
HAL Id: hal-02361600
https://hal.science/hal-02361600v1

Submitted on 17 Nov 2019 (v1), last revised 11 Dec 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Rendering of Rounded Corners and Edges for
Convex Objects

Simon Courtin, Sébastien Horna, Mickaël Ribardière, Pierre Poulin, Daniel
Meneveaux

To cite this version:
Simon Courtin, Sébastien Horna, Mickaël Ribardière, Pierre Poulin, Daniel Meneveaux. Efficient
Rendering of Rounded Corners and Edges for Convex Objects. Lecture Notes in Computer Science,
2019, Advances in Computer Graphics, 11542, pp.291-303. �10.1007/978-3-030-22514-8_24�. �hal-
02361600v1�

https://hal.science/hal-02361600v1
https://hal.archives-ouvertes.fr

Efficient Rendering of Rounded Corners and
Edges for Convex Objects

Simon Courtin1, Sébastien Horna1, Mickaël Ribadière1, Daniel Meneveaux1,
and Pierre Poulin2

1 Univ. Poitiers, CNRS, XLIM, UMR 7252, Poitiers, France
2 LIGUM, Dept. I.R.O., Université de Montréal

Abstract. Many manufactured objects and worn surfaces exhibit rounded
corners and edges. These fine details are a source of sharp highlights and
shading effects, important to our perception between joining surfaces.
However, their representation is often neglected because they introduce
complex geometric meshing in very small areas. This paper presents a
new method for managing thin rounded corners and edges without ex-
plicitly modifying the underlying geometry, so as to produce their visual
effects in sample-based rendering algorithms (e.g., ray tracing and path
tracing). Our method relies on positioning virtual spheres and cylin-
ders, associated with a detection and acceleration structure that makes
the process more robust and more efficient than existing bevel shaders.
Moreover, using our implicit surfaces rather than polygonal meshes al-
lows our method to generate extreme close views of the surfaces with
a much better visual quality for little additional memory. We illustrate
the achieved effects and analyze comparisons generated with existing
industrial software shaders.

Keywords: rounded edges · bevel · chamfer · shading · implicit surface
representation.

1 Introduction

The realism of computer-generated images can be greatly improved with the
representation of detailed features, such as dust, hair, or imperfect surfaces [12].
However, such thin structures are often neglected because (i) their impact affects
only small portions of image pixels, (ii) their representation highly increases
scene complexity in terms of geometry and appearance modeling, and (iii) their
associated processing results in high complexity, both in terms of computation
time and memory requirements.

This paper focuses on the rendering of thin rounded corners and edges. As
shown by previous authors [15], managing the effects resulting from rounded cor-
ners and edges improves the observed realism. They produce specular highlights
and appearance changes that improve shape perception. Real objects almost
never exhibit perfect sharp edges, and their borders appear as brighter or darker
than the rest of the surface, as illustrated in Figure 1. Such rounded edges are
often due in real life to imprecisions or desired intentions caused by the manu-
facturing process, e.g., in material cutting, moulding, sculpting, etc., or due to
the wear of surfaces in their physical environment.

2 S. Courtin et al.

(a) No chamfer (b) Photograph (c) Our method

Fig. 1: Visual comparison of real and virtual objects with and without a rounding
operation: (a) Virtual objects with sharp edges; (b) Photo of real play blocks; (c) Same
virtual objects with our rounded spheres and cylinders. Notice the top red and cyan
blocks on the two structures, with their darker adjacent rounded edges.

Rounding operations have been studied for a long time in geometric mod-
elling, and many software packages offer robust operations [1,2]. Beveling op-
erations rely on explicit chamfering [10,17] or on subdivision surfaces [4,7,16].
The process generates a polygonal mesh that approximates rounded chamfers.
However, this is usually not applied to all objects of a 3D scene because of
the high complexity associated with the resulting mesh. In addition, even with
very detailed meshes, some information is lost on rounded shapes because of the
discretization process, thus resulting in limited shading effects. Mesh disconti-
nuities may also be visible depending on the observer point of view and lighting
configurations.

The rendering of round edges can also be rendered using bevel shaders, to
avoid generating explicit geometry. For instance, Saito et al. [15] propose a ren-
dering system dedicated to rasterization, where reflected radiance is integrated
analytically on the curvature of rounded spheres and cylinders. Three render-
ing passes are performed, in which corners and edges are processed separately,
and added to the final image. Tanaka et al. [18] extend this method with cross-
scanline [15], thus reducing artifacts on thin curves. More recently, Wei et al. [19]
propose an extension for GPU real-time rendering. These three methods have
proven efficient, but their extension to global illumination remains complex since
illumination on edges is performed locally and mapped directly on the final
image. Several industrial software packages have an implementation of bevel
shaders for managing rounded edges (e.g., Cycle [3], V-Ray [9], and Corona [8]).
However they are mostly based on interpolation of normals, that is unfortunately
not robust to many simple configurations (several examples are illustrated in the
additional material). These methods remain unsuitable for handling the shrink-
ing due to chamfering, and they fail with thin structures.

This paper focuses on the visual appearance of rounded corners and edges
without explicitly generating a detailed mesh. We aim at defining a method that
can be integrated efficiently in a ray tracing renderer (and more generally in a
path tracing renderer), with an analytic description of spheres for corners and
cylinders for edges. The goal is to be able to naturally generate smooth-to-sharp
highlights within the rendering process, including correct geometry (volumetric
shrinking on corners and edges) and normals. Our method consists in placing

Efficient Rendering of Rounded Corners and Edges for Convex Objects 3

automatically spheres on corners and cylinders on edges of convex objects. Our
method does not modify the original geometry representation (it is not inva-
sive), since it operates in parallel with the existing data and rendering process.
We propose a new structure that handles the geometric modifications due to
the rounding operation, while explicitly taking an analytic representation of
smoothness with spheres and cylinders, ensuring C1 continuity at the junctions
of surface and rounded feature. We also define a structure that serves for the
detection of rounded corners and edges, and for acceleration with topological
links. The main contributions of our work can be summarized as follows:
• Automatic positioning of rounding spheres and cylinders to generate a C1

smooth continuous surface, that accounts for accurate and fast ray-object
intersection in many geometric cases. The resulting shape and rendering
process account for volume shrinking due to chamfering.

• A geometric structure that allows for efficient detection and intersection of
rounded corners and edges, including a graph for managing vertex and edge
adjacencies useful for handling rays at grazing angles.

• A noninvasive structure, defined in parallel with the existing 3D data and
accelerating structure, that integrates well in a sampling-based rendering
system. The structure has a small impact both on memory and computation
cost.

Our method has been integrated in the Cycles rendering system and in
Blender [5,6]. The achieved results illustrate configurations with many rounded
objects in virtual environments. Applying our rounding operations and updating
our detection structures are performed in only a few seconds. It has been used
in path tracing [11,14], and results illustrate substantially visible differences and
quality improvements compared to existing bevel shaders.

This paper is organized as follows. Section 2 presents an overview of our
method. Section 3 provides technical details of rounding geometry positioning
as well our detection and acceleration structure. Section 4 describes the ray in-
tersection process with our structure. Section 5 discusses the implementation
techniques and the achieved results. Section 6 concludes and presents insights
into future investigations.

2 Overview

The goal of this work is to introduce smooth chamfer effects on object corners
and edges, with as few geometric primitives as possible, and efficient ray-object
intersection. With our method, the original scene geometry is not modified,
which makes it easy to edit chamfer radii, without much impact on a potentially
complex mesh geometry. The efficiency of our approach comes from a detection
and acceleration structure, located on the chamfer boundaries.

Figure 2 illustrates the general idea of the structure construction and on the
rendering process. First, each edge in the original geometry is processed with
its two adjacent faces to determine the positions of a rounding cylinder and a
detection cylinder (Figure 2(a)). When a ray is traced in the 3D scene, the re-
sulting intersection is with the original geometry (Figure 2(b)). This intersection

4 S. Courtin et al.

is tested with the detection cylinders (Figure 2(c)) using a Kd-tree structure.
If the intersection lies within one or more detection cylinders, the associated
interior rounding cylinder is used for ray intersection (Figure 2(d)). Finally, the
origin of a reflected or shadow ray is placed at the correct point on the original
geometry.

Rounding
cylinder

Detection
cylinder

(a)

Rounding
sphere

Initial geometry
intersection

Rounding
cylinder

(b)

ray

(c)

Detection
cylinder

ray

Rounded object
intersection

(d)

Reflected
ray origin

Fig. 2: (a) A rounding cylinder and a detection cylinder are associated to a rounded
edge. (b) The ray tracing process intersects the original geometry of the 3D scene.
(c) The corresponding intersection point is used to determine if its position lies within
a detection cylinder using a Kd-tree structure. (d) If the intersection point lies within
a detection cylinder, the intersection is computed with the corresponding rounding
cylinder. If a reflected or shadow ray follows this intersection point, its origin is placed
accordingly on the original geometry.

Note that in some cases, the ray does not intersect the rounding geometry
(spheres and cylinders). The ray should continue its path through the scene,
as explained in Section 4. We introduced a topological structure to allow rays
to travel through rounding spheres and cylinders, and efficiently perform the
intersection tests.

3 Rounding and Detecting

Positioning rounding spheres and cylinders at corners and edges of polygonal
meshes has already been addressed [15,18]. This section briefly recalls the main
principles and provides the notations used in the remainder of this article.

Using spheres for corners and cylinders for edges presents several advantages:
(i) they correspond to smooth analytic primitives with well-known ray intersec-
tion processing, and (ii) continuity between surfaces, spheres, and cylinders is
straightforwardly ensured for an identical radius [13].

Figure 3 illustrates the positioning methodology for cylinders. Let us con-
sider a rounding cylinder of radius r (user-defined), associated with an edge
(v1, v2), shared by two faces of normal Na and Nb respectively. Let E = v2−v1

(E′ = E/|E|). The cylinder axis crosses the line defined by the half-vector direc-
tion H = −(Na +Nb)/|Na +Nb|. The axis of the rounding cylinder is defined
by two points p1 = v1 + dH and p2 = v2 + dH, with d = r/ sinα.

As illustrated in Figure 4, rounding a corner consists in placing a sphere
with the same radius r (as the cylinder), centered at the intersection between all

Efficient Rendering of Rounded Corners and Edges for Convex Objects 5

v1

v2

E′

Na
Nb

A

B

t1

t2
α

H

p1

A

B

Rounding cylinder
visible part

(a) (c)(b)

v1

r

Fig. 3: A rounding cylinder for an edge (v1, v2) is associated with adjacent faces A
and B. (a) A and B have respective normals Na and Nb, H = −(Na +Nb)/|Na +Nb|.
(b) p1 (resp. p2) is defined from vertex v1 (resp. v2) and H; (c) The visible area of the
rounding cylinder defined by the axis (p1, p2), and the cylinder radius r is defined by
the user.

s1 p2

Rounding cylinders Rounding cylinder

axes

Rounding

sphere

Rounding cylinders

and spheres

(a) (b) (c)

p3

p1

Fig. 4: (a) Set of rounding cylinders for a cube. (b) Axes of cylinders cross at a point,
defining a rounding sphere center (s1 is the sphere center associated with p1, p2, and
p3). (d) Final configuration with rounding spheres and rounding cylinders.

axes of adjacent rounding cylinders [13]: p1 and p2 are respectively replaced by
the sphere centers s1 and s2, thus ensuring C1 continuity between the rounding
spheres, cylinders, and surfaces.

This representation is suitable for any convex object, whatever the number
of edges incident to a vertex, as illustrated in Figure 5, for rounding spheres and
cylinders having all the same radius. The rendering system can be applied from
both sides of the chamfer (i.e., observed from outside or from inside a rounded
object).

Fig. 5: Various configurations of positioning rounding cylinders, with different number
of edges incident to one vertex.

6 S. Courtin et al.

Our goal is to perform robust and efficient ray intersection tests for ray/path
tracing applications. The rounding primitives are placed inside an object geom-
etry, that would not be reached by (exterior) rays. This is why an additional
structure is mandatory for determining the intersection point and associated
normal on the rounding primitive.

3.1 Detection Cylinders

The structure defined in this section aims at finding the potential rounding
cylinder for a given intersection point on the original geometry. On a polygon,
the area concerned by a chamfer corresponds to the region between a face edge
and the beginning of the rounding cylinder. We propose to define a detection
cylinder that precisely delimits this region (see Figure 6).

(a) (b)

Detection cylinder

(c)

p1

p′1

p1

p′1

v2

A

B

C
A C B

Detection cylinders

Kd-tree structure

(d)

p2

p′2
v1

v1

Detection cylinder axis

Fig. 6: Detection structure associated with three bevel areas: (a) A detection cylinder
delimits the chamfer area. (b) The axis is placed so as to precisely fit the chamfer
borders. (c) The representation in 3D. (d) Detection cylinders are organized into a
Kd-tree.

The detection cylinder axis associated with an edge (v1, v2) is defined by two
points p′1 = (v1 + p1)/2 and p′2 = (v2 + p2)/2 (as illustrated in Figure 6(c)). The
detection cylinder radius rd is equal to |v1 − p′1|.

One detection cylinder is associated to each edge; its central axis is parallel to
the edge, and they are of equal length. These detection cylinders precisely delimit
the region corresponding to the chamfer on the adjacent faces. Therefore, when
a ray intersects a face at a 3D point I, a first test is performed to determine if
I is within a detection cylinder (see Figure 7(a)). If so, the associated rounding
cylinder is considered for intersection with the ray. An adjacency graph is also
defined for managing grazing ray directions. A rounding cylinder is linked to its
two end rounding spheres, and a rounding sphere is linked to all its connected
rounding cylinders.

This detection structure has several advantages: (i) It completely contains
and exactly fits the bevel region. (ii) It is defined by one axis and a radius.
(iii) Determining if an intersection point is inside a cylinder is straightforward
and fast. (iv) The adjacency graph allows finding the chamfer intersection along
a series of rounded edges and corners traversals without renewing the search in
the Kd-tree.

Efficient Rendering of Rounded Corners and Edges for Convex Objects 7

3.2 Kd-tree Structure

Because we aim at managing scenes with a large number of rounded edges, an
acceleration structure is mandatory. We have chosen an organization of detection
cylinders based on a Kd-tree, which is faster in this case than a bounding volume
hierarchy (BVH) since the number of tests is smaller. We use a classical binary
split along the longest axis, but any heuristic can be used (surface area heuristics,
middle cut, etc.). The leaves contain the set of detection cylinders. This choice
favors a fast construction with a balanced tree. In our implementation, a Kd-tree
is constructed for each object or a group of simple objects, so as to benefit from
moderate tree depths.

Our structure is independent from any path tracing structure, since it does
not rely on the same geometry. When a ray-object intersection I is identified,
it is located within the Kd-tree structure, and for each detection cylinder be-
longing to the corresponding Kd-tree leaf, the algorithm tests if I lies in the
corresponding volume. If the test is positive, the intersection with the enclosed
rounding cylinder can be performed, as explained below.

4 Ray tracing Process

Let us consider a scenario in path tracing, and the corresponding ray intersec-
tion process. The following method can be applied for paths issued from the
observer or from light sources. Thus, it could be used in any modern rendering
method based on stochastic paths construction: Photon mapping, bidirectional
path tracing, Metropolis light transport, etc. For a given intersection point I on
the original geometry, our method determines if such an intersection exists, and
if so, computes the intersection point and associated normal off the rounding
primitive.

raya

Reflected ray

I

I′′

(a) (b) (c)

I′

rayb

Ia

Ib

Rounding
cylinder

Detection
cylinder

I′
I

Rounding sphere

Fig. 7: Ray-object intersection using the original mesh. (a) With raya, the intersection
Ia is located on the original geometry and outside all detection cylinders: the ray
tracing process can be continued. For rayb, Ib lies inside a detection cylinder and
the intersection has to be tested with the rounding cylinder. (b) A ray intersects the
rounding cylinder in I ′, and the reflected ray origin is set to I ′′ on the original mesh;
(c) The ray does not hit the rounding cylinder, but the rounding sphere in I ′.

8 S. Courtin et al.

Figure 7 illustrates the possible cases for an intersection point I. The Kd-tree
identifies if I is located within a detection cylinder. If no detection cylinder is
identified, I is directly used as the intersection point for the global illumination
process (Figure 7(a)). Otherwise, every rounding cylinder containing I is used
as a geometric primitive for ray intersection. Three configurations are possible:

• An intersection is found on the rounding cylinder, between the limits defined
by s1 and s2. In this case, the resulting intersection point and its normal are
used for further processing instead of I (Figure 7(b)).
• An intersection is found on the rounding cylinder between the limits de-

fined by s1 and p1 (resp. s2 and p2). This area corresponds to a corner,
and the rounding sphere is tested to determine the potential intersection
(Figure 7(c)).

Given an intersection point I ′ on a rounding primitive (sphere or cylinder),
the associated normal is computed. Since I ′ is located beneath the object surface,
secondary rays must start on the original geometry mesh. They are first defined
by their origin I ′ and a direction D fixed by the path tracer, but actually traced
from an origin I ′′ located on the mesh surface. If no intersection is found on the
rounding structure, the ray carries on its traversal in the adjacency structure.

5 Implementation and Results

(a) Scene 1: 43.6k edges, 23.5k vertices, 23.3% (b) Scene 2: 106k edges, 57.5k vertices, 30.4%

(c) Scene 3: 259k edges, 140k vertices, 29.2% (d) Blocks: 182k edges, 122k vertices, 1.89%

Fig. 8: Number of rounded sphere/edge and percentage of rays impacted by chamfers
for four test scenes. (a) Cylinders generated in 1.5 seconds, Kd-tree in 17 milliseconds;
(b) cylinders generated in 3.6 seconds, Kd-tree in 44 milliseconds; (c) cylinders gener-
ated in 9.7 seconds, Kd-tree in 111 milliseconds; (d) cylinders generated in 9.5 seconds,
Kd-tree in 0.004 milliseconds.

Efficient Rendering of Rounded Corners and Edges for Convex Objects 9

The results presented in this section have been computed on an Intel Core 17-
4790 3.60 GHz processor, with 8 threads and 16 GB of RAM. The code is com-
pletely integrated into Blender [5] and Cycles renderer [6], in order to provide fair
comparisons with existing bevel shaders and modifiers. All images and statistics
are for a resolution of 1920× 1080 with 512 paths per pixel.

Figure 8 illustrates the main scenes used in this paper, with worst cases
corresponding to Figure 8(a)-(c), where many corners and edges are defined on
small objects. In practice, the user selects a set of objects in Blender, and our
process automatically places the rounding and detection cylinders for all the
corners and edges, as well as build a Kd-tree structure per object.

(a) 661 s (b) 691 s

Fig. 9: Without rounded edges, blocks look flat, contrary to the appearance of real
blocks. The total time difference between the two images is less than 5%. In this
example, 2.65% of rays are affected by rounded edges.

The data structure associated with corners and edges is provided in the
supplementary material. Note that data for rounding spheres are not explicitly
stored since all the necessary information is already contained in the cylinders
data structure: rounding cylinders axes are defined by the two associated sphere
centers.

When a ray-object intersection occurs with the original object, the object
index is returned by the rendering system with the corresponding data. The in-
dex is used for accessing the correct Kd-tree and its associated rounding spheres
and cylinders. Figure 9 shows the visual importance of rounded edges. With-
out rounded edges (Zoomed-in red frame), the individual blocks blend together,
contrary to the clear demarcations (darker at junctions, brighter on highlights,
between real blocks). Note also the highlights on the rounded knobs on top of
each block. Even when observed from a distance (Zoomed-in blue frame), the
edge representation greatly affects the perception of object shapes. The left im-
age looks much flatter.

Figure 10 compares our method with standard rounding meshes, with various
levels of subdivision for the rounded corners and edges. The rendering time for
our method in this image corresponds to a subdivision level of 10, but with much
less memory consumption (as shown in Table 1). In addition, our method is not
prone to edge flickering when the light source (or viewpoint) moves, as shown
on the video from the supplementary material.

10 S. Courtin et al.

(a) Sharp edges, 601 s (b) 1 subdivision, 602 s (c) 3 subdivisions, 654 s

(d) 5 subdivisions, 664 s (e) 10 subdivisions, 729 s (f) Our method, 727 s

Fig. 10: Close-up view of Scene 2 from Figure 8(b) for a comparison between our
method and different levels of mesh subdivisions. Rounded corners and edges affect
28.9% of rays in this image.

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

30
9

32
0

33
1

34
2

35
3

36
4

37
5

38
6

39
7

0

5

10

15

20

Frames

%

% of additional computation
time with our method

% of rays affected by chamfers

Fig. 11: Variations of computation time for a path traced animation of a moving
viewpoint in the scene Blocks (Figure 8d. The red curve indicates the percentage of
rays that hit chamfers, while the blue one shows the computation time increase.

Table 1 compares computation time and memory requirements for a number
of configurations: our method, including all the rounding spheres and cylinders,
detection cylinders, and the Kd-tree acceleration structure has only a minor im-
pact on memory. In terms of computation time, the worst case we have observed
concerns Scene 2, for which almost 30% of rays are affected by bevel corners and
edges. In this case, our method is as fast as a subdivision of level 10, but the
memory consumption is much lower.

Using rounding cylinders instead of sharp edges requires additional compu-
tation time: respectively 3.2%, 1.9%, 34.5%, and 3.4% for Scenes 1, 2, 3, and
Blocks. Our method is slightly faster than a subdivision of level 10 for the mesh-
ing method, but with far less memory requirements, and with a smoother ap-
pearance. The computation time highly depends on the number of rays that are
affected by chamfers. This is why computation time increases very differently

Efficient Rendering of Rounded Corners and Edges for Convex Objects 11

for our tested scenes or depending on the viewpoint as illustrate in Figure 11
abstract from the video attached in additional material. Figure 12 illustrates
internal rounded corners and comparisons between meshed chamfers and our
method.

Scene 1 Scene 2 Scene 3 Blocks
tri time MB # tri time MB # tri time GB # tri time MB

No rounding 42k 386s 128 103k 639s 478 252k 656s 2,42 276k 1010s 122
Our method 42k 493s 132 103k 823s 487 252k 882s 2.44 276k 1050s 138
1 subdivision 108k 396s 143 267k 686s 516 664k 695s 2.51 507k 1022s 182
3 subdivisions 364k 436s 201 909k 716s 662 2.26M 746s 2.86 1.01M 1029s 299
5 subdivisions 777k 452s 296 1.93M 746s 900 4.85M 793s 3.48 1.54M 1045s 439

10 subdivisions 2.49M 509s 690 6.24M 839s 1889 15.6M 909s 5.96 2.9M 1068s 780
Bevel shader 42k 628s 128 103k 1106s 478 252k 1148s 2.42 276k 1585s 122

Table 1: Number of triangles, rendering time, and memory consumption for the four
test scenes of Figure 8.

Memory consumption with our method is much lower than mesh subdivision.
Bevel shaders also have very little impact on memory, but the rendering quality
fails in many cases. This is due to the normal interpolation, not always adapted
to geometric configurations, and that does not account for volume removal due
to chamfering.

(a) Internal corners (b) Flat mesh (c) Our method (d) Norm interp.

V
ie

w
p

o
in

t
1

V
ie

w
p

o
in

t
2

Fig. 12: (a) A Cornell box with rounded corners, containing objects chamfered with
our method. The rounded corners and edges of the Cornell box itself seen from the
interior. (b), (c), and (d) Two frames from a video provided in supplementary ma-
terial. (b) Subdivision of level 10 without interpolation of normals. (c) Our method.
(d) Subdivision of level 10 with interpolation of normals.

Our methods offers a simple control on the chamfer radius, with a constant
the visual quality when observed from any viewpoint in the scene. It also can be
easily integrated in an existing rendering system based on ray sampling.

6 Conclusion and Future Work

This paper presents a method dedicated to the efficient rendering of rounded
corners and edges on convex objects with ray tracing based renderers. The pro-
cess consists in automatically positioning rounding spheres and cylinders of a

12 S. Courtin et al.

given radius within objects. It does not affect the object original geometry and
does not require much change to the rendering system.

A detection and acceleration structure allows us to determine whether an
intersection point is located on a rounded corner or edge. The actual intersection
on the rounded primitive is performed only if required, making the method
robust, with a small memory consumption compared to regular and subdivision
meshes, while offering a simple control.

Our method does not account for nonconvex objects because convexity changes
around a corner imply complex changes of curvature that cannot be handled by
a simple sphere.

In the future, we aim at improving the method with arbitrary geometric
configurations while maintaining a C1 continuity. Some technical improvements
could also reduce computation times, because for instance parts of the method
have not been implemented using SSE instructions.

References

1. Autodesk: 3DS Max chamfer modifier. www.help.autodesk.com
2. Blender Foundation: Bevel geometry tool in Blender.

www.docs.blender.org/manual
3. Blender Foundation: Blender shader for round edges.

www.docs.blender.org/manual
4. Blender Foundation: Subdivision tool in Blender. www.docs.blender.org/manual
5. Blender Foundation: Blender. www.blender.org (2018)
6. Blender Foundation: Cycles. www.cycles-renderer.org (2018)
7. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topo-

logical meshes. Computer-Aided Design 10(6), 350–355 (1978)
8. Chaos group: Corona round-edges shader. www.coronarenderer.freshdesk.com
9. Chaos group: V-RAY round-edges shader. www.docs.chaosgroup.com.

10. Chiyokura, H.: An extended rounding operation for modeling solids with free-form
surfaces. In: Computer graphics 1987, pp. 249–268. Springer (1987)

11. Kajiya, J.T.: The rendering equation. In: ACM Siggraph Computer Graphics.
vol. 20, pp. 143–150. ACM (1986)

12. Loubet, G., Neyret, F.: Hybrid mesh-volume LoDs for all-scale pre-filtering of
complex 3D assets. In: Computer Graphics Forum. vol. 36, pp. 431–442. Wiley
Online Library (2017)

13. Max, N.: Cone-spheres. In: ACM SIGGRAPH Computer Graphics. vol. 24, pp.
59–62. ACM (1990)

14. Pharr, M., Jakob, W., Humphreys, G.: Physically based rendering: From theory
to implementation. Morgan Kaufmann (2016)

15. Saito, T., Shinya, M., Takahashi, T.: Highlighting rounded edges. In: New Advances
in Computer Graphics, pp. 613–629. Springer (1989)

16. Stam, J., Loop, C.: Quad/triangle subdivision. In: Computer Graphics Forum.
vol. 22, pp. 79–85. Wiley Online Library (2003)

17. Szilvasi-Nagy, M.: Flexible rounding operation for polyhedra. Computer-Aided De-
sign 23(9), 629–633 (1991)

18. Tanaka, T., Takahashi, T.: Precise rendering method for exact anti-aliasing and
highlighting. The Visual Computer 8(5), 315–326 (1992)

19. Wei, L.Y., Shi, K.L., Yong, J.H.: Rendering chamfering structures of sharp edges.
The Visual Computer 31(11), 1511–1519 (2015)

http://help.autodesk.com/view/3DSMAX/2017/ENU/?guid=GUID-E7BF59A4-BFDD-4DEB-B29D-CA0E434BE355
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/bevel.html
https://docs.blender.org/manual/en/latest/render/cycles/nodes/types/input/bevel.html
https://docs.blender.org/manual/en/dev/modeling/modifiers/generate/subsurf.html
https://www.blender.org/features/
https://www.cycles-renderer.org/
https://coronarenderer.freshdesk.com/support/solutions/articles/5000544506-how-to-add-rounded-edges-effect-to-materials-
https://docs.chaosgroup.com/display/VRAY3MAX/Edge+Map+|+VRayEdgesTex

	Efficient Rendering of Rounded Corners and Edges for Convex Objects

