences between the composition of tumors R and S were found. 9 

Thus, resolved mass spectral signatures of the four biological contributions related to 10 

tumor and necrotic parts were rather similar in both R and S tumoral tissues. Indeed, in 11 

tumoral contributions, Rc and Sc, correlation coefficient values were equal or higher 12 

than 0.9, whereas the lowest correlation coefficient between necrotic contributions, Rn 13 

and Sn, was 0.8.  Only the non-biological contributions, Rb and Sb, presented expected 14 

differences in the spectral signatures, due to the noise random nature. Limits in the 15 

selectivity of the MS detection system and the fact that both R and S clones are closely 16 

related, since they derived from the same original HCT116 cell line, could be the 17 

reasons to explain why a specific distinction and identification of “mass signatures” for 18 

each tumor type was not possible. Owing to this limitation, the interpretation of the 19 

differences among the R and S tumor compounds obtained was no longer the main goal 20 

Rc1   Rc2   Rn1  Rn2   Rb

Sc1    0,9 0,0    0,4    0,1    0,0

Sc2    0,0    1,0 0,1    0,1   -0,1

Sn1    0,6    0,0    0,8 0,4    0,4

Sn2    0,1    0,2    0,7    0,9 -0,1

Sb      0,5    0,0    0,6    0,4    0,2



20 
 

of the work. However, some general interpretation, valid for R and S tumors, can still be 1 

done. Therefore, salient masses in the tumor signatures to masses around 750-800 could 2 

be assigned to glycosyldiradylglycerols, glycerophosphocholines or 3 

glycerophosphoglycerols and around 520-525 with oxidized glycerophospholipids or 4 

fatty acyl glycosides. Relevant masses in the necrotic signatures to masses around 400-5 

430 could be assigned to sterols/fatty esters.  6 

The spectral similarity between both tumors R and S suggested the possibility of 7 

performing a simultaneous treatment of all 15 images corresponding to homogeneous 8 

(100% R or S) and heterogenous (different percentages of R and S) tumor tissues in 9 

order to obtain more reliable mass spectral signatures and distribution maps to integrally 10 

describe the tumor and necrotic contributions common to both kind of R and S tumor 11 

samples [19,28,29].   Therefore, MCR-ALS analysis of the multiset formed by the 15 12 

images was performed. Figures 3a and b show the MCR-ALS resolved distribution 13 

maps and pure spectra of the analyzed multiset. Results were clearly showed through 14 

the example of two images (100S3a and 100S3b) with a higher magnification and the 15 

full set of magnified distribution maps were provided as supplementary information (see 16 

Figure S2). Related scanned grayscale images of all samples analyzed with MSI are also 17 

shown (left plots in figure 3a). As mentioned in section 3.2, these physiological 18 

grayscale pictures show the region in which tumoral cell populations have grown (dark 19 

gray color) and the region where necrosis has been produced (light gray color). 20 

Therefore, these grayscale images help to associate each resolved MCR contribution 21 

with a particular kind of tissue types (tumoral or necrotic). A  22 

 23 

FIGURE 3 24 

https://www-sciencedirect-com.sire.ub.edu/science/article/pii/S0003267008007034#fig3


21 
 

 1 

Now, in contrast to the analysis of either DR or DS multiset structures, resolution of six 2 

components is proposed. As in the resolution of DR and DS multisets, the four 3 

components associated with relevant biological parts (tumor and necrotic) were 4 

observed. Looking at their related grayscale images, blue (component 1) and red 5 

(component 3) could be approximately associated with tumor contributions and cyan 6 

(component 4) and orange (component 6) with necrotic contributions. Moreover, two 7 

non-biological contributions (green and violet) were again required to perform the 8 

analysis and to cope with spectral differences due to instrumental and experimental 9 

variability. As expected, two non-biological spectral contributions were needed instead 10 

of one, in agreement with the lack of correlation between the Rb and Sb contribution 11 

resolved in the DR and DS multisets.  12 

After the preliminary simultaneous MCR-ALS analysis of all 15 images, visual 13 

inspection of the distribution maps showed that the contributions 1 (blue) and 6 (orange) 14 

corresponding to a tumor contribution and a necrotic contribution, respectively, were 15 

blending with each other throughout the resolution. In some images corresponding to 16 

homogenous tumors (both 100% R and 100% S) the tumor contribution 1 was found in 17 

regions associated with necrotic tissue that should not be present and likewise for the 18 

necrotic contribution 6 that was present in parts of the tissues attributed to tumor tissue 19 

(see distribution maps of Figure 3).  20 

The preliminary MCR-ALS analysis of the fifteen images was not fully satisfactory but 21 

provided better spectral signatures for the contributions to be modelled than the raw 22 

image and an approximate identification of the biological and non-biological 23 

contributions of the data set. The resolved spectral signatures were used as initial 24 

estimates in a second MCR-ALS analysis and the information provided by the 25 
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concentration profiles was used as an auxiliary source of information to set local rank 1 

constraints, as described below. 2 

Since spatial information of tumor and necrotic parts can be identified in the grayscale 3 

images of tissue slices, this information was used to force the presence/absence of 4 

tumor/necrotic contributions throughout the resolution. Once tumor and necrotic pixels 5 

were identified using the image registration between grayscale and MS images (See 6 

section 3), a masking local rank matrix was built to be used as a constraint (see section 7 

3.2 for more detail in the implementation of this constraint). Taking as a basis the 8 

preliminary results obtained by MCR-ALS analysis using only non-negativity 9 

constraints, pixels related to necrotic parts were forced to be absent in component 1 10 

(blue tumor contribution) and pixels corresponding to tumor cell populations were 11 

forced to be absent in component 6 (orange necrotic contribution) in the images 12 

corresponding to both 100% R and 100 % S. Please note that the use of this constraint 13 

does not need either that all pixels in all images be constrained nor that all biological 14 

contributions be subject to local rank conditions. The use of this constraint in small 15 

areas clearly characterized as necrotic or tumor in simpler samples, such as 100% R or 16 

100% S, is sufficient to improve significantly the results of the whole multiset.  17 

Figure 4 shows the resolution results for the simultaneous analysis of all 15 images 18 

using non-negativity, normalization and local rank information. The variance explained 19 

obtained in the resolution using only non-negativity and normalization constraints was 20 

86.8 % and now with the use of the local rank constraint is 85.5 %. The similarity 21 

between the two values indicates that the new constraint introduced is correct and does 22 

not perturb the natural behavior of the data set. Resolved distribution maps 23 

corresponding to 100S3a and 100S3b were again zoomed for better visualization and 24 

the full set of magnified distribution maps were provided as supplementary information 25 
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(see Figure S3). Moreover, pixel selection from the registered scanned images of 1 

necrotic (green color) and tumoral regions (red color) were also showed for these two 2 

examples (left side of the zoomed plot in Figure 4). 3 

 4 

FIGURE 4 5 

 6 

By examination of the MCR-ALS results, the positive effect of local rank constraints in 7 

the definition of MS signatures and in the morphology of the distribution maps of the 8 

different biological contributions can be clearly seen . Now, in contrast to the resolution 9 

only using non-negativity and normalization constraints, tumor contribution 1 and 10 

necrotic contribution 6 are no longer mixed with each other and are located in their 11 

correct physiological regions. Besides, the resolved profiles are more accurate and show 12 

less ambiguity due to the effect of the local rank constraint.   13 

Once the MCR-ALS analysis on the all 15 images was performed, the MCR scores 14 

(Caug, distribution maps of sample constituents) were used for segmentation analysis. 15 

 16 

4.2 Multiset image segmentation. K-means cluster analysis.   17 

Multiset image segmentation analysis was the next step in the strategy proposed (see 18 

figure 2), mainly performed to look for clusters present in all analyzed images. As 19 

mentioned before, K-means analysis was carried out using resolved MCR scores of the 20 

multiset structure (see Figure 4). The fact of using MCR scores allows selecting the 21 

information to be included in the segmentation process. In this case, only the four 22 

biological contributions related to tumor and necrotic parts (contributions 1, 3, 4 and 6) 23 

were selected and the background contributions (2 and 5) were left aside. 24 
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The individual profiles of the four biological contributions of each submatrix Ci of the 1 

Caug matrix were autoscaled to balance the importance of each biological contribution 2 

present in each image of the multiset in the segmentation analysis. Doing it by block 3 

(each Ci separately), global intensity differences among MS images were also 4 

compensated. Autoscaled concentration profiles Ci were segmented simultaneously into 5 

four classes. In this case, a number of clusters equal to the number of biological 6 

contributions was selected. No reliable patterns of necrotic and cancer regions were 7 

achieved when the number of clusters in the segmentation procedure was increased. 8 

Figure 5 shows the segmentation results obtained by using the preprocessed MCR 9 

scores previously described. Zoom in an example (image 100S3a) was provided in 10 

Figure 5 for a better evaluation of the results and magnified results of the full set can be 11 

seen in supplementary information (see Figure S4). 12 

 13 

FIGURE 5 14 

 15 

The fact that K-means assign each pixel to only one cluster [32] helps to attribute that 16 

cluster to a single tissue type and, hence, be more easily comparable with the grayscale 17 

images. In figure 5 grayscale images were presented (left side of the pair images in 18 

Figure 5) for comparison with their related segmentation maps (right side of the pair 19 

images in Figure 5). It can be observed that the grayscale images match the location of 20 

tumor and necrotic parts with their related segmentation maps. Clusters 2 (green) and 3 21 

(orange) correspond to the tumor parts, they have the same spatial distribution of the 22 

dark grey regions in the scanned image. Similarly, cluster 1 (blue) and 4 (brown) were 23 

associated with the necrotic parts. However, this information is richer than that provide 24 
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by the grayscale images, since heterogeneity within the same kind of tissue (tumor or 1 

necrotic) can be appreciated.     2 

Centroid profiles using MCR scores in segmentation analysis are interpretable and, 3 

hence, it is possible to know which component or mixture of components is represented 4 

in each cluster. In our case, cluster 2 and 3 display dominance of contribution 1 and 3 of 5 

MCR contributions (tumor contributions), respectively, and low relative presence of 6 

other compounds, as expected. Likewise, cluster 1 and 4 show dominance of 7 

contribution 4 and 6 of MCR contributions (necrotic contributions). It must be reminded 8 

that segmentation clusters can be potentially formed by pure compound pixels or by 9 

pixel mixtures, whereas distribution maps from image resolution display the distribution 10 

of each pure image constituent. Since image constituents overlap (specially species 1 11 

and 4), clusters are formed by some pixels with constituent mixtures of different 12 

composition. As mentioned before, an important asset is that MCR scores only include 13 

information related to biological contributions of the samples and discard information 14 

associated with background contributions. This benefit cannot be obtained if 15 

segmentation procedures are directly applied to raw MS image spectra. 16 

The results from the combination of MCR with segmentation analysis could be 17 

potentially compared with conventionally stained sections to support determination of 18 

both anatomical and histopathological features and to provide a better chemical 19 

characterization of the compounds or mixtures of compounds involved in every sample 20 

region.  21 

In future works, the incorporation of more selective MS detection systems and the use 22 

of conventionally stained sections is planned to allow for a more specific identification 23 

and location of biological regions to incorporate local rank constraints and for a better 24 

definition of the MS spectral signatures obtained to describe tumor heterogeneity. 25 
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 1 

5. Conclusions 2 

The strategy of combining multiset resolution and segmentation has been shown to 3 

work for the analysis of biological tissues based on the use of hyperspectral images. For 4 

the first time, this strategy was applied to MALDI-MSI data and spatial information 5 

from grayscale images was used to set local rank constraints in the MCR-ALS 6 

resolution. This constraint improved significantly the morphology of the constituent 7 

distributions maps resolved by the MCR-ALS, helped in the suppression of the 8 

ambiguity in the results obtained and, therefore, contributed to a better definition of the 9 

related MS signatures for every biological contribution.  10 

From the grayscale images, relevant features corresponding to anatomical areas of 11 

interest (tumoral or necrotic areas) could be identified. The use of this information to 12 

force certain components to be absent in particular pixels through MCR-ALS multiset 13 

analysis allowed providing reliably spectral signatures to define biological parts 14 

common in all the samples and to provide MCR scores for subsequent segmentation 15 

analysis. The results of image segmentation distinguished different tissue types (within 16 

tumor or necrotic areas) and their spatial distribution matched consistently with the 17 

grayscale images. Therefore, the segmentation maps and the chemical information 18 

linked to them could be eventually compared with the outcomes of standard 19 

histopathological staining protocols. 20 

It is essential to stress the twofold benefit of using in a combined way physiological 21 

grayscale images and MSI measurements. On the one hand, the results obtained from 22 

MSI analysis by MCR-ALS are clearly improved by the easy setting of local rank 23 

constraints based on the visual location of different tissues in grayscale images. On the 24 
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other hand, the plain information in grayscale images, only marking the boundaries 1 

among tissue regions, is greatly enhanced by the MS signatures provided after MCR-2 

ALS application associated with the different tissue regions. Such a detailed MSI 3 

analysis also provides more insight on the intrinsic heterogeneity of tissue regions, often 4 

necessarily described by more than one biological contribution. 5 

The strategy proposed was shown to work for a case study including fifteen 6 

experimental tumors with different grade of heterogeneity but can be generally 7 

applicable in any study of biological material based on mass spectrometry imaging data 8 

analysis. 9 

 10 
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 5 

Table 1. Percentage of both R and S cell lines in xenografts, replicate number of either 6 

the same or different tumors (mice),  code, size of both scanned and MALDI imagesof 7 

the image sections analyzed. 8 

 9 

Percentage 
of cell 
lines  

Replicate 
number of the 
same tumor 

Replicate 
number of 

different tumors 

Image 
code 

Pixels of RGB 
scanned 
image 

Pixels of 
MALDI 
image 

100% R 1 1 100R1a 1541x1118 131x84 

100% R 2 1 100R1b 1560x1008 132x75 

100% R 3 1 100R1c 1536x948 132x73 

100% R - 2 100R2 792x654 72x56 

100% S 1 1 100S3a 1272x888 105x63 

100% S 2 1 100S3b 1188x912 104x72 

100% S 3 1 100S3c 

 

1224x963 105x70 

100% S - 2 100S4 1064x704 78x51 

90% R 

(10% S) 

- 1 90R5 1040x784 134x79 

90% R 

(10% S) 

- 2 90R6 1512x1232 83x64 

90% S 

(10% R) 

- 1 90S7 1392x930 125x77 

90% S 

(10% R) 

- 2 90S8 1614x900 150x83 

90% S 

(10% R) 

- 3 90S10 1200x1194 105x97 

50% S 

(50% R) 

- 1 50R11 1480x1080 136x84 

50% S 

(50% R) 

- 2 50R12 1296x968 110x73 

 10 

 11 

Table 2. Number of resolved components and variance explained by MCR-ALS 12 
analysis of Dr and Ds multiset structures. 13 
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 1 

Multiset Explained 

variance 

Resolved 

components 

DR= [D100R1a; D100R1b; D100R1c; D100R2] 89.7% 5 

DS= [ D100S1a; D100S1b; D100S1c; D100S2] 87.5% 5 

 2 

 3 

8. Figures 4 

 5 

Figure 1. a) Original RGB image of 100R1a sample, b) MALDI image of 100R1a after 6 

pretreatment of 3.1 section, c) registered scanned image of 100R1a, d) Histogram of 7 

registered image in 1c. Color interpretation in grayscale images in 1a and 1c is as 8 

follows: black pixels (MALDI matrix part), dark gray pixels (tumoral part) and light 9 

gray pixels (necrotic part). Grayscale intensity starts at zero for black color and goes 10 

until 255 for pure white. Values in between make up the different shades of gray. 11 
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 1 

Figure 2. Graphical representation of the combination of MCR-ALS with K-means for 2 

simultaneous analysis of MALDI images for an example of two MCR contributions 3 

resolved. 4 
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 1 

Figure 3. MCR-ALS results for the multiset analysis of 15 tumor images using non-2 

negativity and normalization constraints. Left plots: registered grayscale images. Middle 3 

plots: related MCR-ALS distribution maps. Right plots: resolved pure MS spectra. 4 

Color indices in grayscale images: dark gray (tumoral part) and light gray (necrotic 5 

part). Zoomed plot: gray scale images and distribution maps corresponding of images 6 

100S3a and 100S3b  7 
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 1 

Figure 4. MCR-ALS results for the multiset analysis of 15 images using non-negativity, 2 

normalization and local rank constraints. Left plots: registered grayscale images. Middle 3 

plots: related MCR-ALS distribution maps Right plots: resolved pure MS spectra. Color 4 

indexes in grayscale images: black (MALDI matrix part), dark gray (tumoral part) and 5 

light gray (necrotic part). Zoomed plot: prior selection of necrotic and tumoral pixels 6 

and distribution maps corresponding of images 100S3a and 100S3b.  7 
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 1 

Figure 5. Segmentation results of for the multiset analysis of 15 images using MCR-2 

ALS scores (distribution maps) coming from biological contributions in figure 4). a) 3 

Segmentation schemes and related registered grayscale images (left side) for all images. 4 

b) Centroid profiles. Color indexes in grayscale scanned image (c): black (MALDI 5 

matrix part), dark gray (tumoral part) and light gray (necrotic part). The same color is 6 

used for the class in the segmentation scheme and in the related centroid profile. 7 

Zoomed plot: gray scale images and segmentation map corresponding of images 8 

100S3a. 9 
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