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Abstract

We propose new weak error bounds and expansion in dimension one for opti-
mal quantization-based cubature formula for different classes of functions, such
that piecewise affine functions, Lipschitz convex functions or differentiable func-
tion with piecewise-defined locally Lipschitz or a-Holder derivatives. This new
results rest on the local behaviors of optimal quantizers, the L"-L*® distribu-
tion mismatch problem and Zador’s Theorem. This new expansion supports
the definition of a Richardson-Romberg extrapolation yielding a better rate of
convergence for the cubature formula. An extension of this expansion is then
proposed in higher dimension for the first time. We then propose a novel vari-
ance reduction method for Monte Carlo estimators, based on one dimensional
optimal quantizers.

Keywords— Optimal quantization; Numerical integration; Weak error; Romberg extrapolation;
Variance reduction; Monte Carlo simulation; Product quantizer.

2010 AMS Classification: 65C05, 60E99, 65C50.

Introduction

Optimal quantization was first introduced in [She97|, who worked on optimal quantization of
the uniform distribution on unit hypercubes. It was then extended to more general distributions
with applications to Signal transmission at the Bell Laboratory in the 50’s (see [GG82]) and then
developed as a numerical method in the early 90’s, for expectation approximations (see [Pag98|)
and later for conditional expectation approximations (see [PPP04, BPPO1l, BP03, BPP05]).

In modern terms, vector quantizations consists in finding the projection for the LP-Wasserstein
distance of a probability measure on R? with a finite p-th moment on the convex subset of I'-
supported probability measure, where I' is a finite subset of R* and 0 < p < +00. The aim
of Optimal Quantization is to determine the set T'y := {2V, ..., x%} c R with cardinality at
most N which minimizes this distance among all such sets I'. Formally, if we consider a random
vector X € LP(IP), we search for 'y, the solution to the following problem

min | X — X'V
FNCR,|FN|SN
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where XN denotes the projection of X onto I'y (often XT~ is denoted by X™ in order to
alleviate the notations). The term | X — Xt |, is often referred to as the distortion of order
p. The existence of an optimal quantizer at a given level N has been shown in [GLO7, [Pag9§|
and in the one-dimensional case if the distribution of X is absolutely continuous with a log-
concave density then there exists a unique optimal quantizer at level N. In the present paper
we will consider one dimensional optimal quantizers. Moreover, we are not only interested by
the existence of such a quantizer but also in the asymptotic behavior of the distortion because
it is an important feature for the method in order to determine the level of the error introduced
by the approximation. The question concerning the sharp rate of convergence of |X — X¥|
as N goes to infinity is answered by Zador’s Theorem. For X e LPF9(P), § > 0, such that
P (d¢) = ©(&) - AN(d§) +v(d€), where v L X is the singular component of P, with respect to the
Lebesgue measure A on R?, the rate of convergence is given by

+

hSA
-

. 1 SN ~ _d_
Jim N = RV, = Tl [ eian

where ¢ is the density of X, )\ is the Lebesgue measure on R¢ and j;:,d = infn> N%HU —

ov l,, U Lu ((O, 1)d). For more insights on the mathematical /probabilistic aspects of Optimal
quantization theory, we refer to |[GLOT, [Pagl15].

The reason for which we are interested in this optimal quantizer is numerical integration. The
discrete feature of the optimal quantizer XN allows us to define, for every continuous function
f:R?— R, such that f(X) e L*(IP), the following quantization-based cubature formula

N
E[f(XM)] =) pif(a)
=1

where p; = IP()/(\' N — va ). Indeed, as XN is constructed as the best discrete approximation of X
in LP(IP), it is reasonable to approximate IE [ f(X)] by E[f ()A( N)] which is useful for numerical
integrations problems.

The problem of numerical integration appears a lot in applied fields, such as Physics, Com-
puter Sciences or Numerical Probability. For example, in Quantitative Finance, many quantities
of interest are of the form

E[f(S)] for some ¢t > 0,

where f : R — R is a Borel function and (Ss)sefo,] 1s a diffusion process solution to a Stochastic
Differential Equation (SDE)

t t

b(s,Ss)ds +J o(s,Ss)dWs, So = so,

St:SO+J
0

0

where W is a standard Brownian motion living on a probability space (£2,.4,P) and b and o are
Lipschitz continuous in z uniformly with respect to s € [0, t], which are the standard assumptions
in order to ensure existence and uniqueness of a strong solution to the SDE. Since it is often
impossible to compute [ f (St)] directly, it has been proposed in [Pag98| to compute an optimal
quantizer XN of X where X is a random variable having the same distribution as Sy and to use
the previously defined quantization-based cubature formula as an approximation.

An other approach, often used in order to approximate IE [ f(X )], is to perform a Monte
Carlo simulation fM = Z%:I F(X™), where (X™);,—1,..m is a sequence of independent copies
of X. The method’s rate of convergence is determined by the strong law of numbers and the
central limit theorem, which says that if X is square integrable, then

VM(Ty ~E[f(X)]) SN (0,63x) as M-+
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where O'J%(X) = Var (f(X)) One notices that, for a given M, the limiting factor of the method
is O‘J%( X): Hence, a lot of methods have been developed in order to reduce the variance term:
antithetic variables, control variates, importance sampling, etc. The reader can refer to [Pagl§,
Glal3] for more details concerning the Monte Carlo methodology and the variance reduction
methods.

In this paper we propose a novel variance reduction method of Monte Carlo estimator through
quantization. Our method innovates in that it uses a linear combination of one dimensional
control variates to reduce the variance of a higher dimensional problem. More precisely, we
introduce a quantization-based control variates E{CV for k =1,...,d. If one considers a function
f:R?— R, we approximate [f(X)] by

E[f(X) - \EY)]

with (-, the scalar product in R? and (E))j=1, . := fr(Xg) — E [fk()A(,]CV)], where X}, is the
k-th component of X, X ,ﬁv is an optimal quantizer of X of size N and fi : R — R is designed
from f. Looking closely at the introduced control variates, one notices that we introduce a
bias in the approximation. However, as since it is closely linked to weak error, this bias can be
controlled. The present paper focuses on the weak error’s rate of convergence.

First, we place ourselves in the case where X is a random variable in dimension one and we
consider a quadratic optimal quantizer. We work on the rate of convergence of the weak error
induced by the expectation approximation by an optimal quantization-based cubature formula
for different classes of functions f

A~

im N E[f(X)] -E[f(X")]] < Crx < +o.
N—+00
The first classical result concerns Lipschitz continuous functions. Using directly the Lipschitz
continuity property of f and Zador’s Theorem a rate of order & = 1 can be obtained. Moreover,

if we consider the supremum among all functions with a the Lipschitz constant upper-bounded
by 1, then

N sw [E[S(0] - E [F(XM)]] = N|X = XN], < N|X = XV, =55 ) < +o0.
Lip<

A faster rate (v = 2) can be attained for differentiable functions with Lipschitz continuous deriva-
tive, using a Taylor expansion with integral remainder and the following stationarity property of
quadratic optimal quantizers R R

E[X | XV] =X

Moreover, considering the supremum among all functions where the Lipschitz constant of the
derivative is upper-bounded by 1, we have

~ 1 < —
Nt s [E[f(O] - B[f(XM]] = gNx - KV S O < oo
Lip ™

where the limit is given by Zador’s Theorem. A detailed summary about this results can be
found in [Pagl§].

In the first part of this paper, we extend this improved rate (a = 2) to classes of less smooths
functions in one dimension. These new results enable us to design efficient variance reduction
methods in higher dimensional settings with in view applications to option pricing. The new
results concerns the following classes of functions



e Lipschitz continuous piecewise affine functions with finitely many breaks of affinity. We
use the stationarity property of the optimal quantizer on the cells where there is no break
of affinity and then we control the error on the remaining cells using results on the local
behavior of the quantizer.

e Lipschitz continuous convex functions, using local behaviors results on optimal quantiz-
ers. We use a representation formula for convex functions as integrals of Ridge functions
combined with the local behavior result in order to control the error again.

e Differentiable functions with piecewise-defined locally Lipschitz derivative. The functions
have K breaks of affinity {ai,...,ax}, such that —0 = ap < a1 < -+ <ag < ag41 = +0©
and the locally Lipschitz property of the derivative is defined by

Vk=0,....,K, Vrz,ye (ak7ak+1) |f’(£6) - fl(y)| < [f/]k:,Lip,loc|x - y‘ (gk(m) + gk(y))

where g, : (ak, ax+1) — R4 are non-negative Borel functions. We use the locally Lipschitz
property of the derivative combined with the L"-L*® distortion Theorem and Zador’s The-
orem on the cells where there is no break of affinity and then we control the error on the
remaining cells using results on the local behavior of the quantizer.

e Differentiable functions with piecewise-defined locally a-Hdolder derivative. The functions
have K breaks of affinity {a1,...,ax}, such that —0 =ap <a; < -+ <ag < ag41 = +©
and the locally a-Hoélder property of the derivative is defined by

Vk = 1)"'7N_17 VI’,ye (akaak’-i-l)a ’f/(g;)_f,(y)’ < [f,]k,a,loc‘x_y’a(gk(x>+gk(y))

where g, : (ag, ax+1) — R4 are non-negative Borel functions. For this class of functions,
the rate of convergence is of order 1+ a.. The result is obtained using the same ideas as in
the locally Lipschitz case.

Hence, for all this classes of functions, except the last one, we have

lim N2E[f(X)] -E[f(XM)]] < Crx < +.
N—+00

In the second partAof the paper we deal with the weak error expansion of the approximation
of E [ f(X )] by | [ FXN )] First, we place ourselves in the one dimensional case by considering
a twice differentiable function f : R — R with a bounded Lipschitz continuous second derivative
and X : (2, A4,P) - R. Through a second order Taylor expansion and with the help of Corollary
Theorem and the L"-L* distortion mismatch Theorem we obtain

o C2 _
E[f(X)] = E[f(XM)]+ ~3 + O (2+6))

where 8 € (0,1). This expression suggests to use a Richardson-Romberg extrapolation in order
to kill the first term of the expansion which yields

M2F(XM) — N2f(XN)
M2 — N2

E[f(X)]=E + O(N~C+0),

Second, we present a result in higher dimension when considering a twice differentiable function
f:R* — R with a bounded Lipschitz continuous Hessian, X : (QATP) - R¢ with independent
components (Xj)r=1,..4 and XN a product quantizer of X with d components (X,iv’“)k=17_._7d



such that Ny x --- x Ny ~ N. Using product quantizer allows us to rely on the one dimensional
results for quadratic optimal quantizers and in that case we have

E[f(X)] = B[f(X)] + zdj RLE O(( min Nk>_(2+ﬂ)>.

k=1:d

The paper is organized as follows. First we recall some basic facts and deeper results about
optimal quantization in Section [} In Section [2 we present our new results on weak error for
some classes of functions. Then, we see in Section [3|how to derive weak error expansion allowing
us to specify the right hypothesis under which we can use a Richardson-Romberg extrapolation.
Finally, we conclude with some applications. The first one is the introduction of our novel
variance reduction involving optimal quantizers. The last one illustrates numerically the results
shown in Section [2] and [3} by considering a Black-Scholes model and pricing different types of
European Options. We also propose a numerical example for the variance reduction.

1 About optimal quantization (d = 1)

Let X be a R-valued random variable with distribution PP, defined on a probability space
(92, A, P) such that X e L?(P).

Definition 1.1. Let I'y = {z}',...,2¥} = R be a subset of size N, called N-quantizer. A Borel
partition (C’i(FN))i:1 _y of R is a Voronoi partition of R induced by the N-quantizer I'y if,
for every i = 1,...,N,

Ci(Tn) = {€ e R, J¢ — | < min¢ — a7 |}
VE

The Borel sets C;(I'x) are called Voronoi cells of the partition induced by I'y.

One can always consider that the quantizers are ordered: z3¥ < 2l < ... <z¥ | < 2¥ and

in that case the Voronofi cells are given by

Ck(FN) = ($]kvfl/27ka+1/2]v k=1,...,N -1, CN<FN) = (x%71/27$%+1/2)
h k N L Thoa ey dzN_ .= inf d N .
where Vk = 2,..., N, Tp_ypp = — 5 and xy, = in (supp(IPX)) and zy 5 i= sup (supp(IPX)).
Definition 1.2. Let T'y = {z¥',...,2)} be an N-quantizer. The nearest neighbour projection

Projp, : R — {zV,..., 2%} induced by a Voronoi partition (Ci(FN))i:L...,N is defined by

N

V€ e R, Projp (§) := 2 z Leco,rn) -
i=1

We can now define the quantization of X by composing Projp, and X

N

Xt~y = Projp,, (X) = Z va Ixec;(ry)
=1

and the point-wise error induced by the replacement of X by XTw given by

X — XTV| = dist (X,{m{v,...,:z%}) = IiﬂinN|X—l'ZN|.
i=

20ty



In order to alleviate the notations, from now on we write XN in place of XTw,

Definition 1.3. The L?-mean (or mean quadratic) quantization error induced by the replace-
ment of X by the quantization of X using a N-quantizer 'y < R is defined as the quadratic
norm of the point-wise error previously defined

R 1/2 1/2
= &80 o= ([ i 1x=aP]) = ([ i e ol PRLa)
i=1,..,N R =1,

It is convenient to define the quadratic distortion function at level N as the squared mean
quadratic quantization error on (R)™:

min X — 2] = X - X2

i=1

Qoniw= (ol al) — B[

geeey

Remark. All these definitions can be extended to the LP case. For example the LP-mean
quantization error induced by a quantizer of size N is

1/p 1/p
_ YN ._ : _ Ny _ ; _ N
= &8, o (B[ i 1X-ap]) = (i 16 - apeLa)

We briefly recall some classical theoretical results, see [GLO7, [Pagl8] for further details.
Theorem 1.4. (Ezistence of optimal N-quantizers) Let X € L?(P) and N € IN*.

(a) The quadratic distortion function Qo N at level N attains a minimum at an N -tuple W) =
(@N,...,2l) and Ty = {aN,i = 1,..., N} is a quadratic optimal quantizer at level N.

(b) If the support of the distribution P, of X has at least N elements, then W) = (z,... ,x%)
has pairwise distinct components, P, (Ci(x(N))) > 0,7 = 1,...,N. Furthermore, the
sequence N — inf ¢ gyv QaN(x) converges to 0 and is decreasing as long as it is positive.

Following the existence of a minimum for Qs N at ) we can define an optimal quadratic
N-quantizer.

Definition 1.5. A grid associated to any N-tuple solution to the above distortion minimization
problem is called an optimal quadratic N-quantizer.

A really interesting and useful property concerning quadratic optimal quantizers is the sta-
tionarity property.

Proposition 1.6. (Stationarity) Assume that the support of P, has at least N elements. Any
L2-optimal N-quantizer Ty € (R)N is stationary in the following sense: for every Voronoi
quantization XN of X,

E[X | XV] =XV

Corollary 1.7. If XN s a L?-optimal quantization of X, hence has the above stationarity
property, and f(X) e L*(P) with f : R — R then

E[f(XM)(X - XM)] =o.
Proof. The proof is straightforward, indeed

E[f(XM)(X = XN)] =B | B[/(XN)(X - X¥)| XV]| = B[/ (XV) BLX - £V | £7]]

e

—E[f(XV)(B[X | £¥] - £V)] -



We now take a look at the asymptotic behavior in IV of the quadratic mean quantization
error. We saw in Theorem [I.4] that the infimum of the quadratic distortion converges to 0 as N
goes to infinity. The next Theorem, known as Zador’s Theorem, analyzes the rate of convergence
of the LP-mean quantization error.

Theorem 1.8. (Zador’s Theorem) Let p € (0, +0).

(a) SHARP RATE. Let X € LPTO(P) for some § > 0. Let P, (d€) = (&) - \(d€) + v(dE), where
v L X is the singular component of P, with respect to the Lebesque measure A on R. Then,
there is a constant Jy, 1 € (0,+00) such that

1

1+
~ ~ 1 P
lim N min XXV =J1| [ ¢TPdA
N—+0  TnCR,[[y|<N R

: T 1
with Jp71 = m

(b) NON ASYMPTOTIC UPPER-BOUND. Let § > 0. There exists a real constant Cy s € (0, +0)

such that, for every R-valued random variable X,

N>1 i X - XV < X)N1
VN =1, FNCI%{I}IIFHNKN H o < C1p.6054p(X)

where, for r € (0,40), 0,(X) = minger | X —af, < +o0.

Now, we state some intuitive but remarkable results concerning the local behavior of the
optimal quantizers.

Lemma 1.9. Let P be a distribution on the real line with connected support Ip = := supp(P ).
Let 'y = {:I:{V,,x%} be a sequence of r-optimal quantizers, r > 0. Let [a,b], be a closed

terval then
U U CZ'(FN) C K()
N Ci(Tn)nla,b]#&

where Kg is a compact set.
Proof. First, if +o0 ¢ Ip then the upper-bound of Ky is the upper-bound of Ip otherwise if

+oo e lp, let by € Ip such that by < b, as P, has a density, then P ({bo}) =P, ({b}) =0.
Considering the weighted empirical measure

N
IP)?N = Z Py (Ci(FN))(s:czN Ao, Py
=1

then P_ ([bo, b]) EasN P ([bo,b]) <P ([bo, +0)). Moreover, one notices that

IP)?N ([b07b]) = ]PX U Ci(PN) = IP)?N U Ci(FN)

ie{ibo,...,ib} iE{ibU,...,ib}

where xf\i is the centroid of the cell that contains u. Then, as [by, xf:+1/2] c Uie{ibow-,ib} Ci(Tn)

P (b0 2 41 0]) <Py ([bo,b]) ==5 P ([bo.b]) < Py ([bo, +0))

: N N
hence, lim supy z; i1/

i1z < TO and supy x

o < 400, which gives us the upper-bound of Kjy:

N
SUPN T}, 11/2



Finally, if —oo ¢ Ip then the lower-bound of Ky is the lower-bound of Ip otherwise if
—woelp, , then following the same idea as above, we can apply the same deductions in order to

show that 1nf N 3: _1jg > —®© which gives us the lower-bound of Kg: infx :c 12 In conclusion,
Ky := supp(IPX)ﬂ[mfN xza_I/Q,supN fo+1/2]. O

The next result, proved in [DFP04|, deals with the local behavior of optimal quantizer, more
precisely it characterizes the rate of convergence, in function of N, of the weights and the local
distortions associated to an optimal quantizer. This is the key result of the first part of this
paper. It allows us to extend the weak error bound of order two to less regular functions than
those originally considered in [Pag98|, namely differentiable functions with Lipschitz continuous
derivative.

Theorem 1.10. (Local behavior of optimal quantizers) Let P be a distribution on the real line
with connected support supp(P, ). Assume that P has a pmbabzlzty density function @ which is
positive and Lipschitz continuous on every compact set of the interior (m,m) of supp(P, ). Let
Ly = {2, ... ,x%} be a sequence of stationary and L™ -asymptotically optimal quantizers, r > 0.

(a) The sequence of functions (Vn)n=1 defined by

N
Un(©) =N D 1oy (@ P, (Ci(Tw)), N=1,

=1

converges uniformly on compact sets of (m, m) towards 0@71/(T+1)cp$, with cp 1 /(r41) =

1/(14r)

H<,0||1/(1+r) i.e., for every [a,b] € (m,m), a < b,

sup 'N]P (Ci(TN)) — c%l/(rﬂ)gm:l (x 0. (1.1)

‘ N—+00
{i:zNela,b]}

The local distortion is asymptotically uniformly distributed i.e., for every |a,b] c (m,m),

N—+00

sup ‘Nr“f [ = €7 (d€) — H‘””“‘”” 0. (12)
1} Ci(Pn)

{i:zNelab ( + 1)

(b) Moreover, if P, has a compact support [m,m]| and ¢ is bounded away from 0 on the whole
interval [m, M], then all the above convergences hold uniformly on [m,m].

The next result is a weaker version of Theorem but it is a really useful tool when dealing
with weak error induced by quantization-based cubature formulas.

Corollary 1.11. Under the same hypothesis as in Theorem [1.10 and if 1 < s < r, we have the
following result, for every i€ {1,..., N},
limsupNSJrlf lzN — €|° P, (d€) = limsup N*T1 B [])/(\'N - XI°1 (RN —aN }] < +00.
N Ci(Tn N
Proof. If s = 1, using Schwarz’s inequality

Jogoy ot el < ([ et e Batao) P <<FN>>>é

Ci(Tn)

1
2

= W[ i edrda < (V] e -erea Ve, (@)
Ci(Tn) Ci(Tn)

8



And applying Theorem with P, = ¢ - X and r = 2, one derives

timsup N [ o P < o (pnaliel o) < e
N Ci(T'n) 23

Otherwise, for 1 < s < r, using Holder’s inequality with p = % and g = ﬁ

1/p 1/q
[ e —eree < ( [ —ﬂpsm(dg)) ( | Px(d€)>
Ci(TN) Ci(Tw) Ci(Tw)
< ([ 1 —epsa0) (. (car))
2~ € P (de) < NSH( |
C;

1—s
N8+1

Ci(Tn)

) fllPx<d£>>s(1Px (Ci(T))

('w)
1—s

< (e[ o -dp) (Ve, (rw)

And using the result proved above for s = 1 and (|1.1)), we obtain the desired result

limsupNSHJ N — ¢ P, (d€)
N Ci(TN)
s 1—s
<timup (¥ [ = elo(a9)) (VP (@ry))
N Ci(FN)
1 2 1-3
< (gleba) (cnle?™.)
< +00.
]

The following result will be useful in the last part of the paper, which is the theorem originally
proved in Theorem 6 by [DGLP04].

Theorem 1.12. Let (I'v)n>1 a sequence of optimal quantizers for P,. Then

Jim MR - RV = 0o, [[g(e) P (a)

for every function g : R — R such that |E [g(X)] < 400, with Q2(P ) the Zador’s constant.

The last result we state is an answer to the following question: what can we say about the
rate of convergence of & [\X — XN \2+5] knowing that XNisa quadratic optimal quantization?
This problem is known as the distortion mismatch problem and has been first addressed by
IGLPO§| and the results have been extended in Theorem 4.3 by [PS18].

Theorem 1.13. [L"-L*-distortion mismatch| Let X : (Q, A,P) — R be a random variable and
let r € (0,400). Assume that the distribution P, of X has a non-zero absolutely continuous
component with density ¢, i.e. P, (d§) = ©(&) - AN(d€) + v(d), where v L X is the singular
component of P with respect to the Lebesgue measure A on R and ¢ is non-identically null. Let
(Tn)N=1 be a sequence of L"-optimal grids. Let s € (r,r +1). If

X e LT ()

for some § > 0, then R
limsup N| X — XV, < 4.
N

9



2  Weak Error bounds for Optimal Quantization (d = 1)

Let X € L*(P) and XY a quadratic optimal quantizer of X which takes its values in the finite
grid Ty = {afV, ..., 2} of size N. We consider a function f: R — R with f(X) e L?(PP). One
of the application of the framework developed above is the approximation of expectations of the
form E[f(X)]. Indeed, as XN is close to X in L?(P), a natural idea is to replace X by XN
inside the expectation

N
E[f(XM)] =) f@)) P, (Ci(Ty)).
=1

The above formula is referred as the quantization-based cubature formula to approximate I [ f(X )]
Now, we need to have an idea of the error we make when doing such an approximation and what
is its rate of convergence as N tends to infinity? For that, we want to find the largest a € R,
such that the beyond limit is bounded

lim N E[f(X)] -E[f(XV)]] < Crx < +. (2.1)

N—+00
The first class of function we consider is the class of Lipschitz continuous functions, more
precisely piecewise affine functions and convex Lipschitz continuous functions. Then we deal
with differentiable functions with piecewise-defined derivatives.

2.1 Piecewise affine functions

We improve the standard rate of convergence which is of order 1 for Lipschitz continuous functions
by considering a subclass of the Lipschitz continuous functions, namely piecewise affine functions.
This new result shows that the weak error induced is of order 2 (o = 2 in (2.1))).

Lemma 2.1. Assume that the distribution P, = ¢ - X of X satisfies the conditions of Theorem
[1.10. Let f: R — R be a Borel function.

(a) If f is a continuous piecewise affine function with finitely many breaks of affinity, then
there exists a real constant Cy x > 0 such that

limsup N2 E[f(X)] - E[f(X™)]| < Cpx < +o0.
N

(b) However, if f is not supposed continuous but is still a piecewise affine function with finitely
many breaks of affinity, then there exists a real constant Cy x > 0 such that

lim sup N| [£(X)] ~ [F(XM)]] < Cpx < +c0.

Proof. Let I be a compact interval containing all the affinity breaks of f denoted aq,...,ay.

(a) Let f supposed to be continuous. Note that f is Lipschitz continuous (with coefficient

denoted [f],,, := max;—1 . ¢|a;]). Let Ty = {z{',..., 2} be an L*- optimal quantizer at level
N> 1.
R N
E[fCO]-B[EN] = 3 [ (7O - £ (g
i=17Ci(I'N)
= F(&) = f(a")) P (dg 2.2
z [IRCGORNEDENTS 2:2)



where J¥ = {i : C;(I'y) contains an affinity break} since all other terms are 0. Indeed, as
f(&) = a;& + Bi on C;(T'y) and using Corollary

| 1 (O = ) Pl = B[ =2 L ] =0
i\t N
Now, taking the absolute value in , we have

B [£(X)] - B [£(XY)]] < card(J¥) max f F(©) — FN)| Py (de)
Ci(TN)

N
zEJf

< card [l max [ je-alBod)  (23)
zle Ci(Tw)

and using Corollary [[.T1] with s = 1, we have the desired result, with an explicit asymptotic
upper bound,

~

limsup N*| I [f(X)] = B [f(X™M)]| < [£],,, lim card(J}) maXNQJ € — 2| P (dE)
N (TN

TN
zle

14 1
< [f]Lip m (Cgo,l/?)H(pHyg H(P1/3||oo) 2

< +00.

(b) The sum in (2.2)) in the discontinuous case is still true. However, the bound in (2.3)) changes

and becomes R
|E[£(X)] = E[FX)]] < 200 ], max P, (Ci(T'n))
1€ !

where | f|,, ., denotes the maximum of |f| on Ko and Ko is defined as the compact appearing
in Lemma stating that the union over all N of all the cells where their intersection with the
interval [a1, a¢] is non empty lies in a compact Ky, namely

U U CZ‘(FN) C K().

N C;(T'n)n[a1,ae]#2

The desired limit is obtained using Theorem [T.10}

2.2 Lipschitz Convex functions

Thanks to the previous result on piecewise-affine functions, we can extend the rate of convergence
of order 2 to a bigger class of functions: Lipschitz convex functions.
We recall that a real-valued function f defined on a non-trivial interval I < R is convex if

fltz+ (1 —t)y) <tf(z)+ (1 —1)f(y),

for every t € [0,1] and z,y € I. If f : I — R is supposed to be a convex function, then its right
and left derivatives exist, are non-decreasing on I and Vz € I, f' (z) < f’ (z). Moreover, as f is
supposed to be Lipschitz continuous, then f” and f’, are bounded on I by [f],,, .
Remark. One of the very interesting properties of convex functions when dealing with stationary
quantizers follows from Jensen’s inequality. Indeed, for every convex function f : I — R such
that f(X) e LY(P),

E|f(B[X | XV]))| <B|E[/(X)] £V]|

11



so that, R
E[f(XM)] < E[f(X)].
This means that the quantization-based cubature formula used to approximate I [ f(X )] is a
lower-bound of the expectation.
We present, here, a more convenient and general form of the well known Carr-Madan formula
representation (see [CMO1]).

Proposition 2.2. Let f : I — R be a Lipschitz convex function and let I be any interval non
trivial (# ,{a}) with endpoints a,b € R. Then, there exists a unique finite non-negative Borel
measure v := vy on I such that, for every ce I,

Veel, f(z)=f(c)+ (z—2c)fi(c) "’j

[a,c]ml(u a -’B)er(du) + J;c b]ml(x B U)+V(du)

Proof. Let f : I — R be a Lipschitz convex function. We can define the non-negative finite
measure v := vy on I by setting

Vo,yel, a<y, v((z,yl]) = fily) - filo)
The finiteness of v is induced by the Lipschitz continuity of f as the left and right derivatives
are bounded by [f],,, = max([ fi[,,[f_],)- Let c e I, for every x > ¢, we have the following
representation of f(z):
€T
—I—J [ (w)du
&

— (&) 4 afi(e) + f v((e,u])du
— £(0) + 2/, (0) ” (0] (1) T (0) (0 s
= f(e) + xfi(c) —i—f( (x — v)du v(dv)

c7m]

= f(c) +zfl(c) —i—f( (x — v)4v(dv)

b]nTI
using Fubini’s Theorem and noting that 1 (¢, (u) L(cy)(v) = L(cq)(v) Lz (). Similarly for
r<c

F(@) = (0) + 2fi(c) + f[ (u— @) sv(du).

a,c]lnl

Then,
VeeR, f(z)=f(c) +mf’+(c)+f (u—z)sv(du) —|—f (x —u)yv(du).
[a,c]nI (c,b]nI
O

We can now use the representation of convex functions given above and extend the result
concerning the weak error of order 2 (o = 2 in (22.1))).

Proposition 2.3. We assume that the distribution P, = ¢ - X of X satisfies the conditions
of Theorem [1.10 Let I be any non-trivial interval and let f : I — R be a Lipschitz convex
function with second derivative v (see Proposition . If I]pX n supp(v) is compact, with
Ip, = supp(P ), then there exists a real constant C'y x > 0 such that

lim sup N E[f(X)] -E[f(X™)]] < Crx < +o.

12



Remark. Assuming that supp(v) is compact actually means that f is affine outside a compact
set, namely that there exist a/(*) and BE) such that f(z) = oz + ) for  large enough
(z = Ky) and f(z) = oDz 4+ (), for = small enough (z < K_). Therefore, this class of
functions contains all classical vanilla financial payoffs: call, put, butterfly, saddle, straddle,
spread, etc. Moreover, if Ip  is compact, such as in the uniform distribution, then there is no
need for the hypothesis on v and we could consider any Lipschitz convex functions we want. The
hypothesis on the intersection allows us to consider more cases.

Proof. First we decompose the expectations across the Voronoi cells as follows

E[f(X) - f(XV)] = Z E [(f(X) — F(XY) ]1{Xeci(rN>}]

<1

= Y E[(/(X) = f@) Lixeqay

i-1/2% 1+1/2]}]‘
i=1

We use the integral representation of the convex function f, of the Proposition with x := X
and ¢ := x; and with the conditional property of the stationarity given by Corollary the first
term cancels out, for every i,

= [( )f+( )]l{XeC (FN)}] = 0.

Hence, we obtain

B[(F(X) = £@))) Lxeqn

i—1/27 z+1/2]}:|

_E (mew(u X) s v(du) + J( CS u)+1/(du)> e o, ) ]
_E Uw . (X ey N]}] (2.4)
+1E [Lxﬁ,xﬁ1/2)(X —u)v(du) Liyep,n NaN ) }
The interval ( D120 :L‘fv] in the integral is left-open because when u = xﬁ\ilﬂ, as X € (5”1']\11/27 :L‘fv],

(u— X)4 = 0. The same remark can be made concerning the right open-bound of the interval

(z], xﬁlﬂ) in the integral. Now, using a crude upper-bound for (2.4]), we get

B (£(X) = £@))) Lxen I [C S (CARVAETH R TRy
+E [(X —wzj‘v)’/((xz]‘vaxiJrl/z)) Lixepan Nz Z+1/2]}]

E [z} — X[ 1ixec, )y ¥ (Ci(Tw))

i—1/2°% z+1/2

as V((:L‘i]\ilp,xﬁlﬂ)) < v(Ci(I'n)). Hence

(@n)
N
=
=
>
|
=
<
=
N
=

E [z} — X|Lixec, )y [v(Ci(TN))

~
Il
—

N
M=

-
I
—_

E (|2 — X[ Lixec,rn)y ] Lanes, v(Ci(TN))

13



with J, := [infy :L'Z].Zil/z, sup n :L’fZH/Q] where ajfz and l’f;[ are the centroids of the optimal quan-
tizer of size N that contains, respectively, the infimum and the supremum of the support of v,
denoted by a and b, respectively. Hence, mfz _1/2 is the lower bound of the Voronof cell C;, (I'y)

g\b] +1/2 1s the upper bound of the Voronoi cell Cy, (T'n) asso-

ciated to the centroid fo If a is not contained in Ir, then the lower bound of J,, is set to a,
and the same hold for b: if it is not contained in Ip_, the upper bound of J, is set to b. Then,

associated to the centroid xf\i and =

N

N2 E[f(X) = fXM)] < N2 D E[lz) — X|Lixecirn | Lipnes,y v(Ci(DN))
=1

N

<N?  sup B[IXY = X|Txec,wyy ] Y, v(Ci(TN))
iw)elp Ny i=1

<v(lp )N?  sup  E[IXN = X|Tixec,ry) ]

s W IN
(A GI]PX nJy

yielding the desired result with Theorem if Ip, N Jy, Is compact.
Under the hypothesis Ip supp(v) compact, then by Lemma ,

U U Ci(FN) c U U CZ'(FN) c K07

N a:ivel]pxm supp(v) N Ci(FN)r\I]pXm supp(v)#J
with Ky := I]pX N J, compact, which is what we were looking for. O

Proposition 2.4. Assume that the distribution P, = ¢ - X of X satisfies the conditions of
Theorem not only on compact sets but uniformly. Let I be any non-trivial interval then for
every function f : I — R Lipschitz convex with second derivative v defined as in Proposition
there exists a real constant Cy x > 0 such that

~

lim;upNQHE] [£(X)] —]E[f(XN)]| < Cfx < +o.

Proof. This proof is exactly the same as above the Proposition. O

Remark. It has not be shown yet that Gaussian or Exponential random variables satisfy the
conditions of Theorem uniformly but empirical tests tend to confirm that they exhibit the
error bound property for Lipschitz convex functions. More details are given in the numerical
part.

2.3 Differentiable functions

In the following proposition, we deal with functions that are piecewise-defined and where their
piecewise-defined derivatives are supposed to be locally-Lipschitz continuous or locally a-Hdélder
continuous on the non-bounded parts of the interval. We define below what we mean by locally-
Lipschitz and locally a-Holder.

Definition 2.5. e A function f: I — R is supposed to be locally-Lipschitz continuous, if

Vo,yel |f(x) = W) < [flipwl — yl(9(z) + g(y))

where [f] is a real constant and g : R — R.

Lip,loc
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e A function f: I — R is supposed to be locally a-Holder continuous, if

Ve,ye I [f(x) = fF(W)] < [flasolz —yl*(9(2) + 9(v))

where [ f] is a real constant and g : R — R.

a,loc

Proposition 2.6. Assume that the distribution P, of X satisfies the conditions of the L"-L?-
distortion mismatch Theorem [I.15 and Theorem concerning the local behaviors of optimal
quantizers. If f : R — R is a piecewise-defined continuous function with finitely many breaks
of affinity {ai,...,ax}, where —0 = ap < a1 < -+ < ag < ag4+1 = +00, such that the
plecewise-defined derivatives denoted (f})k—o,..d are either

(a) locally-Lipschitz continuous on (ag,ar+1) where 3q, > 3 such that the qx-th power of gy, :

(ag,arps+1) — Ry defined in Deﬁnitionare convex and (Hgk(X)qu) < +o. Then
su

k=1,...,
there exists a real constant Cy x > 0 such that

limsup N2 E[f(X)] - E[f(X™)]]| < Cyx < +o0.
N

(b) or locally c-Hélder continuous on (ay, ag+1), o € (0,1), where 3q; > 52 such that the qj-th

power of gi : (ag, ar+1) — Ry defined in Deﬁm’tion are convex and (||g/r€(X)qu)k:1 g <
+00. Then there exists a real constant Cr x > 0 such that o
limsup N2 E[£(X)] - E[f(X™)]| < Cyx < +oo.
N
Proof. (a) Let I'y = {zV,..., Y} be a L2- optimal quantizer at level N > 1. In the first place,

we define the set of all the indexes of the Voronoi cells that contains a break of affinity

Iﬁg - {z =1,....,N:Ci(T'n) N [a1,aK] # @}-

Hence,

selN YCi(TN)
(4)
Ny _ P (d
+¢¢§N€g fci(rN) (f(a') = F(&) Py (dE)
(B)

First, we deal with the (B) term. As, i ¢ Iﬁ\ég, f is differentiable in C;(I'y) and admits a first-order

Taylor expansion at the point ¥, moreover by Corollary SCi(FN) M) (-2 P (d€) = 0,
hence

1
j (F@N) — 1(6) P, (de) = f f (F@N) = f(tad + (1 - 0)) (@ — €)dt P (de).
Ci(Tn) Ci(Tn) JO

Now, we take the absolute value and we use the locally Lipschitz property of the derivative,

15



yielding

[ e -see, (dﬁ)‘
Ci(Tn)

Jr J'f fltal + (1= 0)8)| |z — €dt P (d€)

/

e [ [ 001 = a1 () + 0 + 0 - e (),
(2.5)
with k; :=={k=0,...,d: z; € (ag,ar+1)}. Under the convex hypothesis of gZ}:i, we have that
gr; (b7 + (1= 1)€) < max (gg, (27"), 91: () < grs(27) + 91 (€),
thus
Lo [[ =00 — et + i + (1 D) (a9

1

<2Li(FN)!wN €2 (206 (=) + gi(€)) P (d€).

Now, taking the sum over all 7 ¢ I reg and denoting [f'] . .. := maxp[f'], 1. 0

T 35 J, o =€ (o) +.00,6) Pl

i1,

()i 100 MAX [|f<N — X[ (200(XY) + ge(X) |

l\D\H

(B)] <

<

(2.6)

< [f/]Lip,loc maX HXN - X“zpk (2Hgk(XN)“qk + “gk(X)qu)

<

| R 0| x| X

[ Tipioc XY = X2, max (216X, + lge(X)],,)

<

(SV)
“\w

[ Taipaoc XY = X, max | g (X)],,

using Hoélder inequality, such that pik + qik < 1 and the convexity of g?%. Under the hypothesis
qr > 3, pr has to be in contained in the interval (1,3/2), hence p is defined as p := maxy pi
and using the non-decreasing property of the LP norm, we obtain the fourth inequality in ([2.6)).
Now, if we use the L"-L®-distortion mismatch Theorem with r = 2 and s = 2p < 3 under

2
the condition X € LﬁM(IP), we have

_ y23K

N2I(B)] < N2 [ ] IXY = X5, max g (X)),

NHJrOO
—_—

(2.7)
Cy < +00.

Secondly, we take care of the (A) term. Using Lemma stating that the union over all N of all
the cells where their intersection with the interval [a1,ax] is non empty lies in a compact K,

g UJ Ci(Ty) < Ko

N Ci(Tn)nla,ax]#

namely

and using that f is bounded on Ko by [f'],;, «,. we can use the following integral representation

of f N
r) = fg f'(u)du + £(0)

16



and the stationarity property of the optimal quantizer on C;(I'y), yielding

f (FN) - F©) P ‘ w)du P (de)
Ci(TN) C;(TN)
< o f €~ 2N P, (de).
C;(Tn
Now, we sum among all 7 € IT]\;Q
1< Py 3 [ =P (a)

ZEIN

Hence, using the result concerning the local behavior of optimal quantizers Corollary as
[a1,ak] is compact, we have

N?|(4)] < N LMOZf € — 2| P, (de)

lEIN FN)

Lip,Kq sup fC r |€ - xi\f| ]PX (df)
N

i:xiveKo

< N2K[f']

N2Ah, ) < oo, (2.8)

Finally, using (2.8) and (2.7), we have the desired result

N E[f(X)] - E[f(XM)]]| < N*(|(A)] + |(B)]) =5 €1 + o < +o0.

(b) When the piecewise-defined derivatives are locally a-Holder continuous on (—o0,a;] and
lak,+0), a € (O 1), the proof is very close to the locally Lipschitz case. Indeed, the first
difference is in (2.5), where the |z} — ¢|? is replaced by |xN £]1*% and the constant is the one
of the locally a- Holder hypothesis. This implies that (| is replaced by
SK[f/] o oc .
|(B)] < #HXN _XHl-i—a ml?x Hgk(X)qu

(1+a)p

Finally, using the L"-L?*- distortion mismatch Theorem withr =2 and s = (1 4+ a)p < 3

1+a)p
under the condition X € L3 (+ajp 5(1?), we have

3K [f/] Hol,loc
2

N1+a‘(B)| < Nlta HXN _XHl—&-oz mkax Hgk(X)qu

(14+a)p
N=oo, C3 < +o0.

The other parts of the proof are identical, yielding the desired result.

O

Remark. If one strengthens the hypothesis concerning the piecewise locally Lipschitz continuous
derivative and considers in place that the derivative is piecewise Lipschitz continuous, then the
hypothesis that X should satisfy the conditions of Theorem [I.13] can be relaxed. Indeed, the
term 3K 2 L Liptoc |XN — XH2 max, | gx(X)],, in (2.6) would be become L Iei |XN — XH2 and
we Would conclude using Zador’s Theorem 1.8
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3 Weak Error and Richardson-Romberg Extrapolation

One can improve the previous speeds of convergence using Richardson-Romberg extrapolation
method. The Richardson extrapolation is a method that was originally introduced in numeri-
cal analysis by Richardson in 1911 (see [RG10]) and developed later by Romberg in 1955 (see
[Romb55]) whose aim was to speed-up the rate of convergence of a sequence, to accelerate the
research of a solution of an ODE’s or to approximate more precisely integrals.

[TT90] and [Pag07, [Pag18] used this concept for the computation of the expectation E [ f(X7)]
of a diffusion (Xt)te[QT] that cannot be simulated exactly as a given time 7" but can be approx-

(h)

imated by a simulable process )NfTh using a Euler scheme with time step h = T'/n and n the
number of time step. The main idea is to use the weak error expansion of the approxima-
tion in order to highlight the term we would kill. For example, using the following weak time
discretization error of order 1
>(h c1 -
E[f(Xr)] = B[f(ZF)] + 7 +0(n™),

one reduces the error of the approximation using a linear combination of the approximating

process )?(Th) and a refiner process )Z'éh/ 2), namely
> (/2 > (h 1cy _
E[f(X1)] = B[2/ (X)) = F(Xf)] = 55 + O(n ™).

Our goal within the optimal quantization framework is to improve the speed of convergence of
the cubature formula using the same  ideas. Let us consider a random variable X : (Q,AP) >R
and a quadratic-optimal quantizer X~ of X. In our case we show that, if we are in dimension
one there exists, for some functions f, a weak error expansion of the form:

E[f(X)] = E[f(X")] + 15 + O(N~+)

with 8 € (0,1). We present in subsection a similar result in higher dimension.

3.1 In dimension one

This first result is focused on function f : R — R with Lipschitz continuous second derivative.
In that case, we have a weak error quantization of order two. The first term of the expansion is
equal to zero, thanks to the stationarity of the quadratic optimal quantizer.

Proposition 3.1. Let f : R — R be a twice differentiable function with Lipschitz continuous
second deriwative. Let X : (Q, A, P) — R be a random variable and the distribution of P, of
X has a non-zero absolutely continuous density ¢ and, for every N = 1, let I'y be an optimal
quantizer at level N = 1 for X. Then, ¥V 3 € (0,1), we have the following expansion

E[f(X)] = B[f(X")] + 5 + O(N~+7).

Moreover, if ¢ : [a,b] — Ry is a Lipschitz continuous continuous probability density function,
bounded away from 0 on [a,b] then we can choose = 1, yielding

E[f(X)] = E[f(X™)] + % +O(N73).

Proof. If f is twice differentiable with Lipschitz continuous second derivatives, we have the
following expansion

1

F@) = )+ £ @) =) + 35 @~ + | (1= ("t + (1= )~ @) (o — )P

0
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hence replacing  and y by X and XN respectively and taking the expectation yields
~ 1 ~ ~ ~
E[f(X)] =B[f(XN)] + 5 B[ (XY)X - X¥P] + R(X, XT)

where R(X, X) = (1 — ) B[(f"(tX + (1 - )X) — f"(X))|X — X |?]dt
First, using Theorem [1.12| with f”, we have the following limit

N—+00

lim N2E[f" (X)X — XV ff”

hence

E[f(X)] = E[f(XY)] + 35 + R(X,XY).

Now, we look closely at asymptotic behavior of R(X ,X N). One notices that, if we consider a
Lipschitz continuous function g : R — R, for any fixed ae (0, 1),

2 [g)! ke — ol

Vz,ye R, |[g(z) —g(y)| <

In our case, taking g = f”, we have
E|(f/(tX + (1= &™) — /(X)X - XV
E |2 /"2 [/ 1ot 0 X = RN x - XV
< CpptP B|X — XN 7]
with 0 < 8 < 1 where 8 = 1 — «, hence

R(X,XN) < Cypn B[|X — XNP+7],

with 5’57]“/ = Cﬁ’f”m' Using now Theorem [1.13| with » = 2 and s = 2 + 3, we have the
desired result: E [|X — XV 28] = O(N~2*+9)) and finally

E[f(X)] = E[f(XV)] + 35 + O(N 7)),

for every 8 € (0,1). If moreover, the density ¢ of X is Lipschitz continuous, bounded away from
0 on [a, b] then we can take 5 = 1.
O]

Now, followmg the Richardson- Romberg idea, we could combine approximations with optimal
quantizers XN of size N and XN of size N with N > N in order to kill the residual term, leading

N2f(XN) — N2f(XN)
N2 — N2

E[f(X)]=E + O(N~—C+0)), (3.1)

Remark. For the choice of N , we consider N :=k x N. A natural choice for k could be k = 2
or k = 4/2 but the higher % is and the higher is the complexity, hence favoring a k that would
not increase too much the complexity seems to be a good decision. For the numerical example,
we choose N := k x N with k = 1.2, this is arbitrary and probably not optimal, however even
with this k, we attain a weak error of order 3.
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3.2 A first extension in higher dimension

In this part, we give a first result on higher dimension concerning the weak error expansion of
E [f(X)] when approximated by IE [f(XN)] In the next part, we use the following matrix norm:
let M e R™? then ||M]| := SUDPy:[u|=1 |ul Mul).

Proposition 3.2. Let f : R — R be a twice differentiable function with a bounded and Lip-
schtiz Hessian H, namely Yx,y € RY, ||H(x) — H(y)|| < [H],, |z —yl|. Let X : (QAP) —
R? be a random vector with independent components (Xk)k=1,..d- For every (Nip)p=1,.. a4 =
1, let ()?C]lvd>k:1,...,d be quadratic optimal quantizers of (Xy)g=1,. a taking values in the grids
(TN )k=1,....a respectively and we define XN gs the product quantizer X taking values in the finite
grid 'y = ®1€=1,...,d I'ny, of size N := Ny x --- x Ngq. Then, we have the following expansion

d
E[f(X)] =E[f(X )]+Z+o<(gllpdm) :
Proof. If f is twice differentiable, hence we have the following Taylor’s expansion

£(2) = f(@) + Vi(a) & — a) + S H(a) - (x — )

+ fl(l —t)(H(tx + (1 —t)a) — H(a)) - (v — a)®?dt
0

where the notation f(z,a) - (x — a)®? stands for (z — a)? f(z,a)(x — a). Replacing  and a by
X and X% respectively and taking the expectation
~ ~ ~ 1 ~ ~
E[f(X)] =E[f(X")]+E[VFA X)X -XV)]+ 5 F [H(XN) (X — XN)®?]
1
+ f 1-t)E [(H(tX +1=HXN) = H(EXN) - (X - XN)®2]dt.
0

Noticing that, by Corollary

d
. . of ~ .
B[VARN0r- 4] = YB [ @00 - 2|

= oxy,
d of ~ ~

=Y E|E [(XN)(Xk - X | X—k”

oxy,

k=1

= 0.

where )?—k denotes ()2{\71, . ,)A(,ivffl,)?,ﬁ“fl, . ,)A(C]lvd). Hence

E[7(0)] = B[f(XY)] + S B[HEY) - (X - )]
(3.2)

+ fu ~HE [(H(tX +1—HXN) = HEXN)) - (X - XN)®2]dt
0
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and looking at the second term in (3.2))
E[H(XN) - (X — XV)%?]

- VE [W(XN)\X,C —f(}f’fﬁ] + 221@[ I 2Myx, — XX —)AQNZ)]

el (33:% Py a.Tkaxl
d agf N N R
ZZE E[N(XNﬂXk—XéVk‘Q\Xk”
k=1 Tk
+2) E|E I (XM)(Xp — XV | X | (X — XM
P a.Tkaxl k !
# g
=0
d agf R
=B E[z(XN)|X X7 X k]
= &rk

~

- A
. [05(%’ st X @ )| X — X;ivk|2] .
| Ly, %

Il
M~
=

=
Il
—

|
M=~
=

7E [gk,z,k (X]inNXk - Xé\[k |2] |)?,k:x,k] :

ke
I
—

Now, using Theorem [1.12] we have the following limits, for each k

lim  NZE[gre_ (X)) X5 — X5 ?] = (P, ) f Gz (&) P (dE).

Ny—+00

Giving us the first part of the desired result
d 1

E[f(X)] = E[f(XV)]+ ] % +J 1-t)E [(H(tX+ (1—t)XN) = H(XN))- (X—)?N)@]dt
— Ve Jo

with ¢, = %QQ(IPXk) §S9ka (@) Py (dz)P,  (dy). Now, we take care of the integral part, we
proceed using the same methodology as in the one dimensional case, using the hypothesis on the
Hessian

E [| (HEX + (1 — ) XN) — H(XN)) - (X — XN)®2|] <2°[H)? ||H|SPE[|X — XV2+F)

with 8 € (0,1) and [[H||  := sup,cga [[H (2)]|. Hence

1
J (1-tE [(H(tX +(1-t)XN) - HXN)) (X - XN)®2]dt
0
1 ~
< ——— CuxBE[|X - XV*].
@r s I
Using now Theorem let s = 2+ 3, we have the desired result: E [|X} — )A(,iv’“]“ﬁ] =

O(Nk_(2+ﬁ)) and finally

BL70)] = L5 + 3 2+ o (min ),

2
k=1 Ni

for every B € (0,1). If moreover, the densities ¢y of Xy, for all & = 1,...,k, are Lipschitz
continuous, bounded away from 0 on [a, b] then we can take 5 = 1.
O
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Remark. Even-though, we could be interested by considering non-independent components
(X%)k=1,..d, the independence hypothesis on the components is necessary in the proof because
we proceed component by component. For example the first order term of the expansion would
not be null by stationarity is the components are not independent.

4 Applications

4.1 Quantized Control Variates in Monte Carlo simulations

Let Z € L*(P) be a random vector with components (Zj)k—1,. 4, we assume that we have a
closed form for E[Z;], k = 1,...,d, and f : R — R our function of interest. We are interested
by the quantity

I:=E[f(2)]. (4.1)
The standard method for approximating if we are able to simulate independent copies of
Z is to devise a Monte Carlo estimator. In this part, we present a reduction variance method
based on quantized control variates. Let Zxn our d dimensional control variate

BN = (E{gv)k:l,...,d

where each component E,]CV is defined by
= = fi(Z) ~ E[fu(Z0)],

with fi(2) :== f(E[Z1],...,E[Zk_-1], 2, E[Zk+1], ..., E[Z4]) and 2,?’ is an optimal quantizer of
cardinality N of the component Z;. One notices that the complexity for the evaluation of f; is
the same as the one of f. Now, defining X* := f(Z) — (\,EN) where A € R, we can introduce
IMN as an approximation for (4.1)

Y= E[XH
E[f(Z) -\ EY)]

d d
f2)-> Akfk<zk>] + 3 ME[f(Z2).

k=1 k=1

(4.2)
=E

The terms E [ fk(éév )] in (4.2) can be computed easily using the quantization-based cubature

~

formula if we known the grids of the quantizers (Z ,iv Jk=1,....a and their associated weights.

Remark. We look for the Apjn minimizing the variance of X A
Var(X*min) = min { Var (f(Z) — (\,Z")), e R }.

The solution of the above optimization problem is the solution of following system

D(Z)-A=B
where D(Z), the covariance-variance matrix of ( fk(Zk))k:Lm’ o and B are given by
Var (f1(Z1)) o Cov (f1(21), fa(Za)) Cov (f(Z), f1(Z1))
D(Z) = : : , B= :
Cov (fd(Zd), fl(Zl)) e Var (fd(Zd)) Cov (f(Z), fd(Zd))

The solution to this optimization problem can easily be solved numerically using any library of
linear algebra able to solve linear systems thanks to QR or LU decompositions.

22



Remark. If the Z;’s are independents hence A can be determined easily. Indeed, in that case
the matrix D(Z) is diagonal. Then, the A;’s are given by

_ Cov (filZ). /(2))
Var (fk(Zk)) '

Now, we can define T 1’\\4’N the associated Monte Carlo estimator of 1MV

1 M d d ~
- ) (f(zm) - )\kfk(Z,T)> + 2 M E[f(Z])).
k=1

k=1

One notices that E[I — I*V] # 0, with bias equal to Zgzl Ao (E [fk(gév)] - E[fe(Z1)]).
However the quantity we are really interested by is not the bias but the MSE (Mean Square
Error), yielding a bias-variance decomposition

2 d
MSE( IAN Z Mo E[fo(ZD)] — B[ f1(2Z0)] +iVar f(Z2) - 2 Mefi(Zy) | -
M

k=1

~
bias? Monte Carlo variance

Our aim is to minimize the cost of the Monte Carlo simulation for a given MSE or upper-bound

of the MSE. Consequently, for a given Monte Carlo estimator T ]’\\/;N our minimization problem
reads
inf Cost(IMN). (4.3)
MSE(IyN)<e

Let k = Cost(f(z)) for a given z € R?, the cost of a standard Monte Carlo estimator I o Of size
M is Cost(1,,) = M. In our controlled case, if we neglect the cost for building an optimal
quantizer, the global complexity associated to the Monte-Carlo estimator [ A);[’N is given by

Cost(l?\;[’N) = k((d+ 1)M + dN)

where the cost of the computation of f(z) — A ZZ:1 fr(z) is upper-bounded by (d + 1)k whereas
kdN is the cost of the quantized part. Indeed, there is d expectations of functions of N-quantizers
to compute, inducing a cost of order kdN. Some optimizations can be implemented when
computing fx(z), in that case Cost(fx(z)) < k. So, becomes

inf  k((d+1)M + dN).
MSE(I;V)<e?

Moreover, using the results in the first part of the paper concerning the weak error, we could
define an upper-bound for the MSE(I jj[’N ), indeed if each f is in a class of function where the
weak error of order two is attained when using a quantization-based cubature formula then

2 2 2
MSE(D ( > M (ELR(ZN] - E [fk(Zk)])) + o<+
with 3 := Var (f(Z) — ZZ:I Mief&(Zk)). Now, our minimization problem becomes

inf  k((d+1)M +dN).
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]\?4 corresponds to the squared empirical bias and 7> to the empirical Varlance hence a standard

approach when dealing with this kind of problem is to equally divide €2 between the bias and

. C &2 o3 €2 .17
the variance: 5z = 5 and 33 = 5 yielding

N=0(e2) and M =0(e?),

hence the cost would be of order O(e~2). However, as the cost is additive and in the case where
U?\ is close to Var ( f(z )), meaning that the control variate does not really reduce the variance,
we want to reduce the bias as much as we can. So another idea could be to choose both terms
M and N of order O(e~2), because the impact on the cost of the Monte Carlo is at least of this
order. Then, we search 6 € (0,1) defined by

C o?
2 _ 2 _ O)
fe” = i and (1 —60)e* = e

such that the impact on the cost of the Monte Carlo part and the quantization part are of same
order: O(e~2). In that case, 6 is given by

9622 % 6
kN = Olc?) — 0 =0O(e).

In practice, we do take not that high value for N. Indeed, the bias converges to 0 as N4, so
taking optimal quantizers of size 200 or 500 is enough for considering that the bias is negligible
compared to the residual variance of the Monte Carlo estimator.

Remark. Now, if we consider that we have no closed form for E[Z;], k = 1,...,d, then we need
to approximate them by my ~ E[Z)] (this would impact the total cost of the method, as one
would need to use a numerical method for computing the my’s but this can be done once and for
all before estimating I i‘I’N ). These approximations yield different control variates: the functions

fk(z) = f(my,...,mp_1,2,Mky1,...,Mg), inducing a different MSE

2
MSEIAN (Z)\k( [ f5 Zk)]—]E[fk(Zk)])) +MA

with &2 := Var (f(2) - S Mfe(Zy)) and Ay, k = 1,...,d. Finally, we can conclude in the

same way as before if the fk’s are in a class of function where the weak error of order two is
attained when using a quantization-based cubature formula.

4.2 Numerical results

Let (St)te[o,T] be a geometric Brownian motion representing the dynamic of a Black-Scholes asset
between time ¢t = 0 and time ¢t = T defined by

S, = Sy e(T*UQ/Z)LLHJ‘Wt

with (Wi)se[o,r] @ standard Brownian motion defined on a probability space (2,4, P), r the
interest rate and o the volatility. When considering to use optimal quantization with a Black-
Scholes asset, we have two possibilities: either we take an optimal quantizer of a normal dis-
tribution as W ~ N(0,T), either we build an optimal quantizer of a log-normal distribution
as log(er=o*/AT+oWry _ \f ((r — 02/2)T,0*T). In this part we consider both approaches since
each one has its benefits and drawbacks.
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Optimal Quantizers of log-normal random variables need to be computed each time we con-
sider different parameters for the Black-Scholes asset. Indeed, the only operations preserving
the optimality of the quantizers are translations and scaling. However, this transformations are
not enough if one wishes to build an optimal quantizer of a Log-Normal random variables with
parameters p and o from an optimal quantizer of a standardized Log-Normal random variable.
However, if one looses time by computing for each set of parameters an optimal quantizer for
the log-normal random variable, it gains in precision.

Now, if we consider the case of optimal quantizers of normal random variables, we loose in
precision because we do not quantize directly our asset but the optimal quantizers of normal
random variables can be computed once and for all and stored on a file. Indeed, we can build
every normal random variable from a standard normal random variable using translations and
scaling. Moreover, high precision grids of the A/(0, 1)-distribution are in free access for download
at the website: www.quantize.maths-fi.com.

Substantial details concerning the optimization problem and the numerical methods for build-
ing quadratic optimal quantizers can be found in [Pagl8, [PP03), [PPP04, MRKP18|. In our case,
we chose to build all the optimal quantizers with the Newton-Raphson algorithm (see [PP03] for
more details on the gradient and Hessian formulas for the N(0, 1)-distribution and [MRKPIS|
for other distributions) modified with the Levenberg-Marquardt procedure which improves the
robustness of the method.

4.2.1 Vanilla Call

The payoff of a Call expiring at time T is
(ST — K)+

with K the strike and 7" the maturity of the option. Its price, in the special case of Black-Scholes
model, is given by the following closed formula

Ip:=E[e " (Sr — K)4] = Call,,4(So, K,7,0,T) = SoN(d1) — K e N(dy) (4.4)

where N (z) is the cumulative distribution function of the standard normal distribution, d; :=

1°g<S°/KO)_j/(T’j+"2/2>T and dy := di — o/T. Although the price of a Call in the Black-Scholes
model can be expressed in a closed form, it is a good exercise to test new numerical methods
against this benchmark. We compare the use of optimal quantizers of normal distribution, when
one quantizes the law of the Brownian motion at time 7" and log-normal distribution when one
quantizes directly the law of the asset St at time T

In the first case, we can rewrite [y as a function of a random variable Z with a N(0,1)-

distribution, namely a normal distributed random variable,

E[e™(Sr—K)4| =E[f(2)]

where f(z) := e " (sg e(r=o?/2T+oVTz _[¢ )+ is continuous with a piecewise-defined locally-
Lipschitz derivative, with respect to the function g(z) = VTl
In the second case, we have

E[e " (Sp— K)4] = E[¢(S7)]

where ¢(x) := e ""(x — K), is piecewise affine with one break of affinity.
The Black-Scholes parameters considered are

so = 100, r=0.1, o =0.5,
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whereas those of the Call option are T' = 1 and K = 80. The reference value is 34.15007.
The first graphic in the figure [I] represents the weak error between the benchmark and the
quantization-based approximations in function of the size of the grid: N — |Io —E [f(ZN)]|

and N — ’Io —E [(p()? N )] , the second represents the weak error multiplied by N? in function

of N: N = N2 x |Iy = E[f(ZV)]| and N — N2 x |Iy — E[o(XM)]|.
‘a

0 100 200 300 400 500 600 700 800 900 1000 0 10 600
Size of the optimal grid Size of the optimal grid
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Figure 1: Call option in a Black-Scholes model.

First, we notice that both methods yield a weak-error of order 2, as desired. Second, if we
look closely at the results the log-normal grids give a more precise price. However we need to
build a specific grid each time we have a new set of parameters for the asset, whereas such
is not the case when we choose to quantize the normal random variable, we can directly read
precomputed grids with their associated weights in files.

4.2.2 Compound Option

The second product we consider is a Compound Option: a Put-on-Call. The payoff of a Put-on-
Call expiring at time T is the following

(Kl - E [e_r(TQ_Tl)(STz — Ko)4 | ST1]>+

with price

I() R ) |:e—rT1 (Kl —E [e_T(TQ—TI)(ST2 - K2)+ | STl])+:|' (45)

The inner expectation can be computed, using the fact that St, is a Black-Scholes asset and we
know the conditional law of Sp, given St,. Using (4.4]), the value of the inner expectation is

E [eﬂn(TQiTl)(ST2 - K2)+ | STl] = CallBS(STI,KQ,r, o, Ty — Tl).
Hence, the price of the Put-On-Call option in (4.5 can be rewritten as
I=F [e—”’l (K1 — Call g (Sty, Ko, 7,0, Ts — Tl))+].

The Black-Scholes parameters considered are

so =100, r=003, o=02,
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whereas those of the Put-On-Call option are T} = 1/12, T = 1/2, K; = 6.5 and K9 = 100. The
reference value, obtained using an optimal quantizer of size 10000 of the A/ (0, 1)-distribution, is
1.3945704. As in the vanilla case, we compare the use of optimal quantizers of normal distribution
and log-normal distribution. In the first case, we have

Iy=E[f(Z)]

where Z ~ N(0,1) and f(z) = e7""* (K1 — Call 54 (so or=o/ATi+ovTiz [0, o Ty — Tl))+, and
in the second case

Iy = E [p(X)]
where log(X) ~ N((r — 02/2)T,0VT) and ¢(z) = e~ (K1 — Call 54 (sox, Ko,1,0, T — Tl))+.
The first graphic in the figure [2] represent the weak error between the benchmark and the
quantization-based approximations in function of the size of the grid: N —— |I0 —E [ f (2 N )]’

and N — |Io — E [p(XN)]

, the second allows us to observe if the rate of convergence is indeed

of order 2.
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Figure 2:  Put-On-Call option in a Black-Scholes model.

We notice that both methods yield a weak-error of order 2 as desired, however it is not clear
that one should use the log-normal representation of in place of the Gaussian represen-
tation. Indeed, both constants in the rate of convergence are of the desired order and getting
Gaussian optimal quantizers is much cheaper than building optimal quantizers of log-normal
random variables. Hence, one should choose the Gausian representation as it is as precise as the
log-normal one and is much cheaper.

4.2.3 Exchange spread Option

In this part, we consider a higher dimensional problem. Let two Black-Scholes assets (S})izl,g
at time T related to two Brownian motions (Wh);—1 2, with correlation p € [—1,1]. We are
interested by an exchange spread option with strike K with payoff

(Sp— 57— K)+

whose price is

Iy:=E[e (S} — 57 — K)4]. (4.6)

Decomposing the two Brownian motions into two independents parts, we have (W4, W2) =
VT(\/1 = p2Zy + pZs, Z), where Z; and Zy are two independents A/ (0, 1)-distributed Gaussian
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random variables. Now, pre-conditioning on Z, in (4.6)) and using , we have
Ip = E [p(Zs)]
where
©(2) = Call ;4 (s} e_pQU%T/QJ”’lpﬁZ, s2 e(r=03/2)T 02Tz +K,r,o1\/1—p2,T).
The numerical specifications of the function ¢ are as follows:
sh =100, r=0.02, o0;=05 p=05 T=10, K =10.

In that case, the reference value is 53.552678.
First, we look at the weak error induced by the quantization-based cubature formula when

approximating (4.6). We use optimal quantizers of the normal random variable Z;. The
quantization-based approximation is denoted Iy,

Iy == E[p(ZM)].

The first graphic in the figure [3] represents the weak error between the benchmark and the
quantization-based approximation in function of the size of the grid: N —— |I0 - E [cp(ZN )]|,

the second plots N —— N?x ‘Io—]E [90(2 N )]! and allows us to observe that the rate of convergence
is indeed of order 2.
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Figure 3: FExzchange spread option pricing in a Black-Scholes model.

Now, noticing that ¢ is a twice differentiable function with a bounded second derivative, we

show that we can attain a weak error of order 3 when using a Richardson-Romberg extrapolation
denoted I ]glj“v and defined in (3.1)).

)
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Figure 4: Richardson-Romberg extrapolation, with N =1.2x N, for Exzchange spread option
pricing in a Black-Scholes model.

4.2.4 Basket Option

A typical financial product that allows to diversify the market risk and to invest in options is
a basket option. The simplest one is an option on a weighted average of stocks. For example,
if we consider an option on the FTSE index, this is a basket option where the assets are the
companies defined in the description of the index and the weights are the market capitalization of
each company at the time we built the index normalized by the sum on all market capitalizations.

In this part, we consider d correlated assets (S:’ﬁ) k=1,....a following a Black-Scholes model and
the payoff we consider is

d
f(SE ..., 84) = (Z aksgi—K> (4.7)
k=1

+

whose price is

d
Iy :=e_TT]E[<2akS§—K> ]
k=1 +

Iy cannot be computed directly, hence we use a Monte Carlo estimator in order to approximate

the expectation. The standard estimator, denoted 1, M, is the crude Monte Carlo estimator and
is given by
M

d
1 m
IM = e_TT - E ( osz:lﬁ’( ) - J()
k=1 +

m=1

where (S;’(m))mzl’m,M are i.i.d. copies of SC’;. We compare the crude estimator to our novel ap-
proach based on a d-dimensional quantized control variates ZV. In that case, Iy is approximated

by IV defined by
d
Ni=eTE [( > S —K> - \EN ]
k=1 +

where 2 is defined later, yielding the following Monte Carlo estimator

M d

~ 1

I]/\\/}N — o T i Z <Z aks?(m) _ K) _ <)\,EN’(m)>
m=1 Nk=1 +

We propose two different control variates ZV based on optimal quantizers either of log-normal

random variables or of Gaussian random variables.
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1. The control variate, denoted EN, is defined by, Vk =1,...,d
=N ak,
S = f(E[S}], ..., 8%, ... E[SE]) — E[f(B[SF],..., SN, ... E[SE])]

where (é\:lﬁN) k=1,..,4 are optimal quantizers of cardinality N of S%. In that case, the Monte
~\,N
Carlo estimator is denoted I,; .

2. The control variate, denoted EN , is using another representation of the payoff , using
d Gaussian random variables i.i.d in place of the assets S% because the d underlying corre-
lated Brownian Motions can be expressed from d rescaled independents Gaussian random
variables, thus we define ¢ our new representation for the payoff as

(p(Zl,__.’Zd) = f(S:]Z:‘7"'7S§l_'>

where (Z k) k=1,..q4 are i.i.d Gaussian random variables. Now, defining our control variates
with the function ¢, Vk =1,...,d

=N = (0,...,2F,...,0) —E[p(0,...,ZN,...,0)]

where (2N)k=17“_7d is an optimal quantizer of Z ~ N(0,1). In that case, the Monte Carlo

estimator is denoted IJ/\}’N.

The Black-Scholes parameters considered are

54 = 100, r = 2%, 0= T p=0.5,
and the specifications of the product are
21
K =100 ;= —————
YT At

such that Y a; = 1. The benchmarks used for the computation of the MSE has been com-
puted using a Monte Carlo estimator with control variate without quantization where the term
Zi:l E[X}] is computed using Black-Scholes Call pricing closed formulas. The Mean Squared
Error of an estimator I is computed using the formula

MSE(I) = i(l © — Ip)?
i=1

S|

where (1 (i))izl,m,n are n independents copies of I.
Table (1| compares three different types of Monte Carlo estimators: the standard (Crude)

Monte Carlo estimator [;, our novel Monte Carlo estimator with control variate based on
~\,N
optimal quantizers of Gaussian random variables I, and another one with optimal quantizers

of log-normal random variables f])\‘/v The notation n corresponds to the number of Monte Carlo
used for computing the MSE, M is the size of each Monte Carlo and N is the size of the optimal
quantizers. The prices of reference for each d are

o for d = 2: 14.2589 (+0.0010),
e for d = 3: 14.1618 (£0.0015),
e for d = 5: 13.9005 (£0.0022),
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N =20 N =200

d MC Estimator | Mean (£1.96xstd) | MSE | Mean (+1.96xstd) | MSE
Crude 14.2695 (£0.0662) | 0.1450 | 14.2695 (+0.0662) | 0.1450

d=2 CV Gaussian 14.1017 (£0.0399) | 0.0774 | 14.2773 (+0.0399) | 0.0530
CV Log-Normal | 14.2351 (+0.0078) | 0.0026 | 14.2614 (+0.0078) | 0.0020

Crude MC 14.1770 (£0.0671) | 0.1492 | 14.1770 (£0.0671) | 0.1492

d=3 CV Gaussian 14.0336 (+0.0451) | 0.0837 | 14.1685 (+0.0451) | 0.0673
CV Log-Normal | 14.1479 (£0.0104) | 0.0038 | 14.1674 (£0.0104) | 0.0036

Crude MC 13.8803 (+0.0720) | 0.1717 | 13.8803 (+0.0720) | 0.1717

d=5 CV Gaussian 13.6686 (+0.0562) | 0.1580 | 13.8883 (£0.0562) | 0.1044
CV Log-Normal | 13.8797 (£0.0151) | 0.0080 | 13.9008 (£0.0151) | 0.0076

Crude MC 13.5046 (£0.0599) | 0.1186 | 13.5046 (+0.0599) | 0.1186

d=10 CV Gaussian 13.2429 (+0.0515) | 0.1527 | 13.5113 (£0.0515) | 0.0878
CV Log-Normal | 13.4221 (£0.0194) | 0.0181 | 13.4983 (£0.0194) | 0.0124

Table 1: n =128, M = led

o for d = 10: 13.4979 (+0.0034).

One remarks in Table [1] the efficiency of the optimal quantization-based variance reduction
method. The variance, in the best cases, can be divided by almost 100 when using the optimal
quantizers of Log-Normal random variables. Figure [§]shows the effect of N, the size the optimal
quantizers, on the bias. The same seeds are used for all the Monte Carlo estimator, the only
thing varying is N.
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Figure 5: n =128, M = le4.
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